AR2010-124 Clear Lake Resources Inc. **Silica Mountain District Project** Colchester County, Nova Scotia 11E/11B **Joined Assessment Report for Exploration Licenses** 08771 & 08772 Author: Alex MacKay Renewal Date: Nov. 19th, 2010

(original received DNRMPT NOV19110 12:13)

DUPLICATE AVAILABLE

Table of Contents

	1.0	Summ	ary	.1
	2.0	Introd	uction	2
	3.0	Locatio	on and Access	2
	4.0	License	e Tabulation	3
	5.0	Previou	us Work	3
	6.0	Local a	nd Regional Geology	4
	7.0	Work P	Performed	4
	8.0	Results	s of Work	6
	8.0a	Concl	usions and Recommendations	9
	9.0	Refere	nces 1	LO
	10.0	Statem	nent of Qualifications1	.1
✓	Appe	ndix A	Condensed Field NotesA-	-1
✓	Appe	ndix B	Raw XRF Data (with XRF Scanning Procedures page B-2)B-	-1
✓	Appe	ndix C	XRF Analyzer Specs and Theory	-1
√	Appe	ndix D	Scintillometer and Geochemical Plates 1-9 (Maps)In Back Pocket	∍t
May				

List of Figures & Tables

✓ Figure 1- Properties Location Map2
✓ Figure 2- Regional Geology Map5
✓ Figure 3- Field crew photo4
✓ Figure 4-Pyroclastic rocks photo6
✓ Figure 5-REE indicator vein photo
✓ Figure 6-Fe anomaly grid 7
✓ Figure 7-Ba anomaly grid
✓ Figure 8-Co anomaly grid
✓ Figure 9-Th anomaly grid
✓ Figure 10-Zr anomaly grid
✓ Figure 11-Y anomaly grid 7
✓ Figure 12-Nb anomaly grid 7
✓ Figure 13-Geological Mapping Schematic8
✓ Table 1-License Tabulation 3
way

List of Plates

✓ Plate 1-Station ID MapApper	ndix D
✓ Plate 2-Scintillometer Survey MapApper	ndix D
✓ Plate 3-Fe XRF ResultsApper	ndix D
✓ Plate 4-Ba XRF ResultsApper	ndix D
✓ Plate 5-Co XRF ResultsAppe	ndix D
✓ Plate 6-Th XRF ResultsApper	ndix D
✓ Plate 7-Zr XRF ResultsAppe	ndix D
✓ Plate 8-Y XRF ResultsAppe	ndix D
Plate 9-Nb XRF ResultsAppe	endix D
Wash	

APPENDIX Dis Maps 1-9 in Back Pocket

1.0 Summary

The Silica Mountain District is located in a mafic-felsic volcanic and plutonic suite of rocks in the Cobequid highlands. Recent discoveries of anomalous REE indicator minerals (Th, Zr, Y, Nb) in such rocks as well as the increasing potential for IOCG type discoveries along the Cobequid-Chedabucto Fault Zone make the Silica Mountain district a strong candidate for discovery of either type of deposit.

The 2010 work program focused on reconnaissance and follow up field work to Gulf Minerals Canada Ltd. work of the late 20th century. This included completing a small 49 station scintillometer survey, some basic geological mapping observations as well as collecting geochemical data via a portable handheld XRF. XRF data was then used to produce grids to identify regions of anomalous indicator mineral concentrations (REE and IOCG) for further exploration.

Field results were promising as several locations of anomalous REE and IOCG indicator concentrations were identified. Additional field discoveries included observation of widespread sulfide mineralization, generally elevated scintillometer readings (total counts per second) on both properties and the identification of a possible marker horizon in the Byers Brook Formation.

2.0 Introduction

As the potential for rare earth mineralization increases in the Cobequid Highlands (MacHattie, 2010a), regional exploration of the Hart Lake-Byers Lake granite body and overlying Byers Brook Formation is warranted. Licenses 08771 and 08772 are majorly Byers Brook Formation located just east of the eastern extent of the main body of the Hart Lake-Byers Lake granite. The potential for IOCG style mineralization also exists as the licenses are along the Cobequid-Chebucto Fault zone (MacHattie, O'Reilly, 2009b).

The main focus of the 2010 work program was to collect X-ray florescence (XRF) data to identify REE and IOCG indicator minerals in order to generate local targets for more detailed exploration. This data was collected on:

- i) Reconnaissance prospecting trips of the entire property via local access roads
- ii) Field traverses around Gulf Minerals Canada Ltd reported Th anomalies

Field work was completed by Alex MacKay, geologist and author, Lindsay Allen, prospector and manager and Alex Debay, prospector.

3.0 Location and Access

The properties are located in the Silica Mountain district of Colchester County, NS., approximately 20km north of the town of Truro. The properties are easily accessible from Halifax via highway 102 north to exit 14A. Head east off of the exit onto Onslow Rd. and proceed 3.5 km until junction 311. Turn north onto highway 311. After 5km turn left, cross over the North River and continue to proceed north on Truro Rd which bi-sects the properties. An abundance of local woods and country roads provide further access to the properties. Woods roads can generally be described as good, with only a small percentage of the roads starting to become too grown in for vehicular access. Please refer to figure 1 for a schematic display of access to the properties. See figure 13 for a detailed look at the local access roads on the properties.

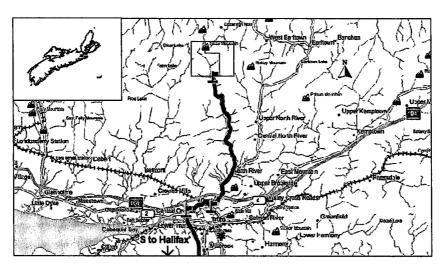


Figure 1-Properties Location Map from Truro, NS, not to scale

4.0 License Tabulation

License 08771 is composed of five tracts of 16 claims each. License 08772 is made up of four tracts of sixteen claims each. A detailed breakdown of the license claim composition can be seen in Table 1 below.

Table 1-Tabulation of Exploration Licenses 08771 & 08772 held in the name of Clear Lake Resources Inc.

License #	NTS Map Sheet	Tract	Claims	Date of issue
08771	11E/11B	46√	ABCDEFGH JKLMNOPQ	11/19/2009
08771	11E/11B	47 <	ABCDEFGH JKLMNOPQ	11/19/2009
08771	11E/11B	50✓	ABCDEFGH JKLMNOPQ	11/19/2009
08771	11E/11B	51√	ABCDEFGH JKLMNOPQ	11/19/2009
08771	11E/11B	70	ABCDEFGH JKLMNOPQ	11/19/2009
08772	11E/11B	48✓	ABCDEFGH JKLMNOPQ	11/19/2009
08772	11E/11B	49 /	ABCDEFGH JKLMNOPQ	11/19/2009
08772	11E/11B	71 ✓	ABCDEFGH JKLMNOPQ	11/19/2009
08772	11E/11B	72 < 3	ABCDEFGH JKLMNOPQ	11/19/2009

5.0 Previous Work

During the late 1970's and early 1980's Gulf Minerals Canada Ltd. carried out an extensive exploration program for Uranium in the Cobequid highlands. Gulf's program included geological mapping, soil and rock sampling, trenching, and drilling. Gulf also carried out ground and airborne gamma ray spectrometry surveys as well as VLF-EM- magnetometer. Unfortunately, Gulf's work was focused to the west of licenses 08771 and 08772, with just a few hand samples collected on the current licenses.

From 1889-1923 Oxford Tripoli Company produced 540 tons of Diatomaceous Earth from Silica Lake, a small pond located on license 08771. (O'Reilly, 2010)

Several gravel pits were also observed on the properties. None displayed evidence of recent activity.

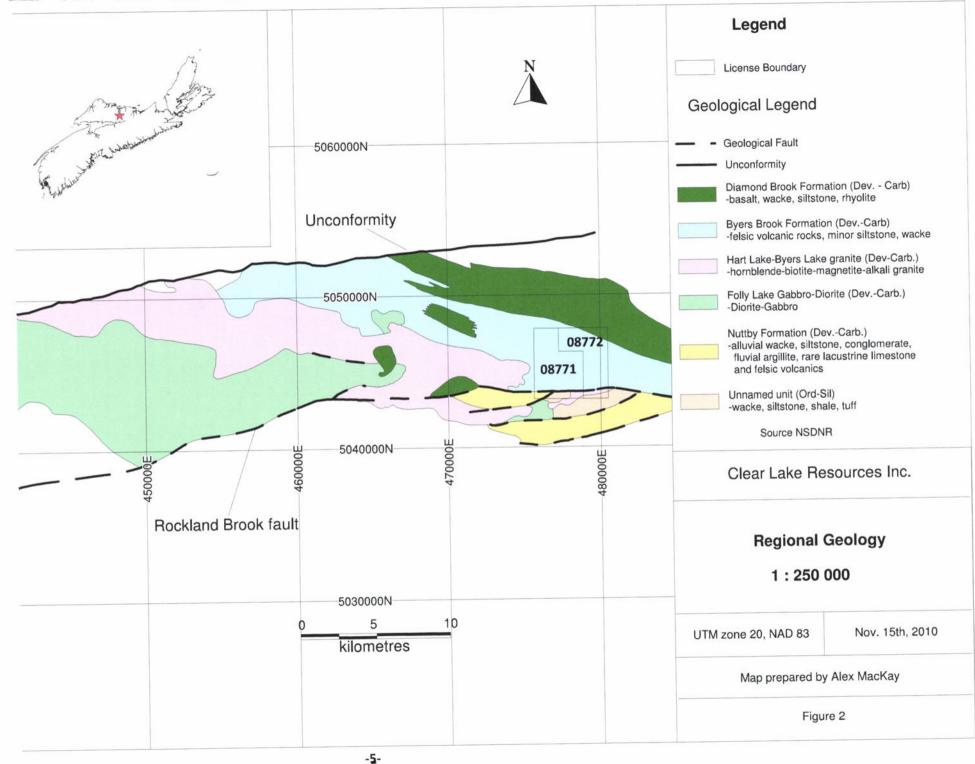
6.0 Local and Regional Geology

Regional geology of the area is dominated by four Late Devonian-Early Carboniferous mafic-felsic volcanic and plutonic units as shown in figure 2. This suite of rocks is bound to the north by unconformably overlying late Carboniferous rocks of the Cumberland Basin and to the south by the Rockland Brook fault (RBF) (MacHattie, 2010a). From east to west the units are: the Folly Lake gabbrodiorite (FLGB), the Hart Lake-Byers Lake granite (HLBL), the Byers Brook Formation (BBF) and the Diamond Brook Formation (DBF).

Locally, the RBF cuts the southern portion of the property. This section of the fault has been interpreted to be a ductile shear zone (Pe-Piper, 1989). Geological units on the property and south of the RBF, from east to west, are Horton Group sediments, an unnamed Siluran-Ordiviction unit of wacke's, siltstones, shales and tuffs and a window of the HLBL. North of the RBF the licenses are dominated by felsic volcanic and volcaniclastic rocks of the BBF. Gower (1988) reports an attitude of 115/70 for the BBF.

The BBF has been further broken down into two periods of volcanism separated by a period of lacustrine siltstone deposition; both volcanic events are characterized by early pyroclastic events which grade into rhyolitic flow units (Gower, 1988).

The BBF contacts the conformably overlying DBF in the north east corner of the property. The DBF is interpreted to be post BBF volcanism with early rhyolitic flows grading to flow basalts which dominate the unit (Pe-Piper, 2002). The extrusive volcanic units are often separated by sandy and/or conglomerate facies sediments (Pe-Piper, 2002).


7.0 Work Performed

Work performed included research and geological map compilation prior to and throughout the two field work phases of 2010 work program.

The first phase of the field work program was to explore all known and unknown access roads on the property. The second phase was to complete field traverses around known thorium anomaly areas as reported by Gulf Minerals Canada Ltd.

Figure 3-Alex MacKay (left) with portable XRF analyzer and Alex Debay (right) with Scintillometer. Location X=477820, Y=5046300

Work Performed Con't

General rock descriptions, locations, total counts per second (CPS) and XRF analysis results were recorded for each outcrop as appropriate. Locations were recorded using a Garmin GPSmap 76S [©] GPS receiver. UTM coordinates were recorded and are reported based on the NAD 83. Total counts per seconds were recorded using an Urtec UG130 Threshold Gamma Ray Scintillometer. XRF analyses were completed using an Olympus-Innovex Delta 90 handheld portable XRF analyzer. Condensed versions of recorded field notes and CPS readings can be seen in Appendix A. Raw XRF results are available in Appendix B.

The general goals of the 2010 work program were to:

- i) Prospect and field check mapped Bedrock units along RBF
- ii) Prospect BBF to identify potentially REE mineralized veins -as reported in MacHattie (2010b)
- iii) Collect XRF data to produce thematic anomaly grids for REE and IOCG indicators
 -REE indicators include Th, Zr, Y, Nb (MacHattie, 2010a)
 - -IOCG indicators include Fe, Ba, Co (MacHattie, O'Reilly, 2009b) Correlate like units of the Byers Brook Formation
- 8.0 Results of Work

iv)

Passes along access roads on the property revealed that till can be quite thick in some areas of the property. This is especially true in eastern areas of the property where no outcrops of the BBF were observed. Basalts of the DBF are well exposed in the NE corner but offer low CPS readings and poor XRF analysis for REE. Data for the DBF was not recorded as XRF results for such contrasting matrices cannot be trusted at this time (see Appendix B for more details about portable XRF analyzer data collection methods).

In the south along the RBF, rocks observed largely agreed with mapped units. Although it should be noted that HLBL window is of the aphanitic variety and was only observed mixed with siltstones of the unnamed Silurian-Ordovician unit.

Figure 4-Pyroclastic rocks at X=478200 Y=5046200

The majority of rocks encountered in the BBF were of varying rhyolitic compositions. Exceptions were two siltstone outcrops observed at stations CL6 and CL31 as identified in Plate 1 in Appendix D, and several granite stringers (see rock notes in Appendix A and Plate 1 in Appendix D).

The two siltstone occurrences are separated by approximately 3km's and strike approximately 115° of each other. This is could be a marker horizon between the first and second volcanic BBF volcanic events as proposed by Gower, 1988. Further evidence is the observation of ignimbrites and pyroclastic rocks (see figure 4) just up dip of the siltstone unit. Gower proposed that early stages of each volcanic event were dominated by pyroclastic events. See figure 13 for a schematic sketch of these features.

The BBF generally showed elevated CPS readings of around 200 total cps with several counts in the 300-500cps range and 1 peak of 900 cps located at X=477937, Y=5046128. Widespread pyrite mineralization was observed throughout the BBF as small 1mm veinlet's in ignimbrites and disseminated throughout the ground mass of granite, rhyolites and siltstones. One vein with elevated REE indicator minerals was positively identified at X=475813 and Y=5046334 and can be seen in figure 5 to the left. Several other anomalous REE indicator mineral concentrations were also observed, see Appendix B for a breakdown of XRF analysis results with locations.

Figure 5-Steep dipping vein with elevated REE indicator minerals as identified with portable XRF analyzer. Location X=475813, Y=5046334

Thematic grids for IOCG indicators (Fe, Ba, Co) (MacHattie, O'Reilly, 2008) were produced and are displayed below in figures 6-9 below. Data used to generate grids is plotted on plates 3-9 in Appendix D. The Fe and Ba grids produce peaks in the north and SE while the Co peaks only in the SE. Combined with Pe-Piper's description of southern portion of the properties to be a ductile fault zone, it can be surmised that the SE is the most likely location of IOCG type mineralization.

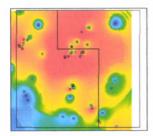


Figure 6- Fe anomaly grid

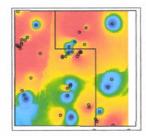


Figure 7-Ba anomaly grid

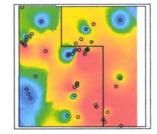


Figure 8-Co anomaly grid

Thematic grids for REE indicators (Th, Zr, Y, Nb) all produced similar trends of peaks in the central and northwest areas of the property. See figures 9-12 below.

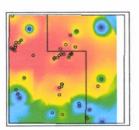


Figure 9-Th anomaly grid

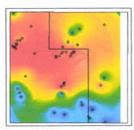


Figure 10-Zr anomaly grid

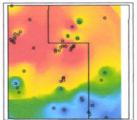


Figure 11-Y anomaly grid

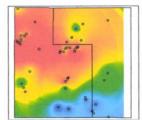
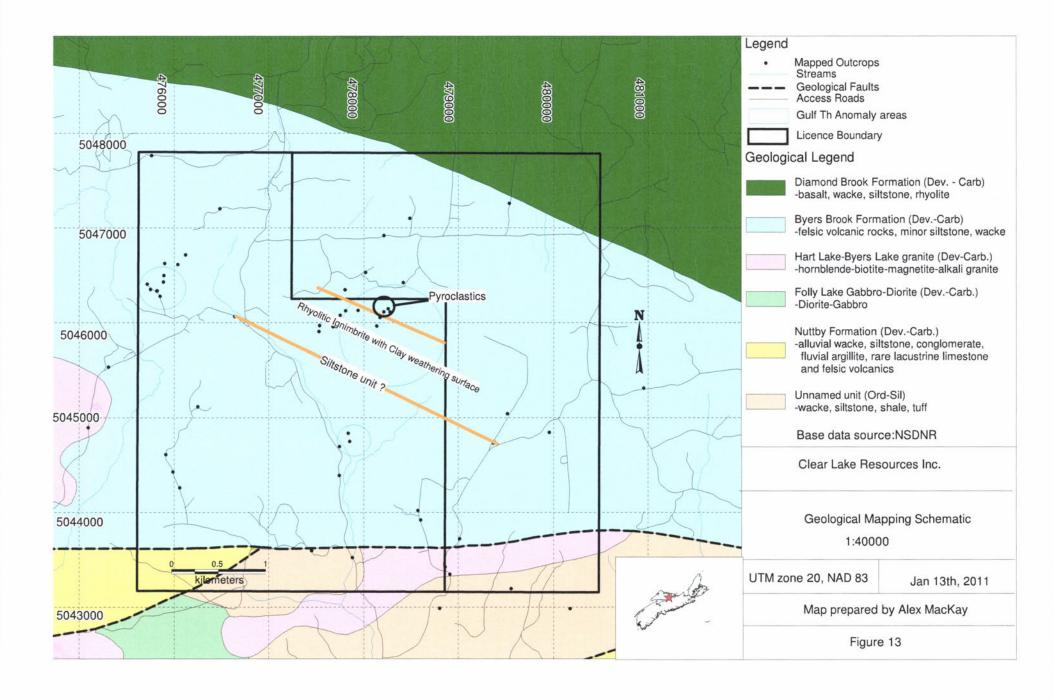



Figure 12-Nb anomaly grid

Although time and money were limited for a thorough examination of the property, the 2010 field program has produced some interesting results and further work is recommended. Further work should include: -A whole rock sampling program -More XRF readings to refine resolution of IOCG and REE indicator grids -Further exploration along the RBF with attention focused towards IOCG mineralization -Further prospecting around elevated REE indicator mineral locations		
-A whole rock sampling program -More XRF readings to refine resolution of IOCG and REE indicator grids -Further exploration along the RBF with attention focused towards IOCG mineralization		
-More XRF readings to refine resolution of IOCG and REE indicator grids -Further exploration along the RBF with attention focused towards IOCG mineralization	Further work should include:	
-Further exploration along the RBF with attention focused towards IOCG mineralization	-A whole rock sampling progra	m
	-More XRF readings to refine r	esolution of IOCG and REE indicator grids
-Further prospecting around elevated REE indicator mineral locations	-Further exploration along the	RBF with attention focused towards IOCG mineralization
	-Further prospecting around e	levated REE indicator mineral locations

9.0 References

Downey, N. 1978: Cobequid Project, exploration program 1977-78 on parts of 11E/11A, B, C and D; Gulf minerals Exploration Limite; Nova Scotia Department of Mines; Assessment Report ME 11E/11B 54-D-16(02).

Gower, D.P. 1988: Geology and genesis of uranium mineralization in subaerial felsic volcanic rocks of the Byers Brook Formation and the comagmatic Hart Lake granite, Wentworth area, Cobequid Highlands, Nova Scotia; unpublished M.Sc. thesis, Memorial University of Newfoundland, p. 1-358.

MacHattie, T.G. and O'Reilly, G.A. 2009a: Timing of Iron Oxide-Copper-Gold (IOCG) Mineralization and Alteration along the Cobequid Chedabucto Fault Zone; *in* Mineral Resources Branch, Report of Activities 2008; Nova Scotia Department of Natural Resources, Report ME 2009-1, p. 63-69.

MacHattie, T.G. and O'Reilly, G.A. 2009b: Field and Geochemical Evidence for Contemporaneous Mafic Magmatism and Iron Oxide-Copper-Gold (IOCG) Mineralization and Alteration along the Cobequid-Chedabucto Fault Zone; *in* Mineral Resources Branch, Report of Activities 2008; Nova Scotia Department of Natural Resources, Report ME 2009-1, p. 71-83.

MacHattie, T.G., 2010a: Magmatism, Alteration and Polymetallic mineralization in Late Devonian to Early Carboniferous Felsic Volcanic and Plutonic Rocks of the Eastern Cobequid Highlands; *in* Mineral Resources Branch, report of Activities 2009; Nova Scotia Department of Natural Resources, Report ME 2010-1, p. 65-75.

MacHattie, T.G., 2010b: Nature of Rare Earth Element Mineralization in the Northeastern Cobequid Highlands; *in* Mineral Resources Branch, Geology Matters 2010: Program with Abstracts; Nova Scotia Department of Natural Resources, Report ME 2010-2, p. 2.

O'Reilly, G.A., 2010: The Oxford Tripoli Company Diatomite Mine at East New Annan; *in* Mineral Resources Branch, Nova Scotia Minerals Update Autumn 2010; Nova Scotia Department of Natural Resources v. 27-4, p. 5.

Pe-Piper, G., Murphy, J.B. and Turner, D.S. 1989:Petrology, geochemistry and tectonic setting of some Carboniferous plutons of the eastern Cobequid Hills; Atlantic Geology, v. 25, p. 37-49.

Pe-Piper, G., Piper, D.J.W 2002: A synopsis of the geology of the Cobequid Highlands, Nova Scotia; Atlantic Geology, v. 38, p.145-160.

10.0 Statement of Qualifications

- I, S. Alex Mackay of Westville, Nova Scotia do hereby swear to be a qualified author for Nova Scotia exploration assessment reports. Qualifications stem from degrees obtained from Dalhousie University of Halifax, Nova Scotia Canada.
- -BSc. Earth Science & Physics (2008)
- -Dip. of Engineering (2003)

In addition to degree qualifications, I have 3+ years of professional work experience including report writing, as well as Au and REE exploration experience in Nova Scotia and abroad.

Moy Mulbay
Alex MacKay (BSc.)

Appendix A

Condensed field notes

-all notes recorded from outcrop unless otherwise noted see Plate 1 for locations

Date	Station ID	x	Y	Rock type	Qualifier	Rocktype2	CPS	Mineralization	Comments							
10/18/2010	CL1	475813	5046334	Rhyolite	lgnimbrite	diorite	400	py, py veinlets	several rock types in outcrop (mixing zone?), rhyolite ignimbrite, mafics a veins show the best Y values, rocks capped with clay(chemically weathered also line with epidote, slickenslides at 268/11 (collected sample), slickenslides at 268/11 (gulf mapped a fault in area)	d feldsp	ars),	vein				
10/18/2010	CL2	475847	5046278	rhyolite	tuff	quartzite	400		soft pink vein with anomolous Y values hosted in dark quartzite, 2 fract 020/90 and 105/90, flow banding parallel to 105/90 fracture		ection	ıs				
10/18/2010	CL3	475711	5046407	Rhyolite		quartzite	175	Cr, spec. hm		TI	T	\Box				
10/18/2010	CL4	475747	5046351	Rhyolite			200	ру,аѕру	pink spot in rhyolite	П		\top				
10/18/2010	CL5	475096	5044897	Granite		ignimbrite	200		qtz-K-spar-Hornblende Granite, amzonite?							
10/18/2010	CL6	476640	5046065	siltstone	ignimbrite		350	py	fine grained green matrix with small amounts of courser pink material, w greyish clays, a few py crytsals in matrix, elev. Th, Y	veather	surfa	ıce				
10/18/2010	CL7	478134	5045964	rhyolite	ignimbrite		150	ру	.5 -1cm thick clay weathered surface on Ignimbrite, dissminated py	П						
10/18/2010	CL8	478170	5046054	rhyolite	ignimbrite		225	ру	.5 -1cm thick clay weathered surface on Ignimbrite, dissminated py	T		1				
10/18/2010	CL9	478418	5046422	rhyolite	ignimbrite		175	ру	.5 -1cm thick clay weathered surface on Ignimbrite, dissminated py			1				
10/18/2010	CL10	478016	5046530	rhyolite	ignimbrite		200		ignimbrite in gravel pit	ite in gravel pit						
10/18/2010	CL11	477747	5046077	rhyolite			200									
10/18/2010	CL12	477804	5046123	Rhyolite	boulder		350									
10/18/2010	CL13	479529	5047258	Siltstone				ру .								
10/18/2010	CL14	475308	5045534	Rhyolite			250				T					
10/20/2010	CL15	477449	5043596	Siltstone		rhyolite	125		purpleish-grey siltstone, 1mm qtz phenocrysts in rhyolitemixing	zone						
10/20/2010	CL16	476060	5044262	Granite		tuff	250		2m x 4m granite outcrop, mixed with fine grained tuff							
10/20/2010	CL17	475986	5044430	Granite			175		granite, purple spots, epidote veining			T				
10/20/2010	CL18	475911	5044611	Granite			200		2 x 20m granite outcrop along road, mafics in area, Fe staining on gran	nite sur	face	-				
10/20/2010	CL19	476250	5045118	rhyolite		mafic	175		rhyolite with a possible mafic dyke	\prod	T	T				
10/20/2010	Cl.20	475757	5047764	rhyolite	ignimbrite	aplite	175	magnetite	rheomorphic flow??rhyolitic pink layer with ignimbrite (phenocrysts layers layersfoliations??	s)appr	ох!	i cm				
10/20/2010	CL21	476485	5047202	rhyolite	ignimbrite		200		rheomorphic flow??rhyolitic(or aplite) pink layer with ignimbrite (ph layers)approx5 cm layersfoliations??	nenocry	rsts					
10/20/2010	CL22	478486	5047100	rhyolite	ignimbrite		200	ру	.5 -1cm thick clay weathered surface on Ignimbrite,	\prod		T				

10/29/2010	CL23	478804	5042989	Silstone			125	hm	OSv	1		
10/29/2010	CL24	478911	5043347	siltstone			125	hm	Osv siltstone, green, black			П
10/29/2010	CL25	478604	5043920	Basalt			125		Basalt in BBF			
10/29/2010	CL26	478574	5044020	granite		siltstone	125		granite stringer			
10/29/2010	CL27	478860	5043424	Granite		Siltstone	125		Mixing of "granite" and slitstones, fine grained granite			
10/29/2010	CL28	479014	5043721	granite		diorite	125					一
10/29/2010	CL29	479552	5043195	Siltstone			125		Osv			\sqcap
10/29/2010	CL30	480176	5042986	siltstone			125		OSv			ſΤ
10/29/2010	CL31	479368	5044733	siltstone		mafic?	225	py, magnetite	small pit with black siltstone, heavy, magnetitic, 1mm qtz crystals, same ro lake road	ock as	on s	ilica
10/29/2010	CL32	479513	5045042	rhyolite	ignimbrite			magnetite				
10/29/2010	CL33	477878	5043524	Siltstone					Osv			
10/29/2010	CL34	477739	5044390	rhyolite						П		
10/29/2010	CL35	477741	5044695	granite?			200		Red granite? in road way			
11/3/2010	CL36	477798	5046346	other			225		15 cm vein?, possibly REE mineralized, fe staining	П		
11/3/2010	CL37	477800	5046346	Boulder			,,,		local boulder	П		
11/3/2010	CL38	477937	5046128	subcrop			900	ру	probable outcrop, pink rhyolite	П		
11/3/2010	CL39	477670	5045957	rhyolite	ignimbrite		250	ру	Fe staining, clay on weathered surface			T
11/3/2010	CL40	477531	5045969	subcrop			300	ру	Fe staining, clay on weathered surface	П		
11/3/2010	Cl41	477524	5045907	Granite			200	ру	abundant pyrite in granite stringer veins			\top
11/3/2010	CL42	478210	5046113	ignimbrite			175		.5 -1cm thick clay weathered surface on Ignimbrite, dissminated py			\top
11/3/2010	CL43	478257	5046146	ignimbrite			175		.5 -1cm thick clay weathered surface on Ignimbrite, dissminated py	П		
11/3/2010	CL44	478277	5046112	ignimbrite			175		.5 -1cm thick clay weathered surface on Ignimbrite, dissminated py, pyrocl breccia north of this unit	astic/	volc	anic
11/3/2010	CL45	478210	5046920	ignimbrite			175		.5 -1cm thick clay weathered surface on Ignimbrite, dissminated py,			i
11/4/2010	CL46	475817	5046336	rhyolite	tuff	quartzite	175		looks like qtzitebut has clay weathered surface(feldspars)			
11/4/2010	CL47	475883	5046429	rhyolite	tuff	quartzite	175	ру	looks like qtzitebut has clay weathered surface(feldspars)		\exists	\top
11/4/2010	CL48	475889	5046498	rhyolite	tuff	quartzite	300		looks like qtzitebut has clay weathered surface(feldspars), bedding at 32	0/75	.phc	oto
11/4/2010	CL49	476037	5046615	rhyolite	tuff	quartzite	275		looks like qtzitebut has clay weathered surface(feldspars)			
11/4/2010	CL50	476120	5046717	rhyolite	tuff	quartzite	225	10 / 20	looks like qtzitebut has clay weathered surface(feldspars)	\sqcap	T	

11/4/2010	CL51	475897	5046624	rhyolite	tuff	quartzite	200	looks like qtzitebut has clay weathered surface(feldspars)
11/4/2010	CL52	477848	5044750	subcrop			250	red/grey granite mix
11/4/2010	CL53	477855	5044844	Boulder			400	local boulder
11/4/2010	CL54	477855	5044832	Boulder			500	local boulder
11/4/2010	CL55	477833	5044835	rhyolite			500	green rhyolite?
	CL56	480953	5045312					XRF only

Appendix B

XRF DATA

Portable handheld XRF analyzers are a relatively new technology in the exploration business. Manufactures of the Delta 90 recommend calibrating the analyzer for each rock type to get the best results. This requires having known geochemical test samples to test the analyzer results against to find out where correction factors need to be applied. As no samples have yet been sent for geochemical analysis; results are reported in raw, uncorrected form. All data was collected under the "fundamental parameters" setting in the 3 beam soil analysis mode as per manufactures recommendations for use without inputting calibration factors into the analyzer. Each station involved 30 secs of total analysis time with each beam analyzing for 10 secs. The analyzer was set to analysis for 35 elements including P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, Ba, W, Au, Hg, Pb, Bi, Th & U.

Since most of the rocks analyzed were of rhyolitic or similar granitic composition it is assumed that raw data is precise enough for identifying trends and relative anomalous values. The accuracy of the values cannot be assumed 100% at this time.

Currently, the Canadian Mining Industry Research Organization (CAMIRO) in conjunction with the Geological Survey of Canada is completing a research project (CAMIRO PROJECT 10E01) to identify accuracy and precision of a wide range of element and matrices as well as to develop standard practices for collecting portable XRF data. Upon completion of this project, anticipated to be finished in April 2011, recommendations put forward by CAMIRO will be evaluated and where appropriate will be incorporated into Clear Lake Resources Inc. XRF data collection methods.

Station Id	Easting	Northing	Р	S	Cl	К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	As
CL1	475813	5046334	2660	7223	ND_	36840	5176	13]	835	. 287	301	542	20905	_ 5	91	.d, 32	78	4.6
CL2	475847	5046278	ND	4833	ND	26379	13948	146	6102	369	464	2200	99709	26	31	30	326	10
CL3	475711 🌞	5046407	12880	ND	ND 4	2966	45365	* ND	17291	1223	1076	990	218969	ND	89	21	102	. 5
CL4	475747	5046351	9110	12806	514	46699	5847	139	8037	783	780	6315	52772	9	7 7	84	1448	141
CL5	475096	5044897	1929	296	137	39854	2290	31	1108	352	-319	499	8695	1	ND	2	95	7
CL6	476640	5046065	2469	1858	ND	26385	4580	ND	2682	112	73	622	30498	10	20	42	321	2
CL7	478134	5045964	243519	80262	10456	6970	1732	479	4704	57	ND .	3509	273469	67	§ 363	1074	1246	ND:
CL8	478170	5046054	5175	1847	ND	10651	237	63	1587	193	268	147	9324	2	ND	12	25	5
% CL9	478418	5046422	4394	'≳ ND	ND	54187	688	, ND	4947	75	40	420	20645	1 4	ND	5 **	67	7
CL10	478016	5046530	5491	1425	50	55213	1511	53	2909	59	33	671	20922	5	ND	8	28	9
CL11	477747	5046077	8043	9584	ND	55382	ND	11-	10855	94	, 27	157	25035	ND	12	- 13	31	10
CL15	477449	5043596	ND	603	ND	16139	681	10	1809	74	44	816	11485	2	8	28	21	1
CL16	476060	5044262							995	- Speatin	49.	91	3028	0	ND.	, ND	∰ ND :	∏ ND ‡
CL18	475911	5044611	3013	ND	ND	41534	2287	25	3796	114	68	392	9827	ND	8	11	6	9
CL19 - 🚚	476250	5045118	4216	ND .	410 🖁	37799	3847	27	2731	155	171	4124	🥴 19855 🖟	3	.ND	51	168	1441
CL20	475757	5047764	401	ND	275	49504	5397	ND	5978	122	85	418	23910	4	15	22	25	4
CL22	478486	5047100	3491	ND	. ND	57286	2	ND	2896	59	21	139	14748	6	ND	, ND	. 1	8
CL23	478804	5042989	ND	ND	ND	43602	1920	ND	3722	123	45	275	14429	5	11	ND	31	12
CL24	478911	5043347	ND .	. ND	177	50312	1726	ND	12217	159	. 184	447	36396	" 9	24	" 40	64	18
CL25	478604	5043920	ND	1586	ND	4250	23157	328	7908	191	14	874	120518	34	ND	ND	38	4
CL26	478574	5044020	1625	ND :	H ND	48627	3510	0.	1873	72	34	198	9744	3 3	ND :	🤼 3 🛬	47	3
CL27	478860	5043424	ND	ND	ND	6747	1353	ND	3676	57	53	292	25949	10	ND	ND	36	1
CL28	÷ 479014 [∰]	5043721	ND	73	ND .	11262	564	ND	1205	56	39	517	9169	5	ND:	ND	2	10
CL29	479552	5043195	ND	ND	227	47889	3285	ND	8751	292	85	427	43940	15	ND	3	26	1
CL30	480176	5042986	ND	ND	ND	12252	3910	66	5784	151	117	550	39405	13	ND	11**	· 39 ·	[™] 3

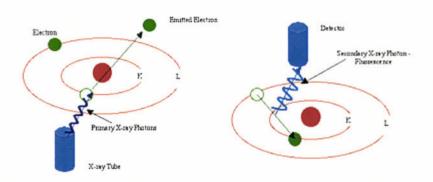
Station Id	Easting	Northing	Р	S	Cl	K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Со	Ni	Cu	Zn	As
CL31	479368	5044733	2258	ND.	176	81363	1407	32	1008	/86 ⊹	103	680	19713	. 8	ND	39	32	11.
CL32	479513	5045042	4247	ND	ND	48769	1853	38	1950	98	88	426	15099	3	ND	3	44	1
CL33	477878	5043524	.≖ ND -	ND	126	42796	· 1253	31	2191	85 -	⊜ 32	443	10066	. 5	. ND	6 [36	ND
CL34	477739	5044390	672	607	ND	39019	6273	ND	2028	43	59	302	7430	1	1	18	13	ND
CL35	477741	· 5044695	, ND	→ ND →	ND	32150	2302	- ND	3117	84	. 67	1451	91391	20	ND	69	100	19
CL36	477798	5046346	5597	2741	8	49755	95	ND	3781	38	43	149	17880	6	ND	36	33	10
: CL37	477800	5046346	2191	. ND	ND	59880	1266	ND	1979	54	89	295	15190	4	23	15	29	6
CL38	477937	5046128	2670	3173	ND	39090	6212	40	6200	125	71	666	33646	11	6	23	38	18
CL39	477670	5045957	- ND	6533	ND	16452	t ND ⊕	ND:	1084	29.	. 28	- 28	254666	ND	202	ND	209	·* 3
CL40	477531	5045969	ND	4577	ND	7866	ND	ND	1418	24	ND	13	505166	ND	141	30	795	7
: CL41	477524	5045907	ЙD	68157	25	41549	ND .	ND	3259	81	53	86	105270	. ND	98	18	50	106
CL42	478210	5046113	ND	243	ND	24637	ND	ND	1366	61	58	521	192668	ND	51	9	157	ND
CL43	478257	5046146	10752	ND	ND	81265	3658	ND	5918	224	230	470	50530	5	30	58	108	13
CL44	478277	5046112	2140	1636	ND	41977	190	ND	757	40	36	89	2459	2	5	6	9	10
CL45	478210	5046920	ND	ND	ND	11310	, ND	ND	3384	623	462	34205	; 313416	ND	135	9 (514	61
CL46	475817	5046336	1490	ND	283	37435	12082	ND	2620	295	355	773	26758	5	36	31	57	ND
- CL47	475883	5046429	4151	ND:	21	40823	1365	3.	4071	113	127	600	23788	4	7	12	172	5
CL48	475889	5046498	5785	ND	ND	50963	622	ND	4441	127	136	335	61543	ND	72	35	110	12
CL49	476037	5046615	6872	13675	ND	45449	862	9	2103	77	94	473	16746	4	5	44	390	1
CL50	476120	5046717	4871	ND	328	17641	1234	35	2143	60	115	315	12838	6	3	12	18	ND
CL51	475897	5046624	ND	13117	ND	17454	44	ND.	1963	``44 ``	33 /	178	91628	ND	60	22	167	8
CL52	477848	5044750	5411	ND	ND	20802	1002	ND	869	51	70	281	10170	2	15	1	68	3
CL53	477855	5044844 🚑	68	∴ND '	ND√	54031	1403	ND.	1362	92	93	256	→ 26831 °	4	7	21	52	4
CL54	477855	5044832	15459	ND	17	96317	148	ND	5168	102	145	422	54385	12	34	69	112	4
CL55	477833	5044835	2380	6715	56	37753	2	ND.	1454	30	-38	171	8112	4	3	11	60	16
CL56	480953	5045312	1960	ND	ND	46959	725	16	1840	64	28	695	17335	4	ND	9	30	15

Station Id	Easting	Northing	Se	Rb	Sr	Y	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва	W	Au	Hg	Pb	Bi	Th	U
CL1	475813	5046334	. ND	148	44	10253	1360	1796	ND .	ND	9	42	<u>.</u> 19	676	5	ND	. 12	21	ND	1375	⊪ ND ⊪
CL2	475847	5046278	ND	110	39	8595	1468	4284	365	9	10	44	ND	2591	ND	0	9	32	ND	1071	11
CL3	475711	5046407	ND .	25	` 44	3834	1057	3583	_ 12	44	ND	31	41	11221	34	ND,	, ND	37	ND	220	10
CL4	475747	5046351	ND	215	39	6842	3391	5536	ND	2	ND	22	ND	5767	31	ND	4	881	4	391	16
CL5	475096	5044897	ND.	225	22	717	90	691	· ND'	, ND	ND	17	ND	1436	18	ND,	11	. 13	ND	112	15
CL6	476640	5046065	ND	146	65	5311	1784	3327	ND	ND	29	55	ND	1060	2	23	9	23	ND	265	18
CL7	478134	5045964	ND	548	15	12212	1451	5450	996	50	ND	19	ND	3211	73	ND	65	119	324	165	ND.
CL8	478170	5046054	ND	37	1	3011	946	1311	882	ND	18	5	ND	1047	10	ND	1	11	ND	176	4
CL9	478418	5046422	. ND	243	19	878	510	1325	623	ND /	ND	_ 19	34	539	ND	12	4	16	_ND_	165	7
CL10	478016	5046530	ND	197	36	1352	513	1190	959	20	12	ND	ND	ND	ND	23	7	3	ND	127	14
CL11	477747	5046077	ND.	187	26	2067	1090	1629	1327	17	ND	ND	ND	447	√26	· ND	: ND	. 18	, ND	133	5
CL15	477449	5043596	ND	52	177	636	116	150	549	7	ND	ND	ND	826	ND	ND	12	ND	ND	54	3
CL16	476060	5044262	ND .	204	8	1807	133	1608	ND	ND.	40	66	ND .	ND	51	14	_ ND	14	6	STREET TALK SHOP	8
CL18	475911	5044611	ND	203	31	521	246	878	ND	ND	ND	ND	6	925	21	ND	6	19	ND	97	2
CL19	476250	5045118	ND .	112	30	1912	709	1465	521	/ ND	5	15	. 45	636	21	7	ND .	23	, ND	114	6
CL20	475757	5047764	ND	228	36	1881	514	1571	1457	30	ND	NĐ	ND	661	33	ND	ND	14	ND	154	9
CL22	478486	5047100	ND	268	19	970	511	1641	ND	/ ND	8	22	, ND	432	9	11	2	20	ND.	79 🦫	ND :
CL23	478804	5042989	ND	235	160	438	203	396	177	ND	ND	ND	ND	741	ND	16	3	8	ND	93	ND
CL24	478911	5043347	ND.	187	76	806	394	585	899	19	ND	, ND	, ND	1623	_ 3	18	5	. 28	" ND	95	ND :
CL25	478604	5043920	ND	7	77	203	46	138	ND	11	ND	ND	ND	2133	2	3	7	34	ND	ND	8
CL26	478574	5044020	ND	52	96	553	225	614	680	ND	14	ND	ND	429	_ ND :	13	9	14	ND.	70 -	[®] ND □
CL27	478860	5043424	ND	38	49	365	153	220	385	4	9	12	7	290	ND	18	2	12	2	125	ND
CL28	479014	5043721	``ND	· 147	38	325	54	272	437	≃ ND	: 5	ND .	ND:	144	ND	_ 18 .	4	11	ND	19	ND
CL29	479552	5043195	ND	122	200	323	108	466	ND	ND	13	ND	ND	2170	24	ND	ND	24	ND	19	3
CL30	480176	5042986	ND:	78	49	464	172	376	ND ·	ND	. 7	22	5	467	ND	6	- 6	25	ND:	64	2

Station Id	Easting	Northing	Se	Rb	Sr	Y	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ba	W	Au	Hg	Pb	Bi	Th	U
CI31	479368	5044733	ND	181	22	1913	1016	1097	652	17	ND	50	- 14	79	ND	14	. 8	28	ND	191	2
CL32	479513	5045042	ND	177	31	1481	429	885	2465	17	ND	2	3	246	ND	9	10	12	ND	82	1
(CL33	477878	5043524	ND	135	96	306	96	248	1421	ND	ND	34	, ND	ND	ND	13	0	5	ND	128	1.
CL34	477739	5044390	ND	182	40	880	137	798	557	ND	ND	48	ND	ND	7	ND	6	16	ND	170	1
. Cl35	477741	5044695	ND	. 312	25	3388	1810	2689	. ND	21	ND.	, ND	22	1236	ND.	/ 30 ·	1 13	. : 82	į ND "	342	· 8
CL36	477798	5046346	ND	239	8	4236	1495	2462	ND	ND	11	60	ND	14	37	ND	ND	19	4	198	8
CL37	477800	5046346	ND.	260	21	3014	1005	1727	1032	20	ND.	32	2	7	ND	11	1	8	, ND	243	13
CL38	477937	5046128	ND	184	95	4596	1167	1878	ND	ND	13	20	8	ND	12	ND	7	14	35	2079	ND
CL39	477670	5045957	ND	217	13	1950	823	1236	ND -	24	3	_ ND	3	661	. 18	: ND	ND	116	. ND	176	6
CL40	477531	5045969	ND	171	13	6214	3160	4190	213	134	22	53	ND	1233	8	1	ND	39	ND	238	ND
CL41	477524	5045907	TND :	. 140	21	2015	968	1918	/ ND	. 22 -	5	, 1 5	, ND	801	28	ND:	≸ ND ≛	549	ND.	178	., 2
CL42	478210	5046113	ND	166	8	1794	1009	1198	ND	29	ND	11	ND	716	5	ND	ND	15	ND	146	7
CL43	478257	5046146	ND	368	24:	5192	1855	3421	393	' 14	ND*	14	25	1665	6	ND	2 2	34	ND	256	្ញ 13 -
CL44	478277	5046112	ND	207	33	2565	1057	1104	1385	ND	ND	24	ND	ND	7	ND	ND	4	10	264	ND
. CL45	478210	5046920	ND_	92	15	5744	273	631	_ 2893 -	93	. ND -	49	12	8142	ND.	39	ND	70	ND	283	7
CL46	475817	5046336	ND	143	41	5496	1388	2505	ND	ND	ND	22	8	3027	12	12	7	18	ND	387	ND
: CL47	475883	5046429	: ND ,	145	23	2134	1109	1428	1351	32	. ND	12	2	677	, ND	5	. 0	. 30 .	ND .	201	. 1
CL48	475889	5046498	ND	216	16	3112	1172	1535	371	11	ND	ND	ND	1117	9	2	10	41	1	168	0
CL49	476037	5046615	ND	215	47	2678	1143	2266	676	2	11	37	ND :	468	ND	10	3.3	131	∯ ND ॄ	201	3 .
CL50	476120	5046717	ND	113	17	2816	981	1894	791	ND	ND	19	42	268	6	3	7	27	ND	62	5
CL51 -	475897	5046624	: ND	152	21 ,	2012	853	1487	1520	25	ND.	11	ND:	370	. 5	ND	3	70	, ND	164	3
CL52	477848	5044750	ND	140	32	2815	1017	1424	162	ND	10	ND	11	161	3	ND	3	23	ND	146	9
📜 CL53	477855	5044844	∜ ND	252	. 56	2586	1024	1728	878	12	- ND	ND	<u> </u>	365	26	ND.	3	34	ND.	162	7
CL54	477855	5044832	ND	455	42	6884	2471	3752	ND	ND	ND	28	39	457	1	3	8	40	7	188	23
CL55	477833	5044835	ND	157	35	2010	864	1485	1128	18	ND	ै 2	: ND	ND	_ ND	I ND	1.	21	ND:	134	10
CL56	480953	5045312	ND	196	34	816	516	1099	199	ND	ND	1	ND	890	13	ND	1	10	ND	165	ND

APPENDIX C

XRF Analyzer Specs and Theory

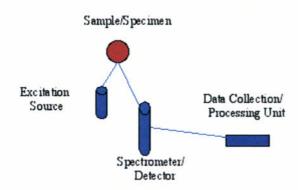

X-Ray Fluorescence (XRF) Spectrometry

BASIC THEORY

Although more popularly known for its diagnostic use in the medical field, the use of x-rays forms the basis of many other powerful measurement techniques, including X-ray Fluorescence (XRF) Spectrometry.

XRF Spectrometry is used to identify elements in a substance and quantify the amount of those elements present to ultimately determine the elemental composition of a material. An element is identified by its characteristic X-ray emission wavelength (λ) or energy (E). The amount of an element present is quantified by measuring the intensity (I) of its characteristic emission.

All atoms have a fixed number of electrons (negatively charged particles) arranged in orbitals around the nucleus. Energy Dispersive (ED) XRF and Wavelength Dispersive (WD) XRF Spectrometry typically utilize activity in the first three electron orbitals, the K, L, and M lines, where K is closest to the nucleus.


In XRF Spectrometry, high-energy primary X-ray photons are emitted from a source (X-ray tube) and strike the sample. The primary photons from the X-ray tube have enough energy to knock electrons out of the innermost, K or L, orbitals. When this occurs, the atoms become ions, which are unstable. An electron from an outer orbital, L or M, will move into the newly vacant space at the inner orbital to regain stability. As the electron from the outer orbital moves into the inner orbital space, it emits an energy known as a secondary X-ray photon. This phenomenon is called fluorescence. The secondary X-ray produced is characteristic of a specific element. The energy (E) of the emitted fluorescent X-ray photon is determined by the difference in energies between the initial and final orbitals of the individual transitions.

	E=hcλ·1
where h is P the photon.	lanck's constant; c is the velocity of light; and λ is the characteristic wavelength of
For example	inversely proportional to the wavelengths; they are characteristic for each element. the Kα energy for Iron (Fe) is about 6.4keV. Typical spectra for EDXRF y appear as a plot of Energy (E) versus the Intensity (I).
Elemental Aı	nalysis
easily and q from PPM l and requires These factor	ometry is the choice of many analysts for elemental analysis. XRF Spectrometry wickly identifies and quantifies elements over a wide dynamic concentration range, evels up to virtually 100% by weight. XRF Spectrometry does not destroy the sample little, if any, sample preparation. It has a very fast overall analysis turnaround time. It is lead to a significant reduction in the per sample analytical cost when compared to intal analysis techniques.
consuming some of the	emental analysis instrument techniques typically require destructive and time-specimen preparation, often using concentrated acids or other hazardous materials, the sample destroyed, waste streams are generated during the analysis process that isposed of, many of which are hazardous. These aqueous elemental analysis often take twenty minutes to several hours for sample preparation and analysis time. factors lead to a relatively high cost per sample. However, if PPB and lower oncentrations are the primary measurement need, aqueous instrument elemental analysis are necessary.
and must be aqueous ins for by externent enhancement the primary effects) the and docume system's softsample can	al analysis techniques experience interferences, both chemical and physical in nature corrected or compensated for in order to achieve adequate analytical results. Most trument techniques for elemental analysis suffer from interferences that are corrected sive and complex sample preparation techniques, instrumentation modifications or ats, and by mathematical corrections in the system's software. In XRF Spectrometry, interference is from other specific elements in a substance that can influence (matrix analysis of the element(s) of interest. However, these interferences are well known ented; and, instrumentation advancements and mathematical corrections in the tware easily and quickly correct for them. In certain cases, the geometry of the affect XRF analysis, but this is easily compensated for by selecting the optimum ea, grinding or polishing the sample, or by pressing a pellet or making glass beads.
Methods (care Parameters without star	re elemental analysis for XRF Spectrometry is typically performed using Empirical alibration curves using standards similar in property to the unknown) or Fundamenta (FP). FP is frequently preferred because it allows elemental analysis to be performed adards or calibration curves. This enables the analyst to use the system immediately, ing to spend additional time setting up individual calibration curves for the various

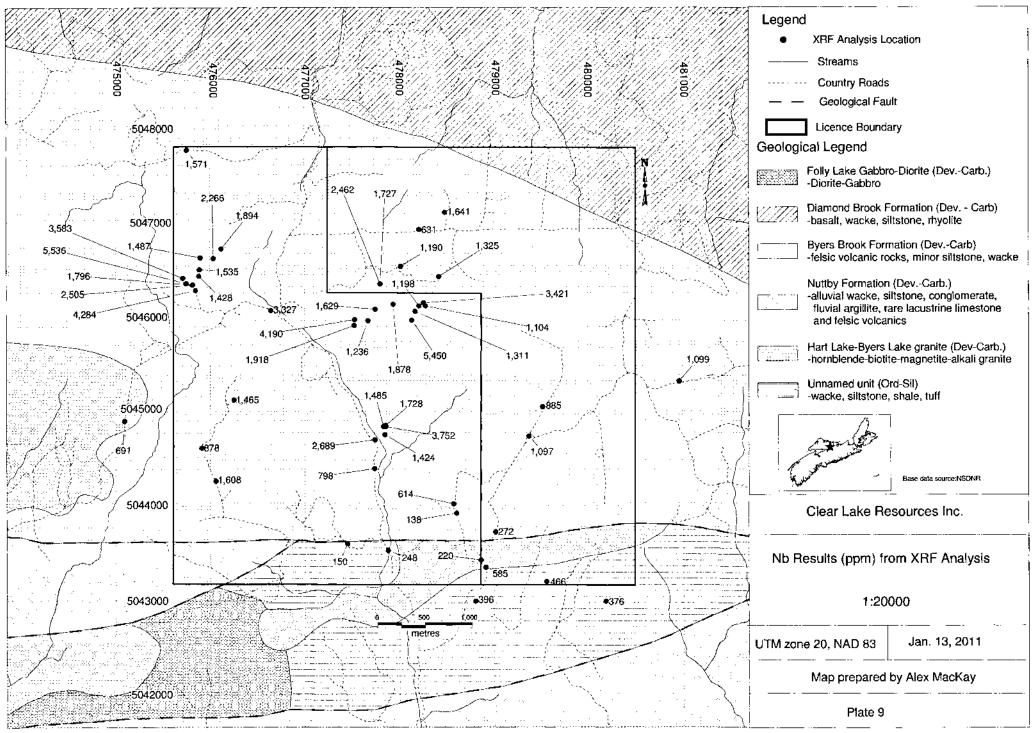
elements and materials of interest. The capabilities of modern computers allow the use of this nostandard mathematical analysis, FP, accompanied by stored libraries of known materials, to determine not only the elemental composition of an unknown material quickly and easily, but even to identify the unknown material itself.

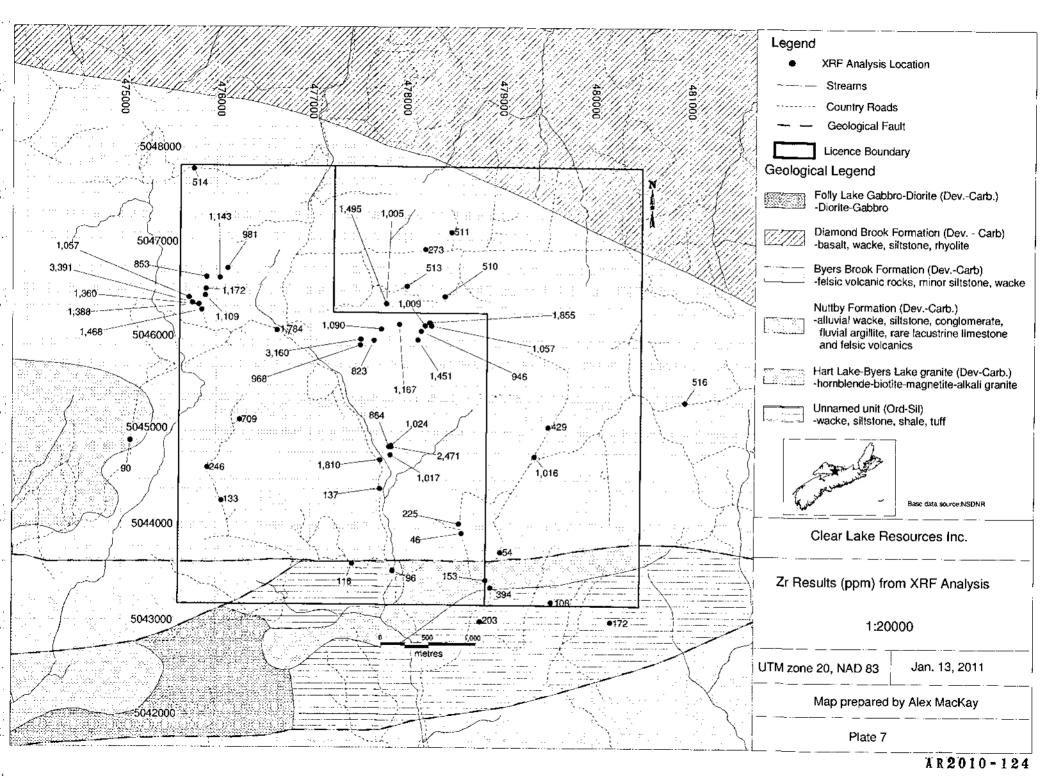
Spectrometers

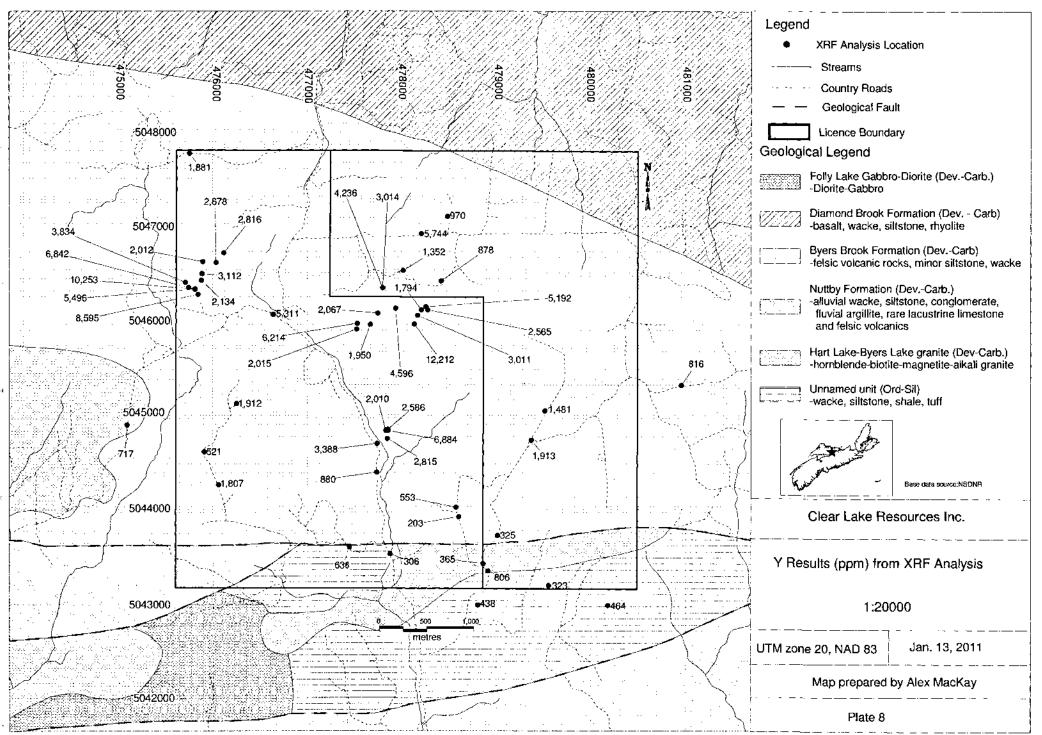
Innov-X Systems utilizes the EDXRF Spectrometer technique for its mechanical simplicity and excellent adaptation to portable field use. An EDXRF system typically has three major components: an excitation source, a spectrometer/detector, and a data collection/processing unit. The ease of use, rapid analysis time, lower initial purchase price and substantially lower long-term maintenance costs of EDXRF Spectrometers have led to having more systems in use today worldwide than WDXRF Spectrometer systems. Handheld, field portable EDXRF units can be taken directly to the sample as opposed to bringing the sample to the analyzer and configuring it to fit in an analysis chamber. Innov-X Systems portable, handheld EDXRF units solve real 21 st century application problems: solving crimes, analyzing alloys, exposing pollution, preserving history, searching for WMD's, conserving art treasures, and a myriad of other elemental field-oriented analyses.

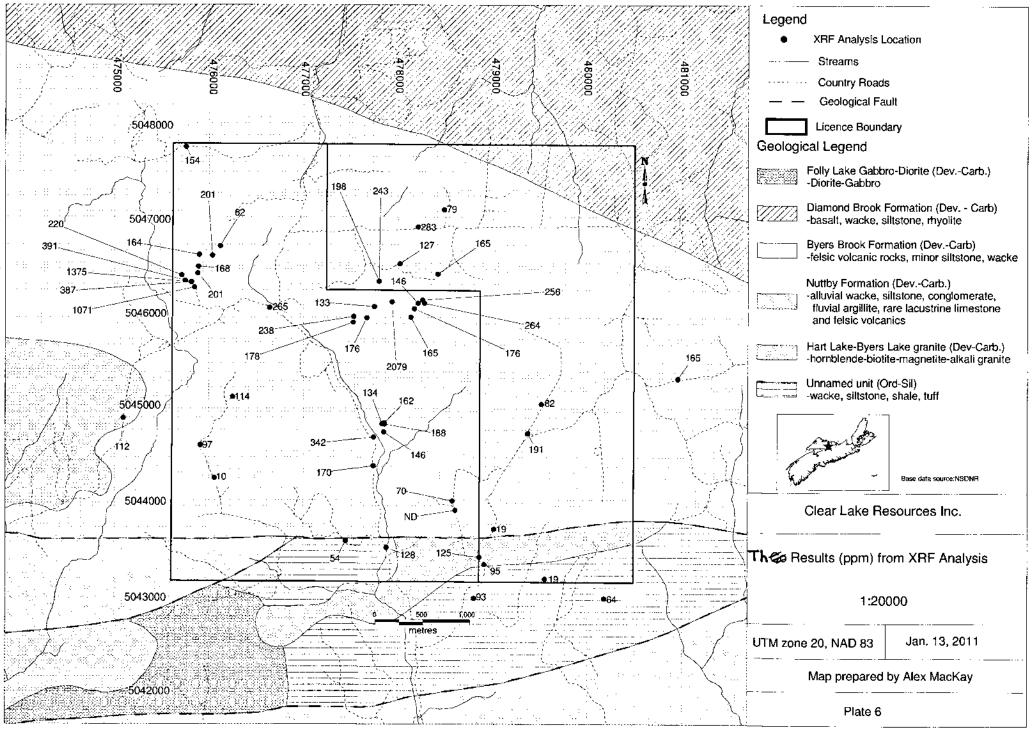
The Deltas' Cutting-edge features include:

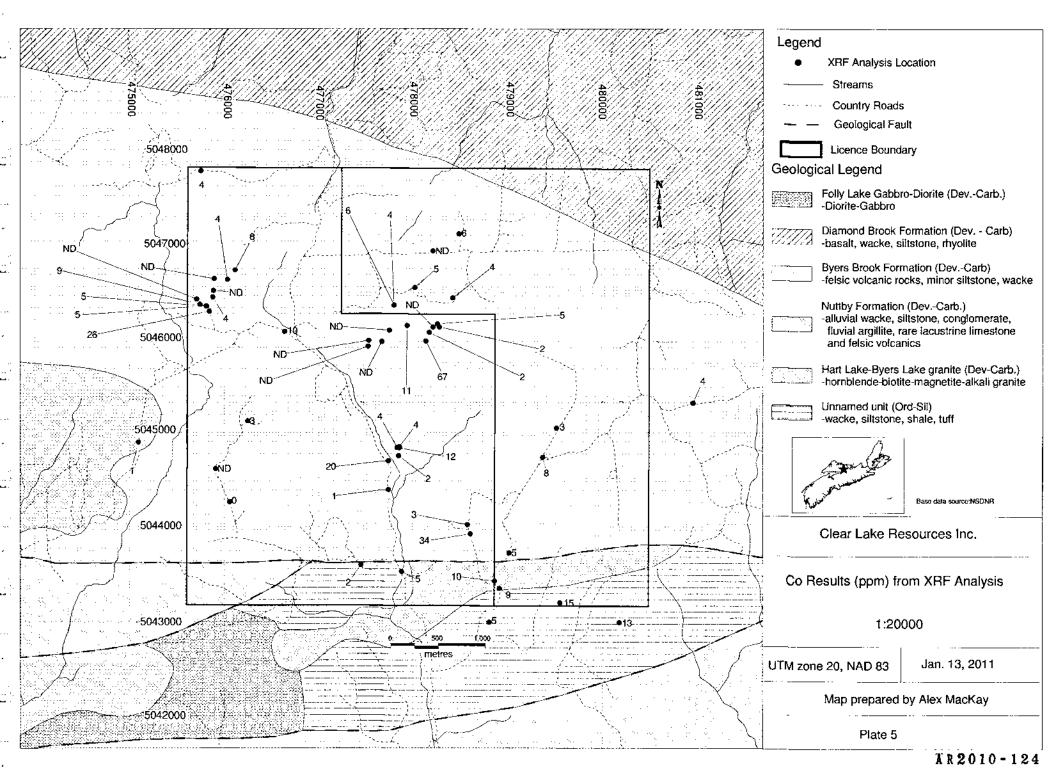
- Exceptional speed and sample throughput due to state-of-the-art electronics, a floating point processor, and redesigned analytical geometry
- Ruggedized, weather and dustproof industrialized LEXAN housing no PDA or movable screen – provides superior reliability
- Significant improvement in LODs and light element analysis resulting from the DELTA's unique 4W, 200µA (max) x-ray tube

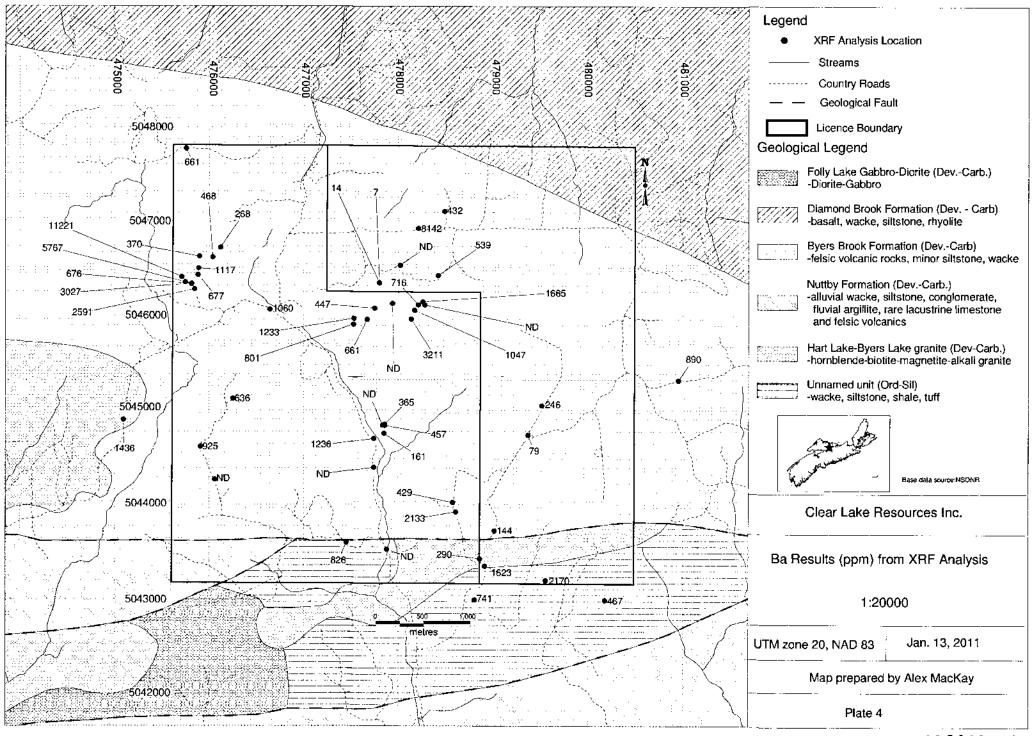


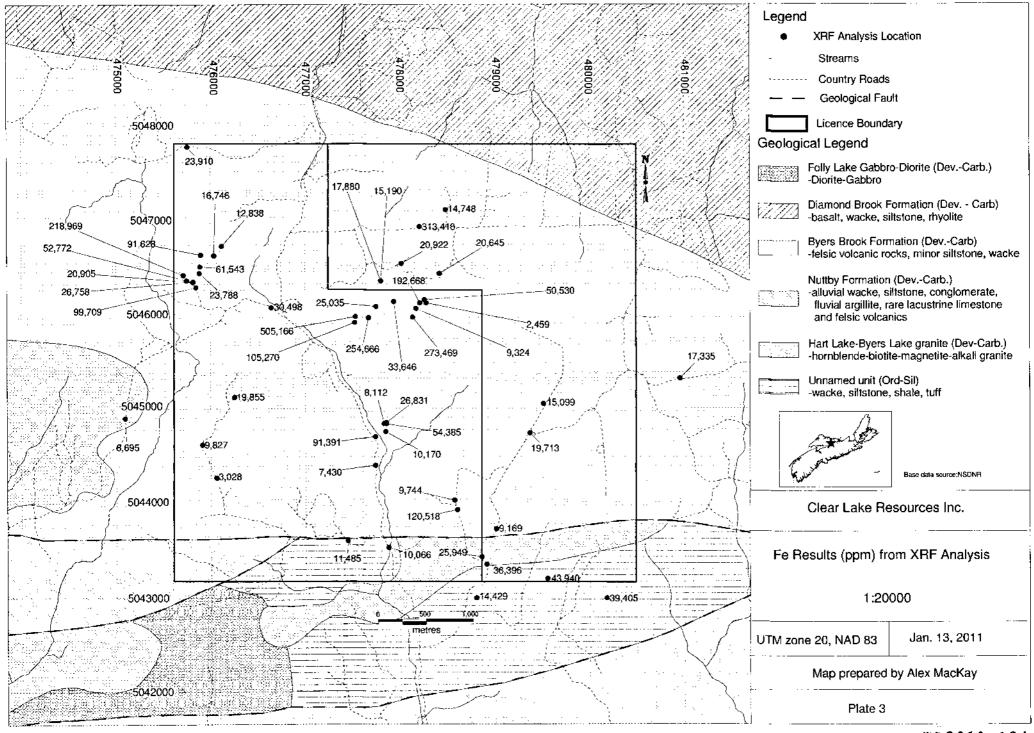

- Advanced integrated technology including an accelerometer, barometer, true hot-swap battery capabilities, and other innovations
- Icon-driven UI via bright, Blanview ™ color touchscreen
 - o brightens in sunlight easy to read in all environments
- Available with fully integrated camera and X-ray spot collimation
 - o crisp accurate sample images that can be archived into memory
 - small spot collimation for focusing the beam to a 3mm diameter spot.

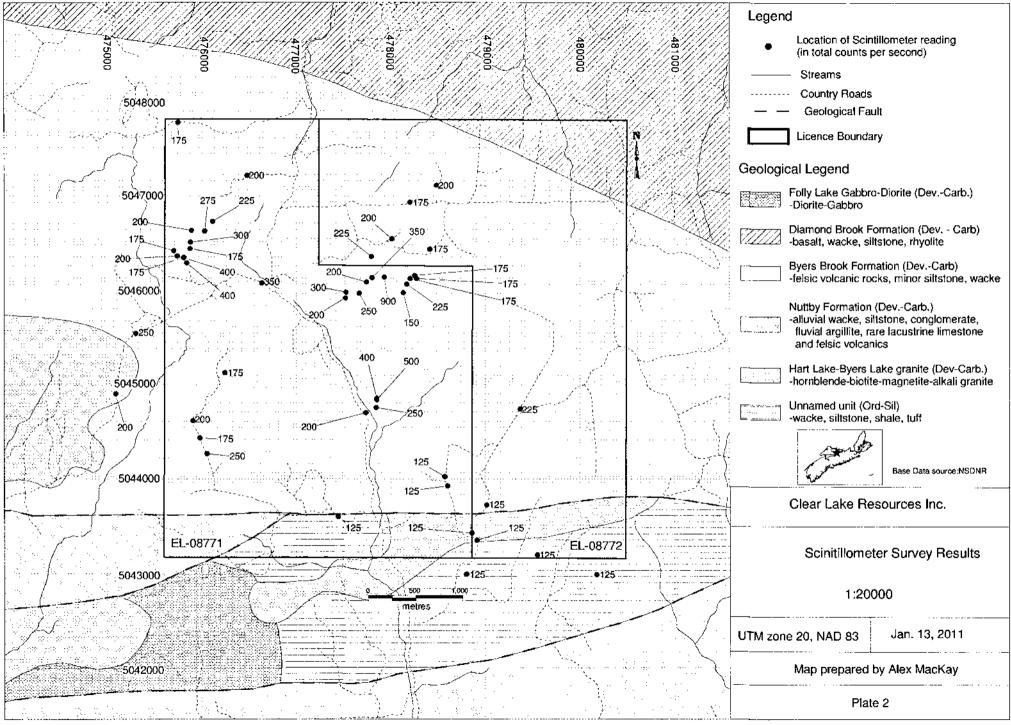

	Innov-X has reinvented on-site analysis with the DELTA line; a new breed of handheld XRF. We've redesigned our analyzers from the ground up to create instruments that are both analytically superior AND rugged enough for virtually any environment. The DELTA analyzers feature the very latest in large area silicon drift detector technology, and unique 4W, 200µA (max) x-ray tubes for maximized accuracy and precision.
	DELTA analyzers are also fully industrialized tools, and offer unsurpassed testing speed; yielding significantly increased productivity and throughput for operators. Take hundreds more tests per day with the DELTA analyzer. Smart on the inside. Tough on the outside. No compromises .
]	The DELTA line of analyzers feature our signature upgradeability. Customers may purchase a value-leading Classic model and upgrade to the analytically best Premium model at any time as analytical needs change - all with the same hardware platform and intuitive, friendly user interface.
	The Innov-X Handheld XRF for elemental analysis meets EPA Method 6200 for metals in soil, NIOSH Method 7702 for lead in air filters, and OSHA Methods OSSA1 and OSS1 for lead in air filters and dust wipes. The 8 RCRA Metals and Priority Pollutant Metals are easily monitored on-site with the Innov-X Handheld XRF.
	The Innov-X Systems Materials Testing & Mining Analyzers include standard hardware and accessories. Capabilities available include Fundamental Parameters, Empirical Analysis, linear or quadratic calibration modes, LEAP for Light Element Analysis, and Single or Multi element analysis capability.

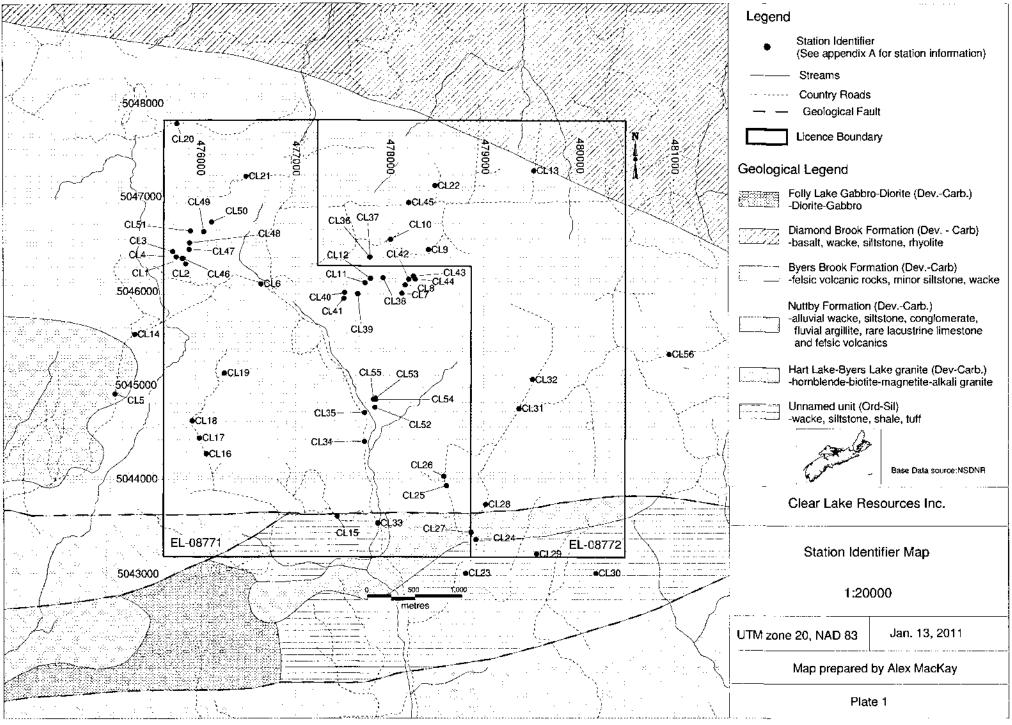

Appendix D


Scintillometer and Geochemical Plates









Map_	KEIIB	
Refs		

Form 10 - Statement of Assessment Work Expenditure (pursuant to the *Mineral Resources Act*, S.N.S. 1990, c. 18, s. 43(1))

(Complete as necessary to substantiate the total claimed.)

Re: Licence No. 0877/ Date of issue Nov 19 , 2010

1:	Prospecting & SCINTILLOMETER		Amount Spent
5x30	0 + /x400		
 .	Geological mapping	3	4300
	Trenching/stripping/refilling	days	1500
	Assaying & whole rock analysis	m³	
	Z SEATTHLICHTETER RENTAL	#	600
	XRE KENTAL	#	
•	Grid:		7500
	(b) Picket setting	km	
	(c) Flagging Geophysical surveys	km	
	Alrborne:		
	(a) EMVLF	km	
	(b) E May pr Grad TON 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	km	
	(e) Other	km	
	Geophysical surveys Ground:	km	
	(a) EM/VLF		
	(b) Seismic soundings (c) Magnetic/telluric	km	
	(d) IP/resistivity	km	
	(f) Other RADIONETRIC	km	
	Geochemical surveys	km	
	(i) Water		
•	(ii) Sediments (b) (i) Rack	samples	
	(ii) Core	samples	
	(iii) Chips (c) (i) Soii	samplessamples	
	(II) Overburden	samples	V ₀ '
	(e) Biogeochemistry	samples samples	
	(f) Sample collection (g) Other	samples days	
	Drilling:	uuys	
!	(a) Diamond (# holes/m) (b) Percussion (# holes/m)	,	
	(4 holes/m)		
	(d) Auger (# holes/m) (e) Reverse circulation (# holes/m)	/m	
	W Logging, supervision, etc.	/m	
Other (describe) Mil other stones of dead	days	<u> </u>
ELD ME	745 15025 = 375 6×90 = 1540	531-98	
DIEL		1454-98	1454.98
	Subtotal	1454.98	15054.98
rhead c	osts logo everthead		1505 10
	Secretarial services		1303.49
i	Drafting services		16,56047
	Office expenses (rent, heat, light, etc.)	· .	
	Field supplies		
	Compensation paid to landowners	·	
<u>_</u>	egal fees		
	Other (describe)		
	Subtotal		
		·	
	Grand total		

List the names of the persons who conducted the work reported in the previous table and the dates during which the work was performed.

		Dates Worked
LINDSAY ALLON	TERENCE BAY NS	SEPT 24,25/2010 OCT 18,19,28/2010
ALEX MACKAY	NEW GLASGOW NS	04 18,19,28/2010 NOV 3,4/2010
ALEX DEBAY	DARITHOUTH NS	OCT 18,19,28/2010 NOV 3,4/2010
		· · · · · · · · · · · · · · · · · · ·
	·	
		,
ereby certify that the information in nt work credit and that it is the total	this form is true and correct, that it has of all work conducted on the licence du	not before been submitted for asse
position in company or licensee)	I am duly auth	orized to make this certification.
ted at HALIFAX	in the Province of MOVA SCOTIA	on NOV 18 2010.

For further information, contact the Registrar of Mineral and Petroleum Titles at 1-902-424-4068.

Signature

Map_	HEILB	
Refs		

Form 10 - Statement of Assessment Work Expenditure (pursuant to the *Mineral Resources Act*, S.N.S. 1990, c. 18, s. 43(1))

(Complete as necessary to substantiate the total claimed.)

Re: Licence No. 08772 Date of issue Nov 19 , 2009

	Type of Work		Amount Spent
3x	Prospecting & SHATILLOMETER 300 + 7x 400	10 Mg days	
	Geological mapping	7	3760
	Trenching/stripping/refilling	days	800
	Assaying & whole rock analysis	m² /m³	
	256 NTU,	#	480
	Other laboratory XRF RENTAL	#	6000
	(a) Line cutting		+
	(b) Picket setting (c) Flagging	km	
	Geophysical súrveys	km	
•	Airborne: (a) EM/VLF		
٠	(b) Mag or Grad (c) Radiometric	km	
	(d) Combination (e) Other	km	
	Geophysical surveys	km	
	Ground: (a) EM/VLF		
	(b) Seismic soundings	km	
	(c) Magnetic/telluric (d) IP/resistivity	# km	<u></u>
	(e) Gravity (f) Other <u>LADIOMETER</u>	km	
	Geochemical surveys	300 km	
	(a) lake strongs and		
•	C (n) Vater C (n) Seedings TOON 1 divance	samples	
	(ii) Core	samples	
	(iii) Chips (c) (i) Soil	samples	
	(ii) Overburden (d) Gas	samples	Jag.
	(e) Biogeochemistry	samples	
	(f) Sample collection (g) Other	samplesdays	
	Orilling: (a) Diamond (# holes/m)		
	(b) Percussion (# holes/m)	m	
	(c) Rotary (# holes/m) (d) Auger (# holes/m)	/	
	(e) Reverse circulation (# holes/m) (f) Logging, supervision, etc.	/m	
	(9) Sealing (# holes)	days	
	or (describe) MILEAGE 807Km@49°= 395.43 D MEALS 12@25 = 300	395.43	
10T	EL 4×90= 360	395-43 300 1055-43	1055.13
	Subtotal	1055.43	12035.43
nead	costs 10% OVERHEAD		, ,
	Secretarial services		1203.54
	Drafting services		
	Office expenses (rent, heat, light, etc.)		
	Field supplies		
	Compensation paid to landowners		
	Legal fees		
	Other (describe)		
	Subtotal		· · · · · · · · · · · · · · · · · · ·
			·
	Grand total		13238.97

List the names of the persons who conducted the work reported in the previous table and the dates during which the work was performed.

Name	Address	Dates Worked
LINDSAY ALLEN	TERENCE BAY, NS	007 20121/2010 NOV 3,4/2010
ALEX MACKAY	NEW GLASSOW, NS	OCT 20,21,29 /2010 NOV 15/2010
ALEX DEBAY	DARTHOUTH , NS	OCT 20, 21, 29 /2010
	,	
		• :
		
\		
	·	
		259
		v 1
	,	
•		

I hereby certify that the information in this form is true and correct, that it has not before been submitted for assessment work credit and that it is the total of all work conducted on the licence during the past licensed year

	and hochoc during the past licensed year.
As LICENSEE (position in company or licensee)	I am duly authorized to make this certification.
Dated at HALIFAX Name and address of licensee: CI	in the Province of NOVA SCATA on NOV 18, 2010.
II RIVER RD, TEI	RENCE BAY RIVER, NS B3T1XZ
Signature T. alla	•

For further information, contact the Registrar of Mineral and Petroleum Titles at 1-902-424-4068.