

© Crown Copyright, Province of Nova Scotia, 2015.

Ecological Landscape Analysis, Ecodistrict 310: Cape Breton Hills

Prepared by the Nova Scotia Department of Natural Resources Authors: Eastern Region DNRstaff

ISBN 978-1-55457-575-6

This report, one of 38 for the province, provides descriptions, maps, analysis, photos and resources of the Cape Breton Hills Ecodistrict.

The Ecological Landscape Analyses (ELAs) were analyzed and written from 2005 – 2009. They provide baseline information for this period in a standardized format designed to support future data updates, forecasts and trends. The original documents are presented in three parts: Part 1 – Learning About What Makes this Ecodistrict Distinctive – and Part 2 – How Woodland Owners Can Apply Landscape Concepts to Their Woodland. Part 3 – Landscape Analysis for Forest Planners – will be available as a separate document.

Information sources and statistics (benchmark dates) include:

- Forest Inventory (1997 to 1999) stand volume, species composition
- Crown Lands Forest Model landbase classification (2006) provides forest inventory update for harvesting and silviculture from satellite photography (2005), silviculture treatment records (2006) and forest age increment (2006)
- Roads and Utility network Service Nova Scotia and Municipal Relations (2006)
- Significant Habitat and Species Database (2007)
- Atlantic Canada Data Conservation Centre (2013)

Conventions

Where major changes have occurred since the original ELA report was written, the new information will be provided in *italics*, so that the reader can see how some conditions have changed since the benchmark date of the ELA.

REPORT FOR ELA 2015-310

Table of Contents - Part 3

	pe Analysis of Cape Breton Hills osystem Planners	45				
Understanding the Landscape as an Ecological System Elements Within Landscapes Flow – Element Interactions Landscape Connectivity Links to Neighbouring Ecodistricts						
Tar For Land Use I Ecc	nposition Indicators get Ranges for CompositionIndicators est Vegetation Types for Seral Stages in Each Element	48 48 49 50 51 51				
Rare Ecose	ecies and Other Special Occurrences	53 53 62 64				
Tolo Spr Spr Tolo We Coa Val	nterpretation erant Hardwood Hills ruce Pine Hummocks ruce Fir Hills and Hummocks erant Mixedwood Hills tlands estal Beach ley Corridors Issues and Opportunities	65 66 68 69 70 71 72 73				
	Tables					
Table 8 Fores	scape Composition TargetRanges It Vegetation Types Within Elements in Cape Breton Hills ents, Ecosections, Disturbance Regimes and Climax Types	50 50 63				
	Appendices					
Appendix 1:	Flow - Element Interactions	75				
Appendix 2a: Appendix 2b:	Landscape ConnectivityWorksheet Connective ManagementStrategies	77 79				
Appendix 3:	Special Occurrences Table 1a: Species at Risk Table 1b: Other Species of Conservation Concern Table 1c: Other ConservationFeatures	80 80 81 87				

	Table 1d: Heritage Features Table 2: Comparison of EEC Index by Ecosection	90 91
Appendix 4:	Ecological RepresentivityWorksheet	93
Appendix 5:	Ecodistrict Reserves and Protected Areas Summary	94
Appendix 6:	Description of Road Density Index	95
Appendix 7:	Road Density Index Worksheets	97
Appendix 8:	Development Classes and Seral Stages	98
Appendix 9:	Vegetation Community Classification – Forest Model	100
Appendix 10:	Table 1: Forest Landscape Composition Worksheet Table 2: Composition of Forest Communities Table 3: Summary of 'Potential Climax' Forest Abundance	101 107 113
Appendix 11:	Ecological Emphasis Classes and Index Values	114
Appendix 12a: Appendix 12b:	Ecological Emphasis Index Worksheet – Elements Ecological Emphasis Index Worksheet – Ecosections	115 116
Appendix 13:	Glossary B: Terms in Parts 1, 2 and 3 Literature Referenced	117 125

Theme Maps Available on Website

Мар 1	Land Capability
Map 2	Elements and Flows
Мар 3	Ecological Emphasis Classes
Map 4	Natural Disturbances
Мар 5	Road Index
Мар 6	Special Occurrences
Map 7	Rare Ecosections
Мар 8	IRM Classes
Мар 9	Development Classes
Map 10	Seral Stages

Part 3: Landscape Analysis of Cape Breton Hills – For Forest Ecosystem Planners

This in-depth Ecological Landscape Analysis (ELA) report is a lightly edited version of the original ELA produced by the Department of Natural Resources (DNR) as an internal document to assist with Crown land planning. The report provides information for planners, forest managers, ecologists, technicians, and woodland owners seeking detailed planning resources. In coming years the DNR will continue to develop landscape planning approaches and introduce additional tools to support sustainable management and biodiversity conservation. The Department is working with stakeholders to explore novel planning approaches using these methods.

The ELA provides tools to recognize and pursue common goals for sustaining ecosystem values across all ownerships within the province's diverse landscapes. The ELA is not a plan, but instead supports planning by providing a framework of ecosystem mapping, indicators, fine-scaled features, and landscape functions that help describe landscapes as ecological systems. The report comprises the four major sections outlined below, along with theme maps and appendices containing detailed data summaries:

Understanding the Landscape as an Ecological System

- Elements Within Landscapes
- Flow-Element Interactions
- Landscape Connectivity

Landscape Indicators

- Forest Composition Indicators
- Land Use Indicators

Fine Scale Features

- Priority Species and Other Special Occurrences
- Rare Ecosections
- Ecological Representivity

ELA Summary

- Element Interpretation
- Ecosystem Issues and Opportunities

Understanding the Landscape as an Ecological System

(Appendices 1, 2a, 2b; Map 2)

Landscapes are large areas that function as ecological systems and respond to a variety of influences. Landscapes are composed of smaller ecosystems, known as elements, which were interpreted through analysis using the ecosection layer of the Ecological Land Classification (ELC) for Nova Scotia. Elements are described by their potential vegetation (e.g. climax forest type) and physical features (e.g. soil, landform). These characteristics help determine historical vegetation patterns and promote an understanding of present distributions and potential habitat

development. Across the province about three dozen elements were identified in the ELAs and mapped to show their distribution across ecodistricts and ecoregions.

Elements Within Landscapes (Map 2)

The landscape analysis identified and mapped seven distinctive elements in the Cape Breton Hills Ecodistrict – one matrix, five patches, and a corridor. A matrix is the dominant element. Patches are smaller yet still distinctive elements. Corridors are natural linear elements, such as river valleys, that extend across ecodistricts (see connectivity section for full discussion of matrix, patch and corridor concepts).

Tolerant Hardwood Hills is the matrix element, representing 85% of the ecodistrict. The element is dominated by tolerant hardwoods typical of the Acadian Forest, such as sugar maple, beech, and yellow birch, with white ash and ironwood on richer sites.

Spruce Pine Hummocks, representing 8% of the ecodistrict, is the largest patch element. The main tree species are black spruce, balsam fir, and scattered white pine with some tamarack and red maple. The other patch elements, in order of size, are **Spruce Fir Hills and Hummocks**, **Tolerant Mixedwood Hills**, **Wetlands**, and **Coastal Beach**.

Valley Corridors is a linear element associated with major watercourses in the ecodistrict.

Flow - Element Interactions (Appendix 1; Map 2)

Flow phenomena are the features that move across and through landscapes. They can be energy or material, living or non-living. Diaz and Apostol (1992) suggest that the most relevant flows for landscape analysis may include water, wind, fire, animals, plants, and humans. The following flows were considered in the analysis of this ecodistrict and are described in Appendix 1: people, deer, moose, lynx, eagle, migratory birds, and water.

One of the more well-defined flows is the movement of white-tailed deer from their summer range in Skye and McIntyres mountains to their winter yards in Eden in Bras d'Or Lowlands Ecodistrict 510.

The main purpose in describing flows, and their relationship to the elements, is to provide insight into the role of each element. This will inform understanding of each element's contribution to overall landscape function.

Landscape Connectivity (Appendices 2a, 2b; Map 2)

Connectivity refers to the ease or difficulty that resources, such as water, animals or even events – such as fires – can move within an area. As a basic ecological requirement, the ability to move without excessive risk is of critical importance for maintaining biodiversity at all levels, including genetic, individual, species, population, community, and ecosystem.

River corridors promote connectivity.

Connectivity takes many forms and operates at a wide range of scales. Among the structural ecosystem components that support movement, three major systems can be identified:

Matrix Ecosystems – Matrix implies large areas of broadly similar habitat in which movement is not constrained to particular routes. The slow spreading and mixing of species through the dominant community characterizes the ecosystem matrix. This "percolation" is dependent on the large patch conditions, which may be vulnerable to fragmentation. Interior habitat is often an important feature of matrix ecosystems.

Patch Ecosystems – The movement of species among patches of suitable habitat is dictated by the arrangement and size of patches and by a number of species' specific measures. Patches of suitable habitat must occur at acceptable distances over time. Some patch habitats have critical functions and must be continuously sustained, such as wetlands for migrating birds, feeding areas for deer and calving grounds for moose. Other patches may be dynamic, shifting about the landscape as ecosystems evolve. Edge and interior habitat conditions are important features of patch ecosystems, as well as natural isolation.

Linear Corridor Ecosystems – Flow along popular routes is dictated by enduring physical features, such as river valleys. Linear flow often requires continuous connection, such as rivers. Breaks in the connection serve as obstacles. It is a characteristic of continuous linear features that they often serve as connective corridors for some species and barriers for others.

The Cape Breton Hills Ecodistrict is dominated by the tolerant hardwood forest in the matrix element. The matrix, because of its distribution across the ecodistrict, functions as the most important feature influencing the landscape connectivity.

The extensive forest management area within the matrix represents a high percentage of the total element area. Data indicates that only a minor percentage of the matrix area has been changed to intensive forest management or converted to non-forested areas. Because of this, the degree of fragmentation is relatively low and the ability of many species to move through the matrix is not likely compromised on the broad landscape.

There are local exceptions such as the Mabou highlands where the abandoned old farmlands contain a higher percentage of altered land.

The physical distribution of the Cape Breton Hills across the landscape does, however, present unique issues for connectivity. The hills are inter-spaced among and separated by neighbouring ecodistricts and the Bras d'Or Lake. These features could be considered barriers within the landscape. Maintaining the linkages among these hills is important for many species.

Practices and opportunities for improving landscape connectivity could include:

- Mitigating the potentially negative barrier effects of concentrated land use in the Valley Corridors element by sustaining and restoring natural communities in keyareas.
- Enhancing connectivity among conservation areas by applying appropriate medium and high biodiversity emphasis standards when managing areas with natural linkage potential.

• Improving ecoregional connectivity by sustaining and restoring natural conditions at important linkage points among ecodistricts.

Links to Neighbouring Ecodistricts (Appendices 1, 2a; Map 2)

Most of the landscape flows identified (deer, moose, lynx, people, migratory birds) are also linkages to adjacent areas or ecodistricts (Map 2).

Deer, moose, and lynx flows are important linkages both within the ecodistrict and through neighbouring ecodistricts. These animals often spend different seasons in different areas (e.g. for winter cover or forage requirements).

Seasonal movement across the landscape often connects different ecosystems in important flow patterns. As well, the movement of humans via transportation and recreation routes connects the various ecodistricts together.

Future management activities will recognize significant links to neighbouring ecodistricts and manage the forests in these areas to enhance and sustain connectivity.

Landscape Indicators (Appendices 3, 6, 7, 8, 9, 10, 11; Maps 3, 4, 5, 9, 10)

Indicators provide standard measures for assessing landscape conditions. Indicators can be used to develop goals, identify priority actions, assess trends, and support the evaluation of scenarios.

Forest Composition Indicators (Appendices 8, 10; Maps 4, 9, 10)

Managing landscapes for biodiversity requires a variety of planning approaches and tools. Sustaining forest composition diversity by reflecting natural patterns of disturbance and succession is one approach that DNR is employing to try and realize this objective. A number of additional approaches and planning tools are being developed which will be integrated with objectives defined in the ELA protocol.

Human activities, such as forest harvesting, can shape the structure and composition of the forested landscape and should be planned to help support landscape composition goals.

At a landscape planning scale, the variety of habitats can be broadly described in terms of the composition of development classes, seral stages, and covertypes.

Development class indicators describe changes in structure and process as forests age and trees grow larger. For landscape management purposes, four development classes are recognized:

- forest establishment (0 to 6 m height)
- young competing forest (7 to 11 m height)
- mature forest (> 11 m height; including multi-aged and old forest)
- multi-aged / old forest (multiple layered / Old Forest Policy)

Seral stage indicators describe changes in species composition of forest communities as succession progresses from domination of early seral "pioneer" species following disturbance, toward late seral communities dominated by long-lived, shade-tolerant "climax" species. Seral stage is dependent on the composition of tree species of a forest, irrespective of age. For landscape management purposes, three seral stages are recognized:

- early (seral score 10 to 23)
- mid (seral score 24 to 37)
- late (seral score 38 to 50)

A look-up table (see Appendix 8) assigns each species in the forest inventory a value from one to five representing its position on the successional scale. These values are applied to the species composition data in the forest inventory to calculate a seral score, which may range from 10 to 50.

Covertype indicators further refine landscape composition by distinguishing forests of different community conditions. Management generally recognizes three forest covertypes:

- softwood (overstory cover of softwood species is 75% or more)
- hardwood (overstory cover of hardwood species is 75% or more)
- mixedwood (overstory cover of either softwood or hardwood is between 25% and 75%)

Target Ranges for Composition Indicators

Table 7 provides target ranges for development class and seral stage composition appropriate for different disturbance regimes. These ranges have been derived from the professional judgment of DNR forest ecologists to guide composition objectives for large landscape areas. This guidance can be used to assess how land holdings contribute to the overall ecodistrict structure by referring to the element analysis section which summarizes the levels of these indicators.

A full description of definitions and mapping of Nova Scotia's disturbance regimes is contained in the report "Mapping Nova Scotia's Natural Disturbance Regimes" available from the DNR website (see http://novascotia.ca/natr/library/forestry/reports/NDRreport3.pdf).

Table 7 - Landscape Composition Target Ranges (by Development Class / Disturbance Regime)					
		Develo	opment Class		
Natural Disturbance Regime	Forest Establishment	Young Competing Forest	Mature Forest (including multi- aged and old forest)	Multi- aged and Old Forest	
Frequent Stand Initiating	5 - 30%	5 - 30%	>40% early, mid, and late seral representation	>8%	
Infrequent Stand Initiating	5 - 20%	5 - 20%	>60% most in mid and late seral stages	>16%	
Gap Replacement	0 - 15%	0 - 15%	>70% most in late seral stage	>24%	

Forest Vegetation Types for Seral Stages in Each Element

Each element contains a number of forest stands that can be classified by vegetation, soil, and ecosites. The DNR publication *Forest Ecosystem Classification for Nova Scotia, Part I:**Vegetation Types (2010)* (see http://novascotia.ca/natr/forestry/veg-types/veg-navigation.asp) is helpful in identifying forest plant communities. Table 8 presents a description of the vegetation types likely to be found within elements, along with the current percentage of each seral stage.

Element		Seral Stage					
	Early	%*	Middle	%	Late	%	
Spruce Pine Hummocks	OW2	9.0	SP4, SP6, SH9	27.0	SP5, SP7 , SH8, SH10	59.0	
Spruce Fir Hills and Hummocks	IH4, IH6, MW4, SP6, SP8, SP10	13.0	SH8 , SH9, MW5, SP7	27.0	SH8, SH10, SP7	52.0	
Tolerant Hardwood Hills	OF1, OF2, OF4, OF5, IH4, IH5, IH6, IH7, MW5	9.0	MW4, TH7, TH8	33.0	TH1, TH2 , TH3, TH4, TH5	52.0	
Tolerant Mixedwood Hills	IH4, IH5, IH6, MW5, SH8	10.0	MW4, IH7	36.0	MW3, SH1, MW1	45.0	
Coastal Beaches	Beach grass, Bayberry, Rose spp., White spruce						
Wetlands	FP3, WC1, WC2, WC6, WC7, WD1, WD2, WD3, WD6, WD7, SP7						

View forest groups and vegetation types at

http://novascotia.ca/natr/forestry/veg-types/veg-navigation.asp

To help with identification of vegetation types, the 14 forest groups in Nova Scotia designated by DNR are: Cedar (CE), Coastal (CO), Flood Plain (FP), Highland (HL), Intolerant Hardwood (IH), Karst (KA), Mixedwood (MW), Old Field (OF), Open Woodland (OW), Spruce Hemlock (SH), Spruce Pine (SP), Tolerant Hardwood (TH), Wet Coniferous (WC), Wet Deciduous (WD)

Bolded vegetation types indicate typical late successional community

¹ Forest Ecosystem Classification for Nova Scotia (2010)

^{*}Percentage of element in each successional stage. Percentages may not total 100 due to unclassified lands (such as clearcuts and regenerating stands) not being included.

Land Use Indicators (Appendices 3, 4, 5; Maps 6, 7)

Two indices (Ecological Emphasis Index and Road Index) have been developed to measure the relative pressure that current human land use exerts on ecosystems.

Ecological Emphasis Index (Appendices 11, 12; Map 3)

A variety of land management practices occur across landscapes, ranging from natural reserve areas to highly modified urban environments. Conserving biodiversity requires a balancing of land use practices to sustain ecological integrity.

To assist in assessing land use intensities and develop appropriate practices, four levels of ecological integrity are defined based on the degree that the conservation of natural conditions is emphasized in the management practices and policies applied to the land:

- Reserve, such as parks or wilderness areas
- Extensive, which are lands managed or restored for multiple values using ecosystembased techniques
- Intensive, optimizing resource production by management techniques that may reduce biological diversity, such as plantations; but also meet the Wildlife Habitat and Watercourses Protection Regulations (NSDNR, 2002) (see http://www.gov.ns.ca/natr/wildlife/habitats/protection)
- Converted, lands altered for agriculture, roads, or other human activities

All lands within the ecodistrict are assessed at the stand level and assigned one of these four ecological emphasis classes (EEC) based on past practices. These classes are mapped over all areas of the landscape using a one hectare grid. The Ecological Emphasis Index (EEI) is determined by assigning a weighting value to each class: Reserve (100), Extensive (75), Intensive (25), and Converted (0). An overall index value may be calculated for any area of interest, such as element, ecosection, ecodistrict, or ecoregion, by averaging the index values within the area to provide a relative indication of land use pressure.

The overall EEI for Cape Breton Hills is 71 to 75 (Appendices 12a and 12b). This indicates a lower degree of manmade disturbances to the structure of the forest structure of theecosystem.

About 69% of the land falls in the extensive EEC (Appendix 12b). This implies land managed for multiple values using ecosystem-based techniques that conserve biodiversity and natural ecosystem conditions and practices.

About 4% of the ecodistrict has been converted. This is land that has been changed to an unnatural state for human use, mostly settlements, farms, urban development, and transportation and utility corridors.

The reserve class accounts for 17% of the area and is divided into two categories: legal reserves and policy reserves. The legal reserves are those areas that have legal status under in IUCN (The

International Union for the Conservation of Nature and Natural Resources) codes of I, II, or III such as wilderness areas, protected beaches, and designated provincial parks. The second type of reserves is those set aside under various provincial policies, such as the Old Forest Policy.

About 1% of the ecodistrict falls in the intensive class, representing lands managed intensively to optimize resource production from sites maintained in a native forested state. Management may eliminate or reduce the duration of some development processes, particularly old forest stages, and may include exotic species, old field spruce, and monoculture plantations. Despite intensive practices, these lands are an important component of landscape structure and composition.

The remaining 8% of land is unclassified. DNR will continue to develop and evaluate other measures of conservation risk.

Road Index (Appendices 6, 7; Map 5)

The GIS-based "Road Index" provides a standard assessment and mapping of road distributions across ecodistricts to assist planners to objectively explore options for managing road networks and assess the intersection of road affects with other features of the landscape. Density, distance, and type of linear feature (e.g. road types, power lines) are used to calculate index values that indicate relative road pressure. The index value is mapped over all areas of the landscape using a one hectare grid. The overall index may be calculated for any area of interest, such as element, ecosection, ecodistrict, or ecoregion, by averaging the index values within the area to provide a relative indication of land use pressure. The index provides a numerical indicator of road influence that can be used to monitor temporal changes and compare different landscapes.

In discussing road ecology, Forman (2004) describes five distinctive landscape types in North America: city-suburb, agricultural, forestry, arid-grassland, and natural landscape. Each landscape type has a characteristic pattern of road networks with distinctive ecological effects and planning considerations (Forman & Hersperger 1996). These were adapted in Nova Scotia to classify five Road Index Benchmark Ranges associated with particular land use settings:

- Remote Landscape (RI 0 to 6): Unpopulated with few roads, trails, or other linear features
- Forest Resource (RI 7 to 15: Forest access roads are the primary linearfeature
- Mixed Rural (RI 16 to 24): Mixed land use of rural settlement, forestry, and agriculture
- Agriculture/Suburban (RI 25 to 39): Suburban settlement and/or open agricultural fields
- Urban (RI 40 to 100): Urban environment with high building densities, roads, and few tracts of undeveloped land outside municipal parks

Road, trail, and utility corridors are vital components of human land use. However, transportation systems are expensive and produce many undesirable environmental effects, such as chronic siltation, invasion routes for exotic species, fragmentation, loss of productive land, and increased human presence.

Low road density areas are important features for biodiversity conservation. Planning should consider block scheduling options, life expectancy, class requirements, decommissioning

strategies, and overall landscape function, in order to develop efficient access systems designed to minimize environmental impacts.

Cape Breton Hills has an overall Road Index value of approximately 3 (Appendix 7, Table 3), which falls within the Remote Index range of 0 to 6 and accounts for 59% of the ecodistrict (Appendix 7, Table 2). Less than 2% has indices of Agriculture Suburban or Urban. Forest Resource at 30% is the second most common class.

Among elements, Coastal Beach has the highest RI of 54.

Roads can contribute to habitat fragmentation and environmental degradation. Since 57% of land ownership in the ecodistrict is in private hands, efforts could be made to:

- Encourage sharing of access roads and decommissioning of excess roads.
- Educate the public about proper road construction.
- Encourage road maintenance.
- Encourage maintenance of areas without roads, and promote linkages among them and other areas without roads either within or outside the ecodistrict.

Fine Scale Features (Appendices 3, 4, 5; Maps 6, 7)

Data on the status and location of priority species, ecological land classification, representivity analysis, and other landscape characterization themes were used to identify special occurrences, rare ecosections, and ecological representivity. These fine scale features, which occur at a sublandscape level, may require special management practices to conserve their uncommon characteristics.

Lindenmayer and Franklin (2002) refer to the importance of identifying "midspatial-scale" features and "patch-level habitats," including: 1) aquatic ecosystems, such as streams, lakes, and ponds; 2) wildlife corridors; 3) specialized habitats, such as cliffs, caves, thermal habitats, meadows, and vernal pools; 4) biological hotspots or places of intense biological activity, such as calving sites, over wintering grounds, and spawning habitats; and 5) remnants of old forest.

Priority Species and Other Special Occurrences (Appendix 3; Map 6)

Landscapes and ecosystems comprise many species of plants, animals, and other organisms. Some of these species are given priority in planning, management, and stewardship because they are rare, and/or at risk of going extinct locally or on a larger scale. The status and location of these species are important and data are collected, compiled, and assessed on an ongoing basis.

The primary species data used in this report are from the Atlantic Canada Conservation Data Centre and DNR's Significant Habitat Database. Efforts are made to ensure data are as accurate and up-to-date as possible. Lists and maps indicate what is currently known. Due diligence tied to planning, management, and stewardship may require that surveys be carried out to update information or to fill gaps in our knowledge. Priority species may require special actions in terms of forest management and other activities that alter habitat and the landscape. If more information

is required or if management specific to a priority species needs to be developed, a regional biologist, Wildlife Division staff, or other species experts should be contacted.

This section includes species at risk (refer to Table 1a, Appendix 3), species of conservation concern (Table 1b, Appendix 3), other conservation features (Table 1c, Appendix 3), and heritage features (Table 1d, Appendix 3, where available). The list of species at risk and species of conservation concern was obtained from the Atlantic Canada Conservation Data Centre (ACCDC) databases, current to 2013.

Species at Risk

The term "species at risk" is generally used to describe those species that are, to some extent, protected under provincial or federal endangered species legislation. Usually these species are protected where they occur on provincial, federal, and private lands. In Nova Scotia, the two main pieces of endangered species legislation are the Nova Scotia Endangered Species Act (NSESA) and the federal Species at Risk Act (SARA). Species can be classified as "endangered," "threatened," "vulnerable/special concern," or as "extinct" or "extirpated." In most cases for species at risk, recovery planning and special management are in place, as well as legal protection (see http://novascotia.ca/natr/wildlife/biodiversity/at-risk-overview.asp).

Species of Conservation Concern

The term "species of conservation concern" refers to those species that are a high priority for conservation and special attention during planning, management, and stewardship. These species may be rare and/under a variety of threats but the threats do not currently warrant species at risk designation. In some cases these species could meet the criteria for a species at risk but a formal species at risk assessment has not been done. Species of conservation concern are a priority in landscape planning because a focus on them now can prevent these species from becoming species at risk later.

Species Ranking and Coding Systems

A number of ranking and coding systems identify and convey the status of species at risk and species of conservation concern. Some of this information is provided in Appendix 3 and Map 6 and is routinely used in planning, management, and stewardship activities.

Colour-coded "traffic light" systems are used provincially and nationally. These systems use "red to orange/yellow to green" categories to indicate the most at risk species (red) to the least at risk species (green). Details of these systems are available from the Wildlife Division.

A second system commonly used is NatureServe Conservation Data Centre system. This system uses numbers from one (extremely) to five (widespread, abundant) to denote the relative rarity and conservation concern for species. At the provincial scale numbers are prefixed with "S" to indicate that this is a state/provincial level rank. Ranks at the National (N) and Global (G) levels are also available for all species. In Nova Scotia, the Atlantic Canada Conservation Data Centre (http://www.accdc.com/) works with partners to provide ranks and data on species' occurrence.

Species at risk listed under the NSESA that occur within the Cape Breton Hills Ecodistrict include eight endangered, five threatened, and three vulnerable species.

Endangered species found within the ecodistrict include three mammal species: Canada lynx (*Lynx canadensis*), little brown bat (*Myotis lucifugus*), and the Cape Breton population of American marten (*Martes america*).

Also at risk are five bird species: rusty blackbird (*Euphagus carolinus*), barn swallow (*Hirundo rustica*), Canada wabler (*Wilsonia canadensis*), Bicknell's thrush (*Catharus bicknellii*), and piping plover (*Charadrius melodius*). One endangered plant, sage willow (*Salix candida*), is also found within the ecodistict. Boreal felt lichen (*Erioderma pendicellatum*) is an endangered lichen found in Cape Breton Hills.

Two bird species – common nighthawk (*Chordeiles minor*) and olive-sided flycatcher (*Contopus cooperi*) – and black ash (*Fraximus nigra*) are listed as threatened. Wood turtle (*Glyptemys insculpta*) and the mollusk yellow lampmussel (*lampsillis cariosa*) are also listed as threatened.

Two bird species – eastern wood pewee (*Contopus virens*) and bobolink (*Dolichonyx oryzivorus*) – as well as blue felt lichen (*Degelia plumbea*) are listed vulnerable under the NSESA.

Although not yet listed under the NSESA, several COSEWIC-listed species are found in the Cape Breton Hills Ecodistrict, including bank swallow (*Riparia riparia*; threatened), Atlantic salmon – Eastern Cape Breton population (*Samlo salar*; endangered), Atlantic salmon – Gaspé – Southern Gulf of St. Lawrence population (*Salmo salar*; special concern), striped bass – Southern Gulf of St. Lawrence population (endangered), and the lichen eastern waterfan (*Peltigera hydrothyria*; threatened).

Long-tailed shrew (Sorex dispar) is listed as being of special concern federally.

In addition to the listed species, the national General Status process also identifies 85 orange-status species, 119 yellow-status species, 58 green-status species, and 16 undetermined species for a total of for a total of 278 other species of conservation concern in this ecodistrict.

Mammals

The mammal fauna of Cape Breton Island is somewhat less diverse than that of mainland Nova Scotia. Species common on the mainland but not present on Cape Breton Island include striped skunk (*Mephitis mephitis*), woodchuck (*Marmota monax*), and porcupine (*Erethizon dorsatum*). Raccoons (*Procyon lotor*) are a relatively more recent addition to the mammal fauna, having been recorded as not present in Cape Breton at least up until the late 1950s and probably later.

In 2002, the first fisher (*Martes pennanti*) was trapped in the Margaree area. Since then the fisher has been sighted across the northern section of the island. The eastern coyote (*Canis latrans*), the most recent addition to Nova Scotia's mammal fauna, was first recorded for Cape Breton in the early 1980s. Fisher and the coyote are now common in Cape Breton Hills.

Moose (*Alces alces*) were an abundant and dominate animal in the region prior to the arrival of the first European settlers. By 1825, as a result of over-harvesting for commercial and subsistence purposes, the population was in serious decline. Moose appears to have disappeared from Cape Breton by the early 20th century. In 1928 and 1929, seven mainland moose were introduced into the highlands but this introduction was unsuccessful. In 1947 and 1948, 18 moose from Elk Island National Park in Alberta were released in the Cape Breton National Park. This introduction was successful.

The population showed a slow increase until the late 1970s and the early 1980s. At this time a severe spruce budworm (*Choristoneura fumiferana*) outbreak changed the habitat by killing a large percentage of the mature balsam fir. The resulting increase in regeneration provided an abundance of food for the moose and the population exploded. Moose presently number in the thousands, direct descendants of the last reintroduction.

Presently, moose are common throughout the ecodistrict except in the area south of the Bras d'Or Lake. There is a small population on Boularderie Island. Moose wintering areas are found along the edge of the highland plateau and in areas where softwood cover is still heavy. In severe winters, moose will drop down off the highland plateau to winter in the adjacent hills region. There has been a licensed lottery hunt for the moose in Inverness and Victoria counties since 1986. At present, 345 licenses are issued and the overall success rate has been around 90 %. There is also a First Nations harvest which has been going on over a number of years.

White-tailed deer (*Odocoileus virginianus*) can carry a nematode (*Parelaphostrongylus tenuis*) commonly known as brainworm. This worm has no apparent effect on the deer but when ingested by moose it can travel to the spinal cord and brain causing significant neurological problems and even death. This may restrict moose numbers in the lowland areas where deer numbers are greatest.

White-tailed deer were once very abundant in this ecodistrict. During the 1960s, 1970s, and 1980s it was not uncommon to see 40 to 50 deer in a field on an evening drive through the area. Since 1990, deer have severely declined and are now found only in very low numbers. A period of long cold winters, reduction of winter cover caused by the budworm and resulting forestry activity and arrival of the coyote have all contributed to the decline in deer numbers and are responsible in part for keeping the recovery slower than in other parts of the province.

Black bear (*Ursus americanus*) have increased in number over the past decade. They are most common in most areas of the ecodistrict north of Bras d'Or Lake but less common in Cape Breton and Richmond counties. Black bear, due to their secretive nature, are rarely seen by residents. In the spring, bear sometimes become a nuisance as they check out garbage looking for food. Bear can be legally harvested by snaring or hunting in a season that runs for approximately three months.

American marten (*Martes americanus*) is a small carnivore of temperate and boreal forests that feeds primarily on red squirrel (*Sciurus vulgaris*), small mammals such as mice and voles, as well snowshoe hare (*Lepus americanus*). Marten are listed as endangered in Nova Scotia. The Cape

Breton population of marten is very small and there has been extensive loss and degradation of suitable habitat.

Marten were trapped extensively throughout Nova Scotia since the 1700s until the trapping season was closed in the early 1900s due to low numbers. The species was thought to have been extirpated from the mainland and several re-introductions were attempted in the past.

There have been recent records of marten in southwest Nova Scotia. However, the status of the marten on the mainland is considered "data deficient." Historically known in Cape Breton only from the highlands, a marten population augmentation program was conducted between 2007 and 2010 when 135 marten from New Brunswick were released into Cape Breton. A special management practice (SMP) (see http://novascotia.ca/natr/wildlife/habitats/terrestrial/) is in place to help maintain suitable marten habitat on the highlands. Marten have recently been sighted in a number of locations within the ecodistrict, such as Sugarloaf and Margaree. The recent number of sighting indicates that the population may be recovering at least to some degree.

Canada lynx (*Lynx canadensis*) is listed as endangered under the NSESA. Lynx formerly were found in areas of suitable habitat across mainland Nova Scotia and Cape Breton Island. Although lynx may be found, from time to time, almost anywhere on Cape Breton Island, it reaches its highest densities in the Cape Breton highlands. The current population is very small. Because snowshoe hare are its primary prey, numbers of lynx fluctuate over time roughly tracking density of hare. As hare populations in the highlands decline, lynx may disperse to lower elevations including the Cape Breton Hills in search of prey. There is a small resident lynx population in the Boisedale Hills, East Bay Hills, South Mountain (Richmond County), and on McIntyres Mountain. Historic and current threats to lynx include forest harvesting, competition from bobcats, coyote and fisher, habitat loss to development, disease, and climate change.

Birds

Cape Breton Hills supports a large population of bald eagle (*Haliaeetus leucocephalus*), second only to that of the Bras d'Or Lowlands Ecodistrict. Eagles nest in mature pines and hardwood along the slopes of the hills usually within easy flight of water. They are mainly fish eaters but will forage on other prey, including carrion, as it becomes available. Special management practices for forestry are in place to protect their breeding sites during the active season (see http://novascotia.ca/natr/wildlife/habitats/terrestrial/).

There are at least 40 nesting sites in the ecodistrict and more than half of these may be active in a given year. Concentrations of nests are found at West Mabou Harbour, St. Anns, and Washabuck Centre.

A number of other raptors are found throughout the region. Northern harrier (*Circus cyaneus*) can be found in open wetlands and grassy areas. Sharp-shinned hawk (*Accipiter striatus*) and merlin (*Falco columbarius*) feed on the numerous songbirds found in the ecodistrict. Great horned owl (*Bubo virginianus*) nests in cavities in trees or on the ground and has been known to take over nests of other raptors such as eagles or goshawks. Northern saw-whet owl (*Aegolius acadicus*) is one of

the smallest owl species in the ecodistrict. Northern goshawk (*Accipiter gentilis*) is a bird of the mature hardwood or hardwood-dominant mixedwood forests.

Nova Scotia has guidelines for forest harvesting in place to help protect forest raptors and their nesting habitat. These general guidelines are intended for large forested areas where management for a wide variety of forest conditions may provide habitat features suitable for most woodland raptors.

Osprey (*Pandion haliaetus*), which feeds almost exclusively on fish, has been noted nesting at various locations throughout Cape Breton Hills including Glengarry Valley, Baddeck, and Lake Ainslie. Osprey often nest along power lines which brings them into conflict with man. Guidelines are in place to direct the removal of the nests from these types of structures and provide alternate nest platforms. The osprey is Nova Scotia's provincial bird.

The common loon (*Gavia immer*) is an expert swimmer and diver. The loon's feet are located far back on its body resulting in restricted mobility on land. The loon builds its nest along the shore close to water or on a floating mass of vegetation attached to reeds. Loons can be found nesting at a number of the lakes in this ecodistrict, including areas around East Bay Hills, Boularderie, and a Lake Ainslie.

Bicknell's thrush, listed as endangered in Nova Scotia, breeds in the stunted softwood forests at higher elevations generally above 300 metres. Not much is known about this reclusive bird. Bird Studies Canada – a national bird conservation organization – is studying the decline of Bicknell's thrush over most of its range. This bird has been recorded at Money Point and the upper reaches of the Chéticamp River. A set of guidelines has been developed to help protect the bird's nests and nesting habitat during forest harvesting.

Insectivores such as chimney swift (*Chaetura pelagica*; endangered NSESA), barn swallow (*Hirunda rustica*; endangered NSESA), and bank swallow (*Riparia riparia*; threatened under COSEWIC) are reported in a number of areas in the ecodistrict including Sporting Mountain, Margaree, and Inverness. There has been a decline in the populations of these birds over the past number of years. The general cause of the decline is thought to be changes in the food supply and climate change.

Rusty blackbird (*Euphagus carolinus*) is one of North America's most rapidly declining species. It is listed as endangered in Nova Scotia. The rusty blackbird is a bird of the wetlands and wet boreal forest. This blackbird has been found in Bornish Hills, Bevis Point, Glengarry Valley, and several other locations in the ecodistrict.

Several small songbirds of note have been recorded in the Cape Breton Hills. Olive-sided flycatcher (*Contopus cooperi*; threatened) has been documented in many areas around Lake Ainslie, along East Bay and at Big Intervale in northern Cape Breton. Eastern wood-pewee (*Contopus virens*; vulnerable) is inconspicuous until it opens its bill and gives its unmistakable slurred call: pee-a-wee! – its characteristic sound. The pewee can be heard in the hills around Lake Ainslie, at Sporting Mountain, and at North Mountain on West Bay.

Margaree Island (Sea Wolf Island) is a National Wildlife Area administered by the Canadian Wildlife Service. The island is located approximately four kilometres off the shore at Rear Dunvegan. A survey of the island in 2007 showed the presence of a number of colonial nesting birds including great cormorant (*Phalacrocorax carbo*; yellow), double crested cormorant (*Phalacrocorax auritus*), herring gull (*Larus smithsonianus*), and greater black-back gull (*Larus marinus*). Great cormorants nest on the rocky cliff while the double crested cormorants and gulls nest in the open field areas. Razorbills (*Alea torda*; yellow) and black guillemots (*Cepphus grylle*; S3S4) also nest on Margaree Island. Blue herons (*Ardea herodias*) and bank swallows (*Riparia riparia*) are also recorded as nesting on the Island.

Amphibians and Reptiles

Amphibians are quite common in wetlands throughout the ecodistrict. Some of the more common species include four-toed salamander (*Hemidactylium scutatum*), spotted salamander (*Ambystoma maculatum*), green frog (*Lithobates clamitans*), and wood frog (*Lithobates sylvaticus*).

Wood turtle (*Glyptemys insculpta*) is listed as endangered under NSESA. Larger populations of this turtle are along the River Denys River and River Inhabitants in Bras d'Or Lowlands Ecodistrict 510. In Cape Breton Hills, reports show the turtle in tributaries to these larger streams as well as in the Chéticamp River area.

Fish

Atlantic salmon (*Salmo salar*) is a fish of great importance to the local area. Salmon start their life as an egg in their home river. They spend from one to eight years in the river. Salmon begin a process called smoltification when they are ready to head to sea. This gets them ready for their life in salt water. Salmon spend several years at sea. When large enough, the salmon return to their natal rivers, as grilse, to spawn.

The Northeast Margaree River is renowned for Atlantic salmon angling. The Baddeck, Middle, North, and the Aspy rivers all have salmon runs during the year. This recreational fishery adds a great deal to the local economy. Tributaries to all the main salmon rivers flow from this ecodistrict. Salmon can also be found in all the other main rivers in the ecodistrict but in much smaller numbers.

Salmon are designated in this area into two units. The Gaspé – Southern Gulf of St. Lawrence population, including rivers draining into the Gulf of St. Lawrence (e.g. Northeast Margaree and Chéticamp rivers) has salmon designated as endangered by COSEWIC. The Eastern Cape Breton population, including rivers draining into the area from Meat Cove to Canso (e.g. North, Baddeck, Middle, and Aspy rivers) has salmon designated as special concern by COSEWIC.

Speckled trout (Salvelinus fontinalis) are found in all the rivers, streams, and lakes of the ecodistrict and provide another important recreational fishery.

Striped bass (*Morone saxatilis*) are common in the North Aspy, Middle Aspy, and Baddeck rivers. They seem to be restricted to the lower parts of the rivers with no spawning activity reported to date.

Dragonflies and Damselflies

A considerable amount of data has been amassed on dragonflies and damselflies (collectively Odonates) for Cape Breton Island, largely by the efforts of a few very dedicated collectors. The most extensive Odonate collections for Cape Breton are available from Inverness and Victoria counties, including Cape Breton Hills.

Of the species collected in Cape Breton Hills, jutta arctic (*Oeneis jutta*), forcipate emerald (*Somatochlora forcipata*), Quebec emerald (*Somatochlora brevicincta*), and Williamson emerald (*Somatochlora williamsonii*) are listed as may be at risk (orange) in the provincial general status.

All the Somatochlorids are beautiful dragonflies with bright green eyes (hence the name emerald). Williamson emerald is only found in one area in Big Baddeck. Arctic jutta is a medium sized greyish-brown butterfly associated with bogs and fens in a few areas of the ecodistrict. Five species are listed as sensitive (yellow). These are spot-winged glider (*Pantala hymenaea*), black meadowhawk (*Sympetrum danae*), muskeg emerald (*Somatochlora septentrionalis*), harlequin darner (*Gompaeschna furcillata*), and harpoon clubtail (*Gomphus descriptus*).

Odonates are all associated with water. As a result, wildlife guidelines which require buffers on streams and wetlands help protect their habitat.

Butterflies

The Maritime Butterfly Atlas has been ongoing since 2010 and the last year of data collection will be 2015. These efforts have provided a considerable amount of information on butterflies in all areas of the Maritimes.

Currently there are 71 species of butterflies in Nova Scotia, many of which occur on Cape Breton Island. Two species are listed as sensitive (yellow). These are short-tailed swallowtail (*Papilio brevicauda*) and mustard white (*Pieris oleracae*). Mustard white was recorded in several areas, including Baddeck, Inverness, and Chéticamp. Short-tailed swallowtail patrols coastal areas and headlands where its host plant scotch lovage (*Ligusticum scoticum*) is found. Records show that the host plant has been found near Baddeck.

Monarch (*Danaus plexippus*) is one of the most recognizable butterflies. It has a close association with milkweed (*Asclepias sp.*). The monarch is a migratory species with the eastern population overwintering in a handful of sites at high altitude near Mexico City. The monarch has been recorded in Rear Estmere in this ecodistrict.

Dorcas copper (*Lycaena dorcas*; not assessed) is a small butterfly closely associated with its host plant shrubby cinquefoil (*Dasiphora fruticosa*). This butterfly is found in wet areas where the host plant grows. In this ecodistrict, it is found in the area of the Black River bog near Lake Ainslie. *Ecological Landscape Analysis of Cape Breton Hills Ecodistrict 310*

As the Maritime Butterfly Atlas comes to an end in 2015 and the data is processed, more information on species distribution and abundance can be expected for the Cape Breton Hills Ecodistrict.

Plants

A total of 73 Nova Scotia orange-listed, 83 Nova Scotia yellow-listed, and 11 undetermined (insufficient data to define status) plants are known from the Cape Breton Hills. As well there are 35 species that are listed as S3 uncommon for a total of 202 species in 2,849 records. There are several sites that harbour notable concentrations of plant species of conservation concern based on extensive surveys done in the past several years. Two of these sites are the Polletts Cove River area and Lockhart Brook. Both are in the Polletts Cove - Aspy Fault Wilderness Area.

At the Pollett Cove River area, there are seven orange-listed species, including nodding fescue (Festuca subverticillata), long bracted frog orchid (Coeloglossum viride), northern maiden fern (Adiantum pedatum), and spiked woodrush (Luzula spicata). The site also hosts 27 sensitive or yellow-listed plants. Among these are meadow horsetail (Equisetum pretense), lance-leaf grape-fern (Botrychium lanceolatum), and highland rush (Juncus trifidus).

Lockhart Brook is another site with large concentration of plants of conservation concern. Here, there are seven orange-listed plants. Long bracted frog orchid and field wormwood (*Artemisia campestris*) and wiegand sedge (*Carex wiegandii*) are among them. Pink crowberry (*Empetrum eamesii*) belongs to the heath family of plants and is one of 21 yellow-listed plants growing in this area. Several other yellow-listed plants found here are maidenhair spleenwort (*Asplenium trichomanes*), hairlike sedge (*Carex capillaris*), and alpine bilberry (*Vaccinium uliginosum*).

Orange-listed northern gentian (*Gentianella amarella*) can be found in the area around Meat Cove. Indian Brook is one of the larger streams that flows on the eastern side of Cape Breton. In its river valley one would find smooth cliff fern (*Woodsia glabella*), a yellow-listed species. As well, orange-listed species western hairy rockcress (*Arabis hirsute*) and rock whitlow grass (*Draba arabisans*) are found here.

At Rear Estmere on the Washabuck peninsula, bastard's toadflax (*Comandra umbellate*), an orange-listed species, can be found. Toadflax is also recorded near South Harbour in the northern section of Cape Breton Hills Ecodistrict 310. Another orange-listed species, large St. John's wort (*Hypericum majus*), appears at the same site in Rear Estmere. Two species of lady's slipper can be located here, small yellow lady's slipper (*Cypripedium parviflorum var. makasin*) and yellow lady's slipper (*Cypripedium parviflorum*).

Showy lady's slipper (*Cypripedium reginae*; orange) usually grows on calcareous soils. It is recorded in both Iona and Skye Mountain. Bebb's sedge (*Carex bebbii*), another orange-listed species, is also found at Skye Mountain. In a small bog near Pleasant Hill, southern twayblade (*Listera australis*) is found in abundance. This small orchid is the smallest of the twayblades and is listed as orange.

At River Inhabitants near Glenora several rare plants can be found. Fries pondweed (*Potamogetan freii*), blunt-leaved pondweed (*Potamogetan obtusifolia*), and sweet wood reed grass (*Cinna arundinacea*) are all orange-listed species located at this site. Yellow-listed climbing false buckwheat (*Polygonum scanens*), short-awned foxtail (*Alopecurus aequalis*), and alder-leaved buckthorn (*Rhammus alnifolia*) are located nearby.

Black ash (*Fraxinus nigra*), an NSESA endangered species, is recorded in several sites in the Boisdale Hills. The species is a tree that likes open wet areas and is shade intolerant. Black ash is very important species to the Mi'kmaq as it is used in traditional basket making. It can be found at Ironville and near Eskasoni. Seabeach ragwort (*Senecio pseudoarnica; yellow*) can be found along many of the barachois pond beaches in the area. Boreal aster (*Symphytrichum boreale; yellow*) grows at MacAdams Lake. Along the shores of East Bay, in the East Bay Hills, lesser rattlesnake plantain (*Goodyera repens*; yellow) is found.

These are some of the rare plants that one might find in the ecodistrict. For a more complete list refer to Appendix 3, tables 1a and 1b.

Lichens

There are four lichens listed as species at risk and four listed as species of concern in the ecodistrict. Boreal felt lichen (*Erioderma pedicellatum* Atlantic pop.) is listed as endangered under NSESA. There is a special management practice in place to help protect and recover this species (see http://novascotia.ca/natr/wildlife/habitats/terrestrial/). This lichen can be found at several sites in the East Bay Hills.

Blue felt lichen (*Degelia plumbea*; vulnerable NSESA) grows as an epiphyte, predominately on hardwoods in woodlands and is vulnerable to disturbance that leads to a reduction in habitat humidity. The species is also very sensitive to acid rain. Forest harvesting is a threat to the species through direct removal or through the creation of an edge effect, leading to reduced humidity within the stand. In this ecodistrict, it can be found in the St. Rose area.

Eastern waterfan (*Peltigera hydrothyria*) and frosted glass-whiskers lichen (*Sclerophora peronella* Nova Scotia pop.) are listed under COSEWIC as threatened and special concern respectively. Four other lichens are listed a species of special concern in this ecodistrict: two orange-listed and two yellow-listed species.

Rare Ecosections (Appendices 3, 12b; Map 7)

The Ecological Land Classification for Nova Scotia (Neily et al. 2003) classifies ecosections based on similar characteristics of landform, soils, and vegetation. These are the smallest mapped unit, and they repeat within ecodistricts. Ecosections have characteristic natural disturbance regimes and climax types.

Landscape elements were identified by combining ecosections with similar characteristics. Table 9 provides explanations of ecosections and their relationship to elements.

Ecosections that are rare (< 2% of ecodistrict area) or under high land use pressure (> 75% land conversion) are identified in Appendix 3.

Table 9 – Elements, Ecosections, Disturbance Regimes and Climax Types				
	310 C	ape Breton Hills Eco	odistrict	
Landscape Element and Type	Ecosections*	Dominant Natural Disturbance Regime	Dominant Climax Type	
Tolerant Hardwood Hills (Matrix)	WCDS WCKK WFHO WFKK WMDS WMHO WMKK WMRD WMSM	Gap	sugar Maple (sM), yellow Birch (yB), Beech (Be)	
Spruce Pine Hummocks (Patch)	ICHO IMHO	Frequent	black Spruce (bS), white Pine (wP)	
Tolerant Mixedwood Hills (Patch)	IFKK	Infrequent	red Spruce (rS), yB, sM, Be	
Wetlands (Patch)	IMSM WTLD	Open Seral (Frequent)	bS, red Maple (rM), tamarack (tL)	
Coastal Beach (Patch)	XXCB	N/A	N/A	
Valley Corridors (Corridor)	Various	Various	Various	
*Ecosection Explanations: For example, in WMHO, W stands for Well-drained under Soil Drainage for Medium-textured under Soil Texture and HO stands for Hummocky under Topographic Pattern				
Soil Drainage: W - Well-drained I - Imperfectly drained P - Poorly drained WTLD - Wetland				
Soil Texture: C - Coarse-textured soils (e.g. sands) M - Medium-textured soils (e.g. loams) F - Fine-textured soils (e.g. clays)				
Topographic Pattern: SM – Smooth or flat KK – Hills HO – Hummocky DM – Drumlinoid RD – Ridges DS – Canyons and steep slopes				

Within the Cape Breton Hills Ecodistrict, there are nine ecosections – ICHO, IFKK, IMRD, IMSM, WCHO, WCKK, WFHO, WMSM, and WTLD – that each comprise less than 2% of the ecodistrict area. These ecosections combined form 4.9% of the ecodistrict.

Practices or policies that might be implemented or devised to address conservation issues include:

• Conservation of species that are threatened as indicated by DNR's General Status Rank of Wild Species in Nova Scotia (yellow and red listed) or those listed as S1, S2, or S3 in

the Atlantic Canada Conservation Data Centre rankings.

- Conservation of significant habitats or climax communities considered to be rare.
- Identification of sites of cultural significance.
- Identification of more old forest.
- Ecological restoration where resource use has significantly altered species composition (i.e. in areas where the intolerant hardwood component has dramatically increased).

Ecological Representivity (Appendices 4, 5)

Ecological representivity describes the degree that the range of natural ecosystem diversity (elements, ecosections) is secured within reserve systems (e.g. Parks, Wilderness, Old Growth Policy).

The overall goal is biodiversity conservation through protection of natural habitat diversity. Ecological representation is employed as a "coarse scale" ecosystem planning concept. The analysis evaluated and identified the reserve status of the ecosections and climax communities located within the ecodistrict where two levels of reserves were recognized: legally protected reserves, such as Wilderness Areas, and policy protected reserves under the Integrated Resource Management (IRM) classification to include old forest, Eastern Habitat Joint Venture Sites, non-designated provincial park reserves, and non-designated sites of ecological significance.

Restricted and Limited Use Lands

The Cape Breton Hills Ecodistrict includes 31,646 hectares of provincial wilderness areas, parks, protected areas, and other areas of legislated protection. The largest category is wilderness areas which account for 28,862 hectares.

National parks and adjuncts represent another 20,740 hectares.

Among the areas identified in a provincial lands database, seven provincial wilderness areas fall partly within the boundaries of Cape Breton Hills. These are Polletts Cove - Aspy Fault, Margaree, Jim Campbells Barren, French River, North River, Middle River, Sugarloaf Mountain, and Trout Brook. Three International Biological Preserves (IBPs) are found within the boundaries of the ecodistrict – French River, Second Fork Brook, and Lake O'Law.

Six provincial parks and 18 park reserves are partly or completely within this ecodistrict. The Cape Breton Highlands National Park takes up a significant area of this ecodistrict, mostly in river valleys that are heading to the highland plateau.

There are two nature reserves in the ecodistrict: MacFarlane Woods located at Mull River and the Bornish Hills Nature Reserve at River Denys Mountain.

The Nature Conservancy of Canada has three properties in the ecodistrict. These are at Mull River, Sight Point, and South Ridge in the Mabou area. Portions of three major native reserves – Eskasoni, Wagmatcook, and Waycobah – are in the ecodistrict.

Protected beaches at Lily Pond, Colindale, and Grand Narrows area form part of the ecodistrict.

Many of the communities on Cape Breton Island have water supply area that may or may not be designated. Designation gives the area more protection from disturbance. There is one designated water supply area partly within the ecodistrict boundaries at Landrie Lake. There are seven

non-designated water supply areas listed as well.

ELA Summary

Element Interpretation (All appendices andmaps)

Most elevations in the Cape Breton Hills Ecodistrict range from 150 to 300 metres above sea level. Hardwood forested hills and steep slopes define this ecodistrict. When travelling along Bras d'Or Lake, the hilly topography of Kellys Mountain, Boisdale Hills, Sporting Mountain, East Bay Hills, Whycocomagh, and Lewis Mountain is easily visible. The total area is 370,183 hectares.

The ecodistrict is influenced by the strong, cold winds of the Gulf of St. Lawrence. Temperatures are slow to warm in the spring, resulting in a short growing season.

Most of the rivers passing through the Inverness and Bras d'Or lowlands have their headwaters originating from wetlands and a few small lakes in the hills.

The Cape Breton Hills Ecodistrict provides important habitat to wildlife, including two species of mammals that are endangered in Nova Scotia: Canada lynx and American marten.

Deer wintering yards are common on the sheltered south-facing slopes and numerous eagle nests are found along the ravines of major streams.

Shade-tolerant hardwood forests of yellow birch, sugar maple, and beech, along with red maple and scattered white spruce and balsam fir, are found throughout this ecodistrict on well-drained, sandy loam soils at mid-slope.

Eastern hemlock, white pine, and scattered red spruce are found on ravines with well-drained, medium-textured soils. Forests of white spruce are also common.

The higher steep-sloped hills are underlain with older resistant rocks and are covered with well-drained, moderately coarse-textured tills. In general, the lower more gradually sloping hills are underlain by coarse carboniferous sediments. The soils tend to be imperfectly drained, fine- textured tills. Seepage sites are common on the slopes providing some of the richer sites for tree and plant growth.

The mainly tolerant hardwood forest exists on the side sloops of the hill complexes while black spruce and balsam fir are found on the imperfectly drained soils of the depressions located on the major hill tops.

In areas where soils and climate permitted agriculture by the early settlers, abandoned farmlands have reverted to balsam fir, white spruce, and mixedwood stands, in places such as Creignish and Mabou.

The tolerant hardwood forest is shaped by gap dynamic disturbances, in which individual trees or small groups of trees die as opposed to the stand-level disturbances common in softwood forests.

There have also been species-specific disturbances in the hardwood forests resulting in significant mortality of entire species.

Tolerant Hardwood Hills

(Matrix) (WCDS, WCKK, WFHO, WFKK, WMDS, WMHO, WMKK, WMRD, and WMSM ecosections) (312,120 ha)

The element is dominated by mid to late successional shade-tolerant hardwood forests typical of the Acadian Forest. Representative species include sugar maple, beech, yellow birch, and white ash with ironwood on the richer sites. Early successional forests following stand-level disturbances are typically of similar species with white birch and red maple usually more abundant.

Human settlement patterns and forestry practices have altered portions of the forest cover. These altered areas now contain younger softwood and mixedwood stands in the mid seral stage (approximately 33% of the area). At least 50 % of the area remains in mature late seral stages of development.

About 85% of the ecodistrict is represented by this element. Tolerant Hardwood Hills occurs on the slopes of hilly and hummocky terrain where soils are well-drained and enriched with moisture and nutrients from upper slope positions. Soils are typically coarse to medium-textured loams and sandy loams but better-drained fine-textured clay loams will also support this element on steeper slopes.

Between Dunvegan and Belle Côte, the western-facing slopes of the hills have been altered by a landform feature called "slumping" which has created a unique ridge-like pattern that also supports this element.

Natural stand-level disturbances are rare. Stands will usually maintain themselves through gap replacement leading to an uneven-aged climax forests and the opportunity to develop old forest characteristics. Natural disturbance agents include hurricanes, ice storms, disease, and insects.

This element occurs primarily on hilly topography and steep slopes underlain with well-drained soils of variable textures but generally of medium to rich fertility. Seepage areas are common on the slopes and provide an important habitat for biodiversity. Under these closed canopy forests the shrub layer consists of regenerating trees and shrubs such as fly honeysuckle and beaked hazelnut. These forests also have an abundant cover to ferns and club mosses.

The forests of this element currently reflect two province-wide disturbance events: the beech bark canker introduction around 1900 and the birch dieback of the 1940s. Beech is now primarily an understory species and yellow birch is gaining abundance.

When the Scottish settlers arrived in the early 1800s they cleared and farmed significant areas of the tolerant hardwood forest on the upland sites with major settlements on the Mabou highlands, River Denys Mountain, and Skye Mountain.

At the start of the 1920s many rural families departed their farms to live and work in urban areas and as these fields were abandoned they reforested to white spruce. Currently, very little remains of the settlements except rock walls, foundations, and cemeteries.

On the Mabou highlands, however, owing to the large areas of well-drained soils on level terrain, the fields have been maintained as community pastures for the sheep and cattle of farmers from Mabou to Inverness.

Flows

People (timber, recreation, hunting, off-highway vehicle (OHV)); deer (travel, foraging, winter cover); moose (travel, foraging); lynx (travel); eagle (nesting, foraging); migratory birds (breeding, habitat, foraging); water (catchment, filter, groundwater recharge).

Composition

Cape Breton Hills Ecodistrict 310 (based on statistics up to 2006) Composition of Tolerant Hardwood Hills					
Development	Establishment	Young Competing	Mature (incl. multi-aged and old forest)	Multi-aged and Old Forest	
Class	19%	13%	68% (57 Mat + 11 OF)	11%	
Seral	Early	Mid	Late	Unclassified	
Stage	9%	33%	52%	6%	
Covertype	Softwood	Hardwood	Mixedwood	Unclassified	
	20%	45%	30%	5%	

Desired Condition

A mature late seral hardwood forest.

Issues

- Restore the area to approximately 70% or more late seral stage hardwood stands via partial and selection harvesting with long rotations.
- Reduce the percentage of mixedwood intolerant hardwood stands.

Spruce Pine Hummocks

(Patch) (ICHO and IMHO ecosections) (30,795 ha)

Dominating many of the hilltop ridges, these are generally mature softwood stands on imperfectly drained, coarse to medium-textured soils. Intermixed with these on the better-drained soils are tolerant hardwood and mixedwood stands.

Spruce Pine Hummocks is generally associated with the hummocky to level terrain on top of several hill systems including the East Bay Hills, Boisdale Hills, North Mountain, and Sporting Mountain. The imperfect drainage conditions expressed in the soils underlying this terrain can be attributed to the gentle slope of the landscape.

The inherent low fertility and imperfect drainage give rise to forests of black spruce and scattered white pine. With progressively poorer drainage, wet forests of black spruce, tamarack, and red maple or shrubby wetlands will occur. Occasionally, open woodlands of black spruce and reindeer lichen occur where soils are either shallow to bedrock or extremely gravelly.

This element also occurs as a small linear area in some of these hilly regions along watercourses that eventually make their way to the lowlands. Examples of this feature are in the hills near Glencoe and Dunakin and throughout the Boisdale and East Bay hills. Along these riparian zones small alluvial deposits can provide enriched conditions for small floodplain forests. Otherwise, forests comprise black spruce on the imperfectly drained soils and balsam fir on the better- drained upper slopes.

Stands may be frequently disturbed by windthrow and fire and are usually even-aged. Early successional forests originating from stand-level harvesting or natural disturbance will include red maple, white birch, grey birch, and pin cherry.

Flows

People (timber, recreation, hunting, OHV); deer (travel, foraging, winter cover); moose (travel, foraging); lynx (travel, foraging, denning); eagle (nesting, foraging); migratory birds (breeding, habitat, foraging); water (catchment, filter, groundwater recharge).

Composition

Cape Breton Hill	Cape Breton Hills Ecodistrict 310 (based on statistics up to 2006)					
Composition of Sp	ruce Pine Humm	ocks				
Development	Establishment	Young Competing	Mature (incl. multi-aged and old forest)	Multi-aged and Old Forest		
Class	27%	14%	59% (33 Mat + 26 OF)	26%		
Seral	Early	Mid	Late	Unclassified		
Stage	9%	27%	59%	5%		
Covertype	Covertype Softwood Hardwood Mixedwood Unclassified					
	50%	21%	22%	7%		

Desired Condition

Late seral stage black spruce-balsam fir stands intermixed with mature tolerant hardwood stands.

Issues

• Present stand composition within this patch element is within the desired range of species, ages, and seral stages.

Spruce Fir Hills and Hummocks

(Patch) (IFHO and IMRD ecosections) (7,404 ha)

This patch element occurs on imperfectly drained hummocky terrain underlain by fine-textured soils (clay loams).

The forests tend to be dominated by black spruce on the moister sites and balsam fir with white spruce on the better-drained soils usually associated with the upper slopes of the hummocky terrain.

With progressively poorer drainage, black spruce, tamarack, and red maple dominate the forest vegetation and wetlands are embedded throughout the element.

Early successional forests tend to have a higher component of aspen, tamarack, and balsam fir but overall regenerating forests from stand-level harvesting will also include red maple, white birch, grey birch, and pin cherry.

The dominant natural disturbance is frequent and results in primarily even-aged forests. Natural disturbance agents include windthrow and insects (e.g. spruce budworm if forests have a high component of balsam fir or white spruce).

This element is primarily found on the upper elevations of the hilly topography of western Cape Breton Island. Good examples of this element are on the Big Ridge between Port Hastings and Mabou and at Maple Brook.

Flows

People (timber, recreation, hunting, OHV); deer (travel, foraging, winter cover); moose (travel, foraging, thermal cover); lynx (travel, foraging, denning); migratory birds (breeding, habitat, foraging); water (catchment, filter, groundwater recharge).

Composition

Cape Breton Hill	Cape Breton Hills Ecodistrict 310 (based on statistics up to 2006)						
Composition of Sp	ruce Fir Hills and	Hummocks					
Development	Development Establishment Young Competing Mature (incl. multi-aged Multi-aged and old forest) Old Forest						
Class	37%	21%	42% (26 Mat + 16 OF)	16%			
Seral	Early	Mid	Late	Unclassified			
Stage	13%	27%	52%	8%			
Covertype	Covertype Softwood Hardwood Mixedwood Unclassified						
	54%	13%	23%	10%			

Desired Condition

Predominately a black spruce forest patch with lesser amounts of balsam fir and an even distribution of development classes. All seral stages should be represented.

Issues

- Maintain and increase black spruce component of the patch.
- Reduce, where possible, hardwood and to a lesser degree balsam fir components.
- Maintain a balance in development classes.

Tolerant Mixedwood Hills

(Patch) (IFKK ecosection) (4,325 ha)

This is a localized large patch element south of Mabou (Alpine Ridge and Southwest Ridge) supporting shade-tolerant species of the Acadian Forest.

The element occurs on the slopes of rounded hills underlain by imperfectly drained fine-textured soils. On the upper slopes and crests, forests comprise sugar maple, yellow birch, and beech, but at the middle and lower slope positions forests tend to comprise white spruce and balsam fir mixed with yellow birch and maple.

At lower and toe slope positions and where there are seepage sites along the slope, soils are moister and richer with trees such as white ash and ironwood indicating this improved condition. Earlier successional species follow after stand-level disturbances and include red maple, aspens, white and grey birch, and balsam fir.

Natural disturbances are infrequent and include small gaps or patches created in the stand canopy by individual tree mortality or windthrow. Due to the long life of the dominant species and the infrequent nature of stand-level disturbances, uneven-aged forests can develop.

Many of these hills have been cleared for agriculture and when abandoned reforest to white spruce and tamarack.

Flows

Human (timber, recreation, hunting, OHV); deer (travel, foraging, winter cover); moose (travel, foraging); lynx (travel, foraging, denning); eagle (Nesting, foraging); migrating song birds (breeding, habitat, foraging); water (catchment, filter, groundwater recharge).

Composition

Cape Breton Hill	Cape Breton Hills Ecodistrict 310 (based on statistics up to 2006)						
Composition of To	lerant Mixedwoo	d Hills					
Development	Development Establishment Young Competing Mature (incl. multi-aged Multi-aged and old forest) Old Forest						
Class	32%	13%	55% (49 Mat + 6 OF)	6%			
Seral	Early	Mid	Late	Unclassified			
Stage	10%	36%	45%	9%			
Covertype	Softwood	Hardwood	Mixedwood	Unclassified			
	33%	23%	40%	4%			

Desired Condition

Tolerant mixedwood stands dominated by black spruce, red spruce, sugar maple, and yellow birch. Will also contain minor components of white pine and eastern hemlock.

Issues

Increase the tolerant hardwood percentage in the mixedwood stands with stand management.

Wetlands

(Patch) (IMSM and WTLD ecosections) (1,513 ha)

This element mainly consists of tolerant softwood stands on wet ground and open bog conditions.

The Wetlands element comprises freshwater bogs, fens, swamps, and poorly drained areas. It may occur as a large wetland complex associated with rivers, as narrow linear communities associated with flow accumulations and small streams, as a community of hydrophytic vegetation (sedges, sphagnum moss, false holly and winterberry) associated with level terrain where drainage is impeded, or as a depression in the landscape where water remains in excess year round.

The East Bay Hills have one of the largest concentrations of large wetlands in the ecodistrict. Smaller disjoint wetlands are often embedded within other elements, especially the Spruce Pine Hummocks element.

Wetlands are generally treeless or sparsely forested woodlands of black spruce, tamarack, and red maple. For the most part sites are underlain by poorly drained mineral soils derived from sandstone

tills or organic soils derived from peat (sphagnum mosses) or sedges. On the higher ground with better-drained soils, softwood forests of white and black spruce will occur.

This element plays a critical role in water collection, filtering, and groundwater recharge.

Flows

People (timber, recreation, hunting, OHV); deer (travel, foraging, fawning areas); moose (travel, foraging, calving areas); lynx (travel, foraging); migratory birds (breeding, habitat, foraging); water (catchment, filter ground water recharge).

Composition

Cape Breton Hills Ecodistrict 310 (based on statistics up to 2006) Composition of Wetlands					
Development	Establishment	Young Competing	Mature (incl. multi-aged and old forest)	Multi-aged and Old Forest	
Class	20%	24%	56% (24 Mat + 32 OF)	32%	
Seral	Early	Mid	Late	Unclassified	
Stage	5%	22%	68%	5%	
Covertype	Softwood	Hardwood	Mixedwood	Unclassified	
	66%	12%	18%	4%	

Desired Condition

Mature late seral softwood stands on the better-drained sites.

Issues

• Late seral stage black spruce and red spruce on the better-drained sites.

Coastal Beach*

(Patch) (XXCB ecosection) (25 ha)

Coastal beaches are wave-dominated deposits composed of a mixture of sand, gravel, and other sizes of sediments. The deposit of sand, gravel, and larger particles such as boulders and cobbles occur under a variety of circumstances leading to several types of beach landforms.

In this ecodistrict, the hills slope quickly to the Bras d'Or Lake near Ben Eoin and St. Andrews Channel and several beaches have been included.

In the Bras d'Or Lake, the beaches are created by the movement of sediments along the shore by tidal currents and are called spits. Where currents meet on straight shorelines, spits may coalesce to form a triangular beach enclosing a small lagoon locally known as "barrachois" ponds. These ponds, often with brackish water, are quite common along the shores of Bras d'OrLake.

Vegetation tends to be beach grass and associates near the high-water mark with a progressing development of woody shrubs and white spruce occurring as the soil stabilizes and incorporates organic content and water retaining capabilities.

*Note: Because of the small size of this element (25 ha), statistically significant data on the various sections could not be obtained.

Valley Corridors

(Corridor) (Various ecosections) (12,564 ha)

Located mainly along watercourses, this element is associated with a variety of early mature and mature stands.

The most evident linear features within this ecodistrict are faults, folds, and associated watercourses. A number of corridors have significant levels of land use which have created settlements, agricultural fields, power lines, roads, and railways.

A significant manmade feature is a reservoir dam. These land use changes reduce the connective function of the corridor for some species and may also increase the barrier effect of the corridors for species that must move across or through them.

Flows

People (recreation, hunting); deer (travel, foraging, winter cover); moose (travel, foraging); lynx (travel, foraging); eagle (Nesting, foraging); migratory birds (breeding, habitat, foraging); water (catchment, discharge).

Composition

Cape Breton Hills Ecodistrict 310 (based on statistics up to 2006) Composition of Valley Corridors					
	Establishment	Young Competing	Mature (incl. multi-aged	Multi-aged and	
Development			and old forest)	Old Forest	
Class	19%	14%	67% _(53 Mat + 14 OF)	14%	
Seral	Early	Mid	Late	Unclassified	
Stage	7%	34%	54%	5%	
Covertype	Softwood	Hardwood	Mixedwood	Unclassified	
.	26%	39%	30%	5%	

Desired Condition

Intact tolerant late seral stage softwood, mixedwood, and hardwood stands.

Issues

Maintain and increase development classes of stands to ensure connectivity.

Ecosystem Issues and Opportunities (All appendices and maps)

Management of the forest resource in the Cape Breton Hills Ecodistrict should focus on forest biodiversity conservation across the range of spatial scales. General principles could include maintenance of connectivity, maintenance of landscape heterogeneity, maintenance of stand structural complexity, and maintenance of the integrity of aquatic systems (Lindenmayer and Franklin 2002). Actions taken toward these principles could consider:

- Cape Breton Hills is generally rural in nature with scattered small communities.
 The overall EEI is 71 to 75. This indicates a lower degree of manmade disturbances to the forest structure of the ecosystem.
- Maintain a balance between the four ecological emphasis classes, attempting to keep EEI above 50.
- Subject to ownership constraints, enhance connectivity of the corridor elements by maintaining, and where required, restoring natural forest conditions.
- Where feasible, utilize gap disturbance harvesting techniques to maintain and enhance current forest structure.

Appendix 1: Flow - Element Interactions

Element	People	Deer	Moose	Lynx	Eagle	Migratory Birds	Water
Matrix Tolerant Hardwood Hills	Forestry, OHVs, and Outdoor Recreation (Hunting, fishing, trapping, etc.)	Travel ways, Wintering areas, Foraging	Travel ways, Foraging	Travel ways	Nesting, foraging	Breeding Habitat, foraging	Surface water quality, catchment, filtration, groundwater recharge and discharge
Patches Spruce Pine Hummocks	Forestry, OHVs and Outdoor Recreation (Hunting, fishing, trapping, etc.)	Travel ways, Wintering areas, Foraging	Travel ways, Foraging	Travel ways, Foraging	Nesting, foraging	Breeding Habitat, foraging (e.g. songbirds)	Surface water quality, catchment, filtration, groundwater recharge and discharge
Spruce Fir Hills and Hummocks	Forestry, OHVs, and Outdoor Recreation (Hunting, fishing, trapping, etc.)	Travel ways, Foraging, Winter cover	Travel ways, Foraging, Thermal cover	Travel ways, Foraging, Denning		Breeding Habitat, foraging	Surface water quality, catchment, filtration, groundwater recharge and discharge
Tolerant Mixedwood Hills	Forestry, OHVs and Outdoor Recreation (Hunting, fishing, Trapping, etc.)	Travel ways, Foraging, winter cover	Travel ways, Foraging	Travel ways, Foraging, Denning	Nesting, foraging	Breeding Habitat, foraging (e.g. songbirds)	Surface water quality, catchment, filtration, groundwater recharge and discharge
Wetlands	Forestry, Outdoor Recreation (Hunting, fishing, trapping, etc.)	Travel ways, Foraging, fawning areas	Travel ways, Foraging, calving areas	Travel ways, Foraging		Breeding Habitat, foraging (e.g. waterfowl)	Surface water quality, catchment, filtration, groundwater recharge and discharge
Coastal Beach	Outdoor recreation (Swimming, etc.)	Travel ways			Foraging, Perching, Nesting	Breeding Habitat, foraging and staging habitat (e.g. shorebirds)	

Appendix 1: Flow - Element Interactions

Element	People	Deer	Moose	Lynx	Eagle	Migratory Birds	Water
Corridors - Collins Brook - Southwest Mabou River - Indian Brook - Upper Mabou - Big Brook - MacLellans Brook - Peters Brook - Morgans Brook - Boisdale Hills - Irish Cove Brook	Outdoor Recreation (Hunting, fishing, Trapping, etc.)	Travel ways, Wintering areas, Foraging	Travel ways, Foraging	Travel ways	Nesting, Foraging	Breeding Habitat, foraging	Catchment, Discharge

Feature	Structure Type (corridor, matrix, patch, island)	Importance in Ecodistrict (high, moderate, low)	Significant Cases (species, ecosections, specific rivers)	Scale and Pattern of Operation (local, landscape)	Associated Natural Disturbance Regime	Characteristic Community	Characteristic Neighbour(s)	Barriers - Impediments to Functionality	Significant Issues	Management Strategy
Tolerant Hardwood Hills	Matrix	High	Canada Lynx habitat	Dominant feature of the landscape	Gap	sM, yB, Be	Black Spruce - Tolerant Hardwood, Black Spruce - Balsam Fir, Tolerant Hardwood - Softwood, Black Spruce - Wetlands, Coastal Beach	Fragmentation due to Forestry, farming, and development.	Conserve Deer Wintering areas, Lynx habitat, other significant habitats (e.g. eagle nest sites)	Manage forests using a gap disturbance-based strategy. Minimize barriers and recognize key corridors between uplands and lowlands
Spruce Pine Hummocks	Patch	High	Canada Lynx habitat	Dominant feature of the landscape	Frequent	bS, bF sM, yB, Be sM, yB, Be eH, wP	Tolerant Hardwood, Black Spruce - Balsam Fir, Black Spruce - Wetlands	Some fragmentation due to forestry and roads	Conserve Deer Wintering areas, Lynx habitat, other significant habitats (e.g. eagle nest sites, etc.)	Maintain functional amount of mature cover for habitat and connectivity. Create stand-level disturbances using harvesting that mimic natural patch size
Spruce Fir Hills and Hummocks	Patch	Low	Canada Lynx habitat	Dominant feature of the landscape	Frequent	bS, bF bS	Tolerant Hardwood, Tolerant Hardwood - Softwood, Black Spruce-Tolerant Hardwood, Black Spruce - Wetlands		Conserve Deer Wintering areas, Lynx habitat, other significant habitats	Maintain functional amount of mature cover for habitat and connectivity. Create stand-level disturbances using harvesting that mimic natural patch size

Appendix 2a: Landscape Connectivity Worksheet Structure Importance in Significant Scale and Associated Characteristic Characteristic Barriers -Management Feature Significant Type Ecodistrict (high, Cases Pattern of Natural Community Neighbour(s) Impediments Strategy Issues (corridor, moderate, low) (species, Operation Disturbance ecosections, (local, Regime **Functionality** matrix, specific landscape) patch, island) rivers) Maintain functional amount of mature Isolated cover for habitat and Tolerant Tolerant Hill top Mull River local patch yB, Be Hardwood, connectivity. Create Mixedwood cleared for Patch Low Infrequent rS, eH, wP, sM Area of unique Black Spruce stand-level Hills agriculture habitat Balsam Fir disturbances using harvesting that mimic natural patch size. Tolerant Conversion Few Seasonal access for Hardwood. Infilling scattered harvesting to reduce Black Spruce site impacts. Maintain throughout Wetlands Patch Moderate Frequent bS, bF Balsam Fir, appropriate riparian and **Ecodistrict** Black machine exclusion zone. Spruce-Tolerant Hardwood Maintain connectivity Human along coast, minimize Local - Only Tolerant Beach erosion development, development footprint, government land beach erosion, few small Hardwood Coastal Patch Low Seral barrier cobble Channel purchases areas Beach beach openings Various High **Dominant** Frequent with Riparian forests, Lower slopes of Fragmentation Loss of Maintain appropriate feature of inclusions of wetland forests the Cape Breton due to land use mature forest riparian and machine landscape Gap and and upland Hills and Cape such as cover exclusion zones. Reduce forests of spruceagriculture, road access. Recognize providing Open Seral. Breton key "choke points" in linkage fir and Highlands. settlement and Valley Corridor occasionally corridors and maintain within and transportation. Corridors between tolerant functionality. ecodistricts. hardwood.

Appendix 2b: Connective Management Strategies

Structure Type	Attributes	Conditions of Concern	Management Strategies
Matrix	percolation, large patch, interior habitat	fragmentation, excessive edge	Promote contiguous forest structure using strategies suchas patch aggregation and overstory-sustaining selectioncutting Promote large patch structure and interior conditions Mitigate large-scale, long-term, fragmentation of the matrixthat could impede percolation Manage age and structure appropriate to natural disturbance regime (NDR). For gap and infrequently disturbed ecosections maintain 60% maturecover
Patch Ecosystems	patch size, nearest neighbour, edge / interior, intervening habitat condition	undesirable connections, internal composition, excessive separations, threats to key patch	Identify and map key patch representatives (high qualityor critical link/distance) Maintain natural isolations, as well as necessary "nearest neighbour" distances Identify potential metapopulation habitat dynamics (if applicable)
Linear Corridors	continuous connection	barriers, interruptions, excessive edge	Mitigate unnatural barriers Map and Manage along natural boundaries Conserve "interior" conditions where appropriate through strategic management of neighbouring ecosystems Sustain continuity, through management of overstory and interior structure appropriate to NDR Follow habitat regulations for buffer management. Establish wider buffers with natural boundaries along major waterways

Table 1a: Species at Risk (species protected by endangered species legislation on all lands)

SPECIES			DESIGNATION			
Common Name	Scientific Name	Provincial	Federal	COSEWIC		
BIRDS	-	-	_	-		
Piping Plover	Charadrius melodus	Endangered	Endangered	Endangered		
Common Nighthawk	Chordeiles minor	Threatened	Threatened	Threatened		
Olive-sided Flycatcher	Contopus cooperi	Threatened	Threatened	Threatened		
Eastern Wood-Pewee	Contopus virens	Vulnerable	N/A	Special Concern		
Bobolink	Dolichonyx oryzivorus	Vulnerable	N/A	Threatened		
Rusty Blackbird	Euphagus carolinus	Endangered	Special Concern	Special Concern		
Barn Swallow	Hirundo rustica	Endangered	N/A	Threatened		
Bank Swallow	Riparia riparia	N/A	N/A	Threatened		
Canada Warbler	Wilsonia canadensis	Endangered	Threatened	Threatened		
Bicknell's Thrush	Catharus bicknelli	Endangered	Special Concern	Threatened		
DICOTS	-	-	-	-		
Black Ash	Fraxinus nigra	Threatened	N/A	N/A		
Sage Willow	Salix candida	Endangered	N/A	N/A		
<u>INSECTS</u>	-	-	-	-		
Monarch	Danaus plexippus	N/A	Special Concern	Special Concern		
<u>FISH</u>	-	-	-	-		
Atlantic Salmon - Eastern Cape Breton population	Salmo salar	N/A	N/A	Endangered		
Atlantic Salmon - Gaspé - S. Gulf of St. Lawrence population	Salmo salar	N/A	N/A	Special Concern		
<u>LICHENS</u>	-	-	-	-		
Blue Felt Lichen	Degelia plumbea	Vulnerable	Special Concern	Special Concern		
Boreal Felt Lichen - Atlantic population	Eriodermapedicellatum	Endangered	Endangered	Endangered		
Eastern Waterfan	Peltigera hydrothyria	N/A	N/A	Threatened		
Frosted Glass-whiskers Lichen - Nova Scotia population	Sclerophora peronella	N/A	Special Concern	Special Concern		
MAMMALS	-	-	-	-		
Canadian Lynx	Lynx canadensis	Endangered	N/A	Not at Risk		
Little Brown Myotis	Myotis lucifugus	Endangered	N/A	Endangered		
Long-tailed Shrew	Sorex dispar	N/A	Special Concern	Not at Risk		
American Marten (C.B. population)	Martes america	Endangered	N/A	N/A		
Woodland Caribou (Atlantic-Gaspésie population)	Rangifer tarandus	Extirpated	Endangered	Endangered		
MOLLUSKS	-	-	-	-		
Yellow Lampmussel	Lampsilis cariosa	Threatened	Special Concern	Special Concern		
<u>REPTILES</u>	-	-	-	-		
Wood Turtle	Glyptemys insculpta	Threatened	Threatened	Threatened		

Table 1b: Other Species of Conservation Concern (other species that are a priority for planning, management, and stewardship action)

	SPECIES	DESIGNATION	DESIGNATION		
Common Name	Scientific Name	Provincial General Status Rank	ACCDC S-Rank*		
AMPHIBIANS Four-toed Salamander	Hemidactyliumscutatum	Secure (Green)	\$3		
BIRDS					
Northern	Accipiter gentilis	Secure (Green)	S3S4		
Goshawk Spotted	Actitis macularius	Sensitive (Yellow)	S3S4B		
Sandpiper	Alca torda	Sensitive (Yellow)	S1B,S4N		
Razorbill	Bucephala clangula	Secure (Green)	S2B,S5N		
Common Goldeneye	Calidris pusilla	Sensitive (Yellow)	S3M		
Semipalmated Sandpiper	Carduelis pinus	Sensitive (Yellow)	S3S4B,S5		
Pine Siskin	Cepphus grylle	Secure (Green)	N S3S4		
Black Guillemot	Charadrius semipalmatus	Secure (Green)	S1S2B,S5M		
Semipalmated Plover	Dendroica castanea	Sensitive (Yellow)	S3S4B		
Bay-breasted Warbler	Dendroica striata	Sensitive (Yellow)	S3S4B		
Blackpoll Warbler	Dendroica tigrina	Sensitive (Yellow)	S3?B		
Cape May Warbler	Empidonaxflaviventris	Sensitive (Yellow)	S3S4B		
Yellow-bellied Flycatcher	Gallinago delicata	Sensitive (Yellow)	S3S4B		
Wilson's Snipe	Gavia immer	May Be At Risk (Orange)	S3B,S4N		
Common Loon Ring-	Larus delawarensis	Secure (Green)	S1?B,S5N		
billed Gull	Mergus serrator	Secure (Green)	S3B,S5N		
Red-breasted Merganser	Morus bassanus	Secure (Green)	SHB,S5M		
Northern Gannet	Passerella iliaca	Secure (Green)	S3S4B		
Fox Sparrow	Perisoreuscanadensis	Sensitive (Yellow)	S3S4		
Gray Jay	Petrochelidonpyrrhonota	May Be At Risk (Orange)	S3B		
Cliff Swallow	Phalacrocorax carbo	Sensitive (Yellow)	S 3		
Great Cormorant	Pheucticus Iudovicianus	Sensitive (Yellow)	S3S4B		
Rose-breasted Grosbeak	Pinicola enucleator	May Be At Risk (Orange)	S3?B,S5N		
Pine Grosbeak	Poecile hudsonica	Sensitive (Yellow)	S 3		
Boreal Chickadee	Sterna hirundo	Sensitive (Yellow)	S3B		
Common Tern	Tringa melanoleuca	Sensitive (Yellow)	S3B,S5M		
Greater Yellowlegs	Tringa semipalmata	May Be At Risk (Orange)	S2S3B		
Willet	Tyrannus tyrannus	Sensitive (Yellow)	S3S4B		
Eastern Kingbird Wilson's Warbler	Wilsonia pusilla	Sensitive (Yellow)	S3S4B		

Table 1b: Other Species of Conservation Concern (other species that are a priority for planning, management, and stewardship action)

	SPECIES	DESIGNATION	DESIGNATION		
Common Name	Scientific Name	Provincial General Status Rank	ACCDC S-Rank*		
BRYOPHYTES					
Coast Creeping Moss	Conardia compacta	Sensitive (Yellow)	S2?		
False Willow Moss	Platydictya jungermannioides	Sensitive (Yellow)	S2?		
Hooked Scorpion Moss	Scorpidium scorpioides	Sensitive (Yellow)	S2?		
DICOTS					
Hooked Agrimony	Agrimonia gryposepala	Secure (Green)	S3		
Running Serviceberry	Amelanchierstolonifera	Secure (Green)	S3?		
Virginia Anemone	Anemone virginiana	May Be At Risk (Orange)	S2		
Virginia Anemone	Anemone virginiana var. alba	Sensitive (Yellow)	S1S2		
Purple-stemmed Angelica	Angelica atropurpurea	Secure (Green)	S3S4		
Drummond's Rockcress	Arabis drummondii	Sensitive (Yellow)	S2		
Swamp Milkweed	Asclepias incarnata	Secure (Green)	S 3		
Swamp Milkweed	Asclepias incarnata ssp. pulchra	Undetermined	S2S3		
Frankton's Saltbush	Atriplex franktonii	Secure (Green)	S3S4		
Bog Birch	Betula pumila	Sensitive (Yellow)	S2S3		
Estuary Beggarticks	Bidens hyperborea	May Be At Risk (Orange)	S1		
Yellow Marsh Marigold	Caltha palustris	Sensitive (Yellow)	S2		
Cuckoo Flower	Cardamine pratensis var. angustifolia	May Be At Risk (Orange)	S 1		
Cuckoo Flower	Cardamine pratensis var. pratensis	May Be At Risk (Orange)	S 1		
Blue Cohosh	Caulophyllum thalictroides	May Be At Risk (Orange)	S2		
Seaside Spurge	Chamaesyce polygonifolia	Secure (Green)	S 3		
Rock Whitlow-Grass	Draba arabisans	Sensitive (Yellow)	S2		
Pink Crowberry	Empetrum eamesii	Sensitive (Yellow)	S 3		
Downy Willowherb	Epilobium strictum	Sensitive (Yellow)	S 3		
Hyssop-leaved Fleabane	Erigeron hyssopifolius	Sensitive (Yellow)	S 3		
Philadelphia Fleabane	Erigeron philadelphicus	Sensitive (Yellow)	S2		
False Mermaidweed	Floerkea proserpinacoides	Sensitive (Yellow)	S2		
Northern Wild Licorice	Galium kamtschaticum	Secure (Green)	S 3		
Labrador Bedstraw	Galium labradoricum	Sensitive (Yellow)	S2		
Kalm's Hawkweed	Hieracium kalmii	Undetermined	S2?		
Robinson's Hawkweed	Hieracium robinsonii	Sensitive (Yellow)	S2		
Disguised St John's-wort	Hypericum dissimulatum	Sensitive (Yellow)	S2S3		
Large St John's-wort	Hypericum majus	May Be At Risk (Orange)	S1		
Pale Jewelweed	Impatiens pallida	Sensitive (Yellow)	S2		
Canada Wood Nettle	Laportea canadensis	Sensitive (Yellow)	S 3		

Table 1b: Other Species of Conservation Concern (other species that are a priority for planning, management, and stewardship action)

	SPECIES	DESIGNATION	DESIGNATION		
Common Name	Scientific Name	Provincial General Status Rank	ACCDC S-Rank*		
Yellow-seeded False					
Pimperel	Lindernia dubia	Secure (Green)	S3S4		
Brook Lobelia	Lobelia kalmii	May Be At Risk (Orange)	S1		
Water Beggarticks	Megalodonta beckii	Sensitive (Yellow)	S 3		
Water Blinks	Montia fontana	May Be At Risk (Orange)	S1		
Siberian Water Milfoil Narrow-leaved Evening	Myriophyllum sibiricum	Secure (Green)	S3S4		
Primrose	Oenothera fruticosa ssp. glauca	Undetermined	S2		
Smooth Sweet Cicely	Osmorhiza longistylis	May Be At Risk (Orange)	S2		
Balsam Groundsel	Packera paupercula	Secure (Green)	S 3		
Marsh Grass-of-Parnassus	Parnassia palustris var. parviflora	May Be At Risk (Orange)	S2		
Pennsylvania Smartweed	Polygonum pensylvanicum	Secure (Green)	S 3		
Sharp-fruited Knotweed	Polygonum raii	Undetermined	S2S3		
Stout Smartweed	Polygonum robustius	Secure (Green)	S3S4		
Climbing False Buckwheat	Polygonum scandens	Sensitive (Yellow)	S 3		
Marsh Mermaidweed	Proserpinacapalustris	Secure (Green)	S 3		
Marsh Mermaidweed	Proserpinaca palustris var. crebra	Secure (Green)	S 3		
Pink Pyrola	Pyrola asarifolia	Secure (Green)	S 3		
Lesser Pyrola	Pyrola minor	Sensitive (Yellow)	S2		
Gmelin's Water Buttercup	Ranunculus gmelinii	Secure (Green)	S3		
Alder-leaved Buckthorn	Rhamnus alnifolia	Sensitive (Yellow)	S 3		
Bog Willow	Salix pedicellaris	Sensitive (Yellow)	S2		
Seaside Brookweed	Samolus valerandi ssp. parviflorus	Sensitive (Yellow)	S2		
Bloodroot	Sanguinaria canadensis	Secure (Green)	S3S4		
Clustered Sanicle	Sanicula odorata	May Be At Risk (Orange)	S1		
Lance-leaved Figwort	Scrophularia lanceolata	Undetermined	S1		
Seabeach Ragwort	Senecio pseudoarnica	Sensitive (Yellow)	S2		
Soapberry	Shepherdiacanadensis	Sensitive (Yellow)	S2		
Long-leaved Starwort	Stellaria longifolia	Sensitive (Yellow)	S 3		
Horned Sea-blite	Suaedacalceoliformis	Secure (Green)	S2S3		
Boreal Aster Orange-fruited Tinker's	Symphyotrichum boreale	Sensitive (Yellow)	S2?		
Weed	Triosteum aurantiacum	Sensitive (Yellow)	S2		
Northern Blueberry	Vaccinium boreale	May Be At Risk (Orange)	S2		
Canada Violet	Viola canadensis	Extirpated	S1		
Northern Bog Violet	Viola nephrophylla	Sensitive (Yellow)	S2		

Appendix 3: Special Occurrences (Ecodistrict 310)

Table 1b: Other Species of Conservation Concern (other species that are a priority for planning, management, and stewardship action)

	SPECIES	DESIGNATION	DESIGNATION		
Common Name	Scientific Name	Provincial General Status Rank	ACCDC S-Rank*		
FERNS AND THEIR ALLIES					
Maidenhair Spleenwort	Asplenium trichomanes	Sensitive (Yellow)	S2		
Green Spleenwort	Asplenium trichomanes-ramosum Botrychium lanceolatum var.	Sensitive (Yellow)	S2		
Lance-Leaf Grape-Fern	angustisegmentum	Sensitive (Yellow)	S2S3		
Mingan Moonwort	Botrychium minganense	Extirpated	SH		
Steller's Rockbrake	Cryptogramma stelleri	May Be At Risk (Orange)	S1		
Bulblet Bladder Fern	Cystopteris bulbifera	Secure (Green)	S3S4		
Laurentian Bladder Fern	Cystopteris laurentiana	May Be At Risk (Orange)	S1		
Common Scouring-rush	Equisetum hyemale var. affine	Secure (Green)	S3S4		
Marsh Horsetail	Equisetum palustre	May Be At Risk (Orange)	S1		
Variegated Horsetail	Equisetumvariegatum	Secure (Green)	S 3		
Appalachian Fir-Clubmoss	Huperzia appalachiana	Undetermined	S1S3		
Ground-Fir	Lycopodium sabinifolium	Secure (Green)	S3?		
Northern Holly Fern	Polystichum lonchitis	Sensitive (Yellow)	S2		
Smooth Cliff Fern	Woodsia glabella	Sensitive (Yellow)	S2		
<u>INSECTS</u>					
Mottled Darner	Aeshna clepsydra	Secure (Green)	S 3		
Eastern Red Damsel	Amphiagrion saucium	Secure (Green)	S 3		
Harlequin Darner	Gomphaeschna furcillata	Sensitive (Yellow)	S3		
Harpoon Clubtail	Gomphusdescriptus	Sensitive (Yellow)	S2		
Common Branded Skipper	Hesperia comma	Secure (Green)	S 3		
Northern Pygmy Clubtail	Lanthus parvulus	Secure (Green)	S 3		
Dorcas Copper	Lycaena dorcas	Not Assessed	S1		
Elfin Skimmer	Nannothemis bella	Secure (Green)	S3		
Jutta Arctic	Oeneis jutta	May Be At Risk (Orange)	S1		
Brook Snaketail	Ophiogomphusaspersus	May Be At Risk (Orange)	S1		
Riffle Snaketail	Ophiogomphuscarolus	Secure (Green)	S 3		
Short-tailed Swallowtail	Papilio brevicauda	Sensitive (Yellow)	S1S2		
Mustard White	Pieris oleracea	Sensitive (Yellow)	S2		
Green Comma	Polygonia faunus	Secure (Green)	S 3		
Question Mark	Polygonia interrogationis	Secure (Green)	S3B		
Grey Comma	Polygonia progne	Secure (Green)	S3S4		
Clamp-Tipped Emerald	Somatochloratenebrosa	Secure (Green)	S 3		
Williamson's Emerald	Somatochlora williamsoni	May Be At Risk (Orange)	S1		
Black Meadowhawk	Sympetrum danae	Sensitive (Yellow)	S 3		

Appendix 3: Special Occurrences (Ecodistrict 310)

Table 1b: Other Species of Conservation Concern (other species that are a priority for planning, management, and stewardship action)

	SPECIES	DESIGNATIO	DESIGNATION		
Common Name	Scientific Name	Provincial General Status Rank	ACCDC S-Rank*		
<u>LICHENS</u>					
Blistered Tarpaper Lichen	Collema furfuraceum	Sensitive (Yellow)	S3?		
Arctic Kidney Lichen	Nephroma arcticum	May Be At Risk (Orange)	S1S2		
Naked Kidney Lichen	Nephroma bellum	Sensitive (Yellow)	\$3?		
MAMMALS					
Rock Vole	Microtuschrotorrhinus	Secure (Green)	S2		
Cougar - Eastern pop.	Puma concolor pop. 1	Undetermined	SH		
Southern Bog Lemming	Synaptomys cooperi	Secure (Green)	S3S4		
MONOCOTS					
Short-awned Foxtail	Alopecurusaequalis	Sensitive (Yellow)	S2S3		
Broad-Glumed Brome	Bromuslatiglumis	May Be At Risk (Orange)	S1		
Scabrous Black Sedge	Carex atratiformis	Sensitive (Yellow)	S2		
Bebb's Sedge	Carex bebbii	May Be At Risk (Orange)	S1S2		
Bearded Sedge	Carex comosa	Sensitive (Yellow)	S2		
Hidden-scaled Sedge	Carex cryptolepis	Secure (Green)	S3?		
Bristle-leaved Sedge	Carex eburnea	Sensitive (Yellow)	S 3		
Limestone Meadow Sedge	Carex granularis	Undetermined	S1		
Pubescent Sedge	Carex hirtifolia	Sensitive (Yellow)	S2S3		
Porcupine Sedge	Carex hystericina	May Be At Risk (Orange)	S2		
Greenish Sedge	Carex viridula var. elatior	May Be At Risk (Orange)	S1		
Sweet Wood Reed Grass	Cinna arundinacea	May Be At Risk (Orange)	S1		
Yellow Lady's-slipper	Cypripedium parviflorum	Sensitive (Yellow)	S2S3		
Small Yellow Lady's-Slipper	Cypripedium parviflorum var. makasin	Sensitive (Yellow)	S2		
Yellow Lady's-slipper	Cypripedium parviflorum var. pubescens	Sensitive (Yellow)	S2		
Showy Lady's-Slipper	Cypripedium reginae	May Be At Risk (Orange)	S2		
Few-flowered Spikerush	Eleocharis quinqueflora	May Be At Risk (Orange)	S2		
Wiegand's Wild Rye Menzies'	Elymus wiegandii	May Be At Risk (Orange)	S1		
Rattlesnake-plantain	Goodyera oblongifolia	Sensitive (Yellow)	S 3		
Lesser Rattlesnake-plantain	Goodyera repens	Sensitive (Yellow)	S 3		
Sharp-Fruit Rush	Juncus acuminatus	Sensitive (Yellow)	S3S4		
Richardson's Rush	Juncus alpinoarticulatus ssp. nodulosus	May Be At Risk (Orange)	S1S2		
Dudley's Rush	Juncus dudleyi	Sensitive (Yellow)	S2?		
Highland Rush	Juncus trifidus	Sensitive (Yellow)	S2		
Canada Lily	Lilium canadense	Sensitive (Yellow)	S2S3		

Table 1b: Other Species of Conservation Concern (other species that are a priority for planning, management, and stewardship action)

	SPECIES	DESIGNATIO	V
Common Name	Scientific Name	Provincial General Status Rank	ACCDC S-Rank*
Loesel's Twayblade	Liparis loeselii	Secure (Green)	\$3\$4
Southern Twayblade	Listera australis	May Be At Risk (Orange)	S2
Small Round-leaved Orchid	Platantheraorbiculata	Secure (Green)	S 3
Glaucous Blue Grass	Poa glauca	Sensitive (Yellow)	S2S3
Fries' Pondweed	Potamogeton friesii	May Be At Risk (Orange)	S2
Blunt-leaved Pondweed	Potamogetonobtusifolius	Sensitive (Yellow)	S2S3
White-stemmed Pondweed	Potamogetonpraelongus	Sensitive (Yellow)	S3?
Richardson's Pondweed	Potamogetonrichardsonii	May Be At Risk (Orange)	S2S3
Flat-stemmed Pondweed	Potamogetonzosteriformis	Sensitive (Yellow)	S2S3
Slender Beakrush	Rhynchospora capillacea	May Be At Risk (Orange)	S1
Stalked Bulrush	Scirpus pedicellatus	Undetermined	S1
Northern Burreed	Sparganium hyperboreum	Sensitive (Yellow)	S1S2
Small Burreed	Sparganium natans	Secure (Green)	S 3
Shining Ladies'-Tresses	Spiranthes lucida	May Be At Risk (Orange)	S2
Thread-leaved Pondweed	Stuckenia filiformis ssp. alpina	Undetermined	S2S3
Sticky False-Asphodel	Triantha glutinosa	May Be At Risk (Orange)	S1
GaspO Arrowgrass	Triglochin gaspensis	Undetermined	S1?

^{*}Atlantic Canada Conservation Data Centre S-Ranks, where S1: extremely rare; S2: rare; S3: uncommon; S4: usually widespread, fairly common; S5: widespread, abundant; S#S#: A range between two consecutive ranks for a species/community denoting uncertainty about the exact rarity (e.g. S1S2); Consult http://www.accdc.com/en/ranks.html for descriptions of other ranks.

Provincial General Status Ranks as assessed in 2010 (http://www.wildspecies.ca/wildspecies2010).

Appendix 3: Special Occurrences (Ecodistrict 310) Table 1c – Other ConservationFeatures

Feature	Туре	Information Source	Legislation or Status Ranking System
Deer wintering areas (DWA)	Forest habitat	Significant Habitats of Nova Scotia Database; Atlantic Canada Conservation Data Centre database	
Caves	Caves and mine adits	Significant Habitats of Nova Scotia Database; Atlantic Canada Conservation Data Centre database; Atlantic Canada Conservation Data Centre database	
Loon nesting lakes	Freshwater lakes	Significant Habitats of Nova Scotia Database; Atlantic Canada Conservation Data Centre database	Migratory Birds Convention Act
Eagle nesting areas	Forest habitat	Significant Habitats of Nova Scotia Database; Atlantic Canada Conservation Data Centre database	Nova Scotia Wildlife Act
Osprey nesting areas	Forest habitat	Significant Habitats of Nova Scotia Database; Atlantic Canada Conservation Data Centre database	Nova Scotia Wildlife Act
Hawk and owl nesting areas	Forest habitat	Significant Habitats of Nova Scotia Database; Atlantic Canada Conservation Data Centre database	Nova Scotia Wildlife Act
Waterfowl breeding, staging and wintering areas	Freshwater wetlands, saltmarshes, and coastal waters	Significant Habitats of Nova Scotia Database; Atlantic Canada Conservation Data Centre database	Migratory Birds Convention Act

Appendix 3: Special Occurrences (Ecodistrict 310) Table 1c – Other Conservation Features

Feature	Туре	Information Source	Legislation or Status Ranking System
Seabird nesting Colonies	Coastal headlands, cliffs, and islands	Significant Habitats of Nova Scotia Database; Atlantic Canada Conservation Data Centre database	Migratory Birds Convention Act
Shorebird breeding and staging areas	Beaches, saltmarshes, and mudflats	Significant Habitats of Nova Scotia Database; Atlantic Canada Conservation Data Centre database	Migratory Birds Convention Act
Great blue heron rookeries	Forest habitat	Significant Habitats of Nova Scotia Database; Atlantic Canada Conservation Data Centre database	Migratory Birds Convention Act
Wood turtle habitat	Rivers, streams, and riparian habitat	Significant Habitats of Nova Scotia Database; Atlantic Canada Conservation Data Centre database	Nova Scotia Wildlife Act; Nova Scotia Endangered Species Act
Fish habitat areas	Rivers, streams, and lakes	Significant Habitats of Nova Scotia Database; Atlantic Canada Conservation Data Centre database	Canada Fisheries Act
Designated and Non- designated water Supplies	Watersheds	DNR Restricted Land Use Database	Nova Scotia Environment Act
Dragonfly, damselfly, and butterfly habitats	Upland and wetland habitats	Significant Habitats of Nova Scotia Database; Atlantic Canada Conservation Data Centre database	Nova Scotia Endangered Species Act

Appendix 3: Special Occurrences (Ecodistrict 310) Table 1c – Other ConservationFeatures

Feature	Туре	Information Source	Legislation or Status Ranking System
Freshwater mussel habitat	Rivers, streams, and lakes	Significant Habitats of Nova Scotia Database; Atlantic Canada Conservation Data Centre database	Nova Scotia Endangered Species Act
Rare plant habitat	Upland and wetland habitats	Significant Habitats of Nova Scotia Database; Atlantic Canada Conservation Data Centre database	Nova Scotia Endangered Species Act
DNR Old Forest Reserves	Old forest habitat	Old Forest Database	Policy reserve
Eastern Habitat Joint Venture Lands	Habitat	DNR Restricted Land Use Database	Legal Agreement
Operational/Non-Designated Parks and Reserves	Ecosystem / recreation	DNR Restricted Land Use Database	Nova Scotia Parks Act
Karst areas	Upland and wetland sites	Significant Habitats of Nova Scotia Database; Atlantic Canada Conservation Data Centre database	N/A
Protected Beaches	Ecosystem	DNR Restricted Land Use Database	Nova Scotia Beaches Protection Act
Nature Reserves	Ecosystem	DNR Restricted Land Use Database	Special Places Protection Act
Wilderness Areas	Ecosystem / recreation	DNR Restricted Land Use Database	Nova Scotia Wilderness Areas Protection Act
Provincial Parks	Ecosystem / recreation	DNR Restricted Land Use Database	Nova Scotia Parks Act
Special places e.g. MacFarlane Woods	Ecosystem	DNR Restricted Land Use Database	

Appendix 3: Special Occurrences (Ecodistrict 310) Table 1d – Heritage Features

Feature	Туре	Information Source
Heritage River - Margaree River watershed	Heritage	Canadian Heritage River System
Native Burial Grounds	Cultural/Community Heritage	Aboriginal Traditional Knowledge
Native Artifacts	Cultural/Community Heritage	Aboriginal Traditional Knowledge Local Knowledge DNR Database
Abandoned Mines	Geological and Cultural Heritage	NS Abandoned Mines Database
First Nations Reserve Lands – e.g. Waycobah, Eskasoni	Cultural	DNR Restricted Land Use Database
Significant Geological Features	Geological and Cultural Heritage	Local Knowledge
International Biological Reserve	Geological and Biological	DNR Restricted Land Use Database

Appendix 3: Special Occurrences

Table 2: Comparison of Ecological Emphasis Classification Index by Ecosection (Within Ecodistrict and Ecoregion) Ecosections that form 2% or less of the ecodistrict and/or ecoregion area or are more than 75% converted are highlighted. The table provides a sense of how unique or uncommon an ecosection and its associated climax communities are within the ecodistrict and across the ecoregion. The EEC Index value conveys an indication of relative land use pressure on the ecosection.

Ecosection	Climax Type			Ecodistri	ict Occuri	rence				Ecoregion	Occurrence		
	1,460	Area Ecosec		Area of C Type (1, 2		EEC Index ecosection	% Converted	Area of Ecos	section	Area of Clim (1, 2, 3		EEC Index ecosection	% Converted
		На	%	На	%			На	%	На	%		
ICHO	bS	762	0.2	1,339	0.4	56 to 63	13.8	34,403	3.1	95,529	8.7	58 to 69	3.8
IFHO	bS bF	7,827	2.1	33,483	9.0	60 to 67	8.8	31,024	2.8	33,856	3.1	51 to 59	12.8
IFKK	rS eH wP sM yB Be	4,325	1.2	4,325	1.2	54 to 59	18.1	33,575	3.1	6,223	0.6	49 to 59	12.1
ІМНО	bS bF	31,282	8.5	33,483	9.0	69 to 74	0.8	121,008	11.1	33,856	3.1	60 to 69	3.4
IMRD	bS bF	347	0.1	33,483	9.0	75	0.0	3,120	0.3	33,856	3.1	53 to 64	5.8
IMSM	bS bF	565	0.2	33,483	9.0	60 to 64	14.3	9,670 0.9		33,856	3.1	50 to 55	17.4
WCDS	sM yB Be	13,706	3.7	316,852	85.6	86 to 87	1.2	34,567	3.2	518,002	47.4	73 to 76	2.8
WCHO	sM yB Be	967	0.3	316,852	85.6	62 to 64	21.4	69,678	6.4	518,002	47.4	58 to 65	8.5
WCKK	sM yB Be	5,443	1.5	316,852	85.6	81 to 83	2.9	190,197	17.4	518,002	47.4	55 to 64	7.6
WFHO	sM yB Be	1,335	0.4	316,852	85.6	59 to 64	12.7	19,086	1.7	518,002	47.4	49 to 57	14.0
WFKK	sM yB Be	34,472	9.3	316,852	85.6	59 to 65	10.5	75,788 6.9		518,002	47.4	49 to 57	12.3
WMDS	sM yB Be	129,222	34.9	316,852	85.6	79 to 81	2.3	130,519 11.9		518,002 47.4		74 to 76	2.3
WMHO	sM yB Be	20,250	5.5	316,852	85.6	65 to 71	3.5	84,128	7.7	518,002	47.4	55 to 65	5.2

^{*}Area of Climax Type refers to the total area of the climax community in the ecodistrict and in the ecoregion.

Appendix 3: Special Occurrences

Table 2: Comparison of Ecological Emphasis Classification Index by Ecosection (Within Ecodistrict and Ecoregion) Ecosections that form 2% or less of the ecodistrict and/or ecoregion area or are more than 75% converted are highlighted. The table provides a sense of how unique or uncommon an ecosection and its associated climax communities are within the ecodistrict and across the ecoregion. The EEC Index value conveys an indication of relative land use pressure on the ecosection.

Ecosection	Climax Type			Ecodistric	t Occurre	ence		Ecoregion Occurrence								
		Area of Eco	section	Area of C Type (1, 2		EEC Index Ecosection	% Converted	Area of Ecosection		Area of Climax Type (1, 2, 3) *		EEC Index ecosection	% Converted			
		На	%	На	Ha %			На	%	На	%					
WMKK	sM yB Be	102,916	27.8	316,852	85.6	67 to 73	4.1	184,216	16.8	518,002	47.4	58 to 66	5.8			
WMRD	sM yB Be	11,490	3.1	316,852	85.6	68 to 71	4.1	11,490	1.1	518,002	47.4	61 to 64	4.1			
WMSM	sM yB Be	2,606	0.7	316,852	85.6	60 to 62	10.9	2,952	0.3	518,002	47.4	38 to 40	14.3			
WTLD	wetlands	1,184	0.3	0.0	0.0	74 to 75	0.3	6,085	0.6	0	0.0	60 to 64	6.7			

*Area of Climax Type refers to the total area of the climax community in the ecodistrict and in the ecoregion.

Appendix 4: Ecological Representivity Worksheet

	Ecosystem		Crown Responsibility	Legal F	Reserves	(including	Reserves inproclaimed ve proposals)		Ecolo		asis Classifica e Class"	ation	
Ecosection	Climax Type	Area (ha)	Percent of Area on Crown (%)	Crown Area (ha)	Private Area (ha)	Crown Area (ha)	Private Area (ha)	Crown		Private		Total Res	erve
								ha	% (EcoS)	ha	% (EcoS)	ha	% (EcoS)
WMDS	sM yB Be	129,222	41.4	22,364	56	3,326	9	25,690	19.9	65	0.1	25,755	19.9
WMKK	sM yB Be	102,916	30.5	4,779	23	2,410	0	7,189	7.0	23	0.0	7,212	7.0
WFKK	sM yB Be	34,472	11.7	122	2	34	0	156	0.5	2	0.0	158	0.5
IMHO	bS bF	31,282	54.8	0	0	1,097	0	1,097	3.5	0	0.0	1,097	3.5
WMHO	sM yB Be	20,250	35.4	62	0	256	0	318	1.6	0	0.0	318	1.6
WCDS	sM yB Be	13,706	53.2	2,468	0	377	0	2,845	20.8	0	0.0	2,845	20.8
WMRD	sM yB Be	11,490	27.8	0	0	105	0	105	0.9	0	0.0	105	0.9
IFHO	bS bF	7,827	26.3	0	0	2	0	2	0.0	0	0.0	2	0.0
WCKK	sM yB Be	5,443	30.4	104	0	161	0	264	4.9	0	0.0	264	4.9
IFKK	rS eH wP sM yB Be	4,325	1.1	0	0	0	0	0	0.0	0	1.9	0	1.9
WMSM	sM yB Be	2,606	50.5	0	77	0	4	0	0.0	81	0.0	81	0.0
WFHO	sM yB Be	1,335	32.6	0	0	0	0	0	0.0	0	0.0	0	0.0
WTLD	wetlands	1,184	65.7	0	0	0	0	0	1.8	0	0.0	0	1.8
WCHO	sM yB Be	967	18.1	0	0	21	0	21	9.1	0	0.0	21	9.1
ICHO	bS	762	4.9	84	0	4	0	88	0.0	0	0.0	88	0.0
IMSM	bS bF	565	15.1	0	0	0	0	0	3.9	0	0.0	0	3.9
IMRD	bS bF	347	100.0	21	0	1	0	22	0.0	0	0.0	22	0.0
XXCB	coastal beach	25	22.1	0	0	0	0	0	0.0	0	0.0	0	0.0
Total		368,723		30,003	158	7,795	13	37,798		172		37,969	

Appendix 5: Ecodistrict Reserves and Protected Areas Summary

	Legal Reserves			olicy Reserves proclaimed legal pro	posals)
Act Designation	Area by C	Ownership	Policy Program	Area by Ov	wnership
	Crown (ha)	Private (ha)		Crown (ha)	Private (ha)
Areas under the Special Places Act	945	73	Old Forest	29,156	0
Wilderness Areas	28,862	0	Operational Non Designated Parks and Reserves	897	0
Designated Provincial Parks and Park Reserves	122	0	Designated Provincial Parks and Park Reserves	494	0
National Wildlife Management Areas	77	70	Nature Conservancy of Canada	0	4
Nature Conservancy of Canada	0	2	Nova Scotia Nature Trust	0	9
Protected Beaches	0.0	0			
Sites of Ecological Significance Under Moratorium	249	0			
National Parks and Adjuncts	20,740				

Source: Crown Lands Forest Model Landbase Classification

Some of these programs may occur in the same area. For example, much of the Old Forest Policy forests are located in the Wilderness Areas.

Appendix 6: Description of Road Density Index

Road, trail, and utility corridors provide the background structure for transporting people and goods and are integral components of human land use. However, transportation systems are expensive and have a wide range of negative environmental impacts including watercourse siltation, habitat fragmentation, dispersal obstruction, plant and animal mortality, exotic species invasion, loss of productive land, and an overall increase in human presence (Forman & Deblinger 2000, Reed et. al. 1996, Lindenmayer & Franklin 2002).

In order to reduce conflicts with natural systems and improve transportation safety there is clearly a need to incorporate landscape ecology into the planning of transportation networks (Forman 2004, Forman & Hersperger 1996, Spellerberg 1998). The emerging science of road ecology advocates integrating spatial analysis of the transportation system with ecological landscape analysis as a fundamental step in transportation system planning (Forman 1999, Lindenmayer & Franklin 2002, Diaz & Apostol 1992).

Efficient access systems can be strategically designed to minimize environmental impacts by incorporating factors such as harvest scheduling, life expectancy, location, road class requirements, decommissioning, and mitigation measures (Lindenmayer & Franklin 2002, Forman, 2004). Selection of transportation routes should incorporate knowledge of landscape functions to improve compatibility with natural ecosystem flows and connectivity (Forman & Hersperger, 1996). Furthermore, areas without roads and/or few roads are important for biodiversity conservation and should be considered during planning (USDA Forest Service 1999).

The GIS-based "Road Index" procedure calculates and maps the spatial influence of the transportation network. It is a management tool designed to help planners gauge the relative influence of man-made linear features within landscapes. It was designed to help integrate the transportation system into an ecological landscape analysis process. In addition to mapping, the index provides a numerical indicator of road influence that can be used to monitor temporal changes and compare different landscapes.

Main Concepts

The influence of the transportation network on the ecological landscape varies with three main factors: 1) the type of transportation feature (e.g. highway, power line, trail, etc.); 2) the density of linear features in a given area; and 3) the distance of an area from transportation features (Forman 2004, Lindenmayer & Franklin 2002, Forman & Deblinger 2000). The Road Index is a weighting of these three factors reflecting their relative influence on ecosystem function.

Road density has a well-documented influence on many factors, including wildlife movements, fragmentation, human access, hydrology, and fire patterns (Forman and Hersperger, 1996). Forman & Deblinger (2000) report great variance in road effect zones, with average cumulative effects extending 300 metres from road edges, and some impacts penetrating up to a kilometre. Consequently, Index values are determined by assessing the transportation network

within a one kilometre radius. The Index algorithm is applied to a grid of one hectare squares representing the landscape in question. The calculation provides a measure of the density of the transportation network and the specific distance to the transportation features. The resulting index values are scaled to provide a potential range of 0 to 100. For the purpose of map interpretation these values have been grouped into benchmark ranges that reflect characteristic patterns of land use in Nova Scotia.

In Nova Scotia, as in most populated jurisdictions, transportation networks are continuously changing as new roads and utilities are constructed and unused roads and trails deteriorate. As such, any analysis of the current state of these features must be based on reasonably up to date data. In this province, the Geomatics Centre, administered by Service Nova Scotia and Municipal Relations, is responsible for mapping transportation features which they include in their 1:10000 topographic series mapping.

On a provincial level, this work is updated on a ten-year repeat cycle and includes changes to existing features and the delineation of new features. Before undertaking road analysis, the Geomatics Centre should be contacted to ensure that the most current data is used to calculate the Road Index values. This data should be further updated using Landsat satellite imagery to add significant new roads and utilities that are over 500 metres in length on lands currently with a remote or forest resource index value.

DNR Forestry Branch maintains a table relating the topographic series attribute coding used by the Geomatics Centre to the feature categories used in the Road Index calculations, along with ArcView programs allowing the data to be formatted correctly. An inventory of recent Landsat satellite images is also available.

Full report contained in the Ecological Landscape Analysis Guidebook http://www.gov.ns.ca/natr/library/forestry/reports/Procedural%20Guide%20For%20Ecological%20Landscape%20Analysis.pdf

Appendix 7: Road Density Index Worksheets

Road index values for all tables are benchmarks that will be monitored over time to evaluate trends.

Table 1: Length of Access Systems and Index Weighting for Different Road Types

Road Type	Road Index Weighting	Length (km)
Trails, tracks, abandoned roads, and railways	1	2,479
Utility corridors	0	379
Gravel Roads and active railways	6	1,682
Paved streets and roads collectors	10	406
Highways	15	44

Table 2: Distribution of Road In	dex Classes		
Road Index	(Value	Area of Ecodistr	ict Affected
Indication	Range	Hectares	Percent
Remote	0 to 6	218,906	59.1
Forest Resource	7 to 15	111,898	30.2
Mixed Rural	16 to 24	34,048	9.2
Agriculture Suburban	25 to 39	4,654	1.3
Urban	40 to 100	678	0.2
Total		370,184	100.0

Landscape Element	Area (ha)	Road Index
Tolerant Hardwood Hills	312,120	3
Valley Corridors	12,564	4
Spruce Fir Hills and Hummocks	7,404	6
Spruce Pine Hummocks	30,795	2
Wetlands	1,513	4
Coastal Beach	25	54
Tolerant Mixedwood Hills	4,303	5
Total	368,724	3

^{*}Water is excluded from this table. Rounding, overlapping, and averaging of figures may lead to small differences in tables.

Appendix 8: Development Classes and Sera	l Stages
Development Class	Seral Stage
 Forest Establishment (Height 0 to 6 m) establishment of new growth following a stand-initiating disturbance high diversity of forbs, shrubs, and tree regeneration, many of which are short-live shade-intolerant "pioneer" species peak seed production by forbsand shrubs approximate age 0 to 25 years 	 Early Seral Species (Score 10 to 23) new growth dominated by pioneertree species or unclassified regeneration Mid Seral Species (Score 24 to 37) regeneration composed of a mixture of pioneer, mid-climax, and climaxspecies Late Seral Species (Score 38 to 50) regeneration dominated by climax species
 Young Forest (Height 7 to 11 m) young forests with developing tree canopies characterized by vigorous self-thinning and crown differentiation early tree seed production, no understory development approximate age 25 to 40 years 	 Early Seral Species (Score 10 to 23) canopy dominated by pioneer tree species Mid Seral Species (Score 24 to 37) canopy composed of a mixture of pioneer, mid-climax, and climax species Late Seral Species (Score 38 to 50) canopy dominated by climax species
 Mature Forest (Height > 11 m) stands dominated by upper canopy with full differentiation into dominance classes self-thinning process reduced tree seed production prominent and regular individual tree mortality creates canopy gaps that are soon closed by neighbouring treegrowth increased light initiates regeneration and early understory development approximate age 40 to 125 years 	 Early Seral Species (Score 10 to 23) canopy dominated by pioneerspecies over maturity initiates canopybreakup and understory development Mid Seral Species (Score 24 to 37) climax species in mixture with pioneers in the overstory often reflecting a transition to climax domination following a period of subcanopy development Late Seral Species (Score 38 to 50) canopy dominated by climaxspecies over maturity initiates gap dynamic processes leading to multi-aged and old growth conditions
 4. Multi-aged and old growth forest (Varying height and age and Old Growth ID) dominant overstory exhibiting a variety of crown sizes and canopy densities canopy gaps promote development of multi-layered understory and recruitment to overstory 	 Early Seral Species (Score 10 to 23) canopy likely to break up and be replaced by developing understory Mid Seral Species (Score 24 to 37) pioneer dominated overstory with canopy recruitment from a climax species-dominated understory Late Seral Species (Score 38 to 50) climax species-dominated overstory maintained through gap dynamic processes

Species		Ec	odi	stric	ct		1			ĺ	1				1							ĺ	- 1	1	Ì										T	1		1	
Code	Name	100	210	220	310	320	330	340	350	37.0	380	3 5	2 2	430	2 6	34 5	50	210	520	530	55	920	260	910	620	630	29	720	3	740	20	220	280	810	820	830	840	910	920
AS	ash	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4 4	4 4	1 4	1 4	4	1 2	4 4
BA	black ash	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2 2	2 2	2 2	2 2	2 2	2 7	2 :
ВС	black cherry	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2 :	2 2	2 2	2 2	2	2 7	2 :
BE	beech	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5 5	5 5	5 5	5 5	5 5	5 5	5 :
BF	balsam fir	5	5	5	5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 5	5 5	5 5	5 5	5 '	1
BP	balsam poplar	1	3	3	3	3	1	1	1	1	1	1	1	1	1	1	1	3	3	3	3	1	1	1	1	3	1	1	1	1	1	1	1	1 1	1	1 1	1		3
BS	black spruce	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5 5	5 5	5 5	5 5	5 5	5 5	5 :
EC	eastern cedar	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5 5	5 5	5 5	5 5	5 5	5 5	5 :
EH	eastern hemlock	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5 5	5 5	5 5	5 5	5 5	5 ;	5 :
	exotic species	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1		1
GB	grey birch	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1		1
IH	intolerant hardwood	3	2	4	2	2	2	2	2	4	2	2	2	2	2	2	2	2	2	2	2	4	3	2	2	2	2	2	2	2	2	2	3 2	2 2	2 2	2 2	2 2	2 7	2 :
IW	ironwood	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4 4	4 4	1 4	1 4	1 4	1 4	4
JP	jack pine	2	3	2	2	2	2	2	2	2	2	2	2	2	3	2	2	2	2	3	3	3	3	3	2	2	2	2	2	2	2	2	2 2	2 2	2 2	2 2	2	2 :	2 :
LA	largetooth aspen	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 '	1 1	1	1 1	1	1 3	1 1
ОН	other hardwood	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3 3	3 3	3	3 3	3 3	3 :	3 ;
os	other softwood	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3 3	3 3	3	3 3	3 3	3 :	3 :
PC	pin cherry	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 '	1 1	1 1	1 1	1	1 1	1 1
RM	red maple	3	2	4	2	2	2	2	2	4	2	5	2	2	2	2	2	2	2	2	2	5	3	2	2	2	2	2	2	2	2	2	3 2	2 3	3 3	3 2	2 2	2 2	2 :
RO	oak	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4 4	4 4	1 4	1 4	4	1 4	4
RP	red pine	3	3	3	3	3	3	3	3	3 .	4	3	3	3	4	3	3	3	3	4	4	4	4	4	4	4	3	4	3	3	3	4	4 3	3 4	1 4	1 3	3 3	3 3	3 :
RS	red spruce	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5 5	5 5	5 5	5 5	5 5	5 5	5 :
SM	sugar maple	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5 5	5 5	5 5	5 5	5 5	5 5	5 :
ST	striped maple	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2 2	2 2	2 2	2 2	2 2	2 2	2 2
TA	aspen	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 '	1 1	1 1	1 1	1	1	1
TH	tolerant hardwood	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5 5	5 5	5 5	5 5	5 5	5 5	5 :
TL	eastern larch	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3 3	3 3	3 3	3 3	3 3	3 ;	3 ;
UC	unclassified	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 '	1 1	1 1	1 1	1	1	1
WA	white ash	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4 4	4 4	1 4	1 4	4	1 4	4 4
WB	white birch	3	4	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	2	2	2	2	2	2	2	2	2	2 2	2 2	2 2	2 2	2 2	2 2	2 :
WE	white elm	2	2	4	2	4	2	2	2	2	2	2	2	2	2	2	2	4	4	4	2	2	2	4	4	4	2	2	2	2	2	2	2 2	2 2	2 2	2 2	2 2	2 2	2 :
WP	white pine	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5 5	5 5	5 5	5 5	5 5	5 :	5 :
WS	white spruce	4	4	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 5	5 5	5 5	4	1 1	1 1
XS	red&black spruce	5	5	-	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5 5	and the same		5 5	5 5	5 5	5 :
YB	yellow birch	5	5	-5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5 5	5 5	5 5	5 5	5 5	5 5	5 :

A look-up table assigns each species in the forest inventory a value from 1 to 5 for its position on the successional scale. The look-up table may change by ecodistrict since climax on the coast or the Cape Breton Highlands differs from inland and lowland districts. This successional value is multiplied by the species' percent in the stand to give a stand successional score. Each stand may have up to four species, and the four percentages add to 10, so the stand successional scores range from 10 to 50. These scores are subdivided into three successional categories: 10 - 23 early, 24 - 37 mid and 38 - 50 late.

Appendix 10: Table 1: Forest Landscape Composition Worksheet (Cape Breton Hills 310)

Element	Ecosection (% land	Covertype	Climax Species	Natural Disturbance	Total Land Area of	Seral Stage			Cur	rent Forest - GIS	Inventory			
	area)		(M=Mid; L=Late Seral)	Regime	Potential Forest* (ha; %)			Developme	nt Class (ha)		Total Forested Area (ha)	Covertype (ha; %)	Sı	ral Stage ummary (ha; %)
							Establish- ment (1)	Young Forest (2)	Mature Forest (3)	Multi-aged (4)				
	WMKK					Early	1,151	1,368	1,454	466	4,439			
	(32.9%)	Softwood	wS bS bF	Gap	7,516;	Mid	780	1,113	943	809	3,644	59,325;	EARLY	27,053;
	WMDS (39.0%)	Softwood	bS wS	Gap	3.6	Late	10,033	14,140	13,891	7,969	46,032	20.3	EAF	9.3
	WFKK					Uncl	5,210	0	0	0	5,210			
	(10.9%)					Early	1,208	1,356	1,915	589	5,068			
	WMHO (6.4%)	Mixedwood				Mid	10,660	9,141	17,540	8,082	45,423	87,009;	MID	95,119;
	WMRD	wiixeuwoou				Late	3,091	4,560	18,325	7,251	33,227	29.8	Σ	32.6
Tolerant	(3.7%)					Uncl	3,292	0	0	0	3,292			
Hardwood Hills	WCDS					Early	3,007	3,088	4,889	289	11,273			
	(4.0%)	Hardwood	sM yB Be sM yB Be	Gap	304,167;	Mid	2,522	2,891	37,692	2,949	46,053	132,513;	LATE	151,975;
	WMSM (0.8%)	пагижоои	eH wP	Gap	97.4	Late	219	918	69,611	1,969	72,717	45.4	₹	52.0
	WFHO					Uncl	2,471	0	0	0	2,471			
	(0.4%)					Early	5,590	68	615	0	6,273			
	WCHO (0.2%)	Unclassified				Mid	0	0	0	0	0			
	WCKK	Unclassified				Late	0	0	0	0	0	13,283;		17,983;
	(1.7%)					Uncl	7,010	0	0	0	7,010	4.5	UNCL	6.2
					312,120*	# ha	56,243	38,642	166,874	30,372	292,130			
Total					312,120	%	19.3%	13.2%	57.1%	10.4%	100.0%			

Appendix 10: Table 1: Forest Landscape Composition Worksheet (Cape Breton Hills 310)

Element	Ecosection (% land	Covertype	Climax Species	Natural Disturbance	Total Land Area of	Seral Stage			Cur	rent Forest - GIS	Inventory			
	area)		(M=Mid; L=Late Seral)	Regime	Potential Forest* (ha; %)			Developme	nt Class (ha)		Total Forested Area (ha)	Covertype (ha; %)	Su	ral Stage Immary ha; %)
							Establish- ment (1)	Young Forest (2)	Mature Forest (3)	Multi-aged (4)				
	IMHO		bS bF			Early	1,151	1,368	1,454	466	4,439			
	(7.4%)	Softwood	bS bF	Frequent	1,795;	Mid	780	1,113	943	809	3,644	3,045;	EARLY	763; 6.7
	IFHO (6.1%)	Softwood	bS wS	rrequent	15.7	Late	10,033	14,140	13,891	7,969	46,032	26.7	EAF	0.7
						Uncl	5,210	0	0	0	5,210			
	ICHO (2.6%)					Early	1,208	1,356	1,915	589	5,068			
	WCHO	N. A. in a share a sh				Mid	10,660	9,141	17,540	8,082	45,423	3,370;	MID	3,893;
	(4.2%)	Mixedwood				Late	3,091	4,560	18,325	7,251	33,227	29.5	Σ	34.1
Valley	WCDS (9.6%)					Uncl	3,292	0	0	0	3,292			
Corridors	WMDS					Early	3,007	3,088	4,889	289	11,273			
	(59.2%)		sM yB Be		10,261;	Mid	2,522	2,891	37,692	2,949	46,053	4,442;	ш	6,109;
	WMHO (3.1%)	Hardwood	sM yB Be eH wP	Gap	81.6	Late	219	918	69,611	1,969	72,716	38.9	LATE	53.5
	WMKK					Uncl	2,471	0	0	0	2,471			
	(2.5%)					Early	5,590	68	615	0	6,273			
	WFKK (3.2%)					Mid	0	0	0	0	0			
	WFHO	Unclassified				Late	0	0	0	0	0	565;	7	656;
	(3.1%)					Uncl	7,010	0	0	0	7,010	4.9	UNCL	5.7
					12,564*	# ha	56,244	38,643	166,874	30,372	292,133			
Total					12,307	%	19.3%	13.2%	57.1%	10.4%	100.0%			

Appendix 10: Table 1: Forest Landscape Composition Worksheet (Cape Breton Hills 310)

Element	Ecosection (% land	Covertype	Climax Species	Natural Disturbance	Total Land Area of	Seral Stage			Curi	rent Forest - GI	S Inventory			
	area)		(M=Mid; L=Late Seral)	Regime	Potential Forest* (ha; %)	550		Developme	ent Class (ha)		Total Forested Area (ha)	Covertype (ha; %)	S	ral Stage ummary (ha; %)
							Establish- ment (1)	Young Forest (2)	Mature Forest (3)	Multi-aged (4)				
						Early	196	68	9	51	324			
		6.6	bS bF bS		22,548;	Mid	124	319	165	392	999	13,896;	EARLY	2,592;
		Softwood		Frequent	79.7	Late	2,640	2,554	1,865	5,212	12,271	50.0	EA	9.3
						Uncl	302	0	0	0	302			
						Early	92	13	9	11	124			
						Mid	1,072	405	1,561	909	3,946	6,179;	MID	7,418;
	ІМНО	Mixedwood	euwoou			Late	268	265	825	588	1,946	22.2	Σ	26.7
Spruce Pine	(98.6%)					Uncl	163	0	0	0	163			
Hummocks	ICHO		sM yB Be			Early	288	88	634	35	1,044			
	(1.4%)	Handand	sM yB Be		6,246.8; 20.3	Mid	219	54	2,090	109	2,472	5,829;	LATE	16,352;
		Hardwood	eH wP		20.3	Late	21	2	2,097	17	2,136	21.0	LA:	58.9
						Uncl	176	0	0	0	176			
						Early	1,071	2	27	0	1,100			
		I I and a selft and				Mid	0	0	0	0	0			
		Unclassified				Late	0	0	0	0	0	1.001.		1,421;
						Uncl	781	0	0	0	781	1,881; 6.8	UNCL	5.1
Total					30,795*	# ha	7,411	3,769	9,281	7,323	27,783			
Total					30,/95*	%	26.7%	13.6%	33.4%	26.4%	100.0%			

Appendix 10: Table 1: Forest Landscape Composition Worksheet (Cape Breton Hills 310)

Element	Ecosection (% land	Covertype	Climax Species	Natural Disturbance	Total Land Area of	Seral Stage			Curi	rent Forest - GI	S Inventory			
	area)		(M=Mid; L=Late Seral)	Regime	Potential Forest* (ha; %)	J		Developme	ent Class (ha)		Total Forested Area (ha)	Covertype (ha; %)	Su	ral Stage immary ha; %)
							Establish- ment (1)	Young Forest (2)	Mature Forest (3)	Multi-aged (4)			·	
						Early	24	32	20	10	85			
			bS bF		7,404;	Mid	66	52	53	49	220	3,388;	EARLY	799;
		Softwood		Frequent	100.0	Late	380	1,040	680	697	2,795	54.0	EA	12.7
						Unclass	287	0	0	0	287			
						Early	83	4	0	1	87			
		Mixedwood				Mid	477	149	311	130	1,066	1,448;	MID	1,687;
	IFHO	Mixeawooa				Late	33	20	71	103	226	23.1	Σ	26.9
Spruce Fir Hill and	(95.3%)					Unclass	68	0	0	0	68			
Hummocks	IMRD					Early	41	21	108	14	184			
	(4.7%)	l la selvica a el				Mid	242	3	145	11	401	823;	LATE	3,253;
		Hardwood				Late	0	0	229	3	232	13.1	Ā	51.9
						Unclass	6	0	0	0	6			
						Early	443	0	0	0	443			
		l la ala asifi a d				Mid	0	0	0	0	0			
		Unclassified				Late	0	0	0	0	0	615;	귕	534;
						Unclass	173	0	0	0	173	9.8	UNCL	8.5
						# ha	2,322	1,320	1,616	1,016	6,273			
Total					7,404*	%	37.0%	21.0%	25.8%	16.2%	100.0%			

Appendix 10: Table 1: Forest Landscape Composition Worksheet (Cape Breton Hills 310)

Element	Ecosection (% land	Covertype	Climax Species	Natural Disturbance	Total Land Area of	Seral Stage			Curi	rent Forest - GI	Inventory			
	area)		(M=Mid; L=Late Seral)	Regime	Potential Forest* (ha; %)	Juage		Developme	ent Class (ha)		Total Forested Area (ha)	Covertype (ha; %)	S	ral Stage ummary (ha; %)
			·				Establish- ment (1)	Young Forest (2)	Mature Forest (3)	Multi-aged (4)				`
						Early	51	5	51	6	113			
		6.6				Mid	75	35	25	40	175	1,141; 32.7	EARLY	342;
		Softwood				Late	231	158	236	66	690	32.7	EA	9.8
						Uncl	163	0	0	0	163			
						Early	40	1	1	0	42			
		Mixedwood	rS eH wP	Infrequent	4,303;	Mid	273	186	332	82	872	1,402; 40.2	MID	1,254;
		Wiixeawooa	sM yB Be	iiiiequeiit	100.0	Late	35	24	336	30	425	40.2	Σ	35.9
Tolerant	IFKK					Uncl	62	0	0	0	62			
Mixedwood Hills	(100.0%)					Early	39	35	64	1	139			
		Hardwood				Mid	7	13	187	0	206	809; 23.2	LATE	1,560;
		патимоои				Late	0	0	445	0	445	23.2	Υ	44.7
						Uncl	19	0	0	0	19			
						Early	34	0	15	0	49			
		Unclassified				Mid	0	0	0	0	0			
		Uliciassilled				Late	0	0	0	0	0	139;	UNCL	335;
						Uncl	91	0	0	0	91	4.0	S	9.6
						# ha	1,119	455	1,691	225	3,491			
Total					4,303*	%	32.0%	13.0%	48.5%	6.5%	100.0%			

Appendix 10: Table 1: Forest Landscape Composition Worksheet (Cape Breton Hills 310)

Element	Ecosection (% land	Covertype	Climax Species	Natural Disturbance	Total Land Area of	Seral Stage			Curi	rent Forest - GI	S Inventory			
	area)		(M=Mid; L=Late Seral)	Regime	Potential Forest* (ha; %)	Stage		Developme	ent Class (ha)		Total Forested Area (ha)	Covertype (ha; %)	Su	ral Stage Immary ha; %)
			,				Establish- ment (1)	Young Forest (2)	Mature Forest (3)	Multi-aged (4)			,	
						Early	0	0	1	1	2			
		6.6	bS bS bF	None	757;	Mid	7	14	8	7	36	449; 66.1	EARLY	35;
		Softwood		Frequent	50.0	Late	37	127	50	184	398	00.1	EA	5.1
						Uncl	13	0	0	0	13			
						Early	0	0	0	0	0			
		Mixedwood				Mid	22	10	36	13	81	124;	MID	149;
	WTLD	iviixeawooa				Late	9	12	10	9	39	18.2	Σ	22.0
	(78.2%)					Uncl	3	0	0	0	3			
Wetlands	IMSM					Early	13	2	5	0	19			
	(21.8%)	Handad				Mid	3	0	27	2	32	83;	LATE	463;
		Hardwood				Late	2	0	24	0	26	12.3	Ξ	68.2
						Uncl	6	0	0	0	6			
						Early	14	0	0	0	14			
		Haalaasifi c				Mid	0	0	0	0	0			
		Unclassified				Late	0	0	0	0	0	23;	UNCL	32;
						Uncl	10	0	0	0	10	3.4	N	4.7
						# ha	139	165	161	215	679			
Total					1,513*	%	20.4%	24.2%	23.7%	31.7%	100.0%			

Element	Ecosections	Dominant NDR	Dominant Climax Type	Covertype	Forest* Community (Crown Model)	Area (ha)	Percent of Forest Community	Successional Stage	Successional Types			
				S	SwSDom	18,687	6.7%	E	Well-drained Early VTs:			
				S	SrSbSDom	17,175	6.2%	M/L	rM, wB, tA, bF Mid VTs: rM, wA, yB			
				S	SbFDom	15,295	5.5%	L	Late VTs:			
	WCHO		rS eH wP sM yB Be sM vB Be		rS eH wP sM vB		S	SSpbFDom	7,739	2.8%	L	sM, yB, Be Moist
	WCKK WFHO					S	SMHePiSp	376	0.1%	L	Early-Mid VTs: bF, rM, wB, tA	
	WFKK					rS eH wP sM vB	rS eH wP sM vB	S	SPiDom	53	0.0%	M/L
Tolerant ardwood Hills	WMDS WMHO	Gap			М	MIHwSH	34,032	12.2%	E/M	bF, wS, yB, rM, rS, eH		
	WMKK WMRD WMSM		,	М	MIHwHS	31,707	11.4%	E/M	Poorly Drained Early-Late VTs:			
	WCDS			М	MTHw	21,270	7.6%	L	bS, tL, rM			
				Н	HTHw	76,292	27.4%	L	Old Fields Early VTs:			
				Н	HITHw	28,208	10.1%	M/L	wS, tL, bF			
				Н	HIHw	28,014	10.0%	E/M				
otal						278,847	100.0%]			
Forest ommunity odes:	SrSbSDom-Red Bl SwSDom-White S SspbFDom-Spruce SbFDom-Balsam F	pruce Dominant e Fir Dominant		MIHwSH-Intol	Dominant xed Spruce Pine Hemlo lerant Hardwood Mixe lerant Hardwood Mixe	dwood S	MTHw-Tolerant Hardwood Mixedwood HIHw-Intolerant Hardwood HTHw-Tolerant Hardwood HITHw-Intolerant Tolerant Hardwood					

Element	Ecosections	Dominant NDR	Dominant Climax Type	Covertype	Forest* Community (Crown Model)	Area (ha)	Percent of Forest Community	Successional Stage	Successional Types				
				S	SrSbSDom	8,087	31.2%	M/L	Well-drained Early - Mid VTs:				
				S	SSpbFDom	2,906	11.2%	L	rM, wB, bF Late VTs:				
				S	SbFDom	2,262	8.7%	L	bF, wS Moist				
				S	SwSDom	613	2.4%	E	Early-Mid VTs: rM, wB, gB, pCh				
				S	SPiDom	20	0.1%	M/L	Late VTs: bS, wP				
Spruce Pine	ICHO	Frequent	bS bF bS bF		bS bF	bS bF	bS bF	S	SMHePiSp	7	0.0%	L	Poorly Drained Early-Late VTs:
Hummocks	IMHO	Frequent			М	MIHwSH	3,346	12.9%	E/M	bS, tL, rM			
					М	MIHwHS	2,156	8.3%	E/M				
					М	MTHw	676	2.6%	L				
				Н	HTHw	2,290	8.8%	L					
				Н	HIHw	2,175	8.4%	E/M					
				Н	HITHW	1,364	5.3%	M/L					
otal						25,902	100.0%						
Forest ommunity odes:	SrSbSDom-Red Black Spruce Dominant SwSDom-White Spruce Dominant SspbFDom-Spruce Fir Dominant SbFDom-Balsam Fir Dominant			MIHwSH-Intol	Dominant xed Spruce Pine Hemlo lerant Hardwood Mixed lerant Hardwood Mixed	dwood S	MTHw-Tolerant Hardwood Mixedwood HIHw-Intolerant Hardwood HTHw-Tolerant Hardwood HITHw-Intolerant Tolerant Hardwood						

Element	Ecosections	Dominant NDR	Dominant Climax Type	Covertype	Forest* Community (Crown Model)	Area (ha)	Percent of Forest Community	Successional Stage	Successional Types	
				S	SrSbSDom	2,541	44.9%	M/L	Well-drained	
				S	SSpbFDom	286	5.1%	L	Early - Mid VTs: rM, wB, tA, bF, gB, pCh Late VTs:	
				S	SbFDom	280	4.9%	L	bF, wS	
				S	SwSDom	274	4.8%	E	Moist Early-Mid VTs:	
				S	SMHePiSp	8	0.1%	L	rM, wB, tA, gB, pCh, tL, t Late VTs:	
pruce Fir Hills and	IFHO IMRD	Frequent Frequent			М	MIHwSH	753	13.3%	E/M	bS, bF Poorly Drained Early-Late VTs:
Hummocks					М	MIHwHS	637	11.3%	E/M	Early-Late VTs: bS, tL, rM
				М	MTHw	57	1.0%	L		
				Н	HIHw	479	8.5%	E/M		
				Н	HTHw	248	4.4%	L		
				Н	HITHw	96	1.7%	M/L		
otal						5,659	100.0%			
Forest Community Codes:	SrSbSDom-Red Bl SwSDom-White S SspbFDom-Spruc SbFDom-Balsam I	e Fir Dominant	ant	MIHwSH-Intol	Dominant xed Spruce Pine Hemlo lerant Hardwood Mixed lerant Hardwood Mixed	dwood S	MTHw-Tolerant Hardwood Mixedwood HIHw-Intolerant Hardwood HTHw-Tolerant Hardwood HITHw-Intolerant Tolerant Hardwood			

Element	Ecosections	Dominant NDR	Dominant Climax Type	Covertype	Forest* Community (Crown Model)	Area (ha)	Percent of Forest Community	Successional Stage	Successional Types	
				S	SrSbSDom	595	17.8%	M/L	Well-drained Early VTs:	
				S	SwSDom	207	6.2%	E	rM, wB, gB, tA, bF Mid VTs:	
				S	SSpbFDom	187	5.6%	L	rM, wA, yB Late VTs:	
				S	SbFDom	148	4.4%	L	sM, yB, Be Moist	
				S	SPiDom	3	0.1%	M/L	Early-Mid VTs: bF, rM, wB, gB, tA	
Tolerant Mixedwood	IFKK	Infrequent	rS eH wP sM yB Be	•	М	MIHwSH	693	20.7%	E/M	Late VTs: bF, wS, yB, rM, wA
Hills					М	MIHwHS	539	16.1%	E/M	Poorly Drained Early-Late VTs:
					М	MTHw	171	5.1%	L	bS, tL, rM Old Fields
				Н	HTHw	478	14.3%	L	Early VTs: wS, tL, bF	
				Н	HIHw	172	5.1%	E/M		
				Н	HITHw	159	4.7%	M/L		
otal						3,352	100.0%			
Forest ommunity odes:	SrSbSDom-Red Black Spruce Dominant SwSDom-White Spruce Dominant SspbFDom-Spruce Fir Dominant SbFDom-Balsam Fir Dominant			SpiDom-Pine Dominant SMHePiSp-Mixed Spruce Pine Hemlock MIHwSH-Intolerant Hardwood Mixedwood S MIHwHS-Intolerant Hardwood Mixedwood H			MTHw-Tolerant Hardwood Mixedwood HIHw-Intolerant Hardwood HTHw-Tolerant Hardwood HITHw-Intolerant Tolerant Hardwood			

Element	Ecosections	Dominant NDR	Dominant Climax Type	Covertype	Forest* Community (Crown Model)	Area (ha)	Percent of Forest Community	Successional Stage	SuccessionalTypes
				S	SrSbSDom	1,197	11.8%	M/L	Well-drained Early VTs:
				S	SbFDom	1,106	10.9%	L	rM, wB, gB, pCh, tA, bF Mid VTs:
	ICHO	Frequent	bS	S	SSpbFDom	439	4.3%	L	rM, wA, yB Late VTs:
	IFHO IMHO	Frequent Frequent	bS bF bS bF	S	SwSDom	279	2.8%	E	sM, yB, Be
	IMSM WCHO	Frequent Gap	bS bF sM yB Be	S	SMHePiSp	16	0.2%	E/M	Moist Early-Mid VTs:
Valley Corridors	WCKK WFHO	Gap Gap	sM yB Be sM yB Be	S	SPiDom	8	0.1%	E/M	bF, rM, wB, tA <u>Late VTs:</u> bF, wS, yB, rM, wA, rS, e
	WFKK WMDS	Gap Gap	sM yB Be sM yB Be	М	MIHwHS	1,277	12.6%	L	Poorly Drained
	WMHO WMKK	Gap Gap	sM yB Be sM yB Be	М	MIHwSH	1,131	11.2%	L	Early-Late VTs: bS, tL, rM
	XXWA	None	None	М	MTHw	963	9.5%	E/M	- Old Fields
				Н	HTHw	2,305	22.8%	M/L	Early VTs: wS, tL, bF
				н	HIHw	1,400	13.8%	M/L	ws, tt, br
otal						10,121	100.0%]
Forest ommunity odes:	SrSbSDom-Red Bl SwSDom-White S SspbFDom-Spruce SbFDom-Balsam F	pruce Dominant e Fir Dominant	ant	MIHwSH-Intol	ominant xed Spruce Pine Hemloo erant Hardwood Mixed erant Hardwood Mixed	wood S	MTHw-Tolerant Hardwood Mixedwood HIHw-Intolerant Hardwood HTHw-Tolerant Hardwood HITHw-IntolerantTolerantHardwood		

Element	Ecosections	Dominant NDR	Dominant Climax Type	Covertype	Forest* Community (Crown Model)	Area (ha)	Percent of Forest Community	Successional Stage	Successional Types		
				S	SrSbSDom	288	43.8%	M/L	Moist		
				S	SSpbFDom	86	13.1%	L	Early-Mid VTs: bF, rM, wB, tA		
				S	SbFDom	54	8.2%	L	Late VTs: bS, bF, rM		
				S	SwSDom	21	3.2%	E	Poorly Drained		
Wetlands	IMSM	Frequent	bS bF rM tL			М	MIHwSH	60	9.1%	E/M	Early-Late VTs:
	WILD	WTLD Open Seral		М	MIHwHS	58	8.8%	E/M	bS, tL, rM		
				М	MTHw	6	0.9%	L	-		
				Н	HTHw	38	5.8%	E/M	-		
				Н	HIHw	30	4.6%	L			
				Н	HITHW	16	2.4%	M/L			
otal						657	100.0%				
orest ommunity odes:	SwSDom-White Spruce Dominant SspbFDom-Spruce Fir Dominant MIHwSH-Intolerant Hardwood Mixedwood S HTHw-To						HIHw-Intolerant HTHw-Tolerant				

Appendix 10:
Table 3: Summary of "Potential Climax" Forest Abundance (Based on ELC Interpretations)

Climax Type	Ecod	listrict	Ecoregion		
Cilillax Type	Hectares	Percent	Hectares	Percent	
sM yB Be	316,852	85.6%	518,002	47.4%	
bS bF	33,483	9.0%	33,856	3.1%	
1rS eH wP sM yB Be	4,325	1.2%	6,223	0.6%	
sM yB Be eH wP	4,195	1.1%	4,195	0.4%	
bS wS	4,050	1.1%	10,818	1.0%	
wS bS bF	3,581	1.0%	3,581	0.3%	
bS	1,339	0.4%	95,529	8.7%	
Total	367,824	99.4%*	672,204	61.5%**	

^{*}Total does not add up to 100% because wetlands not added.
**Total does not add up to 100% because not all climax vegetation types in region are found in this ecodistrict Source: Crown Lands Forest Model Landbase Classification.

Appendix 11: Ecological Emphasis Classes and Index Values

The classification includes all upland conditions, both forested and non-forested, under all types of administration and land use practices. It does not include water or other non-terrestrial conditions.

Ecological Emphasis Class	Conservation Factor	Description
Reserve	1	 Reserved lands which meet biodiversity conservation goals through preservation of natural conditions and processes. Resource management activities are not usually permitted except where required to perpetuate desired natural conditions. This class is assigned based on the types of laws and policies governing the management (for example: Wilderness, Parks, Conservation Easement, Old Forest Policy).
Extensive	0.75	 Lands managed for multiple values using ecosystem-based techniques that conserve biodiversity, and natural ecosystem conditions and processes. Forestry practices employ ecosystem-based prescriptions which consider natural disturbance regimes, successional trends, structure, and composition. Natural regeneration is favoured to provide the next forest. Practices may include protection from fire and insects. Management complies with the Forest Code of Practice, and excludes the use of herbicides, exotic tree species, off-site native species, genetically modified organisms, and stand conversion.
Intensive	0.25	 Lands managed intensively to optimize resource production from sites maintained in a native state (e.g. forested). Despite intensive practices these lands are an important component of landscape structure and composition. Management may eliminate or reduce the duration of some development processes, particularly mature old forest stages, and may result in nonnatural succession. Practices may produce unnatural conditions such as exotic species, old field spruce, and monoculture plantations, or reduce structure and composition below ecologically desirable levels. Forests are protected from fire, insects, and competing vegetation. Management adheres to environmental regulations and policies such as the Wildlife Habitat and Watercourse Protection Regulations, and Forest Code of Practice.
Converted	0	Land converted to an unnatural state for human use, or areas where practices have significantly degraded site productivity (e.g. agriculture, urban development roads, Christmas trees, seed orchards, forest soil compaction).

Appendix 12a: Ecological Emphasis Index Worksheet – Elements								
Landscape Element	Total Land Area (ha)	Ecological Emphasis Classes					Ecological Emphasis Index	
		Reserve Area (ha)	Extensive Forest Management Area	Intensive Forest Management Area (ha)	Conversion to Non-Forest Area (ha)	Unclassified Land Use Area (ha)	Effective Area Range (ha)	EEC Index Range
Tolerant Hardwood Hills	291,334	51,491	199,496	3,502	12,716	24,129	208,021 to 220,086	71 to 76
Spruce Pine Hummocks	30,226	1,097	25,087	1,037	284	2,721	20,851 to 22,212	69 to 73
Spruce Fir Hills and Hummocks	7,130	2	5,259	157	661	1,051	4,249 to 4,774	60 to 67

These classes have been given a weighting percentage representing their ecological emphasis level: Reserve (100), Extensive (75), Intensive (25), and Converted (0). These percentages are applied to the area of land in each class to determine the "effective area" which is divided by "total area" to calculate the index.

32

6

0

4,733

426

26

11

14,123

328

57

0

28,286

The Unclassified land is too young to determine if it is being managed extensively or intensively. Therefore, an EEI range is reported based on it being all one or the other.

Water was not included as an element type. Areas were rounded to the nearest hectare.

6,069

42

0

58,701

5,396

1,361

13

236,612

EEI values are benchmarks that will be monitored over time.

12,250

1,491

25

342,456

Valley Corridors

Coastal Beach

Wetlands

Total

10,206 to 10,370

1,078 to 1,107

10

246,654 to 260,992

83 to 85

72 to 74

40

71 to 75

Ecosection			Eco	ological Emphasis Clas	ses		Ecological Emphasis Index	
	Total Land Area (ha)	Reserve Area (ha)	Extensive Forest Management Area (ha)	Intensive Forest Management Area (ha)	Conversion to Non-Forest Area (ha)	Unclassified Land Use Area (ha)	Effective Area Range (ha)	EEC Index Range
ICHO	744	0	528	24	105	86	424 to 467	56 to 63
IFHO	7,500	2	5,554	161	692	1,091	4,481 to 5,026	60 to 67
IFKK	4,146	81	2,688	206	782	389	2,246 to 2,440	54 to 59
ІМНО	30,696	1,097	25,620	1,019	241	2,720	21,246 to 22,607	69 to 74
IMRD	347	0	347	0	0	0	260 to 261	75
IMSM	546	22	390	5	81	49	328 to 352	60 to 64
WCDS	13,389	7,079	5,742	0	159	408	11,488 to 11,692	86 to 87
WCHO	896	248	404	3	207	35	560 to 577	62 to 64
WCKK	5,147	2,185	2,562	2	157	241	4,167 to 4,287	81 to 83
WFHO	1,265	0	938	14	170	143	743 to 815	59 to 64
WFKK	31,495	158	22,744	839	3,625	4,130	18,458 to 20,522	59 to 65
WMDS	121,577	40,110	72,898	700	2,954	4,916	96,187 to 98,645	79 to 81
WMHO	19,570	385	15,610	590	708	2,278	12,809 to 13,949	65 to 71
WMKK	96,078	7,289	71,763	1,250	4,248	11,529	64,306 to 70070	67 to 73
WMRD	10,271	105	9,012	114	473	567	7,034 to 7,318	68 to 71
WMSM	1,718	0	1,356	10	283	68	1,037 to 1,071	60 to 62
WTLD	1,169	21	1,116	4	3	25	865 to 878	74 to 75

For an explanation of calculations and other information to help better understand this table, please refer to the bottom of Appendix 12a.

13

239,285

0

4,939

11

14,899

0

58,782

XXCB

Total

25

346,580

0

28,675

10

246,639 to 260,977

40

71 to 75

Appendix 13:

Glossary B: Terms in Parts 1, 2, and 3

Aspect	The direction of a downhill slope expressed in degrees or as a compass point.
Atlantic Coastal Plain Flora (ACPF)	A group of 90 species of taxonomically unrelated wetland plants that inhabit lake and river shores, bogs, fens, and estuaries and which are found primarily in southwestern Nova Scotia. The distribution of this group of plants extends down the eastern coast of the USA with isolated populations in Nova Scotia and along the Great Lakes.
Biodiversity	The diversity of plants, animals, and other living organisms, in all their forms and level of organization, including genes, species, ecosystems, and the evolutionary and functional process that link them.
Canopy	The uppermost continuous layer of branches and foliage in a stand of trees.
Climax forest community	A relatively stable and self-perpetuating forest community condition that maintains itself (more or less) until stand-level disturbance causes a return to an earlier successional stage. The final stage of natural succession for its environment.
Climax vegetation	A forest or non-forest community that represents the final stage of natural succession for its environment.
Coarse filter approach	A habitat-based approach to conserving biodiversity by maintaining a natural diversity of structures within stands, and representation of ecosystems across landscapes. The intent is to meet the habitat requirements of most native species over time. Usually combined with a fine filter approach to conserve specific rare species and ecosystems.
Coarse Woody Debris (CWD)	Dead tree stems greater than 7.5 centimetres in diameter and laying horizontally at 45 degrees or less. Provides habitat for many species and is a source of nutrients for soil development.
Commercial thinning	Silviculture treatment that "thins" out an overstocked stand by removing trees that are large enough to be sold as products, such as poles or fence posts. This treatment is carried out to improve the health and growth rate of the remaining crop trees.

Composition The proportion of biological components within a specified unit such as

a stand or landscape:

Stand or Species Composition. The proportion of each plant species in a community or stand. May be expressed as a percentage of the total number, basal area, or volume of all species in that community.

Landscape Composition. The proportion of each community type within a

landscape. Community type may be defined by vegetation type,

covertype, seral stage, or development class (age).

Connectivity The way a landscape enables or impedes movement of resources, such

as water and animals.

Converted Lands removed from a natural state (e.g. forest) and changed to other

uses (e.g. agriculture, urban, settlement, road).

Corridor Corridors are natural linear communities or elements, such as river

valleys, that link parts of the ecodistrict. They are a fundamental feature

of the "matrix, patch, corridor" concept of landscape structure.

Crown land and

Provincial Crown land Used in the Ecological Landscape Analysis to include all land under the administration and control of the Minister of Natural Resources under the Forests Act, Section 3; as well as the lands under the administration and control of the Minister of Environment under the Wilderness Areas Protection Act. Also includes Federal Parks in the accounting of protected

area representation.

Covertype Refers to the relative percentage of softwood versus hardwood species in

the overstory of a stand. In this guide, covertype classes are:

Softwood: softwood species compose 75% or more of overstory

Hardwood: hardwood species compose 75% or more of overstory

Mixedwood: softwood species composition is between 25% and 75%

Development

class

The description of the structure of forests as they age and grow (e.g. establishment forest, young forest, mature forest, multi-aged / old forest).

Disturbance An event, either natural or human-induced, that causes a change in

the existing condition of an ecological system.

Ecodistrict The third of five levels in the Ecological Land Classification for Nova Scotia

Volume 1, and a subdivision of ecoregions. Characterized by distinctive assemblages of relief, geology, landform, and vegetation. Used to define

the landscape unit for these Ecological Landscape Analysis reports.

Ecological land classification

A classification of lands from an ecological perspective based on factors such as climate, physiography, and site conditions. The Ecological Land Classification for Nova Scotia Volume 1 delineates ecosystems at five hierarchical scales: ecozone, ecoregion, ecodistrict, ecosection, and ecosite.

Ecological integrity

The quality of a natural unmanaged or managed ecosystem in which the natural ecological processes are sustained, with genetic, species, and ecosystem diversity assured for the future.

Ecoregion

The second level of the Ecological Land Classification for Nova Scotia Volume 1, and a subdivision of ecozone. Used to characterize distinctive regional climate as expressed by vegetation. There are nine ecoregions identified in Nova Scotia.

Ecosection

The fourth of five levels in the Ecological Land Classification for Nova Scotia Volume 1, and a subdivision of ecodistricts. An ecological land unit with a repeating pattern of landform, soils, and vegetation throughout an ecodistrict.

Ecosite

The fifth of five levels in the Ecological Land Classification for Nova Scotia Volume 1, and a subdivision of ecosections. Characterized by conditions of soil moisture and nutrient regimes. Although not mapped, the Acadian and Maritime Boreal ecosites of the province are fully described in the Forest Ecosystem Classification for Nova Scotia (2010).

Ecosystem

A functional unit consisting of all the living organisms (plants, animals, and microbes) in a given area, and all the non-living physical and chemical factors of their environment, linked together through nutrient cycling and energy flow. An ecosystem can be of any size – a log, pond, field, forest, or the earth's biosphere – but it always functions as a whole unit. Ecosystems are commonly described according to the major type of vegetation, such as a forest ecosystem, old-growth ecosystem, or range ecosystem. Can also refer to units mapped in the DNR Ecological Land Classification system.

Ecozone

The first of five levels in the Ecological Land Classification for Nova Scotia Volume 1. Ecozones are continental ecosystems characterized by the interactions of macroclimate, soils, geographic and physiographic features. The entire province is contained within the Acadian ecozone, one of 15 terrestrial ecozones in Canada.

Edge effect

Habitat conditions (such as degree of humidity and exposure to light or wind) created at or near the more-or-less well-defined boundary between ecosystems, as, for example, between open areas and adjacent forest.

Element A landscape ecosystem containing characteristic site conditions that

support similar potential vegetation and successional processes. Elements were mapped by combining ecosections with similar climax vegetation and natural disturbance interpretations. Depending on their role in the ecosystem, elements may be described as matrix, patch, or corridor.

Endangered species

A wildlife species facing imminent extirpation or extinction. A species listed as endangered under the federal or Nova Scotia endangered species legislation (NS Endangered Species Act or federal Species at Risk Act).

Even-aged A forest, stand, or vegetation type in which relatively small age

differences exist between individual trees. Typically results from stand-

initiating disturbance.

Extensive land use

Lands managed for multiple values using ecosystem-based techniques that conserve biodiversity and natural ecosystem conditions and processes.

Extinct species A species that no longer exists. A species declared extinct under federal or

Nova Scotia endangered species legislation (NS Endangered Species Actor

federal SARA).

Extirpated species

A species that no longer exists in the wild in Nova Scotia but exists in the wild outside the province. A species declared extirpated under federal or Nova Scotia endangered species legislation (Nova Scotia Species at Risk Act or federal SARA).

Fine filter approach

An approach to conserving biodiversity that is directed toward individual species and critical ecosystems that are typically rare or threatened. This approach is usually combined with the coarse filter approach to conserving natural ranges of habitat.

Forest management

The practical application of scientific, economic, and social principles to the administration and working of a forest for specified objectives. Particularly, that branch of forestry concerned with the overall administrative, economic, legal, and social aspects and with the essentially scientific and technical aspects, especially silviculture, protection, and forest regulation.

Frequent stand initiating

Disturbances usually occur more frequently than the average lifespan of the dominant species and are of sufficient intensity to destroy most of the existing trees, promoting a new forest within relatively short periods of time.

Gap replacement

An absence of stand-initiating disturbances supports the development of a dominant overstory that is sustained through dynamic processes of canopy gap formation, understory development, and overstory recruitment. Gap formation ranges from individual tree mortality to periodic gap formation events that are rarely of a stand-initiating intensity.

Habitat

The place where an organism lives and/or the conditions of that environment including the soil, vegetation, water, and food.

Infrequent stand initiating

The time between stand-initiating disturbances is usually longer than the average longevity of dominant species, thereby supporting processes of canopy gap formation and understory development in mature forests.

Inherent conditions

Refers to the natural condition of ecosystems based on their enduring physical features. This is the potential condition expected in the absence of human influence.

Integrated Resource Management (IRM) A decision-making process whereby all resources are identified, assessed, and compared before land use or resource management decisions are made. The decisions themselves, whether to approve a plan or carry out an action on the ground, may be either multiple or single use in a given area. The application of integrated resource management results in a regional mosaic of land uses and resource priorities which reflect the optimal allocation and scheduling of resource uses.

Intensive land use

Lands managed intensively to optimize resource production from sites maintained in a forested state.

Land capability (LC)

LC values represent the maximum potential stand productivity (m³/ha/yr) under natural conditions.

Landform

A landscape unit that denotes origin and shape, such as a floodplain, river terrace, or drumlin.

Landscape

An expanse of natural area, comprising landforms, land cover, habitats, and natural and human-made features that, taken together, form a composite.

May range in scale from a few hectares to large tracts of many square kilometres in extent.

Long range management frameworks

A strategic, integrated resource plan at the subregional level. It is based on the principles of enhanced public involvement, consideration of all resource uses and values, consensus-based decision making, and resource sustainability.

Matrix A widespread vegetation forest community which dominates the landscape

and forms the background in which other smaller scale communities (patches) occur. The most connected or continuous vegetation type within the landscape, typically the dominant element. (Matrix is a fundamental feature of the "matrix, patch, corridor" concept of landscape structure).

Mature forest

A development class within the sequence of: 1) forest establishment; 2) young forest; 3) mature forest; and 4) multi-aged and old growth. Mature forests include multi-aged and old growth. Forests are typically taller than 11 metres, have an upper canopy fully differentiated into dominance classes, and regularly produce seed crops. Mature forests may develop over long periods, transitioning from early competitive stages where canopy gaps from tree mortality soon close, to later stages where openings persist and understories develop to produce multi-aged and old growth.

Memorandum of

understanding (MOU)

An agreement between ministers defining the roles and responsibilities of each ministry in relation to the other or others with respect to an issue over which the ministers have concurrent jurisdiction.

Mixed stand

A stand composed of two or more tree species.

Multiple use

A system of resource use where the resources in a given land unit serve more than one user.

Natural disturbance

A natural force that causes significant change in forest stand structure and/or composition such as fire, wind, flood, insect damage, or disease.

Natural disturbance regimes

The patterns (frequency, intensity, and extent) of fire, insects, wind, landslides, and other natural processes in an area. Natural disturbances inherently influence the arrangement of forested ecosystems and

their biodiversity on a given landscape. Three disturbance regimes recognized in Nova Scotia are:

Frequent: Disturbances which result in the rapid mortality of an existing stand and the establishment of a new stand of relatively even age. The time interval between stand-initiating events typically occurs more frequently than the longevity of the climax species that would occupy the site — therefore, evidence of gap dynamics and understory recruitment is usually absent. This regime results in the establishment and perpetuation of early to mid-successional vegetation types.

Infrequent: Stand-initiating disturbances which result in the rapid mortality of an existing stand and the establishment of a new stand of relatively even-age, but the time interval between disturbance events is normally longer than the average longevity of the dominant species — allowing gap dynamics and understory recruitment to evolve and become evident (eventually creating uneven-aged stands). This regime generally leads to the establishment and/or perpetuation of mid to late successional vegetation types.

Gap replacement: Stand-initiating disturbances are rare. Instead, disturbances are characterized by gap and small patch mortality, followed by understory recruitment, resulting in stands with multiple age classes. This regime generally leads to the establishment and/or perpetuation of late successional vegetation types.

Old growth Climax forests in the late stage of natural succession, the shifting mosaic

> phase, marked by mature canopy processes of gap formation and recruitment from a developed understory. Typical characteristics include a multi-layered canopy of climax species containing large old trees, decadent wolf trees, and abundant snags and coarse woody debris. In Nova Scotia,

stands older than 125 years are classed as old growth.

Patch A discrete community or element nested within a surrounding landscape,

which is often a matrix forest. (Patch is a fundamental feature of the

"matrix, patch, corridor" concept of landscape structure.)

thinning

Pre-commercial A silviculture treatment to reduce the number of trees in young stands before the stems are large enough to be removed as a forest product. Provides increased growing space and species selection opportunities to

improve future crop tree growth.

Reserve An area of forest land that, by law or policy, is usually not available for

> resource extraction. Areas of land and water set aside for ecosystem protection, outdoor and tourism values, preservation of rare species,

gene pool and wildlife protection (e.g. wilderness areas, parks).

Riparian Refers to area adjacent to or associated with a stream, floodplain, or

standing water body.

Road deactivation Measures taken to stabilize roads and logging trails during periods of inactivity, including the control of drainage, the removal of sidecast where

necessary, and the re-establishment of vegetation for permanent

deactivation.

Any stage of succession of an ecosystem from a disturbed, unvegetated Seral stage

> state to a climax plant community. Seral stage describes the tree species composition of a forest within the context of successional development.

Species A group of closely related organisms which are capable of interbreeding,

and which are reproductively isolated from other groups of organisms; the

basic unit of biological classification.

Legally recognized designation for species at federal and/or provincial levels Species at risk

> that reflects varying levels of threats to wildlife populations. The four categories of risk are extirpated, endangered, threatened, and species of

special concern.

Succession An orderly process of vegetation community development that over

time involves changes in species structure and processes.

Threatened species

A species that is likely to become endangered if the factors affecting its vulnerability are not reversed. A species declared as threatened under the federal or Nova Scotia species at risk legislation (NS Endangered Species Act or federal SARA).

Tolerance

The ability of an organism or biological process to subsist under a given set of environmental conditions. The range of these conditions, representing its limits of tolerance, is termed its ecological amplitude. For trees, the tolerance of most practical importance is their ability to grow satisfactorily in the shade of, and in competition with, other trees.

Vernal pool

A seasonal body of standing water that typically forms in the spring from melting snow and other runoff, dries out in the hotter months of summer, and often refills in the autumn.

Vulnerable species

A species of special concern due to characteristics that make it particularly sensitive to human or natural activities or natural events. May also be referred to as "species of special concern." A species declared vulnerable under the federal or Nova Scotia endangered species legislation (NS Endangered Species Act or federal SARA).

Wilderness area A part of the provincial landbase designated under the Wilderness Areas Protection Act (e.g. Canso Barrens).

Literature Referenced

Bruce, J. and B. Stewart. 2005. Development of a "road index" for landscape level assessment of linear transportation features using density, distance, and class measures. Unpublished report.

Diaz, N. and D. Apostol. 1992. Forest landscape analysis and design: a process for developing and implementing land management objectives for landscape patterns. R6 ECO-TP-043-92. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region.

Duke, T. and L. Benjamin. 2005. Forest / wildlife habitat and management guide, 560 – Chignecto Ridges. Department of Natural Resources, Kentville. Internal report. 15pp.

Dunster, J. and K., Dunster. 1996. Dictionary of natural resource management. UBC Press. 363 pp.

Fenow, B.E. 1912. Forest Conditions of Nova Scotia. 93 pp.

Forman, R.T.T. 2004. Road ecology's promise: what's around the bend? Environment 46(4):8-21.

Forman, R.T.T. and R.D. Deblinger. 2000. The ecological road-effect zone of a Massachusetts (USA) suburban highway. Conservation Biology 14: 36-46.

Forman, R.T.T. 1999. Spatial models as an emerging foundation of road system ecology, and a handle for transportation planning and policy. In Proceeding of the Third International Conference on Wildlife Ecology and Transportation, edited by G.L.Evink, P.Garrett, and D.Zeigler, 118-123. Tallahassee, Florida: Florida DOT.

Lindenmayer, D. B. and J. F. Franklin. 2002. Conserving forest biodiversity: a comprehensive multi-scaled approach. Island Press. ISBN 1-55963-935-0. 351 pp.

Methven, I. and M. Kendrick. 1995. A Disturbance History Analysis of the Fundy Model Forest Area. 16pp.

Mailman, G. E. 1975. Tobeatic Resource Management Area Land Inventory. Nova Scotia Department of Natural Resources.

Neily, P. and E. Quigley. 2005. Natural disturbance ecology in the forests of Nova Scotia. Ecosystem Management Group, Department of Natural Resources, Truro. Unpublished report.

Neily, P., E. Quigley, L. Benjamin, B. Stewart, and T. Duke. 2003. Ecological land classification for Nova Scotia. Vol. 1 - mapping Nova Scotia's terrestrial ecosystems. Nova Scotia Dept. of Natural Resources, Forestry Division, Truro. 83 pp.

Nova Scotia Department of Natural Resources. 2006. Guidelines for the development of long range management frameworks. Nova Scotia Department of Natural Resources, Regional Services, Halifax. 33 pp.

Nova Scotia Department of Natural Resources. 2002. Wildlife Habitat and Watercourses Protection Regulations. Section 40 of the Forests Act R.S.N.S. 1989, c. 179 O.I.C. 2001-528 (November 15, 2001, effective January 14, 2002), N.S. Reg. 138/2001 as amended by O.I.C. 2002-609 (December 20, 2002), N.S. Reg. 166/2002 http://www.gov.ns.ca/natr/wildlife/habitats/protection/

Reed, R.A., J.Johnson-Barnard, and W.L. Baker. 1996. Contribution of roads to forest fragmentation in the Rocky Mountains. Conservation Biology 10:1098-1106.

Seymour, R. S. and M. L. Hunter, Jr. 1999. Principles of Forest Ecology. Chapter 2. In: M.L. Hunter Jr. Ed. Maintaining Biodiversity in Forest Ecosystems. 698 pp.

Spellerberg, I.F. 1998. Ecological effects of roads and traffic: a literature review. Global Ecology & Biogeography Letters 7, 317-333.

Stewart, B. and P. Neily. 2008. A procedural guide for ecological landscape analysis. Department of Natural Resources, Truro. Report for 2008-2.

Strang, R. M. 1972. Ecology and land use of barrens of Western Nova Scotia. Canadian Journal of Forest Resources. 2(3): 276-290.

USDA Forest Service.1999. Roads analysis: informing decisions about managing the national forest transportation system. Misc. Rep FS-643. Washington, D.C.: U.S. Department of Agriculture, Forest Service. 222 p.