INTRODUCTION
A cerebral vascular accident (CVA) or stroke is a lack of blood supply to the brain as a result of either ischemia or hemorrhage. 80% of CVAs are a result of ischemia (embolic or thrombotic) while the remaining 20% tend to be a result of a hemorrhage. At the cellular level, injury is caused by many factors that result in possible dysfunction and death of the cell. This ischemic cascade begins within minutes of the loss of glucose and oxygen supply to the neurons in the brain. As the ischemia continues, resulting edema causes further injury to the surrounding areas, collectively known as the ischemic penumbra. This tissue is dependent on collateral circulation and may still be viable for several hours because of this marginal perfusion. Successful care of the acute CVA patient is reliant on early recognition of the signs and symptoms, priority transport to the appropriate hospital and rapid assessment, diagnosis and treatment. Acute CVA interventions are time sensitive; time is brain.

Transient ischemic attacks (TIA) are a result of a temporary blockage of the neurons’ blood supply by an embolus or a thrombus. While the signs and symptoms are similar to ischemic CVA, they tend to subside and improve within a few minutes or hours. Though the signs and symptoms may have improved, a TIA is an important warning sign that indicates high risk of having a CVA.

SAFETY
Be cautious of the patient’s ability to swallow and ambulate if motor skills are impaired.

ASSESSMENT
During the assessment of a patient with a potential CVA, a focused medical assessment can help identify possible risk factors and other clinical points to help make the transport decision.

Risk Factors
Risk factors include: previous CVA or TIA, atherosclerotic disease, hypertension, high cholesterol, atrial fibrillation, and coronary artery disease. Other risk factors such as diabetes, tobacco use, increased weight, lack of exercise and alcohol consumption may also be considered. CVA in younger patients are rare, but do occur. Obtain other pertinent information such as recent trauma, illicit drug use, pertinent medical history or use of oral contraceptives.

Time of Onset
Establishment of the onset of symptoms is extremely important for trip destination decisions and definitive management. This information should be obtained from the patient and/or bystanders. Note, the time of onset is considered the last time the patient was seen normal. For example, if the patient has awoken from sleep with symptoms, the onset is the last time the patient was seen without symptoms.

Signs and Symptoms
The signs and symptoms that the patient may present with are dependent on the area of the brain being affected, and may include:
- Hemiparesis or hemiplegia (often on opposite side of lesion)
- Facial droop
- Weakness or numbness
- Dizziness/vertigo
- Dysarthria or aphasia
- Headache
- Vision disturbances (monocular blindness, double vision)
- Nausea and vomiting
- Confusion
- Seizures
- Altered level of consciousness (ALOC)

In hemorrhagic CVA, headache and nausea/vomiting are more likely than in ischemic CVA.

Aphasia may be receptive, in which the patient may not understand commands and have confused speech. The exam may include observation for purposeful spontaneous movements or purposeful response to touch or painful stimulus. Aphasia may also be expressive, in which the patient understands, but cannot speak normally. These patients will follow commands.

Physical Exam
The physical exam should include:
- Vital signs
- Detailed neurological exam, including sensory changes
A full head-to-toe secondary exam
- 12 lead ECG
- Blood glucose (PEP 3 neutral)
- Oxygen saturation
- Serial GCS assessments

A neurological assessment can help identify areas of weakness and should include the Cincinnati Prehospital Stroke Scale (PEP 2 supportive).

The Cincinnati Prehospital Stroke Scale is an assessment tool that paramedics should use to help identify if a CVA may be present. It evaluates three major physical findings:
- Facial droop
- Arm drift
- Speech abnormalities

From this assessment if the patient has one of these three findings as a new event it shows a 72% probability of an ischemic CVA is present and paramedics should consider it a positive indicator for CVA. All three findings present increases the probability of an acute CVA to more than 85%.

MANAGEMENT

Oxygen Therapy

The goal of oxygen therapy is to prevent hypoxia and minimize the penumbra. Oxygen should be provided to maintain SpO2 of 92% or greater.

Fluid Management

Paramedics should consider inserting an IV lock in these patients. IV fluids should be provided only to manage hypotension (PEP white), in accordance with the shock guideline. Fluid administration should be conservative, as to prevent increased intracranial pressure.

Glucose Management

Patients with glucose of less than 4 mmol/L may present with CVA-like symptoms and their hypoglycemia should be treated (PEP 3 neutral). Alternatively, patients with a true CVA could suffer hypoglycemia, which should be treated. The risk of administering glucose to a CVA patient does not outweigh the benefits of treating hypoglycemia, as hypoglycemia is detrimental to the penumbra.

CVA patients with high glucose readings may also present with stroke-like symptoms and should be managed with fluid administration (i.e., initiate a 500 mL bolus and reassess with up to 1000 mL).

Seizure Management

Seizure activity is possible in CVA patients, and should be treated as per the seizure guideline.

Destination

Paramedics should recognize the time sensitive nature of CVAs. Proper destination choices are important, as time can have a major impact on outcome (PEP 2 supportive). In Nova Scotia, several hospitals are designated as District Acute Stroke Hospitals (DASH). If the total symptom duration and anticipated transport time (collectively, the ‘reperfusion interval’) to a DASH is less than 3.5 hours, the patient may be a candidate for thrombolytic therapy. The most appropriate destination is a DASH emergency department (ED), which have the capability to administer thrombolytics.

Patients whose reperfusion interval is greater than 3.5 hours should be transported to the nearest ED. Patients that have been identified as a resolving CVA should also be transported to the nearest ED. These patients are not candidates for thrombolytic therapy, although may later be transferred for rehabilitation purposes.

If the patient qualifies for destination bypass to a DASH ED, but requires ongoing resuscitation (e.g. airway management, cardiovascular support), paramedics should consider transport to the closest appropriate ED.

CVA management by EHS and EDs plays an important part of the overall management goals of CVA treatment in Canada, according to the Canadian Best Practice Recommendations. Primary prevention, public awareness, rehabilitation and long-term recovery are also important components of care.

Early Notification

When presented with a suspected CVA, early notification to the receiving facility by the paramedics is imperative to providing adequate time for the emergency department to make the necessary
arrangements to receive the patient. Key information to share during notification include symptoms present, onset time, CTAS and arrival time.

TRANSFER OF CARE

When presenting this patient to the ED staff all relevant information should be provided, including:
- Onset of symptoms (or last seen normal)
- Changes in symptoms
- Stroke scale
- Treatments provided and response

CHARTING

In addition to the mandatory fields, it is important to document the following in the ePCR text fields:
- ✓ Onset of symptoms (or last seen normal)
- ✓ Changes in symptoms
- ✓ Stroke scale

KNOWLEDGE GAPS

More research is needed on potential for administering CVA-specific treatments earlier in the prehospital setting, such as hypertension therapy, anti-platelet therapy and hyperglycemia therapy.

EDUCATION

The use of a common prehospital stroke scale needs to be a focus for education.

QUALITY IMPROVEMENT

Important elements are: [1] documentation of symptom onset (or last seen normal) time, [2] completion of stroke scale, and [3] appropriate destination decision.

REFERENCES

http://www.strokebestpractices.ca

http://www.heartandstroke.ns.ca

http://www.gov.ns.ca/health/ehs/paramedics/EBP.asp
STROKE

Throughout the EHS Guidelines, you will see notations after clinical interventions (e.g.: PEP 2 neutral). PEP stands for: the Canadian Prehospital Evidence-based Protocols Project.

The number indicates the Strength of cumulative evidence for the intervention:
1 = strong evidence exists, usually from randomized controlled trials;
2 = fair evidence exists, usually from non-randomized studies with a comparison group; and
3 = weak evidence exists, usually from studies without a comparison group, or from simulation or animal studies.

The coloured word indicates the direction of the evidence for the intervention:
Green = the evidence is supportive for the use of the intervention; Yellow = the evidence is neutral; Red = the evidence opposes use of the intervention; White = there is no evidence available for the intervention, or located evidence is currently under review.

PEP Recommendations for CVA Interventions, as of 2013/05/09. PEP is continuously updated. See: http://emergency.medicine.dal.ca/ehsprotocols/protocols/toc.cfm for latest recommendations, and for individual appraised articles.

Stroke-CVA-TIA

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>SUPPORTIVE (Green)</th>
<th>NEUTRAL (Yellow)</th>
<th>AGAINST (Red)</th>
<th>NOT YET GRADED (White)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (strong evidence exists)</td>
<td>• ASA/Aspirin</td>
<td></td>
<td></td>
<td>• Hypertension Control</td>
</tr>
<tr>
<td>2 (fair evidence exists)</td>
<td>• Advanced Notice/ Optimal Trip Destination</td>
<td>• Stroke Diagnosis</td>
<td>• Hypertension Control</td>
<td></td>
</tr>
<tr>
<td>3 (weak evidence exists)</td>
<td>• Blood Glucose Control</td>
<td>• Magnesium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6288.05: STROKE

Program Document Number Management System

<table>
<thead>
<tr>
<th>PDN: 6288.05</th>
<th>Title: Stroke</th>
<th>Type: CPG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Date: February 22 2013</td>
<td>Revision Date:</td>
<td></td>
</tr>
<tr>
<td>Approval Date: February 15 2013</td>
<td>Revision Date:</td>
<td></td>
</tr>
<tr>
<td>Review Date: November 28 2012</td>
<td>Revision Date:</td>
<td></td>
</tr>
<tr>
<td>Replaces: 6288.04</td>
<td>Revision Date:</td>
<td></td>
</tr>
<tr>
<td>Signature of Program Director</td>
<td>Signature of Program Document Coordinator</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PDN: 6288.99.01.01</th>
<th>Title: Stroke Destination</th>
<th>Type: Field Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Date: February 22 2013</td>
<td>Revision Date:</td>
<td></td>
</tr>
<tr>
<td>Approval Date: February 15, 2013</td>
<td>Revision Date:</td>
<td></td>
</tr>
<tr>
<td>Review Date: November 28, 2012</td>
<td>Revision Date:</td>
<td></td>
</tr>
<tr>
<td>Replaces: 6288.06</td>
<td>Revision Date:</td>
<td></td>
</tr>
<tr>
<td>Signature of Program Director</td>
<td>Signature of Program Document Coordinator</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PDN: 6288.99.01.01</th>
<th>Title: Stroke Management</th>
<th>Type: Field Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Date: February 22 2013</td>
<td>Revision Date:</td>
<td></td>
</tr>
<tr>
<td>Approval Date: February 15, 2013</td>
<td>Revision Date:</td>
<td></td>
</tr>
<tr>
<td>Review Date: November 28, 2012</td>
<td>Revision Date:</td>
<td></td>
</tr>
<tr>
<td>Replaces: 6288.04</td>
<td>Revision Date:</td>
<td></td>
</tr>
<tr>
<td>Signature of Program Director</td>
<td>Signature of Program Document Coordinator</td>
<td></td>
</tr>
</tbody>
</table>

EHS has made every effort to ensure that the information, tables, drawings and diagrams contained in the Clinical Practice Guidelines issued Q1 DHW2013 is accurate at the time of publication. However, the EHS guidance is advisory and has been developed to assist healthcare professionals, together with patients, to make decisions about the management of the patient’s health, including treatments. It is intended to support the decision making process and is not a substitute for sound clinical judgment. Guidelines cannot always contain all the information necessary for determining appropriate care and cannot address all individual situations; therefore individuals using these guidelines must ensure they have the appropriate knowledge and skills to enable appropriate interpretation.

PEP is the Canadian Prehospital Evidence-based Protocols Project. Every clinical intervention is given a recommendation based on the strength of available research evidence (1 = randomized controlled trials and systematic reviews of RCTs; 2 = studies with a comparison group; 3 studies without a comparison group or simulation) and direction of the compiled evidence: supportive of intervention; neutral evidence for intervention; or opposing evidence for intervention). See: http://emergency.medicine.dal.ca/ehsprotocols/protocols/toc.cfm