Till Geochemical Data for the Eastern Cobequid Highlands, Nova Scotia

D. M. Brushett and C. G. Smith

Open File Report ME 2018-003

Halifax, Nova Scotia

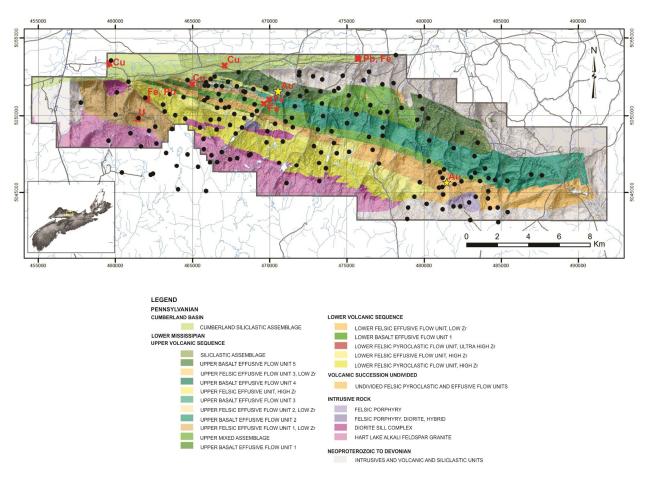
March 2018

Till Geochemical Data for the Eastern Cobequid Highlands, Nova Scotia

D. M. Brushett and C. G. Smith¹

Introduction

This report accompanies the release of analytical and field data for till samples collected across the Carboniferous bimodal volcanic succession of the eastern Cobequid Highlands, Nova Scotia (NTS map area 11E/11; Fig. 1). The samples were collected as part of an ongoing till geochemistry and surficial mapping program that was initiated to evaluate the exploration potential of this region and complement concurrent and previous bedrock mapping (e.g. MacHattie, 2013, 2017; Baldwin, 2016, 2017) following the discovery of epithermal-style gold in silicified and sulphidized basalt and rhyolite of the Byers Brook and Diamond Brook formations. A total of 191 till samples were collected and analyzed for matrix geochemistry and pebble lithology analysis. The interpretation of geochemical data, till provenance and implications for mineral exploration will be presented separately.

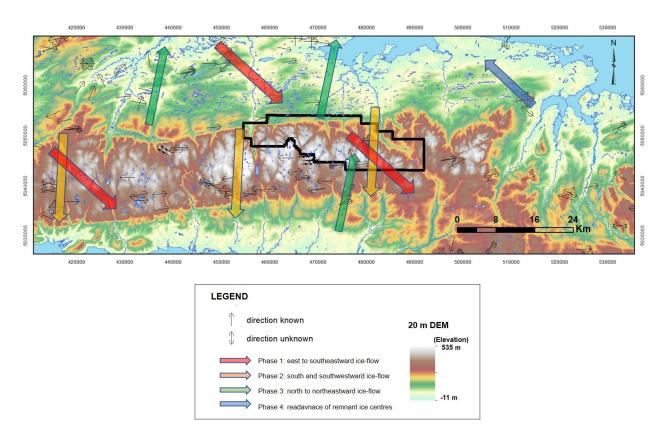

Surficial Geology

The surficial geology of Nova Scotia underwent extensive glacial modifications throughout the last Wisconsinan glaciation when ice-flow centres shifted from external ice centres to multiple ice centres on the province itself (Stea et al., 2011; Stea and Mott, 1990). Previous mapping (e.g. Stea and Finck, 1988a, b) identified regions of complex ice-flow chronologies with four ice-flow phases over northern mainland Nova Scotia, and a multitude of surficial deposit types throughout the region. Understanding this glacial history—including past ice-flow phases, glacial sediment transport and deposition, and bedrock erosion—is necessary for successful drift prospecting in the region.

The oldest documented Wisconsinan ice-flow phase in the region was to the east-southeast, originating from a centre outside the province (Fig. 2). Evidence for this ice-flow phase is widespread over the province and includes striations, distinctive erratics, till fabrics, and striated boulder pavements. The second ice-flow phase was southward and southwestward from the Escuminac Ice Centre in the Prince Edward Island region. This phase is recorded by southward-trending striations crossing earlier southeastward-trending striations at many sites on the upland regions of Nova Scotia and New Brunswick. This ice-flow phase was responsible for the deposition of a distinctive reddish-brown hybrid till (originating from the redbeds in northern mainland Nova Scotia and Carboniferous basins in the Prince Edward Island region) and is the dominant surface till over much of the study area. This second phase of ice-flow is also responsible for most of the depositional landforms (drumlins) and erosional indicators (striations) in the study area.

The third ice-flow phase was characterized by an ice divide (Scotian Ice Divide) situated over most of the province resulting in northerly ice-flow in northern mainland Nova Scotia and south to southeastward ice-flow in southern Nova Scotia. Within the study area, this ice-flow phase is associated with a mostly locally derived, stony, greyish-brown hybrid till. Erratics from the Cobequid Highlands have been found throughout the Carboniferous lowlands to the north. Northward-trending striations can be traced across the northern mainland of Nova Scotia.

¹Department of Earth and Environmental Science, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada


Figure 1. Till sample locations (black dots) and mineral occurrences (red Xs) shown on bedrock geology (MacHattie and MacMullen, 2018). in the eastern Cobequid Highlands. Epithermal-style gold occurrences identified by MacHattie (2013) are shown by yellow stars.

The last phase of ice flow included the readvance of remnant ice centres developed from the Scotian Divide in southern Nova Scotia. Ice flow during this phase was strongly funnelled westward into the marine basins. Erosional features and depositional landforms relating to these late-glacial ice centres are restricted to low-lying areas and are not present within the study area.

Methods

Field Methods

Field observations relating to surficial geology and outcrop-scale ice-flow indicators were made at 171 sites. Ice-flow indicators used for determining the ice-flow history include both small-scale features (mainly erosional) and large-scale features (depositional). Small-scale features observed include striations, grooves, chatter marks, and nail-head striations. Large-scale features were identified on lidar imagery data and 1:10 000-scale aerial photographs, and include flutes, drumlinoid features, and crag-and-tail landforms. The relative age of erosional ice-flow indicators was determined by crosscutting relationships, stoss and lee relationships, and comparing their azimuth relative to large-scale streamlined features.

Figure 2. Generalized ice-flow chronology in northern mainland Nova Scotia. The study area is indicated by the solid black line. Four ice-flow phases affected the study area. The first (flow phase 1) was a regionally extensive east-southeastward flow originating from a centre outside the province. The second (flow phase 2) was a southward and southwestward flow sourced from the Escuminac Ice Centre in the Prince Edward Island region. The third (flow phase 3) was a northward ice flow originating from the Scotian Ice Divide in southern Nova Scotia, and the fourth (flow phase 4) included the readvance of small remnant ice centres; these late-glacial ice caps were restricted to low-lying areas.

Sampling methods

At each sample site, two till samples were collected: a < 1 kg sample was collected in a kraft paper bag for trace- and major-element geochemical analysis, and a larger ~3 kg till sample was collected for archiving and clast lithology analysis. Samples were primarily collected from the unoxidized C-horizon (~80 cm depth) of hand dug test pits and roadcuts following GSC till-sampling protocols outlined by Spirito et al. (2011) and McClenaghan et al. (2013). Where possible, samples were distributed on a roughly 1 km² grid; a more detailed sampling grid was used in more prospective areas where geochemical anomalies were detected by pXRF analysis of stream sediment samples collected in 2016 and early 2017 (Baldwin, 2017). The location and description of samples are presented in Brushett and MacMullen (2018).

Analysis

A total of 191 samples (171 till samples, 9 field duplicates, 11 standards) were submitted to Activation Laboratories Ltd. (Actlabs) where they were air-dried in ovens at 60°C and dry-sieved to < 0.063 mm

in stainless steel sieves. The < 0.063 mm fraction (till matrix) was analyzed for a suite of major, minor, and trace elements using a 'near total' 4-acid (hydrochloric, nitric, perchloric, and hydrofluoric) digestion followed by inductively coupled plasma-mass spectrometry (TD-ICP/MS), inductively coupled plasma-optical emission spectrometry (ICP-OES) and instrumental neutron activation analysis (INAA) determinations (Code UT3 on 0.5 g aliquot).

A subset of 53 samples (49 till samples, 2 field duplicates, 2 standards) were submitted to Bureau Veritas Minerals Canada Ltd. (BV) for fire assay/ ICP-MS analysis (Code FA130) on 30 g aliquots of till samples for Au, Pt, and Pd (samples were air-dried in an oven at 60°C and dry-sieved to <0.063 mm in stainless steel sieves).

Analyses of till samples, excluding field duplicates, are presented in Brushett and MacMullen (2018), where the analytical variables are labeled with a combination of the element name, a code denoting the analytical method, and the unit of measurement. A complete list of variables is shown in Table 1.

Reproducibility

Field and Laboratory Duplicates

Field duplicate samples were collected at 9 sites for an overall frequency of 1 in 21. The duplicate sample was dug within 5 m of the original site. A total of 10 laboratory duplicates were randomly selected by the lab. Values for the original samples and the field and laboratory duplicates correlate well and generally fall within acceptable limits. These data are presented as cross-plots in Appendices A and B. For all plots, the original sample is plotted on the x-axis and the duplicate sample is plotted on the y-axis.

Certified Reference Standards

CANMET certified reference standards TILL-1 and TILL-2 were inserted into sample batches prior to geochemical analysis to monitor analytical accuracy. Samples 16DB223, 17DB043, 17DB050, 17DB087, 17DB115, 17DB129, and 17DB192 are TILL-1. Samples 16DB224, 17DB044, 17DB057, 17DB088, 17DB125, 17DB130, and 17DB193 are TILL-2. Control charts are included as Appendix C. In each chart, a solid line represents the expected value (the mean of multiple analyses, carried out at several labs and reported by Lynch [1996]) and two dashed lines represent the upper and lower acceptable limits (determined by adding and subtracting two standard deviations, also reported by Lynch [1996]). Charts for certain elements were omitted because their values were either below detection or not included in the establishment of recommended values. Values for standards correlate well and generally fall within acceptable limits. The certificate of analysis for TILL-1 and TILL-2 reference materials is in Canadian Certified Reference Materials Project (1995).

Geochemical Results

The geochemical results received from Actlabs include three lab reports (A17-06904, A17-08634, and A17-10547) that are presented in Appendix D. The geochemical results received from Bureau Veritas includes one lab report (VAN17003090) presented in Appendix E. INAA values were reported for Au plus 16 other elements (As, Br, Ce, Eu, Fe, Ir, La, Lu, Na, Nd, Sb, Sc, Sm, Tb, W, and Yb). ICP-MS values were reported for Ga, Ge, Hg, In, Li, Nb, Re, Sn, Sr, Te, Tl, Y, Zr, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Tb, Ho, Er, Tm, and Lu. ICP-OES values were reported for Mo, S, Al, Ca, K, Mg, Mn, P, Ti, V, Sm, Eu, Gd, Dy, Tb, Ho, Er, Tm, and Lu. Multi INAA/ICP-MS values were reported for Co, Cr, Cs, Hf, Rb, Se, Ta,

Table 1. Geochemical variables with analytical method, units, detection limit (D.L.) and number of analyses below detection limit.

Element	Unit Symbol	Analysis Method	Lower D.L.	Number of analyses < D.L.
Ag	ppm	MULT INAA/TD-ICP/TD-MS	0.05	139
Al	%	TD-ICP	0.01	0
As	ppm	INAA	0.5	0
Au	ppb	fire assay/ICP-MS	1	0
Au	ppb	INAA	2	147
Ba	ppm	MULT INAA/TD-ICP-MS	1	0
Be	ppm	MULT TD-ICP/TD-ICP-MS	0.1	0
Bi	ppm	MULT TD-ICP/TD-ICP-MS	0.1	13
Br	ppm	INAA	0.5	4
Ca	%	TD-ICP	0.01	0
Cd	ppm	MULT TD-ICP/TD-ICP-MS	0.1	19
Ce	ppm	INAA	3	0
Ce	ppm	TD-MS	0.1	0
Co	ppm	MULT INAA/TD-ICP-MS	0.1	0
Cr	ppm	MULT INAA/TD-ICP-MS	1	0
Cs	ppm	MULT INAA/TD-ICP-MS	0.05	0
Cu	ppm	MULT TD-ICP/TD-ICP-MS	0.2	0
Dy	ppm	TD-MS	0.1	0
Er	ppm	TD-MS	0.1	0
Eu	ppm	INAA	0.2	0
Eu	ppm	TD-MS	0.05	0
Fe	%	INAA	0.01	0
Ga	ppm	TD-MS	0.1	N/A
Gd	ppm	TD-MS	0.1	0
Ge	ppm	TD-MS	0.1	175
Hf	ppm	MULT INAA/TD-ICP-MS	0.1	1
Hg	ppb	TD-MS	10	4
Но	ppm	TD-MS	0.1	0
In	ppm	TD-MS	0.1	146
Ir	ppb	INAA	5	181
K	%	TD-ICP	0.01	0
La	ppm	INAA	0.5	0
La	ppm	TD-MS	0.1	0
Li	ppm	TD-MS	0.5	0
Lu	ppm	INAA	0.05	0
Lu	ppm	TD-MS	0.1	0
Mg	%	TD-ICP	0.01	1
Lu	ppm	INAA	0.05	0
Lu	ppm	TD-MS	0.1	0

Table 1 concludes next page.

Table 1 (concluded).

Element	Unit Symbol	Analysis Method	Lower D.L.	Number of analyses < D.L.
Mg	%	TD-ICP	0.01	1
Mn	ppm	TD-ICP	1	0
Mo	ppm	TD-ICP	1	166
Na	%	INAA	0.01	0
Nb	ppm	TD-MS	0.1	30
Nd	ppm	INAA	5	0
Nd	ppm	TD-MS	0.1	0
Ni	ppm	MULT INAA/TD-ICP/TD-MS	0.5	1
P	%	TD-ICP	0.001	0
Pb	ppm	MULT TD-ICP/TD-ICP-MS	0.5	0
Pr	ppm	TD-MS	0.1	0
Rb	ppm	MULT INAA/TD-ICP-MS	0.2	0
Re	ppm	TD-MS	0.001	174
S	%	TD-ICP	0.01	32
Sb	ppm	INAA	0.1	3
Sc	ppm	INAA	0.1	0
Se	ppm	MULT INAA/TD-ICP-MS	0.1	119
Sm	ppm	INAA	0.1	0
Sm	ppm	TD-MS	0.1	0
Sn	ppm	TD-MS	1	130
Sr	ppm	TD-MS	0.2	0
Ta	ppm	MULT INAA/TD-ICP-MS	0.1	152
Tb	ppm	INAA	0.5	66
Tb	ppm	TD-MS	0.1	0
Te	ppm	TD-MS	0.1	181
Th	ppm	MULT INAA/TD-ICP-MS	0.1	0
Ti	%	TD-ICP	0.01	0
Tl	ppm	TD-MS	0.05	0
Tm	ppm	TD-MS	0.1	0
U	ppm	MULT INAA/TD-ICP-MS	0.1	0
V	ppm	TD-ICP	2	0
W	ppm	INAA	1	180
Y	ppm	TD-MS	0.1	0
Yb	ppm	INAA	0.2	0
Yb	ppm	TD-MS	0.1	0
Zn	ppm	MULT INAA/TD-ICP/TD-MS	0.5	0
Zr	ppm	TD-MS	1	0

Th, and U. Multi INAA/ICP-OES/ICP-MS values were reported for Ag, Ni, and Zn. Multi ICP-OES/ICP-MS values were reported for Cu, Cd, Pb, Be, and Bi.

Geochemical data for gold and associated pathfinder elements (Ag, As, Zn, Hg, Sb) are presented as proportional dot maps in Figures 3 to 8. Concentration ranges were determined using Jenks natural break optimization within ArcMap (v. 10.5.1) which identifies natural breaks in the frequency distribution resulting in four to six concentration ranges. The interpretation of geochemical data, till provenance and implications for mineral exploration will be presented separately.

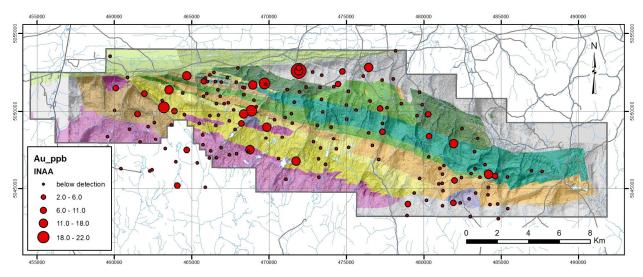


Figure 3. Gold (ppb) by INAA.

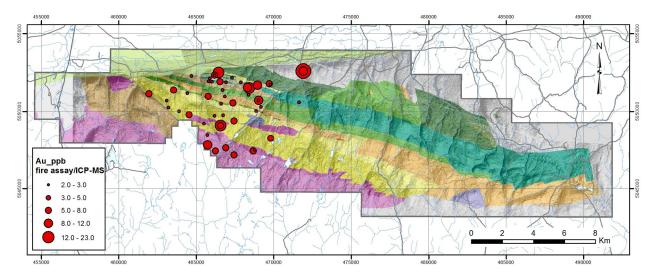


Figure 4. Gold (ppb) by fire assay/ICP-MS.

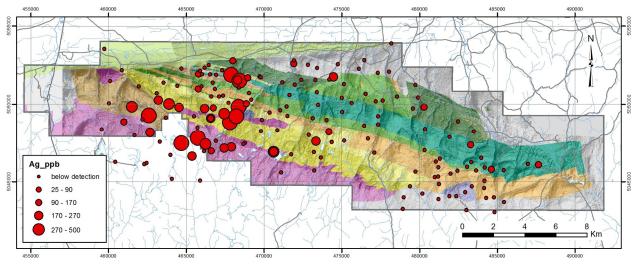


Figure 5. Silver (ppb) by INAA/TD-ICP/ICP-MS.

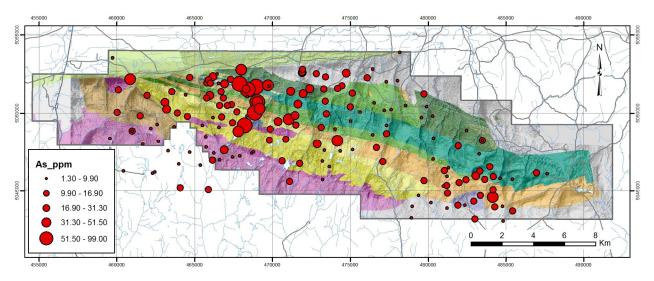


Figure 6. Arsenic (ppm) by INAA.

References

Baldwin, G.J., 2016. Low-sulphidation epithermal gold potential at Warwick Mountain, northeastern Cobequid Highlands, Colchester County, Nova Scotia; *in* Geoscience and Mines Branch, Report of Activities 2015; Nova Scotia Department of Natural Resources, Report ME 2016-001, p. 1-10.

Baldwin, G.J., 2017. Stream sediment sampling as part of the new geoscience initiative to study epithermal gold in the Cobequid Highlands, Colchester and Cumberland Counties; *in* Geoscience and Mines Branch, Report of Activities 2016-17; Nova Scotia Department of Natural Resources, Report ME 2017-001, p. 1-2.

Brushett, D.M. and MacMullen, C.C., 2018. DP ME 502, Version 1, 2018. Till Geochemical Data from the Warwick Mountain Area, Eastern Cobequid Highlands, Nova Scotia; Nova Scotia Department of Natural Resources, Digital Product ME 502. https://novascotia.ca/natr/meb/download/dp502.asp>

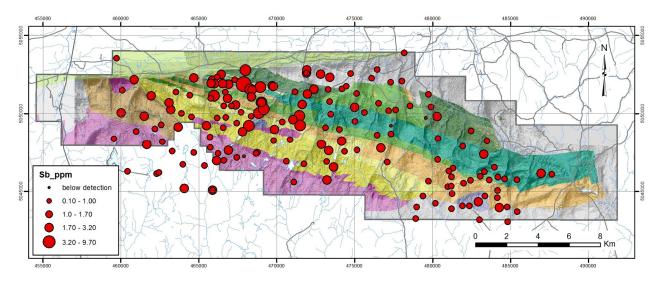


Figure 7. Antimony (ppm) by INAA.

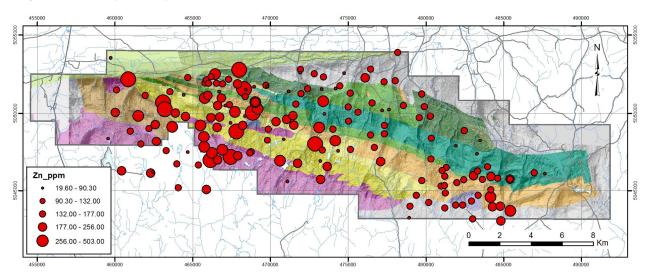


Figure 8. Zinc (ppm) by INAA/TD-ICP/ICP-MS.

Canadian Certified Reference Materials Project, 1995. TILL-1, TILL-2, TILL-3 and TILL-4: geochemical soil and till reference materials; Natural Resources Canada, Ottawa, 8 p. https://www.nrcan.gc.ca/files/mineralsmetals/pdf/mms-smm/tect-tech/ccrmp/cer-cer/TILL CERT-eng.pdf>

Lynch, J., 1996. Provisional elemental values for four new geochemical soil and till reference materials, Till-1, Till-2, Till-3 and Till-4; Geostandards Newsletter, v. 20, p. 277–287.

MacHattie, T.G., 2013. Newly recognized epithermal-style gold occurrences associated with Late Devonian to Early Carboniferous bi-modal volcanism in the northeastern Cobequid Highlands; *in* Mineral Resources Branch, Report of Activities 2011; Nova Scotia Department of Natural Resources, Report ME 2012-001, p. 31-39.

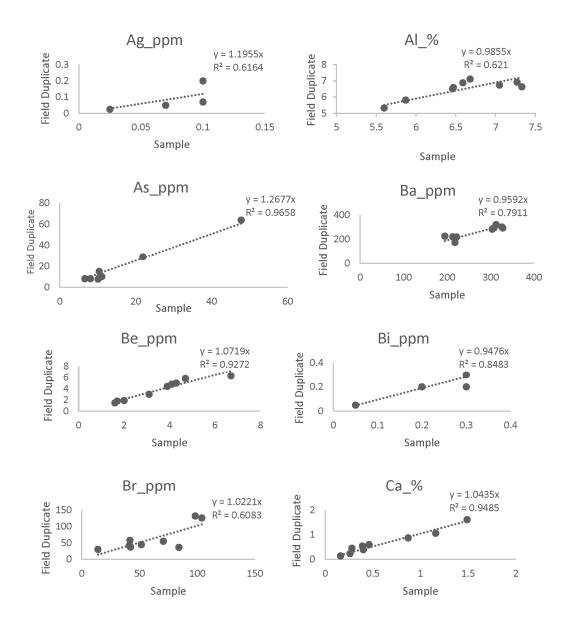
MacHattie, T.G., 2017. An update on bedrock mapping and exploration for epithermal gold in the northeastern Cobequid Highlands; *in* Geoscience and Mines Branch, Report of Activities 2016-17; Nova Scotia Department of Natural Resources, Report ME 2017-001, p. 49-52.

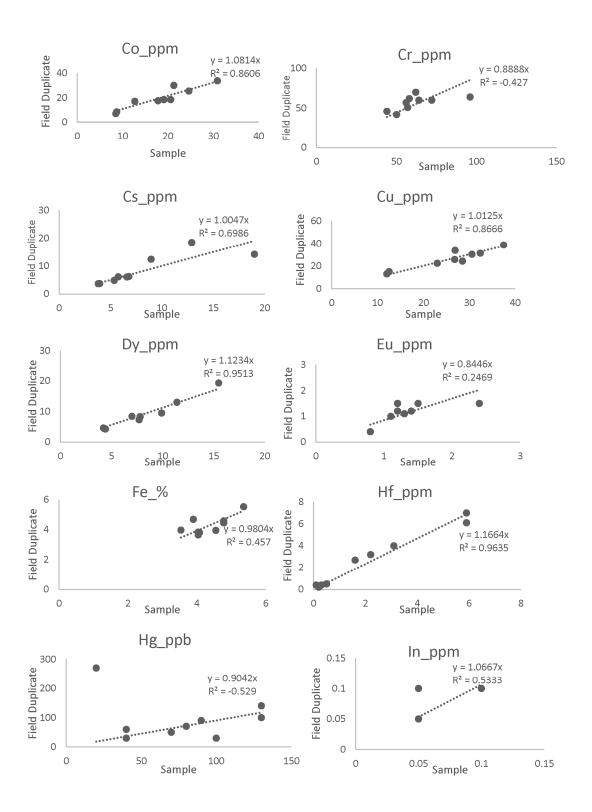
MacHattie, T.G. and MacMullen, C.C., 2018. DP ME 504, Version 1, 2018. Digital Version of Nova Scotia Department of Natural Resources Open File Map ME 2018-005, Preliminary Bedrock Geology Map of the Eastern Cobequid Highlands, Nova Scotia, scale 1:35 000, by T.G. MacHattie; Nova Scotia Department of Natural Resources, Digital Product ME 504. https://novascotia.ca/natr/meb/download/dp504.asp>

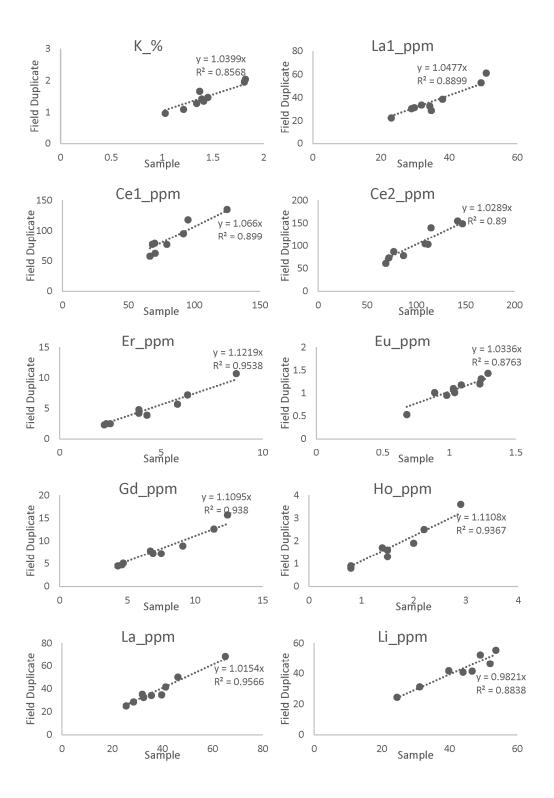
McClenaghan, M.B., Plouffe, A., McMartin, I., Campbell, J.E., Spirito, W.A., Paulen, R.C., Garrett, R.G., and Hall, G.E.M., 2013. Till sampling and geochemical analytical protocols used by the Geological Survey of Canada; Geochemistry: Exploration, Environment, Analysis, v. 13, p. 285-301.

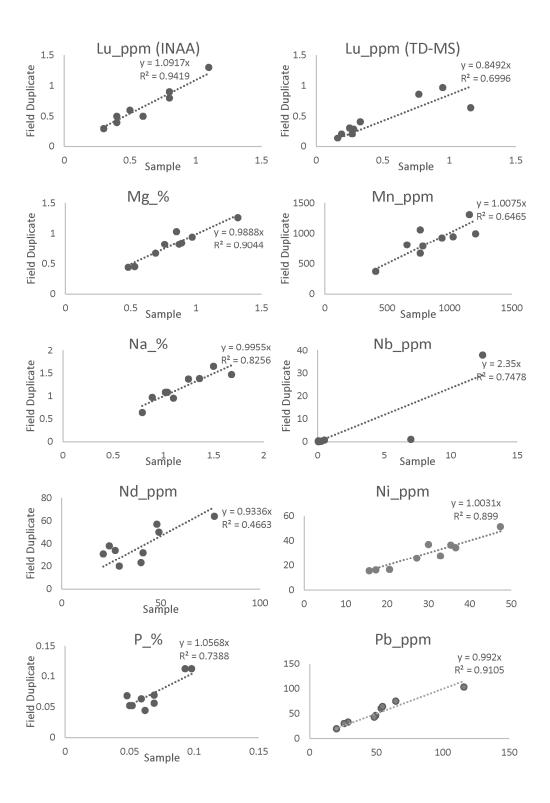
Spirito, W.A., McClenaghan, M.B., Plouffe, A., McMartin, I., Campbell, J.E., Paulen, R.C., Garrett, R.G., and Hall, G.E.M., 2011. Till sampling and analytical protocols for GEM projects: from field survey to archive; Geological Survey of Canada, Open File 6850, 83 p.

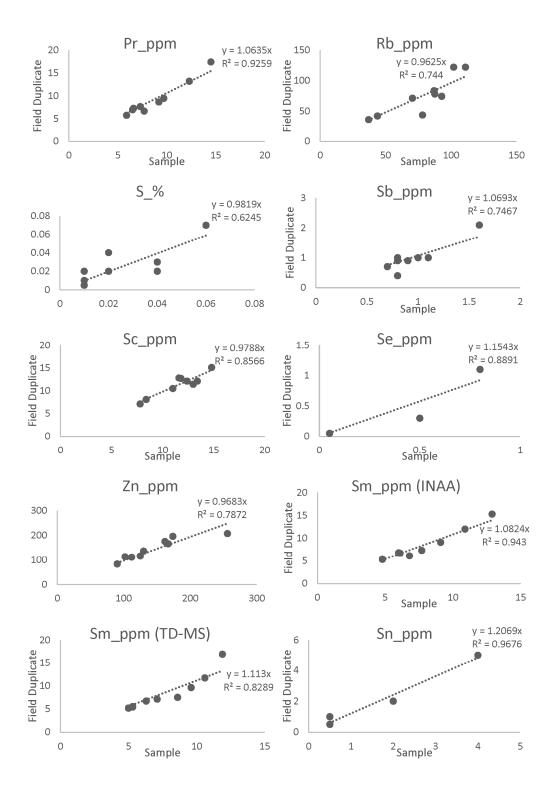
Stea, R.R. and Finck, P.W., 1988a. Surficial geology: Cumberland, Colchester, and Hants counties, Nova Scotia (sheet 10); Nova Scotia Department of Mines and Energy, Map 88-13, scale 1:100 000.

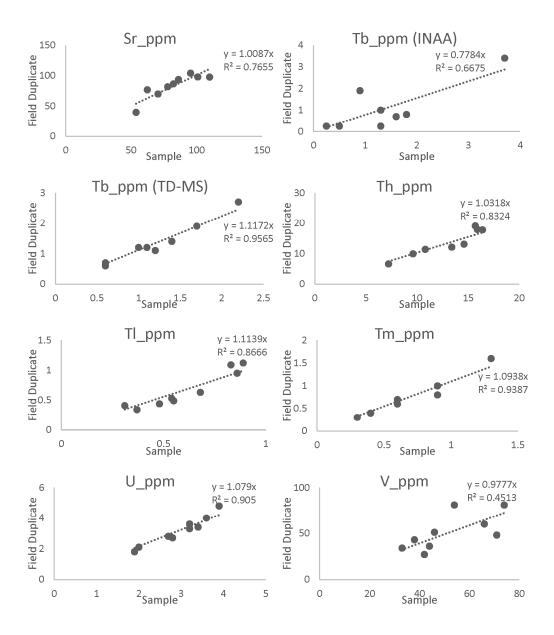

Stea, R.R. and Finck, P.W., 1988b. Surficial geology: Cumberland, Colchester, and Pictou counties, Nova Scotia (sheet 11); Nova Scotia Department of Mines and Energy, Map 88-14, scale 1:100 000.

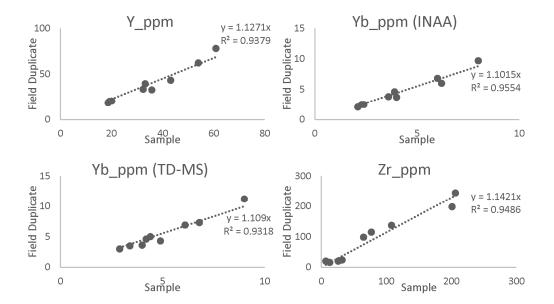

Stea, R.R. and Mott, R.J. 1990. Quaternary Geology of Nova Scotia: guidebook for field excursion; Nova Scotia Department of Mines and Energy, Open File Report 90-008; 85 p.

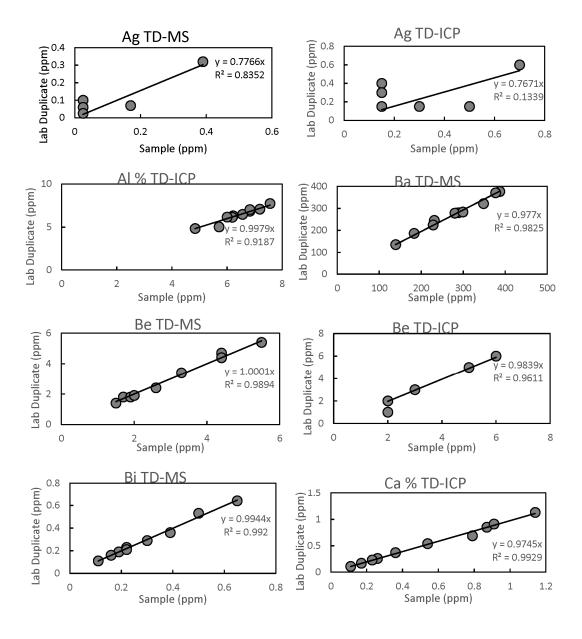

Stea, R.R., Seaman, A.A., Pronk, T., Parkhill, M.A., Allard, S., and Utting, D., 2011. The Appalachian Glacier Complex in Maritime Canada. *In* Quaternary Glaciations – Extent and Chronology – A Closer Look, (ed.) J. Ehlers, P.L., Gibbard, and P.D. Hughes; Elsevier, Amsterdam; Developments in Quaternary Science, v. 15, p. 631-659.

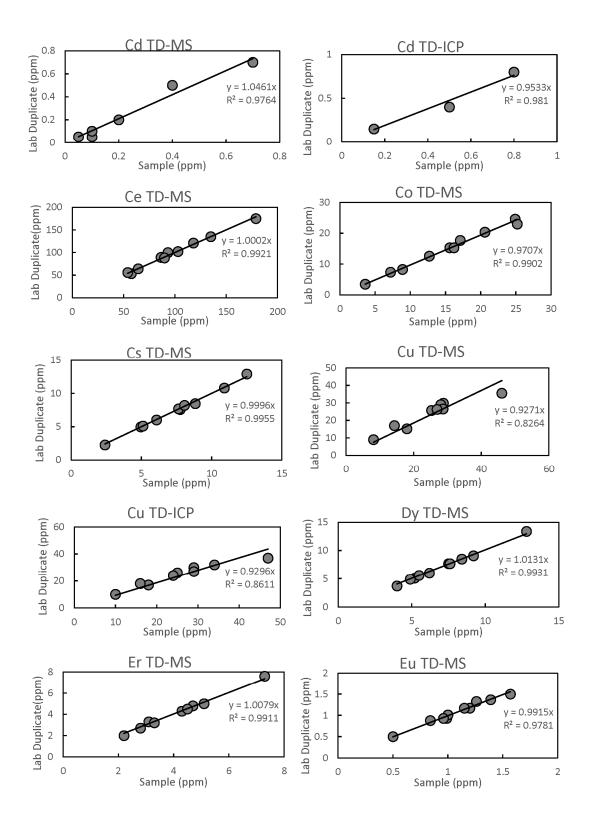

Appendix A. Field Duplicate Cross-Plots

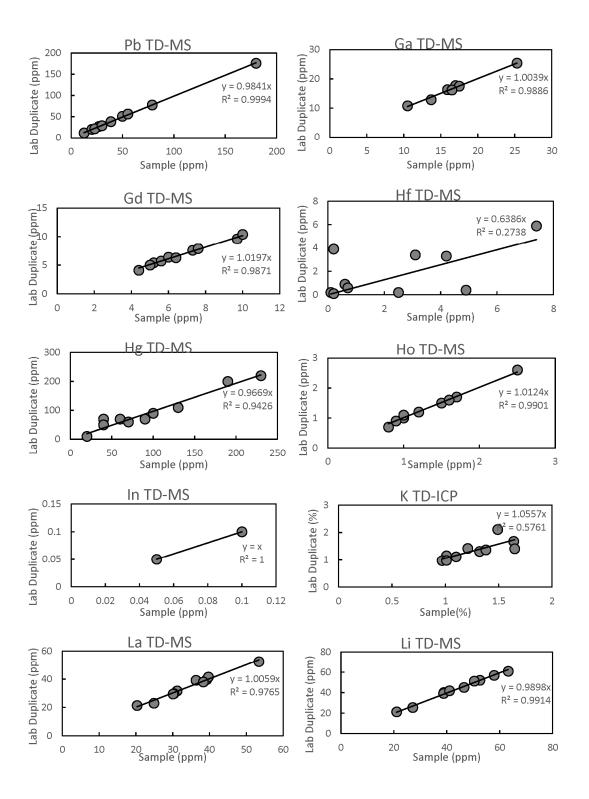

In each plot, the original sample is plotted on the x axis, and the duplicate on the y-axis. Charts for certain elements were omitted because they had too many of their values below detection.

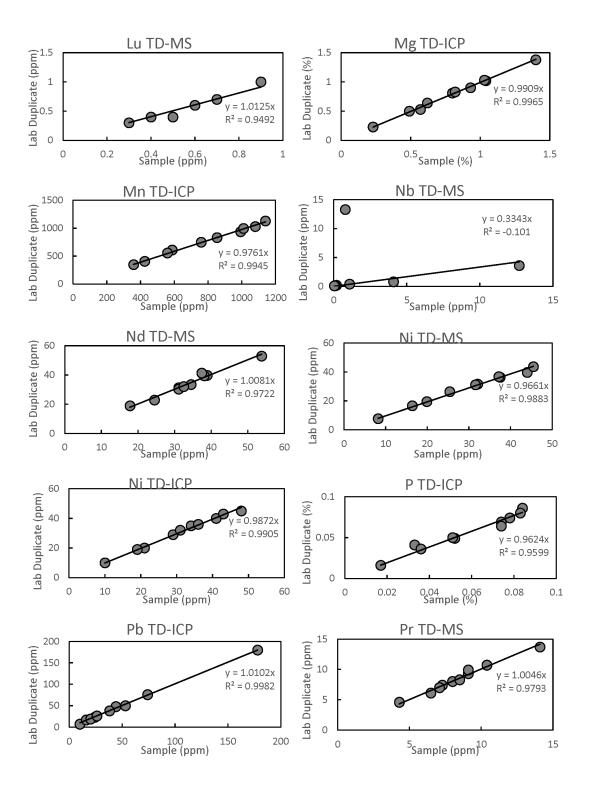


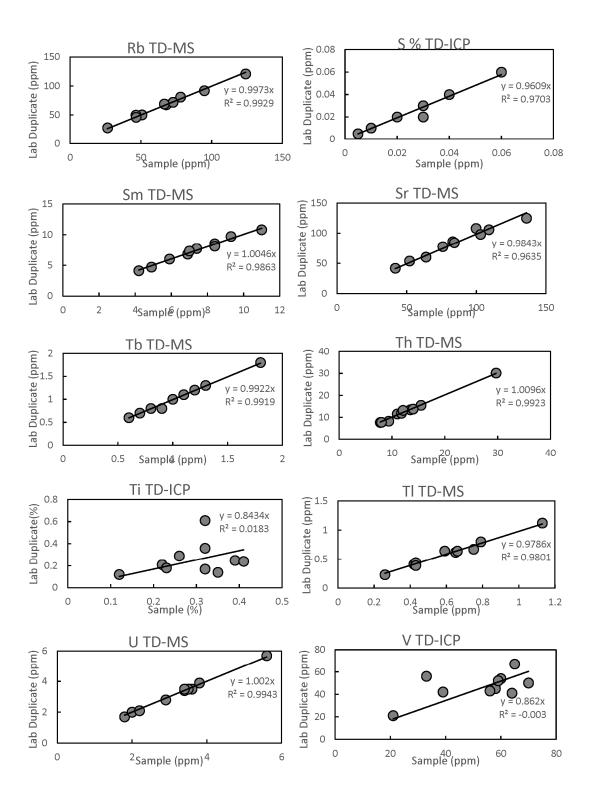


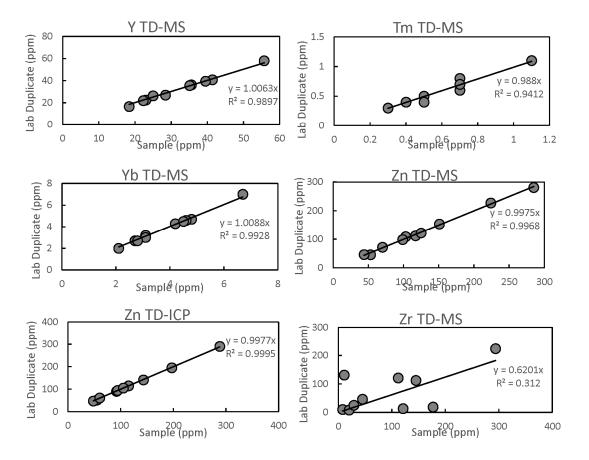


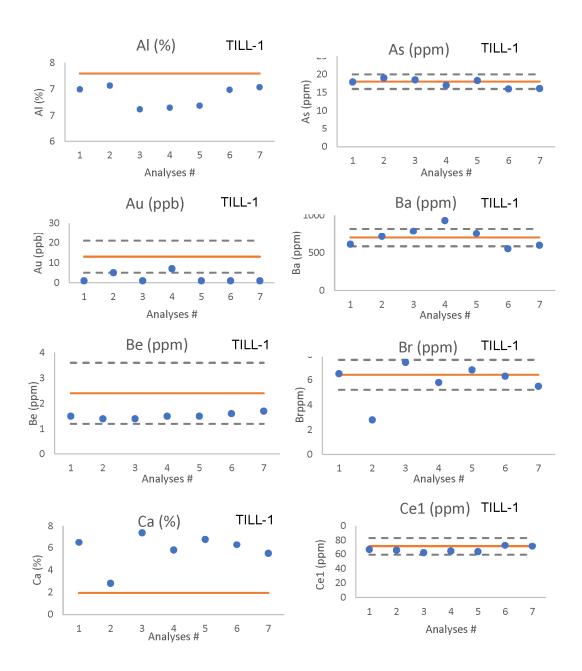


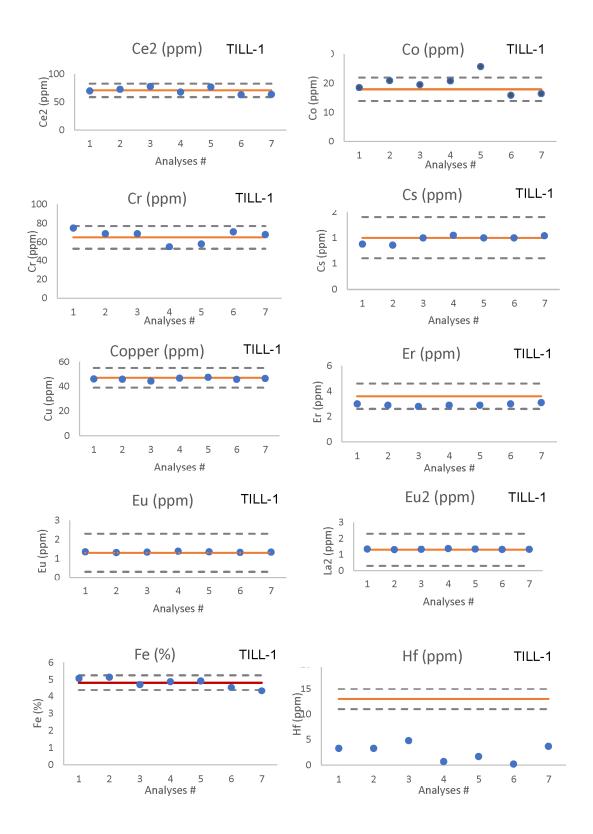


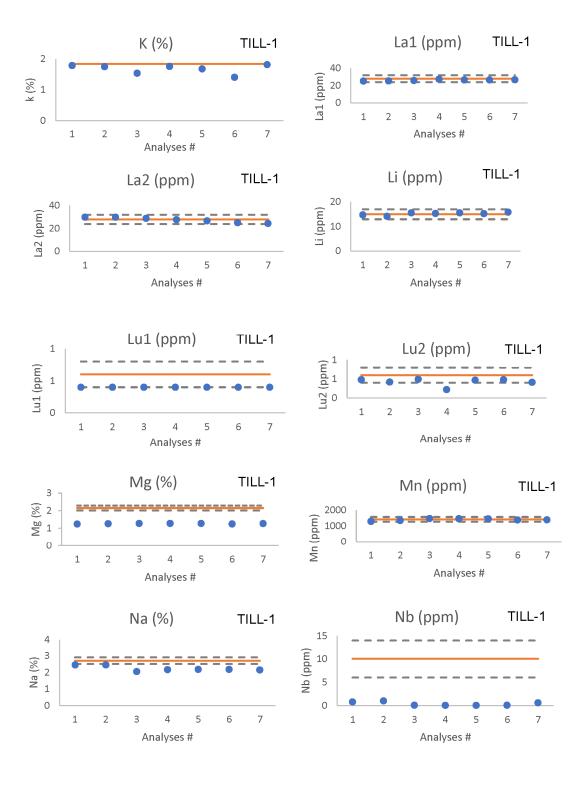

APPENDIX B. Laboratory Duplicate Cross-Plots


In each plot, the original sample is plotted on the x axis, and the duplicate on the y-axis. Charts for certain elements were omitted because they had too many of their values below detection.

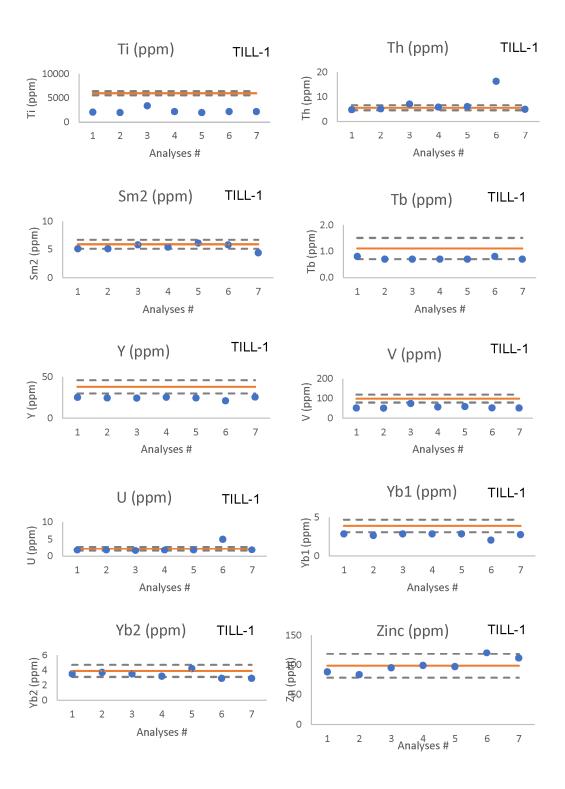


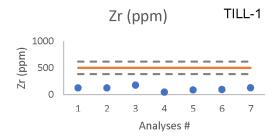


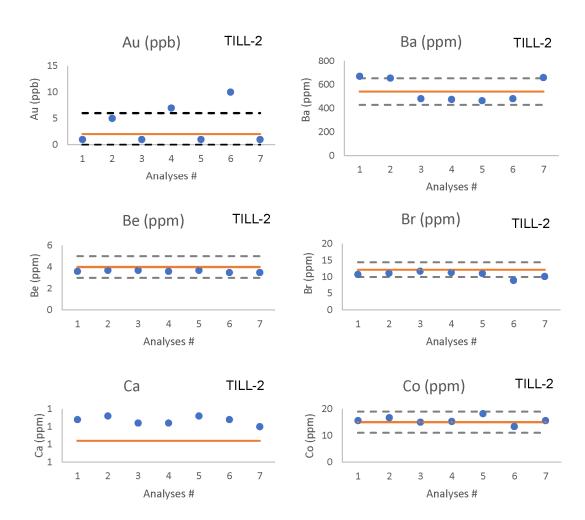


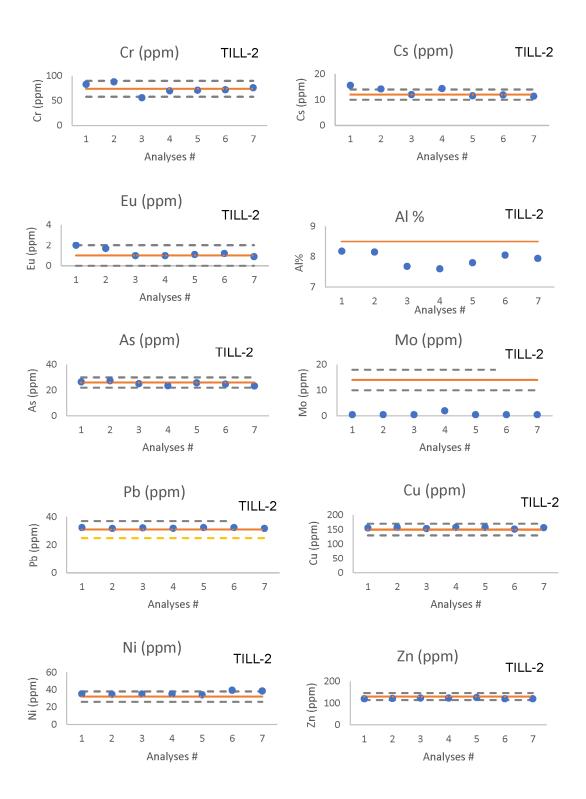


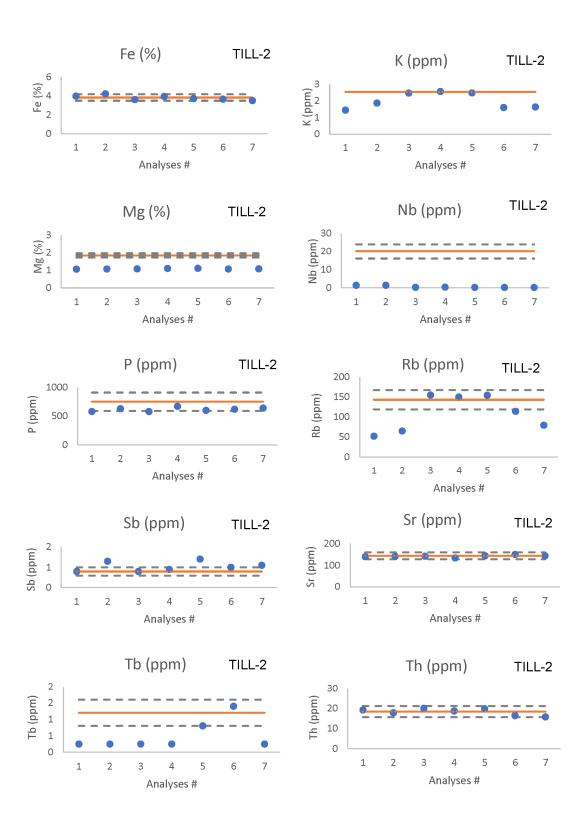
APPENDIX C. Control Charts for CANMET Certified Reference Standards TILL-1 and TILL-2

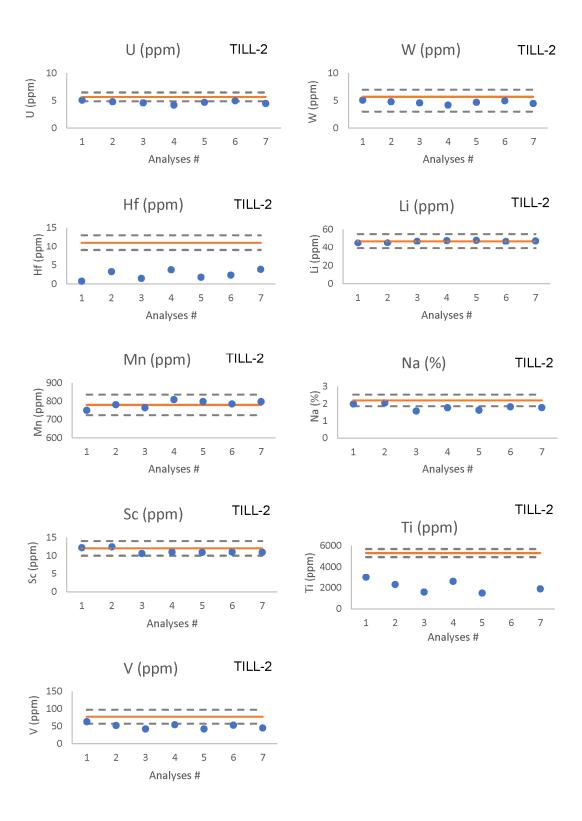

In each chart, the analyzed elements are shown as blue circles, a solid line represents the expected value (the mean of multiple analyses, carried out at several labs and reported by Lynch [1996]), and two dashed lines represent the upper and lower acceptable limits (determined by adding and subtracting two standard deviations, also reported by Lynch [1996]). Charts for certain elements were omitted because they lack certified 'expected' values or had too many of their values below detection.











Appendix D. Final Lab Reports Received from Actlabs (A17-06904, A17-08634, and A17-10547)

Quality Analysis ...

Innovative Technologies

Date Submitted: 07-Jul-17 Invoice No.: A17-06904 21-Aug-17 Invoice Date: Your Reference:

Nova Scotia Department of Natural Resources 1723 Hollis Street 5th Floor Halifax NS B3J 2N3 Canada

ATTN: Denise Brushett

CERTIFICATE OF ANALYSIS

56 Soil samples were submitted for analysis.

The following analytical package(s) were requested:

Code UT-3 INAA(INAAGEO)/Total digestion ICP(Total)Total Digestion ICP/MS

REPORT A17-06904

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Unaltered silicates and resistate minerals may not be dissolved. Values which exceed upper limit should be assayed.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.
41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5
TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905 648.9613
E-MAIL Ancaster@actidats.com ACTLABS GROUP WESSITE www.actidats.com

				Re	Results			Activa	Activation Laboratories Ltd	abora.	itories	, Ltd.			å	port:	Report: A17-06904	904					
Analyte Symbol	ΑU	₽Ĝ	00	B	Mo	Pb	Z E	Zn S			П	Ba Be	B	B	Г		Г	ن ن	Os Eu	. Fe	Ξ	g	
Unit Symbol	qdd		Г	۰	_		d udd	% udd	%			5	٦	d udd	٤	%	d udd	Ε	dd wdd	% udd	mdd		٤
Lower Limit		0.05).2		Г		0.5 0		0.01 0.	_	0.5	0				0.01	1.0	0		Г	11 0.1		
Melhod Code	INAA	ī⊢ ė	VIULT TD- CP/TD- CP-MS	MULT TD- ICP/TD- ICP-MS	TD-ICP	MULT TD- ICP/TD- ICP-MS IN	MULT I N NAA/T N D- D ICP/TD- IC	MULT T NAA/T D- ICP/TD- MS	TD-10P	70-07 ■	NAA N U N O N	MULT I M NAA/T TE D-ICP- IC MS IC	MULT M TD- TICP/TD- IC ICP-MS IC	MULT IN TD: ICP/TD- ICP-MS	T A A N	M POI-OT	MULT I N NAA/T N D-ICP- D MS N	MULT I N NAA/T N D-ICP- D MS N	MULT I IN NAA/T D-ICP- MS	NAA N	INAA MI NX D- M3	MULT I TD. NAA/T D-ICP- MS	SM-QL
16DB005	< 2	< 0.05		< 0.1	٧	12.1	19.7	49.5	+ 0.01	5.37	17.8	335	1.4	9.0	27.2	0.74	8.6	49	2.34	1.0	2.31	2.1	
16DB007	5	< 0.05		> 0.1	٧	19.1	19.8	48.4	× 0.01	6.20	14.8	370	9.1	9.0	23.0	0.79	6.4	88	2.90	1.1	2.54	5.9	
16DB135	< 2		23.3	< 0.1	٧	21.0	24.6	73.0	< 0.01	6.83	26.3	447	1.8	0.2	< 0.5	0.97	12.8	2	2.42	1.1	3.17	9.4	
16DB153	10	< 0.05		< 0.1	-	15.7	19.6	41.3	< 0.01	5.56	22.1	304	1.3	0.2	16.8	0.77	9.5	49	2.02	9.0	2.35	0.2	
16DB155	< 2			< 0.1	٧	16.5	22.6	52.0	< 0.01	6.71	9.5	434	1.7	0.1	17.3	0.85	6.0	28	2.36	1.1	2.67	0.3	
16DB160	15	ľ		< 0.1	٠ ٧	14.4	20.3		< 0.01	5.96	9.6	375	4.1	0.1	5.6	0.98	8.5	4	1.88	J.D	2.33	4.0	
16DB206	< 2		24.8	0.4	v	97.2	26.7	274	0.02	6.81	24.7	241	4.3	0.2	79.3	0.35	13.8	26	24.0	1.1	2.85	1.2	
16DB212	4	< 0.05		0.2	٧	49.5	25.7	159	10.0	6.12	12.6	292	2.3	0.2	41.7	69.0	15.9	99	6.14	1.6	3.84	1.9	
16DB218	4	< 0.05		0.6	٧	45.4	28.5	132	+ 0.01	6.52	13.3	350	3.0	0.2	8.4	0.25	16.4	92	16.5	1.6	3.58	2.2	
16DB223	96	< 0.05		0.3	٧	23.0	25.6	0.88	0.02	7.00	17.9	613	1.5	1.8	6.5	1.96	18.6	22	98.0	2.0	5.07	3.3	
16DB224	< 2			0.4	٧ -	32.4	35.2	120	0.03	8.18	26.5	929	3.6	4.8	10.8	0.97	15.6	8	15.6	2.0	3.99	0.8	
17DB001	< 2		29.7	0.2	٧	29.7	44.5		< 0.01	19.8	18.4	378	5.9	0.3	< 0.5	0.32	20.5	90.	6.84	D)	5.13	4.7	
17DB002	< 2			0.3	٧	29.5	32.0	89.2	< 0.01	6.84	13.6	381	2.1	0.2	21.3	0.58	22.9	20	4.02	1.5	4.34	3.3	
17DB003	3	< 0.05		0.2	٧	35.9	31.4	9.68	< 0.01	6.89	18.6	450	2.3	0.2	2.5	0.61	15.4	7.1	4.84	1.3	3.60	1.4	
17DB004	15			0.2	v	49.3	48.1	117	10.0	7.96	39.5	205	2.4	0.1	25.7	_ 12i	26.5	-04	24.5	2.2	5.44	0.5	
17DB005	< 2	١v		0.2	v	53.9	25.1	88.8	0.03	7.69	25.9	245	1.7	0.1	111	0.43	19.1	75	5.61	 Di	5.73	1.1	
17DB006	< 2		33.9	9.4	v	116	27.2	256	0.01	6.47	11.1	326	9.1 T.	0.3	41.7	1.16	19.1	57	3.80	 το	4.04	0.3	
17DB007	< 2			0.2	٧	103	25.7	207	0.02	6:29	10.2	302	3.0	0.2	57.8	1.06	18.5	51	3.69	1.5	3.65	9.4	
17DB008	< 2		18.1	0.2	v	62.5	24.4	151	0.02	6.37	14.3	275	2.2	0.2	69.0	0.43	15.1	61	5.50	0.1	3.51	6.0	
17DB009	< 2	< 0.05	10.3	0.1	٧	58.5	14.2	83.0	90.0	6.62	13.8	190	1.9	0.2	202	0.31	7.4	48	4.58	ь. Б.	4.51	3.2	
17DB010	< 2	۱Ľ	20.4	0.3	v	43.3	36.3	153	0.03	6.41	33.2	243	5.0	0.1	84.7	0.53	21.3	55	8.05	1.1	4.53	1.8	
17DB011	< 2		24.0	9.4	٧	51.1	22.5	275	0.03	6.75	9.1	233	4.8	9.0	89.9	0.74	16.9	52	5.76	1.0	3.30	0.2	
17DB012	5		41.6	0.5	٧	96.3	53.6		0.07	8.62	71.2	171	8.2	0.2	219	0.43	25.7	92	16.4	3.2	6.11	0.8	
17DB013	< 2		43.7	0.7	v	94.9	33.8		< 0.01	6.62	33.5	277	6.4	0.2	12.6	0.52	23.5	99	7.99	ы	4.56	0.7	
17DB014	< 2	ľ	26.8	> 0.1	٧	19.3	36.9		× 0.01	6.84	9.8	336	3.2	0.2	4. Θ.	0.41	19.7	71	56.8	4.	4.59	9.0	
17DB015	< 2	_	28.9	O.	v	1 0	35.2	315	0.03	7.01	45.7	341	9.5	0.2	52.3	0.63	20.4	22	36.3	7.7	4.54	1.5	
17DB016	< 2		45.1	1.3	v	63.0	44.8	112	0.03	8.53	18.7	386	2.8	0.3	51.1	1.04	30.5	6 0,	9.80	2.3	5.56	2.7	П
17DB017	< 2		15.7	0.5	v	53.2	14.8	158	0.0₁	5.36	14.0	278	3.7	0.2	51.0	0.69	12.0	45	2.21	1.1	3.36	2.8	
17DB018	< 2	_	22.5	0.2	v	22.3	33.2	119	0.02	6.80	11.7	280	2.3	0.2	90.9	0.67	21.6	25	6.43	 ε.	4.38	4.7	
17DB019	4		84.9	0.5	v	27.4	58.0	Ξ	0.03	6.54	† †-	586	 -:	0.2	56.6	0.70	19.3	32	6.18		4.28	6.0	
17DB020	< 2			0.3	٧	15.2	53.4		0.02	6.87	9.3	256	9.1	0.1	39.4	2.04	32.1	78	6.37	2.0	6.12	5.7	
17DB021	< 2			9.4	v	78.2	30.1		× 0.01	7.94	16.4	499	2.8	9.0	9. 4.	0.27	19.0	88	5.85	 6.	4.13	1.3	
17DB022	< 2	٧	43.9	0.1	v	35.1	42.1		> 0.01	7.46	12.0	400	2.0	0.2	24.1	0.49	83 T.	99	4.75	7.5	4.31	1.0	
17DB023	9	0.16	74.0	0.2	v	24.1	24.1	95.5	0.02	7.26	12.2	445	5.0	0.2	57.1	1.55	22.7	88	2.41	9.	5.11	0.3	
17DB024	< 2	< 0.05	45.9	0.2	v	28.4	26.7	82.1	0.01	6.73	11.3	371	5.0	0.2	41.0	0.70	18.0	29	3.54	1.1	4.05	1.2	
17DB025	< 2			0.6	٧	96.8	17.1	74.4	0.03	5.82	14.2	258	2.0	0.2	107	0.41	17.5	88	15.6	F.	8.05	2.4	
17DB026	< 2	- 1		9.4	٧	141	36.5		0.02	7.67	11.4	332	2.0	0.1	49.9	0.80	33.4	8	7.77	 80.	6.01	3.9	
17DB027	3			9.4	v	47.4	28.8		× 0.01	6.24	10.3	381	2.1	0.2	2.1	0.26	15.2	26	4.42	7.5	3.69	4.6	
17DB028	< 2	< 0.05	27.1	0.7	v	179	31.8	588	× 0.01	6.27	0.44	284	5.5	9.0	π. ώ	0.26	18.6	51	7.67	4.	4.53	6.7	
_	_	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Page 2/15

	Hf Ga	mdd mdd	0.01 0.1	INAA MULTI TD-MS	D-ICP-		5.26 12.2	4.32 0.7	3.66 0.9	3.75 0.5	3.47 2.9	3.89 5.0	5.20 9.1	7.69 5.0	4.78 5.9	4.45 6.1	3.92 7.6	3.87 1.5	3.80 0.4	4.60 0.7	5.14 3.3	4.24 3.3	6.29 4.1	
	. Fe	% udd		NAA			1.2	1.0	0.7	1.6	9.0	9.0	5.1	2.5	2.4	1.5	1.4	1.5	9.	1.4	L. Qi	1.7	3.7	
	Cs Eu	d udd	0.05 0.2	=	D-ICP-		4.43	4.97	3.78	3.39	4.13	2.93	5.87	9.04	5.74	6.12	5.62	5.50	2.55	4.25	0.86	14.2	35.7	
6904	ŏ	d mdd	1	MULTIN			46	36	33	48	47	44	90	81	96	64	90	65	90	98	69	88	88	
A17-0	Co	bpm p	0.1	-	MS P-		8.1	7.3	5.2	14.4	8.7	8.6	24.3	18.4	20.6	9.81	8.0	6.6	1.91	21.7	21.0	16.7	30.2	
Report: A17-06904	Ca	%	0.01	TD-ICP			0.48	0.23	0.32	0.92	0.47	0.86	1.20	0.33	0.48	09:0	0.27	0.46	1.08	0.61	1.98	0.98	1.37	
LE.	Br	mdd	0.5	INAA	0		81.1	125	126	52.1	3 77.8	137	35.6	140	14.0	30.4	8 67.5	91.6	< 0.5	22.2	3 2.8	11.2	32.3	
	iā	mdd	0.1	MULT			3 0.3	3 0.5	0.3	0.3	9 0.3	2 0.2	4 0.9	3 0.3	7 0.3	3 0.3	5 0.3	3 0.2	7 0.2	9 0.2	1.8	7 4.9	3 0.1	
. i	æ	mdd	0.1	- MULT	· ICP/TD-		4 2.6	185 4.6	2.0	0 3.0	4 2.9	189 2.2	8 6.4	8 4.6	8 4.7	5 5.8	7 2.5	4 2.3	0 1.7	4 1.9	8 1.4	4 3.7	9 2.8	
ies Lt	Ba	mdd	-	MULT I	MS CP.		6.9 274	6	5.5 157	5.5 240	8.7 254	9.9 18	10.8 268	.4 208	10.7 308	10.0	7.7 237	.8 194	11.3 470	18.9 424	19.0 718	.4 654	49.5 389	
Activation Laboratories Ltd	As	mdd	6.0	TD-ICP INAA			4.65 6	6.84 8.	7.27 5	6.26 5	7.01	7.25 9	6.74 10	6.88 23.4	7.33 10	6.63 10	5.39 7	7.64 8.	6.04	7.14 18	7.07	8.15 27.4	7.92 49	
on Lab	₹	%	0.01	_			0.06	0.04 6.3	0.04	0.01	0.03	0.06	0.03	0.07	0.01	0.01	0.02	0.04		0.02	0.02	0.03	0.03	
tivatic	တ	%	0.01	T TD-ICP			203 0.	115 0.	59.1 0.	116 0.	147 0.	107 0.	350 0.	181 0.	187 0.	186 0.	66.8 0.	149 0.	83.0 < 0.01	88.3 0.	83.2 0.	121 0.	135 0.	
Ac	υZ	mdd	0.5		D- D- ICP/TD- ICP/TD-	MS	12.7	16.5	10.5 59	18.0	18.2	12.4	23.7 3	20.5	32.9	1 27.6	16.4 66	21.5	21.0 83	28.2 88	25.7 83	34.7	43.2	
	z	mdd	0.5	T MULT	CP/TD- D- CP-MS ICP/	MIS	120	46.2	30.3	30.3	102	64.9	170 23	52.0 2	28.8	32.8 2.	28.5	58.7 2	66.7	46.2	21.9	31.8 3.	52.1 4:	
ts	Ъ	μdd	6.5		ICP/TD-		2	<1 4	<1 3	< 1 3	<1 1	2 6	<1	2 5	<1 2	<1 3	1 2	< 1 5	< 1 6	<1 4	< 1 2	< 1 3	< 1 5	
Results	ΝO	mdd	-	T TD-ICP	-D Z		0.5	0.1	< 0.1	0.3	0.3	0.3	9.0	0.7	0.2	0.2	0.1	0.3	0.3	0.3	0.3	0.3	0.3	
	ਲ	mdd ı	D.1	T MULT	ICP/TD- ICP/TD- ICP-MS ICP-MS		11.6	15.7	47.1	20.9	19.7	16.8	42.4	24.4	30.5	30.6	13.4	13.0	81.0	85.2	45.8	158	38.2	
	3	n ppm	5 0.2		D07/70		< 0.05	0.12	0.36	< 0.05	0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.35	90.0	0.05	< 0.05	0.08	< 0.05	
	Αg	mdd c	0.05	INIAA MU	돌 다 교	MS	< 2 <	< 2	3	< 2 <	< 2	< 2 <	< 2 <	< 2 <	< 2 <	< 2 <	< 2 <	< 2	22	8	8	2	< 2 <	
	bol Au	qdd	2																				H	
	Analyte Symbol	Unit Symbol	Lower Limit	Method Code			17DB029	17DB030	17DB031	17DB032	17DB033	17DB034	17DB035	17DB036	17DB037	17DB038	17DB039	17DB040	17□B041	17DB042	17DB043	17DB044	17CS001	

	ᄔ	mdd	0.1	MULT I NAA/T D-ICP- MS	4.6	6.8	8.8	7.7	9.8	6.0	15.0	10.9	13.3	4.8	19.2	12.8	12.1	10.1	8.0	9.8	13.4	12.1	12.4	10.8	8.2	22.1	10.1	29.7	12.3	11.6	10.7	10.6	10.8	11.3	7.7	13.2	11.8	9.4	11.2	6.7	8.6	11.8	16.0	12.1
	F	%	10.0	TD-ICP	0.47	0.32	0.25	0.18	0.16	01.0	01.0	0.13	0.15	0.21	0:30	0.58	0.28	0.32	0.20	0.14	0.14	0.14	0.09	0.22	0.14	0.27	0.24	0.13	0.13	0.12	0.22	0.14	0.23	0.22	0.88	0.34	0.10	0.22	0.14	0.22	0.37	0.21	0.32	0.69
	Tb	u udd	Г	NAA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.0	0.8	1.3	< 0.5	< 0.5	1.2	0.8	0.5	0.7	< 0.5	τ.	1.0	< 0.5	< 0.5	0.6	< 0.5	3.7	2.0	1.2	2.2	2.0	0.8	< 0.5	0.7	0.6	0.9	6.0	< 0.5	0.7	6.0	9.0	1.3	6.	4.
	Te	udd		TD-MS	× 0.1	× 0.1	< 0.1	× 0.1	× 0.1	× 0.1	× 0.1	× 0.1	× 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	× 0.1	× 0.1	× 0.1	× 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	× 0.1	< 0.1	< 0.1	< 0.1	× 0.1	< 0.1	< 0.1	× 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	× 0.1	× 0.1	× 0.1	> 0.1
	Ta T	٦		MULT T	0.5	× 0.1	× 0.1	× 0.1	× 0.1	× 0.1	× 0.1	< 0.1	< 0.1	< 0.1	0.1	1.0	< 0.1	< 0.1	× 0.1	× 0.1	× 0.1	× 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	× 0.1	< 0.1	< 0.1	× 0.1	× 0.1	< 0.1	< 0.1	0.8	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	× 0.1	× 0.1	× 0.1	2.4
904	Г	d mdd		N SIM-OT	130	135	132	611	138	140	68.7	86.9	81.0	280	140	100	92.9	9.06	111	80.3	101	87.8	76.3	52.8	81.1	74.7	54.3	78.6	62.7	91.9	94.6	78.4	91.7	86.9	151	87.0	86.3	135	100	70.1	91.9	75.3	62.1	65.3
117-06	SuS		l	TD-MS	4	-	τ- V	Ţ. V	Ţ.	÷ V	,- V	÷ V	÷ V	,- V	2	3	÷ V	٧	,- V	Ţ.	T-V	,- V	۲ ۷	+	,- V	-	۰ ۲	Ţ.	τ- V	 γ	Ţ.	Ţ. V	, V	v	61	٧	٧ -	V	-	-	,- V	v	က	9
Report: A17-06904		_ ا	ı	MULT I TI NAA/T D-ICP- MS	r.0 >	× 0.1	× 0.1	× 0.1	× 0.1	r.0 >	× 0.1	× 0.1	× 0.1	× 0.1	× 0.1	- 0.1	× 0.1	× 0.1	× 0.1	× 0.1	× 0.1	× 0.1	× 0.1	0.3	× 0.1	< 0.1	× 0.1	× 0.1	× 0.1	- 0·1	× 0.1	× 0.1	× 0.1	× 0.1	× 0.1	< 0.1	1.0 >	× 0.1	× 0.1	× 0.1	× 0.1	- 0.1	- 0.1	0.5
Rel	-S			NAA R O Ç M	9.6	Ω 8)	13.4	7.9	11.4	ω ω	10.4	11.6	11.0	13.4	12.2	16.6	13.3	12.3	20.3	17.1	13.0	11.4	10.2	9.8	12.1	10.2	27.9	14.3	13.6	15.4	16.9	7.4	12.2	13.8	23.7	13.8	12.7	16.9	12.2	14.5	16.2	11.2	10.3	7.4
	လွ	mdd r.			4.0	0.5	6.0	8.0	9.0	4.0	1.8	1.0	1 ئ	7.1	8.0	1.6	6.0	9.0	1.7	1.0	8.0	1.0	1.1	8.0	ر ن	0.7	2.2	1.9	1.7	2.1	1,3	6.0	1.1	6.0	0.7	6.0	6.0	2.0	0.8	8.0	9.0	Ξ.	1.3	6.
	g	mdc u	1.0	TD-MS INAA	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	200.	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Ę.	Re	Г	0.001		27.1 < 0	34.7 < 0	33.2 < 0	24.7 < 0	33.4 < 0	34.1 < 0	45.9 < 0	31.7 < 0	51.8 < 0	27.3 < 0	51.9 < 0	61.6 < 0	39.1 < 0	41.2 < 0	32.8 0	26.8 < 0	37.0 < 0	36.4 < 0	31.6 < 0	28.1 < 0	30.6 < 0	36.9 < 0	25.7 < 0	56.1 < 0	٧		32.2 < 0	37.5 < 0		28.3 < 0	30.7 < 0	52.0 < 0	46.6 < 0	24.8 < 0	30.8 < 0	34.0 < 0	37.3 < 0	44.5 < 0	50.6 < 0	48.3 < 0
Activation Laboratories Ltd.	8	mdd	Г		0.037	L	0.050	0.046	0.047	0.065		L	0.020	0.082	0.058		0.053		0.078		0.059	0.063		0.077		0.076		0.045	\Box	_				0.084		0.052	0.043	0.101	0.056	0.083	0.118			0.125
ooratc	凸	%	0.001	10-ICP	1.67 0.	_	1.54	ı	1.56	1.69	1.04	1.19	1.27 0.	_	1.99	1.13 0.		1.29 0.		1.08		1.47 0.		0.82 0.		1.17 0.	0.71 0.		_				- 1	_	- 1	1.30 0.	1.10 0.	1.45 0.	ш	1.01	1.23	1.23	Ш	1.01
on Lal	₽ Ya	%	0.01	IS INAA	7.0		1 1	1.0	0.2	0.2	1.2	0.4	0.7	0.8	1.4	15.5		0.7		0.3			0.5		0.3	1.6						0.4	1.0	0.4		0.8	0.5	0.2	0.2	0.2	0.5		2.5	1.3
tivatic	₽	mdd	- - -	P ⊤D-MS	754		851	916	662	679	. 249	854 (614 (1300	751			931 (523 (Ц					957 4.
Ac	Mn	mdd	-	TD-ICP	L		L		L		L		l	ľ					L	8 505	L	L							\Box	\Box				╝		0 1070			Ц	3 531	0 1140	Ш		
	Mg	%	0.01	TD-ICP	3 0.55		5 0.80	09:0	5 0.81	0.60	L	1 0.82		1.25		4 0.95	7 0.87	2 0.82		99.0		2 0.82	9.0 6	0.42		2 0.70	1 0.66	1.11						4 0.80		8 0.90		1.20	Ш	8 0.53	0.1.30	Ц	Ш	5 0.43
		шdd	0.5	SM-CT	3 26.3		27.5	27.9	29.6	7.22.1	50.1	35.1	66.5	14.8	45.1	74.4	39.7	39.2	44.4	34.9	31.2	3.12	40.9	31.0					_							44.8	44.7	28.9	35.2	21.8	37.0			25.5
Results	쏘	8	10.0	TD-ICP	1.08		1.41	1.29	1.48		1.40	1.41	1.49	1.79		1.79	1.26		1.11	0.81		1.42	1.27	0.94											0.91	1.45	1.40	1.23	1.49	1.27	1.11		1.80	1.14
	느	qdd	ın.	¥ ¥	< 5	L	< 5	< 5	< 5	< 5	< 5	< 5	< 5	\$ >	< 5	9 >	< 5	\$ >	< 5		< 5	L	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		< 5	< 5	< 5	< 5	< 5	9 >	9 >	< 5	ç >	< 5	< 5		< 5
	띡	mdd	0.1	N TD-MS TD-MS	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	0.2
	P 만	qdd	10	TD-MS	120	110	70	80	150	120	210	120	120	140	120	130	140	150	200	220	130	140	150	160	120	150	360	140	100	150	130	150	150	120	130	120	120	130	150	130	120	8	8	220
	ge B	٦		SW-CL	× 0.1	× 0.1	× 0.1	× 0.1	× 0.1	× 0.1	× 0.1	× 0.1	× 0.1	× 0.1	× 0.1	0.3	× 0.1	< 0.1	× 0.1	× 0.1	× 0.1	× 0.1	< 0.1	< 0.1	× 0.1	< 0.1	< 0.1	× 0.1	× 0.1	× 0.1	× 0.1	× 0.1	× 0.1	× 0.1	0.2	< 0.1	< 0.1	< 0.1	< 0.1	× 0.1	× 0.1	< 0.1	< 0.1	v 0.1
	Analyte Symbol (Unit Symbal		e le	16DB005	16DB007	16DB135	16DB153	16DB155	16DB160	16DB206	16DB212	16DB218	16DB223	16DB224	17DB001	17DB002	17DB003	17DB004	17DB005	17DB006	17DB007	17DB008	17DB009	17DB010	17DB011	17DB012	17DB013	17DB014	17DB015	17DB016	17DB017	17DB018	17DB019	17DB020	17DB021	17DB022	17DB023	17DB024	17DB025	17DB026	17DB027	17DB028	17DB029

9age 4/19

				æ	Results			Activ	ation	Activation Laboratories Ltd.	atories	s Ltd.			Re	Report: A17-06904	417-06	3904					
Analyte Symbol	e e	Ηĝ	드	<u></u>	_ _	٦	Mg	Mn	92	Na F	Ь	Rb	Re	s qs	Sc	Se	Sn Sr	Г	Ta T	Te	Tb dT	Г	부
Unit Symbol	mdd	cdd	mdd	qdd	%	udd	%	mdd	udd	%	%	d mdd	d wdd	d udd	d udd	d wdd	d mdd	c udd	d udd	d wdd	6 mdd	8%	mdd
Lower Limit	0.1	10	П	22	10.0	0.5	0.01	Ţ	0.1	0.01	0.001	0.2	0.001	0.1	0.1	0.1	0	0.2 0	0.1	0.1 C	0.5	0.01	0.1
Method Code	TD-MS	TD-MS	TD-MS	INAA	TD-ICP	TD-MS	TD-ICP	TD-ICP	_D-MS	NAA	TD-ICP	MULT I T NAA/T D-ICP- MS	N-OT	INAA II	NAA N N D N	MULT I T NAAT D-ICP-	TD-MS T	SIM-OT	MULT I T NAA/T D-ICP- MS	TD-MS	INAA	TD-ICP N	MULT I NAA/T D-ICP- MS
17DB030	< 0.1	230	0.1	< 5	1.31	39.5	0.49	415	ω ζί	1.1	0.050	48.1	48.1 < 0.001	6.0	7.4	, O.1	4	52.9	0.7	× 0.1	2.5	0.32	31.2
17DB031	< 0.1	230	0.1	< 5	1.46	19.4	0.31	423	2.3	1.07	0.075	49.4	49.4 < 0.001	4.0	6 5,	> 0.1	2	49.8	0.2	× 0.1	9.0	0.22	26.7
17DB032	> 0.1	150	< 0.1	< 5	1.47	27.5	0.71	908	0.2	1.77	0.051	37.7	< 0.001	8.0	10.4	> 0.1	-	91.1	< 0.1	× 0.1	0.8	0.15	16.4
17DB033	> 0.1	150	< 0.1	< 5	1.63	32.0	0.53	552	1.0	1.27	0.048	43.2	43.2 < 0.001	2.0	8.4	> 0.1	+	73.2	< 0.1	< 0.1	< 0.5	0.17	19.1
17DB034	< 0.1	100	< 0.1	< 5	1.02	24.2	0.53	563	1.7	1.19	0.105	34.7	34.7 < 0.001	2.0	10.2	0.2	2	74.6	< 0.1	× 0.1	< 0.5	0.46	12.2
17DB035	< 0.1	100	0.1	< 5	1.89	34.5	0.93	1630	7.0	1.68	0.105	55.8	55.8 < 0.001	1.1	14.2	< 0.1	9	102	0.2	< 0.1	< 0.5	0.56	24.1
17DB036	< 0.1	80	0.1	< 5	0.95	44.5	09:0	808	8.8	0.87	0.157	44.0	44.0 < 0.001	1.5	15.6	< 0.1	3	99.0	0.2	< 0.1	2.0	0.67	12.5
17DB037	× 0.1	80	< 0.1	< 5	1.82	46.7	0.89	1210	7.0	1.36	0.050	78.2	78.2 < 0.001	1.1	13.4	× 0.1	2	82.3	0.2	× 0.1	3.7	0.43	15.7
17DB038	< 0.1	70	< 0.1	< 5	2.04	41.4	0.84	966	1.0	1.38	0.052	43.8	43.8 < 0.001	1.0	12.1	< 0.1	2	9.98	< 0.1	< 0.1	3.4	0.26	19.1
17DB039	< 0.1	130	< 0.1	< 5	1.25	32.0	0.51	587	19.6	1.12	0.045	46.0	46.0 < 0.001	0.8	D. 0	< 0.1	3	58.4	1.2	< 0.1	1.2	0.64	15.9
17□B040	< 0.1	230	< 0.1	< 5	1.05	37.3	0.49	409	1.1	1.28	0.045	35.3	35.3 < 0.001	6.0	10.3	< 0.1	٧ -	64.8	< 0.1	< 0.1	1.0	0.34	11.3
17DB041	< 0.1	110	< 0.1	< 5	1.17	28.4	66:0	893	0.4	1.65	0.051	29.7	< 0.001	6.0	14.3	< 0.1	٧	116	< 0.1	< 0.1	1.2	0.35	10.0
17DB042	< 0.1	140	< 0.1	< 5	1.35	44.8	0.89	5700	9.0	1.26	0.076	38.9	38.9 < 0.001	1.2	15.3	< 0.1	-	1.68	< 0.1	< 0.1	< 0.5	0.17	11.1
17DB043	< 0.1	130	< 0.1	< 5	1.75	14.2	1.26	1350	1.0	2.45	0.083	26.0	< 0.001	7.3	13.5	< 0.1	٧	588	< 0.1	< 0.1	< 0.5	0.20	5.2
17DB044	< 0.1	120	< 0.1	< 5	1.88	45.2	1.07	782	1.4	2.05	0.063	54.8	54.8 < 0.001	1.3	12.4	< 0.1	2	141	0.1	< 0.1	< 0.5	0.23	17.8
17CS001	< 0.1	100	< 0.1	< 5	1.35	74.6	1.31	1200	9.0	1.22	0.117	55.6	55.6 < 0.001	3.8	27.4	< 0.1	-	116	< 0.1	< 0.1	< 0.5	0.33	6.6

	Υb	mdd	1.0	ZW-0⊥	2.0	2.3	2.1	1.9	2.0	1.9	5.3	3.1	3.7	2.9	2.1	2.3	2.7	2.9	3.2	3.0	4.0	3.7	2.8	2.6	2.6	5.5	7.2	6.3	4.1	5.5	3.3	4.4	3.3	3.4	4.4	3.2	2.9	2.4	2.3	3.2	2.8	3.0	4.8	5.4
	Tm	d mdd	$\overline{}$	TD-MS	0.3	4.0	0.3	0.3	0.3	0.3	0.8	0.5	9.0	0.4	0.3	0.4	4.0	0.5	9.9	0.5	9.0	9.0	0.4	0.4	0.4	6.0	1.3	1.1	9.0	6.0	0.5	0.7	0.5	0.5	0.7	0.5	0.4	0.4	0.3	0.5	0.4	0.5	0.8	0.8
	Er	d udd	-	TD-MS 1	2.1	2.4	2.3	1.9	2.1	2.0	5.8	3.3	3.8	3.0	2.3	2.4	2.7	3.0	3.7	3.4	4.3	3.9	2.8	2.7	2.6	5.8	9.4	7.1	4.3	6.2	3.6	4.6	3.4	3.7	4.7	3.2	3.0	2.6	2.3	3.1	3.1	3.1	5.1	5.2
	의	d udd	П	TD-MS	0.7	9.0	9.0	0.7	0.7	0.7	2.1	1.1	£.	1.0	9.0	9.0	6.0	J. D.	i.	1.2	7.5	μ. Ε.	1.0	1.0	9.0	t. Di	3.5	2.5	4.1	2.1	i. Eú	 ισ:	r. Gi	L. Eú	 ισ	1.1	1.0	9.0	9.0	1.0	1.1	1.1	1.7	1.7
		d udd		T SM-CT	9.0	9.0	0.7	9.0	9.0	9.0	- 8:	6.0	1.0	0.8	0.8	0.7	6.7	8.0	1.1	6.0	1.2	1.1	8.0	0.8	0.7	1.4	3.1	5.1	1.1	9.1	1.0	ci	6.0	1.0	r.	6.0	0.8	0.7	9.0	0.7	6.0	6.0	1.3	ri Si
904	y Tb	E	П	LD-MS	3.8	4.1	4.2	3.6	3.8	3.9	11.7	6.1	6.8	5.1	4.7	4.4	6.4	5.4	7.0	6.3	7.7	7.3	5.2	5.3	4.9	10.1	19.5	14.1	7.5	11.6	6.9	8.2	6.1	6.9	7.9	5.9	5.4	4.8	4.1	5.2	5.9	5.7	9.1	9.8
117-06	Gd Dy	_	П	TD-MIS	4.2	4.2	4.9	4.4	4.7	5.0	12.3	6.7	7.3	5.5	6.3	5.2	5.3	6.2	8.2	9.9	7.5	7.2	5.6	5.3	5.0	8.8	22.6	16.3	7.7	12.7	7.5	8.1 T.	5.8	7.2	7.9	6.3	6.1	5.2	4.3	5.0	6.4	6.7	9.6	7.7
Report: A17-06904		u		T SM-DT	96.0	0.95	1.05	0.94	0.93	1.02	1.12	1.16	1.12	1.35	1.12	1.17	1.16	1.30	2.23	1.64	1.23	1.20	1.0.1	0.97	1.07	1.10	3.39	1.24	1.25	1.47	1.64	0.94	1.06	1.45	1.94	1.33	1.31	1.22	0.97	1.20	1.62	1.35	1.18	0.84
æ	Sm Eu	d udd	П	INAA ⊢	5.2	r.	5.9	5.1	5.3	5.9	11.7	7.0	8.7	5.1	6.3	6.5	7.1	7.2	8.9	8.0	9.8	7.5	6.3	6.5	5.6	8.5	24.6	15.6	₩.	14.5	7.1	8.8	6.4	69.⊤	9.6	7.5	6.9	2.8	5.5	5.9	7.3	7.8	11.4	7.1
	Sm S	d udd	П	II-OT	4.8	4.8	5.7	4.9	5.4	5.9	11.7	7.2	8.4	5.9	7.3	6.1	6.2	7.0	8.3	7.2	7.7	7.3	6.3	6.0	5.3	8.8	21.2	14.4	7.9	13.3	7.6	8.8	5.9	7.6	7.9	7.1	7.0	5.3	4.9	5.3	6.9	7.4	10.9	7.9
	S PN	۲	Ħ	NAA	19	21	17	18	83	56	88	30	32	83	32	42	28	24	30	49	24	38	21	33	ß	56	8	S	8	29	4	52	27	8	8	32	21	প্ত	24	27	8	28	49	8
Ltd.	PΝ	_	$\overline{}$	E SM-OL	23.7	23.4	26.4	24.8	25.8	28.8	48.6	31.8	39.6	27.3	37.2	29.7	30.2	34.4	38.2	31.9	35.0	33.1	28.8	26.9	24.9	37.4	83.5	68.8	38.5	56.2	34.3	39.2	28.7	34.7	33.0	34.9	32.9	25.1	25.1	24.7	31.8	38.4	53.4	35.7
atories	Pr	ε		TD-MS T	6.3	6.2	7.0	6.7	6.8	7.6	12.5	8.5	10.7	6.9	10.2	7.8	9.1 1.8	9.1	9.4	8.1	9.2	8.7	7.7	7.2	6.9	6.6	19.5	18.9	10.4	13.9	8.5	10.2	7.6	9.0	7.9	9.3	8.6	6.3	6.8	6.5	8.2	10.3	13.9	9.4
-abora	П	d udd	П	INAA	62	59	75	09	19	7	314	121	114	70	86	66	103	87	118	88	112	103	88	18	7.1	136	418	847	156	153	142	118	100	118	107	104	96	69	84	92	101	62	501	103
Activation Laboratories Ltd	Ge (٦	-	- D-MS	55.2	50.6	67.1	56.4	56.6	64.7	274	108	98.7	66.3	94.6	0.99	9.08	80.2	103	72.4	8.18	95.3	75.4	64.6	62.2	134	312	695	135	125	125	105	86.8	99.6	80.2	91.8	82.7	59.3	73.9	62.0	92.0	93.2	177	85.2
Activ	La	d mdd	Ĭ	NAA A	28.0	27.5	29.9	27.4	29.0	32.0	50.5	35.5	47.5	30.0	49.7	48.7	40.2	40.2	98.6	34.4	39.7	34.6	34.7	33.0	27.7	43.2	78.2	86.5	48.0	49.0	40.3	41.0	32.6	37.1	31.1	41.0	35.6	27.3	30.4	27.9	31.9	42.5	57.9	42.2
	La	udd udd		TD-MS	23.9	24.4	26.1	26.1	25.8	29.3	46.6	33.1	42.1	25.3	42.3	30.7	31.8	35.6	33.0	28.7	34.3	32.7	31.2	28.4	25.4	39.8	63.8	74.6	44.0	42.1	31.8	38.2	29.2	32.7	25.6	37.2	33.1	23.9	27.7	24.9	29.5	39.7	52.9	34.3
	JZ.	ш		TD-MS	71	105	59	12	19	59	24	74	92	126	45	155	137	87	23	54	13	16	41	120	69	-	4	40	47	99	93	128	166	140	209	82	52	17	46	88	142	159	259	208
Results	<u>`</u>	udd	П	TD-MS	17.4	20.1	19.4	16.4	18.0	16.7	47.4	27.1	32.0	25.3	20.0	20.1	22.1	24.9	32.1	28.9	35.8	32.8	23.0	21.9	21.6	46.4	84.7	56.8	35.1	51.8	30.7	37.6	27.0	30.0	39.7	26.7	23.7	21.6	18.7	25.7	24.7	27.6	41.1	40.8
R.	M	mdd	П	NAA	r v	v	r v	۲ ×	۲ ۷	v	v	v	<u>-</u>	۲ ۷	۲ >	۲	v	r v	v	۲ ۷	v	v	۲ ۷	۲ ۲	٧ -	v	v	v	v	v	v	, ,	v	v	v	۲ ۲	٧ -	۲,	٠ ۲	r V	۲ ۷	۲ ۷	~	v
			0.1	MULT I NAA/T D-ICP- MS	1.8	1.8	1.8	1.6	1.9	1.7	15.7	2.6	5.1	1.8	5.1	2.4	2.5	6.3	2.1	2.0	2.8	2.7	2.7		2.2	4.5	2.8	4.2	2.3	3.7	2.2	2.4	2.5	2.7	2.5	2.8	2.8	1.9	2.4	2.3	1.9	2.7	3.4	3.0
	>	mdd	CI	TD-ICP	44	37	40	21	28	18	32	34	26	52	63	115	55	59	22	52	33	34	20	47	41	49	84	32	34	43	63	28	44	54	150	58	27	71	36	74	81	37	90	85
	Ц	шdd		TD-MS	0.24	0.24	0.24	0.15	0.38	0.21	1.06	0.42	0.86	0.17	0.65	0.58	0.40	19:0	18.0	0.49	0.55	0.49	0.48	0.40	0.40	0.56	0.43	0.78	1.54	1.01	0.35	0.50	0.43	0.34	0.36	0.58	0.33	0.19	0.43	19:0	0.47	0.44	19.0	1.16
	Analyte Symbol	Unit Symbol	Lower Limit	Method Code	16DB005	16DB007	16DB135	16DB153	16DB155	16DB160	16DB206	16DB212	16DB218	16DB223	16DB224	17DB001	17DB002	17DB003	17DB004	17DB005	17DB006	17DB007	17DB008	17DB009	17DB010	17DB011	17DB012	17DB013	17DB014	17DB015	17DB016	17DB017	17DB018	17DB019	17DB020	17DB021	17DB022	17DB023	17DB024	17DB025	17DB026	17DB027	17DB028	7DB029

age 6/19

	й	mdd	0.1	TD-MS	7.	4	4	3.		7.3			.01		2.	8	2.	2.	.2	
	임	mdd	0.1	TD-MS TD-MS	2.5	1.4	1.4	1.3	1.0	2.5	9.1	2.9	3.6	1.3	1.0	1.1	0.8	1.0	9.0	1.8
	q⊥	udd	0.1	TD-MS	8.1	1.0	1.1	1.0	8.0	6.1	21	2.2	2.2	6'0	8.0	6'0	9'0	2'0	8.0	1.4
6904	Οỳ	mdd	0.1	TD-MS	13.1	7.0	7.7	6.7	5.6	13.4	11.1	15.5	19.3	6.9	5.5	5.8	4.5	5.0	4.8	9.1
A17-0	Gd	шdd	0.1	TD-MS	10.2	1.9	7.8	6.2	5.5	12.7	11.2	12.4	15.7	6.2	5.3	6.5	4.7	5.2	5.8	10.0
Report: A17-06904	Eu	mdd	90.0	TD-MS	0.86	0.64	1.22	0.86	0.84	1.35	1.68	1.29	1.43	080	0.84	1.42	1.05	1.31	1.11	2.27
œ	Sm	udd	0.1	INAA	10.9	7.1	9.0	7.8	Ē.	10.6	10.6	11.9	16.9	8.0	5.4	7.6	5.0	5.1	9.6	1.01
	Sm	шdd	0.1	TD-MS	9.5	6.2	8.1	7.2	5.8	11.7	11.5	12.9	15.3	6.3	5.8	7.5	5.5	5.8	7.2	10.4
	₽	mdd	ω	INAA	37	28	43	40	31	20	49	77	2	8	35	31	25	2	4	49
s Ltd.	PΝ	mdd	0.1	TD-MS	39.3	27.0	37.4	35.0	26.5	50.2	51.2	55.3	66.3		27.3	34.9	27.3	27.1	37.2	43.7
Activation Laboratories Ltd.	Pr	mdd	0.1	TD-MS TD-MS	10.6	7.6	10.0	9.5	7.2	12.8	13.3	14.5	17.4	8.0	7.4	9.1	7.5	7.0	10.2	10.8
Labo	Ce	mdd	8	INAA	144	104	118	123		405	196	115	140	119	66		102	73	104	114
vation	Se Se	mdd	0.1	TD-MS	119	87.6	103	106	69.7	348	168	95.3	118	89.7	90.2	9.99	89.0	65.3	94.0	82.8
Acti	La	mdd	0.5	NA A	45.8	32.9	42.2	42.1	30.3	59.1	63.6	65.1	68.4	41.0	35.1	34.2	35.8	30.0	49.9	47.0
	La	шdd	0.1	TD-MS	39.4	29.1	36.7	37.7	27.5	48.1	50.4	50.9	61.1	30.6	28.6	33.1	29.3	25.4	42.5	35.0
	Zr	mdd	_	TD-MS	46	63	22	114	166	301	174	201	198	253	96	20	34	127	113	147
Results	≻	mdd	1.0	TD-MS	56.9	9. FB	35.4	31.0	24.3	57.5	45.5	60.9	78.1	29.4	23.5	27.6	20.6	24.6	20.2	47.7
ď	×	mdd	-	INAA	v	v	v	· v	v	- 1	۲ >	٧ -	٧ ٦	v	v	, ,	١ >	v	, v	۱ >
	Ω	шdd	0.1	MULT I NAA/T D-ICP- MS		5.2	3.6	3.9	3.7	5.0	2.8	3.9	4.8	3.5	2.4	2.2	2.5	1.8	4.8	2.5
	>	mdd	CI	TD-ICP	52	4	24	31	6/ 1	96	132	72	48	92 79	54	99	53	51	25	78
	ᆮ	mdd	0.05	TD-MS	0.71	0.57	0.45	0.50	0.54	0.75	0.36	0.31	0.41	0.78	0.55	0.39	0.46	0.18	0.64	0.67
	<u> </u>			ω	l															

Activation Laboratories Ltd.

Report: A17-06904

	2	3	2	200
Unit Symbol	ppm	wdd	mdd	6
Lower Limit	0.2	1.0	90'0	
Method Code	INAA	SM-01	INAA	INAA
16DB005	2.9	6.0	0.17	30.8
16DB007	3.2	0.3	0.19	
16DB135	3.2	0.3	0.17	27.0
16DB153	2.5	0.3	0.15	32.3
16DB155	3.0	6.0	0.16	30.2
16DB160	3.3	6.0	91.0	33.0
16DB206	5.6	2.0	98.0	23.2
16DB212	4.0	0.5	0.21	26.7
16DB218	4.7	0.5	0.27	27.3
16DB223	3.5	0.4	0.48	1.60
16DB224	3.3	0.3	0.43	1.27
17DB001	3.5	0.4	0.46	1.01
17DB002	4.1	0.4	12.0	83.4
17DB003	3.5	9.4	0.19	30.9
17DB004	3.9	0.5	0.20	22.5
17DB005	3.9	0.5	0.17	16.3
17DB006	4.9	9.0	0.27	22.6
17DB007	4.3	0.5	0.21	26.9
17DB008	3.7	0.4	0.19	24.2
17DB009	3.3	0.4	0.16	18.4
17DB010	3.0	0.4	0.16	22.5
17DB011	6.6	0.8	0.29	24.9
17DB012	8.0	0.9	0.42	17.6
17DB013	7.3	0.8	0.37	28.5
17DB014	4.3	9.0	0.23	28.1
17DB015	6.1	0.7	0.32	18.5
17DB016	3.6	0.5	0.48	1.03
17DB017	4.7	0.7	0.28	28.8
17DB018	4.3	0.5	0.21	24.3
17DB019	4.0	0.5	0.22	17.6
17DB020	4.9	2.0	0.27	25.0
17DB021	4.1	0.5	0.21	25.4
17DB022	3.8	0.4	0.21	24.6
17DB023	2.6	6.0	0.15	25.1
17DB024	3.1	0.4	0.17	25.6
17DB025	4.1	0.5	0.16	20.8
17DB026	3.7	0.4	0.20	22.9
17DB027	3.9	9.0	0.25	29.1
17DB028	5.7	2.0	0.32	26.6
17DB029	5.2	8.0	0.81	1.06
17DB030	8.2	1.0	0.53	17.0
1700001	F 4	20	36.0	

Ę.	
ories	
borati	
on Lal	
tivatic	
Ac	

Results

Report: A17-06904

Analyte Symbol	Yb	Lu	Lu	Nass
Unit Symbol	ppm	ppm	mdd	5
Lower Limit	0.2	1.0	90.0	
Method Code	INAA	SIM-Q1	NAA	NAA
17DB032	9.9	2.0	98.0	54.9
17DB033	5.0	9.0	0.31	20.5
17DB034	3.7	5.0	0.22	19.6
17DB035	7.2	1.0	98.0	1.41
17DB036	4.5	9.0	0.59	1,11
17DB037	9.0	1.1	1.16	1.30
17DB038	11.2	1.3	0.64	24.0
17DB039	6.1	9'0	98.0	22.1
17DB040	3.7	0.4	0.44	1.25
17DB041	3.6	6.4	0.22	32.7
17DB042	3.1	0.4	0.43	1.19
17DB043	3.7	6.4	0.42	1.41
17DB044	3.5	6.0	0.59	1.24
17CS001	5.8	2'0	0.75	1.04

				ဗွ		4	Activation Laboratories Ltd	ion La	borato	ries L1	ţġ.			Repo	rt: A1	Report: A17-06904	4				
Analyte Symbol Au	n Ag	Ag	Ag	C	on	B	PO	Mo	Pb Pb	<u>М</u>	Z	Z		Zn Zr		S	¥	As	Ba	Ba	Be
Unit Symbol pp	mdd qdd		μdd	mdd	mdd	_	٦	_	ے	_	Ē	d udd	d udd	ء	٤	% mdd	%		mdd	med	mdd
Lower Limit 2	0.05	0.3	2	0.2	-	1.0	0.3	٦			1 2.0	Ñ		0.5	20	10.01	Г	0.01 0.5	-	50	0.1
Method Code	INAA TD-MS	AS TD-ICP	P INAA	TD-MS	3 TD-ICP	TD-MS	TD-ICP	TD-ICP T	TD-MS TI	TD-ICP TI	Ş	TD-ICP	NAA	TD-MS T	TD-ICP IN	INAA TD	9	TD-ICP INAA	TD-MS		TD-MS
GXR-1 Meas	8		32.0	1050	1190	3 2.6	2.8	16	212	738	9.66	42		669	738		0.25	2.13	650	0	6.0
GXR-1 Cert	8	31.0	31.0	1110	0 1110	3.30	3.30	18.0	730	730	41.0	41.0		760	760)	0.257	3.52	750	0	1.22
DH-1a Meas																					
DH-1a Cert																					
GXR-4 Meas	69	3.34	3.4	2880	0259 0		< 0.3	357	48.4	44	39.8	4		61.0	74		1.83	6.46	12	126	2.1
GXR-4 Cert	4	4.00	4.0	6520	0 6520	0	0.860	310	52.0	52.0	42.0	45.0		73.0	73.0		1.77	7.20	1640	0	1.90
SDC-1 Meas				28.6	9.)			23.4	12	33.4	35		94.0	66			8.16	609	6	2.9
SDC-1 Cert				30.000	000:00	0			25.00	25.00	38.0	38.0		103.00	103.00			8.34	630	0	3.00
GXR-6 Meas			0.4		75	2	< 0.3	\ V		95		56			130		0.02	13.2			
GXR-6 Cert		1.	1.30		99.0)	1.00	2.40		101		27.0			118	0	091010	17.7			
DNC-1a Meas				91.4	.4 101	_			5.7	< 3	262	243		54.5	56				3	66	
DNC-1a Cert				100)			6.3	6.3	247	247		70	20				118	8	
SBC-1 Meas				27.5		1 0.3	9.0	CI	33.5	27	83.7	85		174	182				352	2	3.0
SBC-1 Cert				31.000	31.0000 81.0000	0.40	0.40	ſΝ	35.0	35.0	82.8	8		186	186				788.0	0	3.20
OREAS 45d (4-Acid) Meas				346	385	10		V	20.3	6	231	243		37.7	43		90.04	7.90	-	176	0.7
OREAS 45d (4-Acid) Cert				371	17 371			2.500	£2. 86.	21.8	231.0	231.0		45.7	45.7		0.049	8.150	183.0	0	0.79
SdAR-M2 (U.S.G.S.) Meas				242	12 254	5.1	5.7	13	748	840	51.7	83		766	800				1000	0	6.8
SdAR-M2 (U.S.G.S.) Cert				236.00	0 236.00 0 00	5.1	5.1	13	808	808	48.8	64		760	760				066	0	9.9
DMMAS 120 Meas	768																	47	1780	1190	
DMMAS 120 Cert	727																	17	1790	1270	
DMMAS 120 Meas	969																	81	1820	1250	
DMMAS 120 Cert	727																	17	1790	1270	
DMMAS 120 Meas	730																	17	1740	820	
DMMAS 120 Cert	727																	17	1790	1270	
DMMAS 120 Meas	792																	17	1780	996	
DMMAS 120 Cert	727																	17	1790	1270	
DMMAS 120 Meas	748																	17	1790	800	
DMMAS 120 Cert	727	ΙI																Ш	1790	1270	
16DB005 Orig	0,	- 1	< 0.3	18.0			- 1	- ۷	12.5	10	19.9	21		53.2	22	Ť	< 0.01	5.71	ĕ	348	1.5
16DB005 Dup	0	< 0.05	4.0	15.2		7 < 0.1	< 0.3	_ V	τ. δ.	7	19.5	ล	1	45.9	22	v	× 0.01	5.03	88	13	1.4
17DB028 Orig	Ş	- 1	7:0	27.			- 1	v	180	178	32.1	설		582	288	Ť	0.01	6.22	123	8	5.5
17DB028 Dup	9 '	< 0.05	9.6	26.6	90	0.7	0.8	, V	176	180	31.6	ا ا		581	230	v	< 0.01	6.32	281		5.4
17DB030 Orig	7	- 1	E	4			v 0.3	-	49.8	4	16.4	<u>0</u>		133	115	1	9.0	6.83	+	e	4.4
17DB030 Dup	+	0.07	v 0.3	17.0	0:		× 0.3	_ V	21:0	48	16.6	<u></u>	T	109	132	\dagger	9.0 \$	6.85		,	4.1
_	-	-	_	_	_	_	_	-	-	-	_	-	-	-	-	-	-	_	_	_	_

age 10/19

Ξ
÷
·-
e
D
α
Œ.

				-	ပ္မ		⋖	ctivat	on La	borat	Activation Laboratories Ltd.	₽;			Rep	Report: A17-06904	17-069	5					
Analyte Symbol	Αu	Αg	Ag	A _G	no	no	B	8	Mo	Pb	Pb	z	جَ ا	ا ا	Zu	F.	, uz	s	\ ا	As	Ba	Ba	Be
Unit Symbol	qdd	mdd	udd	udd	udd	udd	d udd	d udd	d udd	udd wdd	d wdd	t udd	d udd	udd	d wdd	d wdd	, wdd	%	d %	d mdd	udd wdd	mcd	mdd
Lower Limit	2	0.05	0.3	2	0.2	1	0.1	0.3	_	0.5	3	0.5	_	20	0.5		20 (0.01	0.01	.5.	-	50	0.1
Method Code	INAA	TD-MS	TD-ICP	INAA	TD-MS	TD-ICP	TD-MS	TD-ICP	LD-ICP	TD-MS	INAA TD-MS TD-ICP TD-MS TD-ICP TD-ICP TD-MS TD-ICP TD-MS TD-ICP INAA TD-ICP INAA	TD-MS	TD-ICP	NAA	TD-MS	TD-ICP	NAA	TD-ICP	TD-ICP TD-ICP INAA TD-MS INAA	NAA	LD-MS	П	TD-MS
Method Blank	L		< 0.3			٧		< 0.3	Ļ,		× 3		٠ ۲			٧		< 0.01	< 0.01				
Method Blank			< 0.3			v		< 0.3	Ÿ		8		^			v		< 0.01	< 0.01				
Method Blank			< 0.3			3		< 0.3	-v		× 3		۲ >			v		< 0.01	< 0.01				
Method Blank		< 0.05	< 0.3		< 0.2		< 0.1	<1 < 0.1 < 0.3	۲>	< 0.5	< 3	< 3 < 0.5	< 1		< 0.5	٧		< 0.01	0.03		٧		< 0.1
Method Blank	< 2			< 5										< 20			< 50			< 0.5		< 50	

	Mg	· %	10.0			8.20 0.217					ı	34.0 1.02		0.609	ı	2	154	33	19.4 0.24	21.5 0.245	17.6	17.9													ıı		38.9 0.49	- 1	ı
	_	E G	0.5	TD-MS										_	4	2	=	34			1.	1.		L		_				L		_	Ш						L
	×	%	0.01	TD-ICP	0.04	0.050			3.25	4.01		2.7	.E	1.87					0.42	0.412										L			1.01	1.1	1.49	1.2	1.21	4.	
	<u>></u>	g a	S.	INAA																																			
	드	mda		TD-MS INAA		0.770				0									k 0.1	960.0													1.0		0.1				
904	ρΉ	qdc	10	TD-MS	3440	3900			210	110	100	200.00									1220	1440.00											130	110	06	02	230	220	
17-06	ge	mad	0.1	TD-MS																													× 0.1	< 0.1	< 0.1	< 0.1	< 0.1	× 0.1	
Report: A17-06904		mdd		TD-MS	6.0	13.8			18.5	20.0	19.1	21.00			14.1	15	26.1	27.0	21.8	21.20	11.8	17.6																	
Rep	士	٤		INAA																				Γ														7	
	Ē	E		TD-MS	× 0.1	096.0			r. Øi	6.30	o.0	8.30					3.0	3.7	<u>:</u>	3.830	4.	7.29		T									0.2	g. 6	7.4	ت. ق	9.0	9.0	
	e e		-	_																			3.49	3.54	3.85	3.54	3.54	3.54	3.49	3.54	3.42	3.54						_	
ţġ.	J.		0.2																					T									T						
ries L	Г	d Wdd	l	ll																				T		t						T	T					_	
Activation Laboratories Ltd.	1	udd	l	TD-MS INAA	2:52	3.00			2.33	2.80	3.42	4.00					7.18	8.2	3.3	3.910	1.57	1.82		t		t						T	2.41	2.27	7.78	7.57	4.96	4.97	
on Lat	Г	id wdd		NAA T																			155	138	135	138	145	138	142	138	138	138	F					_	
tivatic	1	l	l	TD-MS IN	> 10.0	12.0			> 10.0	64.0	0.01	64.00			> 10.0	270	> 10.0	109	> 10.0	546	> 10.0	49.6		t		t						T	> 10.0	0.01	> 10.0	0.01 -	> 10.0	> 10.0	
Ac		mdd		П	^				٨		^	_			^		^		^		^		4	47.0	51	47.0	94	47.0	45	47.0	94	47.0		٨	_	٨	^	^	
	8	Π	Г	TD-MS INAA	7.4	8.20			14.2	14.6	17.0	18.0			54.6	57	21.3	22.7	27.9	29.50	13.4	12.4		+		t				L		+	6.8	8.3	15.6	15.3	7.2	7.4	
		mad		TD-ICP TD		0.960			1.08	1.01	1.10	1.00	0.19	0.180					0.20	0.185				+		t						+	0.79	69.0	0.26	0.26	0.23	0.23	
ğ	1	%	ı		\dashv	0								0						0				+		+						+	H					+	
	à	mdd	0.5	TD-ICP INAA	1410	380			12	19.0			CI V	0.290			4	0.70	CN V	0.31	CI V	1.05		+		+						+	cu v	4	CI V	ςı V	ca ×	CI V	
	m	l	ı		1340	1380			17.9	19.0				Ó			0.63	0.70	0.33	0.31	66.0	1.05		+		+						+	0.39	98.0	0.65	0.64	0.50	0.53	
	ïā		0.02	SM-U⊥ dC	Ш	1.22			2	1.90	n	3.00	-	1.40			8	3.20	- -	0.79	8	9.9		╀		╀				L		+	2 (-	9	9	Ш	2	
	8		_	TD-ICP	Н	_					L			L		L	L	<u>«</u>		<u> </u>	σ.			¥		¥		#		¥		¥	\vdash		Н		\sqcup	_	
	Analyte Symbo	Juit Symbol	ower Limit	Method Code	GXR-1 Meas	GXR-1 Cert	DH-1a Meas	DH-1a Cert	GXR-4 Meas	GXR-4 Cert	SDC-1 Meas	SDC-1 Cert	GXR-6 Meas	GXR-6 Cert	DNC-1a Meas	DNC-1a Cert	SBC-1 Meas	SBC-1 Cert	OREAS 45d (4-Acid) Meas	OREAS 45d (4-Acid) Cert	SdAR-M2 (U.S.G.S.) Meas	SdAR-M2 (U.S.G.S.) Cert	DMMAS 120 Meas	DMMAS 120 Cert	DMMAS 120	DMMAS 120 Cert	DMMAS 120 Meas	DMMAS 120 Cert	DMMAS 120 Meas	DMMAS 120 Cert	DMMAS 120	DMMAS 120 Cert	16DB005 Orig	16DB005 Dup	17DB028 Orig	17DB028 Dup	17DB030 Orig	7DB030 Dup	

age 12/19

			-	ဗ္ဗ		ઘ	Activation Laboratories Ltd.	ion La	borat	ories l	Ħ.			Rep	Report: A17-06904	17-069	40	
æ	Ξ	B	Ä	ca	ဒ	රි	Ö	ŏ	Cs	လ	ΕĽ	Еe	Ξ	Ξ	Ga	Ge	θĤ	L
md	шdd	mdd	ωdd	%	mdd	шdd	udd	wdd	wdd	wdd	mdd	%	mdd	mdd	mdd	шdd	qdc	mdd
	0.02	2	0.5	0.01	0.1	-	-	2	90.0	-	0.2	0.01	0.1	1	0.1	0.1	10).1
D-ICP	D-ICP TD-MS	TD-ICP	INAA	TD-ICP INAA TD-ICP TD-MS INAA	TD-MS	INAA	TD-MS INAA		TD-MS INAA	INAA	INAA	INAA	TD-MS INAA	NAA	TD-MS	TD-MS TD-MS TD-MS	_SM-CL	SM-OT
^		v N		< 0.01														
^		ν Ω		< 0.01														
< 1	< 0.02	, 2		< 0.01	< 0.1		4		< 0.05				< 0.1		< 0.1	< 0.1	90	< 0.1
			< 0.5			< 1		^ 2		٧ +	< 1 < 0.2 < 0.01	< 0.01		٧				

		md	0.5	INAA																			12.4	11.7	12.3	11.7	13.7	11.7	6.7	11.7	11.6	11.7							
	٦	b mad			30.7	34.9	2170	2629	5.6	6.20	2.5	3.10					5.3	5.76	2.5	2.63	2.6	2.53		T									1.8	1.7	3.4	3.4	5.6	2.2	1
	F	d wdd		ß	0.32	0.390			2.65	3.20	0.78	0.70					79.0	68.0	60.0	0.27				T									0.26	0.23	0.59	0.64	0.75	0.67	T
	Th T			ı	ıı																			T		T							П						1
	Th Th	d ud	<u> </u>	TD-MS INAA	2.5	2.44	> 500	910	19.2	22.5	11.5	12.00					15.3	15.8	£.3	14.5	14.1	2.4.											4.0	8.3	15.5	15.5	29.7	30.2	1
4	Ë	%	0.01	Ы	0.03	0.036			0.29	0.29	0.19	909:0			0.28	0.29	0.51	0.51	0.12	0.773												П	0.32	0.61	0.39	0.25	0.41	0.24	< 0.01
Report: A17-06904	يا	% mdd	Г																																				1
ort: A1	ı	d wdd	l	TD-MS	8.0	13.0			9.0	0.970														T									< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1
Repo	Та	_	l	٨																																			T
	Ta	٤	Г	TD-MS	< 0.1	0.175			9.0	0.790	× 0.1	1.20					8.0	1.10	۸ O.1	1.02	о 6.	∞.											< 0.1	1.0	0.1	< 0.1	0.1	0.3	7
	ž.	ε		TD-MS	278	275			19€	221	162	180.00			132	<u>‡</u>	±	178.0	26.0	31.30	5	<u>†</u>											136	125	63.8	60.4	52.1	53.8	T
ţq.	Г	med	Г	TD-MS	24	54.0			7	5.60	~	3:00					3	3.3	, -	2.78													2	7	3	2	4	3	7
ories L	ı	mdd	l																																				T
borat	Se	ے	l	TD-MS INAA	12.4	16.6			4.2	5.60																							< 0.1	< 0.1	> 0.1	< 0.1	< 0.1	× 0.1	
ion La	Г	mdd	П	NAA																			6 Si	6.50	4.9	6.50	6.4	6.50	6.3	6.50	6.3	6.50							T
Activation Laboratories Ltd.		mdd		Ą																			8.0	7.30	6.3	7.30	4.9	7.30	8.0	7.30	8.1	7.30							
Q.	Re	_	0.001	ဟ																													< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	R	mdd		ıı																																			
ပ္ပ	윤	mdd	0.2	TD-MS INAA		14.0					5.13 E.13	127.00			9.0	D.	92.3	147	33.2	42.1	59.9	149												27.8			46.5		
	۵	%	0.001	10.1	0.059	0.0650			0.135	0.120	0.055	0.0690	0.035	0380.0					0.033	0.042													0.033	0.041	0.052	0.049	0.051	0.050	< 0.001
	₽	%	10.0	INAA																			2.31	2.16	2.18	2.16	2.01	2.16	2.01	2.16	2.01	2.16					Ш		
	₽	mad	1.0	TD-MS	ш	0.800			9.4	10.0	0.2	21.00			1.4	3	11.8	15.3	0.3	14.50	7.1	26.2												13.3			Ĺ	3.6	
	Mn	mdd	_	TD-ICP	188	852			161	155	840	880.00	1100	1010					468	490.000				L									759	749	1140	1130	424	409	\perp
	Analyte Symbol	Unit Symbol	Lower Limit	Method Code	GXR-1 Meas	GXR-1 Cert	DH-1a Meas	DH-1a Cert	GXR-4 Meas	GXR-4 Cerl	SDC-1 Meas	SDC-1 Cert	GXR-6 Meas	GXR-6 Cert	DNC-1a Meas	DNC-1a Cert	SBC-1 Meas	SBC-1 Cert	OREAS 45d (4-Acid) Meas	OREAS 45d (4-Acid) Cert	SdAR-M2 (U.S.G.S.) Meas	SdAR-M2 (U.S.G.S.) Cert	DMMAS 120 Meas	DMMAS 120 Cert	16DB005 Orig	16DB005 Dup	17DB028 Orig	17DB028 Dup	17DB030 Orig	17DB030 Dup	Method Blank								

age 14/19

15/19
Page

				-	ဗ္ဗ		⋖	ctivat	Activation Laboratories Ltd.	borat	ories L	₽.			Rep	Report: A17-06904	17-069	5					
Analyte Symbol	Min	g Z	Na	۵	R	Rb Re Sb Sc	- P	99	တ္တ	Se	Se	Su Sv	П	⊥a	Ta Te	_e_	2	Ė	L L	ے	Ē	Ţ	
Unit Symbol	ppm	mdd	%	%	udd udd	d wdd	d udd	mdc	mdd	1 uda	udo	udc	d mds	ı ud	u de	1 wdc	mdc	× %	d udd	mdd mdd		udd udd	mdo
Lower Limit	-	0.1	10.0	0.001 0.2		15 (0.001	0.1	0.1	0.1		-).2		9.5	0.1	1.5	0.01	1.1	0.2	0.05).1	3.5
Method Code	TD-ICP	TD-MS	INAA	TD-ICP	INAA TOTOP TO-MS INAA TO-MS INAA ID-MS INAA TO-MS INAA TO-MS TO-MS TO-MS INAA TO-MS INAA TO-MS INAA TO-MS INAA	NAA I	TD-MS	NAA	NAA	TD-MS	NAA .	LD-MS	LD-MS	SW-C.	NAA	TD-MS	NAA	TD-ICP	LD-MS	NAA	. SW-Q1	ID-MS	NAA
Method Blank				< 0.001														< 0.01					
Method Blank				< 0.001														< 0.01					
Method Blank		< 0.1		< 0.001	< 0.001 < 0.2		< 0.001			< 0.1		٧ -	<1 < 0.2 < 0.1	< 0.1		< 0.1		< 0.01 < 0.1	< 0.1		< 0.05 < 0.1	< 0.1	
Method Blank			< 0.01			< 15		< 0.1	< 0.1 < 0.1		< 3				< 0.5		< 0.5			< 0.2			< 0.5

				ဗွ		4	\ctivat	ion La	borato	Activation Laboratories Ltd.	혔			Repo	Report: A17-06904	1-069	40					
Analyte Symbol	ν ν	>	Ž	La	Га	Ce	Ce	Ā	N PN	П	Sm	Sm Eu	П	Gd	ш	П	H Er	r Tm	٦ ک	₽	3	
Unit Symbol	mdd mdd	m ppm	mdd	mdd	mdd	mdd	_			dd udd		ppm pp		٦	td wdd	_	_	dd udd	mdd mdd		mdd 1	اے ا
Lower Limit	7	0.1	_	1.0	0.5	0.1	e						0.05 0.	0.1			0.1 0.	1.0		0.2		
Method Cade	TD-ICP IN	INAA TD-MS	S TD-MS	S TD-MS	S INAA	TD-MS	INAA	TD-MS	N SM-C⊥	INAA TE	NI SW-QL	INAA ⊺E	S	TD-MS T	TD-MS TD-MS	D-MS T	TD-MS T	OT SM-CT	TD-MS TD	TD-MS INA	A TD-MS	ΝS
GXR-1 Meas	88	26	26.3	6.8	8	13.6			7.7		2.7		0.53	3.7		0.7			0.4	2.1	_	0.3
GXR-1 Cert	90.0	35	2.0 38.0		0.	17.0			18.0		2.70		0690	4.20	4.30	0.830			0.430	1.90	0.2	280
DH-1a Meas												\vdash										
DH-1a Cert																						
GXR-4 Meas	91	12			3	100			38.5		6.4		1.27	4.5	2.7	0.5			0.2	1.0		0.1
GXR-4 Cert	87.0	14	14.0 186	6 64.5	2	102			45.0		6.60		1.63	5.25	2.60	0.360		Ė	0.210	1.60	0.1	0.170
SDC-1 Meas	25				2	80.9			36.7		7.3		1.35	4.0	D. 10	6.0	1.2	3.4	0.5	3.1		
SDC-1 Cert	102.00		290.0	ı	0	93.00			40.00		8.20	-	1.70	7.00	6.70	1.20	1.50	4.10	0.65	4.00		
GXR-6 Meas	725																					
GXR-6 Cert	98⊥										-											
DNC-1a Meas	138	각		l	8				4.0				0.45							1.7		
DNC-1a Cert	148	۳		ı	9				5.20		H	H	0.59	F		F	F		\vdash	2.0		
SBC-1 Meas	214	27	114	l	5	96.4		12.1	43.9		1.6	\vdash	1.64	7.9	60 CA	1.0	17	8.8	0.5	3.2	_	0.5
SBC-1 Cert	220.0	8		ı	5	108.0		12.6	49.2		9.6	H	1.98	8.5	7.10	1.20	1.40		0.56	3.64	0	0.54
OREAS 45d (4-Acid) Meas	92		9.9 40	0 15.4	4	88 23		3.6	12.7		2.7		0.52	4.2	ci ci	0.3	4.0			. ε.		0.2
OREAS 45d (4-Acid) Cert	235.0	oi oi	9.53 141	16.9	6.	37.20		3.70	13.4		2.80		0.57	2.42	2.26	0.400	0.46	1.38		1.33	0	0.18
SdAR-M2 (U.S.G.S.) Meas	27	123	22.6 65	5 42.6	9	9. E.		10.4	35.7		6.4		1.20	5.4	80.	0.7	6:0	2.7	0.4	5.6		0.4
SdAR-M2 (U.S.G.S.) Cert	25.2	8	32.7 259	9 46.6	9.	8.88		11.0	39.4		7.18		1.44	6.28	5.88	0.97	1.21	3.58	0.54	3.63	0	0.54
DMMAS 120 Meas					16.0		32					2.2										
DMMAS 120 Cert	L			L	17.6	_	32.0				\vdash	2.70	r	F		T	H	\vdash	\vdash	L		
DMMAS 120					17.0		34					2.5										
DMMAS 120 Cert		+	_		17.6		32.0			\dagger		2.70		T			\dagger	+		<u> </u>	+	
DMMAS 120 Meas					17.3		34					2.3										
DIMMAS 120 Cert					17.6		32.0					2.70										
DMMAS 120 Meas					17.4		3					5.6										
DMMAS 120 Cert					17.6		32.0					2.70										
DMMAS 120 Meas					17.7		34					2.5										
DMMAS 120 Cert					17.6	_	32.0					2.70										
16DB005 Orig	33	16			6	57.5		6.5	24.5		4.9	H	66.0	4.4	4.0	9.0	9.0	2.2	0.3	2.1		0.3
16DB005 Dup	99	16			6	53.0		6.1	22.9		4.7		0.93	4.1	3.7	9.0	0.7	2.0	0.3	2.0	_	0.3
17DB028 Orig	20	4			4	179		14.1	53.8		11.0		1.20	6.7	9.2	1.3	1.7	5.1	0.7	4.8	_	0.7
17DB028 Dup	90	40			4	175		13.7	52.9		10.8		1.17	9.6	9.1 L.	1.3	1.7	5.0	0.8	4.7	_	0.7
17DB030 Orig	88	32	55.7 45	5 39.2	2	118		10.4	38.9		9.3		0.84	10.0	12.8	1	2.5	7.3	1.1	6.7		6.0
17DB030 Dup	45	සි			7	121		10.7	39.8	1	9.7	1	0.88	10.4	13.4	1.8	5.6	7.6	1.1	2.0		0.
Method Blank	v V	+	\downarrow	\downarrow	\downarrow	\prod	T	\dagger	†	\dagger	+	\dagger	+	†	+	†	†	+	\dagger	+	+	

Page 16/19

				•	ဗ္ဗ		∢	ctivat	ion La	Activation Laboratories Ltd.	ories L	.td.			Rep	ort: A	Report: A17-06904	<u>\$</u>			
Analyte Symbol	>	×	>-	Zr	La	La	8	Ģ	'n.	PN	PN	Sm Sm	Sm	п	Вd	č	9	우	ù	T.	ą.
Unit Symbol	шdd	mdd	mdd	шdd	udd	mdd	d mdd	udd Lidd	wdd	udd	udd wdd	mda	udc	1 udd	udd wdd	d udd	mdc.	mdd	d udc	udd wdd	mdd
Lower Limit	21	_	0.1	_	0.1	0.5	1.5	_	0.1	1.0	22	0.1	5.1	0.05	1.0	<u></u>	1.0	1.0	5.1	1.	<u>:</u>
Method Code	TD-ICP	TD-ICP INAA	TD-MS	TD-MS TD-MS TD-MS INAA TD-MS INAA TO-MS TD-MS INAA TD-MS INAA TD-MS INAA TD-MS	TD-MS	NAA	TD-MS	NAA	TD-MS	TD-MS	INAA	TD-MS	INAA	TD-MS	TD-MS	-SM-Q	LD-MIS	LD-MS	TD-MS	rd-MS	TD-MS
Method Blank	< 2	L															Ī				
Method Blank	< 2																				
Method Blank	< 2		< 0.1	٧	< 1 < 0.1		< 0.1		× 0.1	< 0.1 < 0.1		< 0.1		< 0.05 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
Method Blank		^				< 0.5		დ v			< 5		< 0.1								
																					ı

Page 17/1

Page 18/19

۶	۶
١	,

Activation Laboratories Ltd.

Report: A17-06904

Analyte Symbo	3	200
Unit Symbol	mdd	g
Lower Limit	0.05	
Method Cade	INAA	INAA
GXR-1 Meas		
GXR-1 Cert		
DH-1a Meas		
DH-1a Cert		
GXR-4 Meas		
GXR-4 Cert		
SDC-1 Meas		
SDC-1 Cert		
GXR-6 Meas		
GXR-6 Cert		
DNC-1a Meas		
DNC-1a Cert		
SBC-1 Meas		
SBC-1 Cert		
OREAS 45d (4-Acid) Meas		
FAS		
dAR-M2		
(U.S.G.S.) Meas		
SGAR-MZ (U.S.G.S.) Cert		
DMMAS 120 Meas		
DMMAS 120 Cert		
DMMAS 120 Meas		
DMMAS 120 Cert		
DMMAS 120		
DMMAS 120 Cert		
DMMAS 120		
AS 1		
DMMAS 120 Meas		
DMMAS 120 Cert		
16DB005 Orio		
17DB028 Orig		
17DB028 Dup		
17DB030 Orig		
17DB030 Dup		
Joseph Disabet		

Activation Laboratories Ltd.

Report: A17-06904

ဗ္ဗ

Analyte Symbol	nη	Mass
Unit Symbol	шdd	6
Lower Limit	90'0	
Method Code	WAA	WW
Method Blank		
Method Blank		
Method Blank		
Mother Diesis	30 0	UU +

Quality Analysis ...

Innovative Technologies

Date Submitted: 11-Aug-17 Invoice No.: A17-08634 (i) Invoice Date: 05-Oct-17

Your Reference:

Nova Scotia Department of Natural Resources 1723 Hollis Street 5th Floor Halifax NS B3J 2N3 Canada

ATTN: Denise Brushett

CERTIFICATE OF ANALYSIS

81 Soil samples were submitted for analysis.

The following analytical package(s) were requested:

Code UT-3 INAA(INAAGEO)/Total digestion ICP(Total)Total Digestion ICP/MS

REPORT A17-08634 (i)

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Unaltered silicates and resistate minerals may not be dissolved. Values which exceed upper limit should be assayed.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.
41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5
TELEPHONE +905 648-9611 or +1.886.228.5227 FAX +1.905.648.9613
E-MAIL Ancaster@actidats.com ACTLABS GROUP WESSITE www.actidats.com

					Results			Activa	ation L	abora.	Activation Laboratories Ltd.	Ltd.			Re	port: ,	Report: A17-08634	634					
Analyte Symbol	Αu	Ag	G.	Dd		Pρ	Σ̈	Zn S	₹				Θ	Ē	r Sa		Co	S			Ξ	g	<u>"</u>
	ppb		mdd	ppm	ppm		_	% udd				dd mdd	pp mqq	ppm mdd	_		bd mdd	dd udd	mdd mdd		ppm		mcd
	2		0.2	0.1	1	0.5 0			0.01			0.1	1 0.	1 0		0.01	0.1	0.0	_	_		0.1	_
Method Code	INAA	MULT I NIAA/T D- ICP/TD- MS	MULT TD- ICP/TD- ICP-MS	MULT TD- CP/TD- CP-MS	40-OT	MULT N TD- ICP/TD- ICP-MS IG	MULT I M NAA/T N D- D ICP/TD- IC	MULT I TI NAAT D- ICP/TD- MS	1D-ICP	TD-ICP IN	NAA M C K	MULT I MI NAA/T TE D-ICP- IC MS IC	MULT MULT ITD- ICP/TD- KCP/TD- ICP-MS KCP-MS	ULT B-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C	INAA I	2 2 0 2 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	MULT I MUI NAAT NAA D-ICP- D-IC MS MS	- - - -	MULT I INV NAA/T D-ICP- MS	NAA	NAA ME ME	MULT I TE NAA/T D-ICP- MS	JD-MS
17DB045	< 2	< 0.05			v	51.3	25.9	142	0.03	6.17	7.3	239	3.4	0.2	44.2	98.0	22.8	99	99'2	7.	4.37	4.1	17.4
17DB046	< 2	< 0.05			2	70.8	6.1	44.4	80.0	7.75	7.6	121	2.0	4.0	195	0.41	6.4	37	2.44	4.0	5.36	0.7	26.7
17DB047	< 2				٧	49.6	17.3	125	0.04	5.60	10.1	222	6.7	0.3	51.6	0.40	8.7	94	6.77	ω.	4.08	0.2	16.4
17DB048	< 2	0.05	12.0	0.2	٧ -	46.0	16.1	116	0.03	5.33	7.7	220	6.3	0.3	44.9	98.0	8.4	90	6.25	1.1	3.80	0.2	15.8
17DB049	< 2	< 0.05			٧ +	53.9	14.5	112	0.03	5.35	9.1	184	1.8	0.3	66.2	0.51	8.8	94	5.71	1.1	3.81	3.2	15.5
17DB050	41	< 0.05		0.2	٧ -	23.0	24.0	84.8	0.02	6.62	18.5	582	1.4	1.8	7.4	1.96	19.6	69	1.00	1.5	4.71	4.8	15.3
17DB051	< 2				-	35.5	12.7	103	90.0	60.9	5.3	134	3.9	0.3	130	0.45	7.5	47	3.72	1.2	4.38	7.2	20.8
17DB052	< 2	< 0.05	16.5		٧ -	84.8	22.4	152	0.03	5.39	18.8	213	2.7	0.2	61.3	0.42	15.8	63	9.37	1.3	5.53	5.2	17.2
17DB053	6	< 0.05	15.7		-	48.7	23.5	111	90.0	5.68	14.6	160	1.8	0.2	171	0.23	1.6	83	7.07	1.3	4.68	5.4	16.2
17DB054	< 2	< 0.05		0.2	÷	46.2	25.5	117	10.0	5.86	10.8	272	2.2	0.2	48.0	92.0	18.6	96	4.59	1.7	3.53	3.7	13.0
17DB055	8	< 0.05		6.0	\ V	45.9	20.8	122	0.03	6.00	6.7	218	2.5	0.2	104	0.92	15.4	98	4.53	L.	3.79	0.2	14.4
17DB056	< 2	0.14	14.3	2.0	\ \	41.7	16.2	144	0.04	6.91	5.9	197	5.9	0.3	117	0.44	7.8	22	4.79	1.2	3.97	0.2	15.9
17DB057	< 2	0.13		6.0	· v	32.2	35.0	123	0.03	7.68	25.1	480	3.7	4.8	11.8	96:0	15.0	26	12.0	1.0	3.62	1.5	18.4
17DB058	< 2	90.0		0.3	>	47.3	17.7		< 0.01	5.37	4.9	228	3.1	0.4	25.2	0.81	16.9	49	3.42	1.1	3.56	0.3	14.0
17DB059	< 2				v	52.6	16.0		90.0	7.22	6.1	160	2.8	0.4	129	09:0	9.6	47	5.82	6.0	4.65	0.3	16.1
17DB060	< 2	0.34		0.3	٠ ۲	82.9	18.1	199	0.02	7.29	4.1	179	3.3	0.5	118	0.81	16.8	91	5.40	£.	4.40	< 0.1	14.5
17DB061	< 2				, ,	67.4	24.7		0.02	6.82	5.0	273	3.6	4.0	52.7	2.26	21.2	69	4.43	1.5	5.36	5.5	18.3
17DB062	< 2				v	41.6	22.5	235	0.03	7.62	11.1	222	2.2	0.2	95.7	0.20	8.6	54	8.39	6.0	4.33	0.5	16.7
17DB063	< 2	< 0.05			· v	38.1	20.8		0.01	6.33	26.7	242	6.9	0.2	13.2	2.16	30.1	39	9.52	1.8	5.69	9.0	19.7
17DB064	< 2	< 0.05	19.1		۲,	41.0	21.7	137	0.05	5.83	12.3	195	3.1	0.2	135	0.84	16.8	48	5.47	1.3	4.08	6.2	13.2
17DB065	< 2	0.09		0.2	٧ -	52.5	17.9	155	10.0	5.94	11.1	208	4.6	0.3	38.1	1.06	15.1	39	6.57	1.2	3.42	0.5	18.3
17DB066	< 2	0.15			٧ -	72.7	19.0	169	0.03	6.37	6.1	184	3.2	0.2	133	0.63	15.2	22	5.51	1.3	4.01	0.1	14.0
17DB067	< 2	0.10	22.5		, ,	53.7	15.7		0.01	5.87	9.9	213	4.1	0.3	41.3	1.49	12.7	44	3.93	1.2	3.54	0.1	16.9
17DB068	< 2				, ,	60.1	15.4		< 0.01	5.82	8.1	222	4.8	0.3	42.0	1.61	17.0	46	3.73	7.5	3.97	9.4	19.5
17DB069	< 2	< 0.05	29.8		۰ ۲	80.8	21.1		< 0.01	5.49	5.8	155	3.4	0.2	23.9	1.30	16.9	49	4.54	⊢ Si	3.73	9.8	15.7
17DB070	< 2		17.2		, V	0.09	16.0	145	0.03	5.93	13.4	208	3.2	0.2	78.2	0.57	12.0	23	4.99	4.1	4.31	0.4	16.4
17DB071	4	0.20	15.9		,- V	95.4	15.6	163	0.04	5.67	10.8	190	2.8	0.3	78.7	0.84	16.3	90	4.81	6.0	4.33	9.4	16.1
17DB072	18	-	`		۰ ۲	78.8	24.6	322	0.01	5.28	18.2	246	6.7	0.3	20.5	0.53	18.2	81	14.9	ნ. -	4.35	0.2	13.9
17DB073	< 2	_		٧	Ļ,	29.1 1.0	6.7	56.5	0.02	4.76	9.8	186	1 .6	0.2	62.8	0.24	4.2	43	5.20		2.95	9.0	14.9
17DB074	< 2				,- V	386	23.6		0.03	5.65	19.2	196	13.3	0.3	38.0	1.39	23.8	70	9.79	ω.	5.37	14.6	22.7
17DB075	3	< 0.05	26.5	٧	٠ ۲	33.2	44.9		< 0.01	8.02	13.7	832	3.1	0.3	< 0.5	0.70	21.0	75	8.83	4.1	4.41	4.0	21.3
17DB076	< 2				٠ ۲	232	35.2	293	0.02	8.28	51.5	270	9.5	0.4	62.2	0.42	32.3	85	20.0	1.7	4.80	9.0	16.9
17DB077	< 2			0.1	-	39.6	9.1	86.5	90.0	6.03	10.9	158	2.2	0.2	142	98.0	5.4	36	4.50	6.0	4.00	0.1	17.2
17DB078	< 2	· ·			, ,	63.8	16.5	196	0.05	7.74	15.6	160	3.2	0.2	84.4	0.25	8.5	26	5.71	1.0	4.26	0.5	13.0
17DB079	8		9.6		- V	겼	5.0	£1.1	0.10	5.28	8.9	101	3.0	0.5	126	0.19	4.0	27	2.30	4.0	6.81	0.1	26.3
17DB080	16	0.07	25.1		۰ ۲	58.8	25.6	328	0.02	6.49	61.0	83 83	7.1	0.3	97.4	0.40	25.3	74	15.7	1.6	6.43	9.0	18.3
17DB081	< 2	< 0.05	11.1	0.1	٧	19.7	12.7	109	0.03	5.66	9.6	116	2.7	0.3	96.0	0.23	7.1	51	19.0	0.3	5.79	6:	24.2
17DB082	< 2	< 0.05	24.4	0.4	٠ ۲	£.7	30.0	174	0.04	6.46	47.8	195	3.9	0.3	1.48	0.39	21.3	26	8.94	1.2	4.78	1.6	16.0
17DB083	< 2	< 0.05	28.5	9.4	, ,	74.9	36.9	196	0.02	6.52	63.8	227	4.4	0.3	36.5	0.54	30.1	22	12.4	⊢ c⁄i	4.58	2.7	17.5
L	L	_		_	_	_	_	_	-	-	-	-	-	_	-	_	-	_	_	_	_	_	_

Page 2/2

<u> </u>	<u> </u>	Pb	Z	S	⋖		Г	Ba	8	iā	à			ŏ	S	Eu F	Г	Щ
-	10	٦	mdd mdd	- % 	%		mdd	_	٦	٤	E	%	d wdd	ε	٦	% udd	Γ	٤
[2]	lα	Γ		Γ	0.01	=	Γ	Γ		Г	Π	L					-	Γ
MULT TD- ICP/TD- I		d ro	E5 É	- 	9	TD-ICP	4	MULTI NAAVT D-ICP- MS	MULT TD- TD- ICP/TD- II	MULT 17D- ICP/TD- ICP-MS	∢	TD-07	MULT I NAAT NAAT ND-ICP- D	MULT I NAA/T IN D-ICP- II	_ ⊢ .;	4		MULT I TD-MS NAA/T D-ICP- MS
29	53	ω	31.3	8.62	0.02	60.9	0.66	244	2.4	0.2	32.5	0.84	17.8	61	36.0	1.7	4.19	0.2
38.6	38.	ις.	8.0	45.3	90.0	4.84	76.3	138	1.7	0.2	105	0.17	3.6	48	5.11	9.0	5.19	0.2
50.3	50.3		48.7	102	90.0	7.53	23.5	223	1.9	< 0.1	105	1.48	29.0	102	14.4	£.	5.61	0.8
22.8	22.8	_	25.5	28.7	0.02	6.65	17.0	932	1.5	1.3	τ. 86	1.97	20.9	FS.	1.05	⊢ αi	4.88	0.7
31.9	9:15	ᅴ	35.1	123	0.03	7.60	23.5	475	3.6	4.7	11.4	0.99	15.3	70	14.4	J.D	3.96	3.8
37.1	37.1	\dashv	29.2	171	0.02	6.44	∓.6 €	249		0.2	58.1	0.24	4.8	·8 :	7.46	O .	3.72	3.8
64.6 E	5.43 5.15	_	15.4	ر ارک	90:0	85.5	20 r	182	23	21 0	146	0.45	9.0	اد 2	5.24	4: (10.4	8.4
20 19	0.00	4	0.1	0. 5	8 5	00.0	0 14	80 5	0.	N 7	0 0	2 5	4. 0	8 5	0.20	i c	50.00	1 6
42.0	42.0	_	15.7	_	0.02	4.77	6.3	213	191	0.2	36.6	0.52	7.2	61	99.9	0.0	3.16	0.1
44.9	44.9	_	12.3	_	90.0	6.04	8.7	218	2.9	0.3	Ξ	0.24	6.4	51	13.9	O 0:	5.97	0.2
24.3	24.3		31.6		< 0.01	6.42	11.2	348	2.1	0.2	5.0	0.28	15.6	2	5.55	۲. 2i	3.92	2.5
32.4	32.4	1	29.6		< 0.01	6.35	8.8	334	2.3	0.2	8.3	0.28	14.6	99	5.45	5.7	3.72	0.8
27.5	27.5		29.3	106	< 0.01	5.80	8.8	296	1.9	0.2	10.1	0.42	18.0	æ	4.50	4.1	3.76	1.7
23.2	23.2	- 1	40.8		0.04	16.9	7.3	526	1.5	0.1	95.0	1.38	33.5	89	6.65	 ω.	5.40	3.3
27.5	27.5	- 1	45.0		0.02	6.13	7.3	270	2.7	0.1	- 1	1.10	56.9	8	6.53	r. r.	5.35	3.4
17.4	17.4	- 1	53.8		0.01	7.41	5. 8.	301	9.1	°0.1	26.9	2.85	38.2	8	6.91	1.7	7.14	4.1
54.7	54.7	- 1	50.6	_	90.0	6.59	Ľ Di	218	4.3	0.2	- 1	0.18	6.5	ß	12.9	9.8	3.90	6.9
64.1	- F 8 7 A		16.5	13	0.07	6.88	28 29 10 10	176 782	200	0 C	126	4 20 0	7.0	4 R	18.5 7. 7.	4. 4.	6.60 05.05	7.0
28.0	28.0		25.6	_	10.0	6.34	10.7	286	5.2	0.2	1	0.19	14.5	8	18.5	4	3.31	4:0
68.9	68.6	1	21.7		0.01	5.31	15.2	204	2.9	0.2	38.5	0.44	16.4	47	11.8	1.1	3.30	0.2
55.9	55.9	ıl	27.5		× 0.01	6.29	8.3	254	2.4	0.2	ΙI	0:30	17.1	æ	8.99	5.	3.85	6.0
40.8	40.8	- 1	24.9		٤ 0.01	99.9	14.6	267	9.1	0.2	- 1	19:0	17.3	20	23.1	 6.	3.84	3.2
42.7	42.7	- 1	19.7	28 2	90.0	6.59	E 2	48	69	2 6	92 2	14.0	6.3	5 4	4.4	r c	3.80	4.8
- 6	3 6	1	100	2 10	5 5	<u> </u>	y 5	000	2 0 7	, C	9 6	5 7	7: 1	? 6	3 6) r	1 6	1 1
33.5	33.5		17.7	9.92	90:0	6.39	15.4	147	23	3 5.	167	0.59	0.6	3 8	6.10	i ci	4.38	5 4
52.1	52.1	Н	14.3	95.5	0.10	6.22	16.9	101	1.7	0.2	153	0.23	9.9	47	5.27	9.0	5.28	3.4
40.1	40.1		27.8	118	0.02	5.91	9.3	256	3.2	0.3	14.0	0.28	15.5	58	32.9	1.1	3.03	7.2
54.3	54.3		12.4	177	0.04	6.16	68.4	208	6.0	0.2	75.7	0.18	6.4	46	49.5	5.	4.06	0.3
24.5	24.5		23.2	2.96	0.03	69.9	18.3	758	1.5	1.8	8.8	1.95	25.8	58	1.00	1.7	4.92	1.7
52.6	52.6	ш	30.4	140	0.02	5.52	20.4	262	2.1	0.2	24.5	0.89	21.9	73	17.9	4.	5.91	0.2
48.	8		18.2	149	0.05	5.97	16.3	191	2.8	0.2	128	0.43	9.5	20	6.20	ا. ت5	4.92	0.7
20.1	8	-	36.6	90.3	0.02	7.05	10.3	304	2.0	0.2	42.2	0.28	24.6	72	19.0	ci ci	4.55	2.2
유	위	19.5	34.4	88 T.	0.02	6.74	8.6	284	1.9	0.2	37.6	0.45	25.4	8	14.2	⊢ Ωi	3.95	3.2
×	١,	C	18.1	26.7	90.0	5.27	8.4	193	1.1	0.2	109	0.59	17.8	59	6.47	O 0:	7.63	0.5
27	읾	;†		Ī		1	0	coc	0	¢	7	7	25.4	67	8	4	5.20	3.5
	20.0	╁┼	8.18	28.7	0.01	7.13	٥	282	23	į.	-		3	1	5			

Page 3/27

Cs Eu Fe Hi Ppm ppm % ppm 0.05 0.2 0.01 0.1 MULTI INAA INAA MU NAAT MSAT MSA	73 7.01 1.6 4.52 0.5	57 6.70 1.3 3.37 0.4	7
P % 5 5 5 5 5 5 5 5 5	73 7.01 1.8	6.70 1.3	7 7
Cs Eu ppm ppm 0.05 0.2 MALT I INAA MAAT MS	73 7.01	6.70 1.3	
Os Dpm 0.05 MAA/T D-ICP- MS	65	02'9 2	Ţ
• 		7	1
Gr ppm 1 MAA/T D-ICP- MS		5	1
Co C	17.7	14.7	ç
Ca Co Cr Swall Swa	0.20	0.37	7
Br 00.5 0 0.	35.2	0.2 11.2 0.37	7 7
Bi Ppm B 0.1 0 MULT 1 TD- ICP/TD- ICP-MS	0.3	0.2	9
Ba Bi Bi Bi Bi Bi Bi Bi	i2	1.9	1
Al	332	322	101
As As B B C.5 1 NAA N N N N N N N N N N N N N N N N N	1.3	6.7	9
A	7.15	5.92	1
S A As Ba	0.0	10.0	0
Zn S ppm % 0.5 0.01 MULT I TO-ICI D- ICP/TD- MS	130	135	į
NI Zn Dem Dem Dem Dem Dem Dem Dem NAVT I MULT I D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D	31.7	29.0	100 00 00 00 00 00 00 00 00 00 00 00 00
Pb Ni Ppm Ppm Ppm Ppm Ppm Ppm Ppm	28.8	29.2	,
Cu Cc Mo Pb Pp	v	<1 29.2	7
CG Mo Depm Depm Depm Depm Depm Depm Depm Depm	0.2	1.0	c
0u Cc 9pm ppm 0.2 0.1 MULT MULT 1CPD-1CPTD- 1CPANS ICP-MS	29.1	21.3	C L
Manual Ma	< 0.05	< 0.05	9
AAA GG G M A G G G G G G G G G G G G G G	< 2	< 2	9
₹ 6 0 2	+		H
Analyte Symbo Unit Symbol Lower Limit Method Code	17DB0123	17DB0124	100000

=	Y Sei	äi ⊢	Results		2	Activation Laboratories Ltd.		4 6		۳ اس. ۳ اس		£	v.	\(\frac{1}{2}\)	S.		<u>a</u>	É	E	Ē
N INIG	N INIG	ING INIT	Ning Nin	LIM	Ι,	¥1.8	Ž à	ı b	r 8	Τ	Τ	Τ,	T		Ι,	1			Т	E 6
70 ppm	0.01 0.5 0.01 1	0.5 0.01	% ppm	- P	Т	3 5	Т	1	0 001	0000	T.	Τ	100			Т	1100	200	, C	. c
OP TD-MS TD-ICP TD-ICP	INAA TD-ICP TD-MS TD-ICP TD-ICP	OP TD-MS TD-ICP TD-ICP	TD-ICP TD-ICP	TD-ICP		al≓	MS		۵.	트통증	S	4	4	MULT I T NAA/T D-ICP.	TD-MS	MS	- F - G	,MS	<	
< 5 1.32 39.0 0.92	< 5 1.32 39.0 0.92	1.32 39.0 0.92	0.92	L	8	ľ	0.2	1.21	0.071	79.6	> 0.001	6.0	11.5	× 0.1	v		L	< 0.1	< 0.5	
0.2 < 5 1.17 11.0 0.16	< 5 1.17 11.0	1.17 11.0		91.0		904	3.0	0.76	0.132	6.1.9	< 0.001	1.0	6.7	× 0.1	21	42.4		< 0.1	1.3	0.52 18.4
< 5	< 5 1.34 44.0	1.34 44.0		0.48		992	0.3		0.069	87.0 <	< 0.001	6.0	8.4	< 0.1	٧	70.6	< 0.1	< 0.1	1.8	
> 5	< 5 1.28 40.8	1.28 40.8		0.44		670	0.3	1.08	0.056	83.6 <	< 0.001	6.0	8.1	< 0.1	٧	70.0	< 0.1	< 0.1	0.7	0.41 13.1
< 5 1.23 30.7	< 5 1.23 30.7	1.23 30.7		0.45		808	0.5	Ш	0.071	67.2 <	< 0.001	1.3	8.4	< 0.1	-	64.0	< 0.1	Ц	< 0.5	0.37 15.4
< 5 1.54 15.6	< 5 1.54 15.6	1.54 15.6		1.28		1480	0.1 T	_	0.085	40.3	< 0.001	7.1	12.1	× 0.1	v	274	< 0.1	_	< 0.5	
0.84 24.5	< 5 0.84 24.5	0.84 24.5		0.45	_1	609	3.6	_	9.19		< 0.001	9.0	8.4	× 0.1	4	58.5	_	< 0.1	_	
< 5 1.07 44.4	< 5 1.07 44.4	1.07 44.4	╝	98.0	- 1	650	0.1		0.055	e8.6 <	< 0.001	1.0	9.3 8.3	< 0.1	۲	71.3	< 0.1	4		0.40 10.9
< 0.1 < 5 0.75 42.4 0.54	< 5 0.75 42.4	0.75 42.4		0.54	- 1	479	9.4		0.068	41.5	< 0.001	-:	10.1	Ε.	3	46.5	0.5	_	< 0.5	
< 5 1.46 34.6	< 5 1.46 34.6	1.46 34.6	- 1	0.81	- 1	962	< 0.1	1.49	0.056	74.2 <	< 0.001	1.0	10.6	× 0.1	т V	94.4	< 0.1	< 0.1	0.7	0.28 12.2
31.5	< 5 1.42 31.5	1.42 31.5		0.74	- 1	610	0.5		0.048	72.7 <	- 0.001	0.8	10.9	v 0.1	т V	89.7	< 0.1	_	< 0.5	0.38 12.7
< 5 1.14 37.7	< 5 1.14 37.7	1.14 37.7	ı	0.50		268	0.5	_	0.075	67.4 <	< 0.001	× 0.1	9.1	× 0.1	٧	92.8	< 0.1	< 0.1	0.8	0.27 17.
47.0	< 5 2.48 47.0	2.48 47.0	- 1	1.08	- 1	765	0.3	_	0.058		< 0.001	0.8	10.6	× 0.1	٧	142	< 0.1	_	< 0.5	
< 5 1.60 26.8	< 5 1.60 26.8	1.60 26.8		9.0	- 1	875	0.5		0.033	> 2.68	< 0.001	8.0	6.0 6.0	× 0.1	٧	85.7	< 0.1			0.23 17.6
35.3	< 5 0.86 35.3	0.86 35.3		0.55	- 1	611	1.3	0.78	960:0	54.8	< 0.001	9.0	9.4	× 0.1	-	90.3	_		< 0.5	0.40 13.8
< 5 1.26 37.8	< 5 1.26 37.8	1.26 37.8	- 1	69.0	- 1	675	4.	_	0.092	72.0 <	< 0.001	0.7	11.2	× 0.1	v	77.8	_	4	< 0.5	
< 5 1.69 33.2	< 5 1.69 33.2	1.69 33.2		1.16		1190	- -	_	0.077		< 0.001	0.	18.0	× 0.1	v	152	4	4	┙	4
< 5 1.24 63.8	< 5 1.24 63.8	1.24 63.8		0.52	_	445	1.6	_	0.061	> 7.78	< 0.001	0.7	9.4	× 0.1	-	54.4	_		< 0.5	
< 5 1.60 52.8	< 5 1.60 52.8	1.60 52.8		1.0	_	1550	× 0.1	_	0.101	112 <	< 0.001	6:1	16.8	× 0.1	-	139	_	< 0.1	┙	
< 5 0.79 28.9	< 5 0.79 28.9	0.79 28.9		0.76	4	934	12.1	_	0.113	45:6	× 0.001	6:0	13.0	2.7	CI	67.2	_	× 0.1	4	
< 5 1.64 27.0	< 5 1.64 27.0	1.64 27.0	_	9.0	1	928	4.0	_	0:036	114	× 0.001	9	ο Θ	v 0.1	-	87.6	_	4	\perp	┙
< 5 1.35 37.1	< 5 1.35 37.1	1.35 37.1	_	: }	<u>, </u>	710	3.5	_	0.086		× 0.001	0:	10.4	- 0 ·	v	/3.6	4	4	\perp	
< 5 1.81 24.5	< 5 1.81 24.5	1.81 24.5		6	او	941	0.2	_	0.052	× :	< 0.001	8:0	11.6	v 0.1	y -	95.4	4	× 0.1	_	
< 5 1.95 24.4	< 5 1.95 24.4	1.95 24.4		څ ا	Sy .	926	ō	4	0.052	122	× 0.001	6. 0.	12.8	v 0.1	-	104	4	v 0.1	\perp	
< 5 1.68 30.6	< 5 1.68 30.6	1.68 30.6		<u> </u>	+	1070	ö	4	0.053	109	< 0.001	=	11.9	v 0.1	v	107	4	× 0.1	4	
< 5 1.37 33.8	< 5 1.37 33.8	1.37 33.8		85.0	4	629	0.5	_	0.051		× 0.001	0.8	ω ω.	v 0.1	v	75.4	4	× 0.1	_	
< 5 1.14 32.5	< 5 1.14 32.5	1.14 32.5		0.63	_1	-80-I	0.2	_	990.0		- 0.001	0:	8.6	v 0.1	v	92.0	_	× 0.1	Ц	
< 5 1.46 47.8	< 5 1.46 47.8	1.46 47.8		9.62		779	< 0.1		0.036		0.001	9.1	14.1	× 0.1	Υ V	94.1	_	_		0.23 13.9
< 5 1.05 27.8	< 5 1.05 27.8	1.05 27.8		0.23	- 1	521	0.5	0.95	0.029	65.2 <	< 0.001	0.8	6.7	× 0.1	۲	29.8	< 0.1	< 0.1 ^	< 0.5	0.20
< 5 0.99 60.5	< 5 0.99 60.5	0.99 60.5		1.04		1640	16.3	_	9.104	55.0 <	< 0.001	1.5	16.8	< 0.1	4	106	0.7	< 0.1	4.4	0.69 14.4
< 5 1.71 74.2	< 5 1.71 74.2	1.71 74.2		1.04		817	9.4		0.045	118 <	< 0.001	4.1	13.8	< 0.1	٧	106		< 0.1	0.9	
< 5 1.35 50.9	< 5 1.35 50.9	1.35 50.9		06.0		1760	2.3		0.089	96.1 <	100.0 >	1.5	15.1	< 0.1	٧ -	73.5	0.2	< 0.1	1.4	0.34 25.4
0.1 < 5 1.02 23.0 0.31	< 5 1.02 23.0	1.02 23.0		0.31		299	9.0	0.79	0.088	69.5	< 0.001	1.0	8.4	× 0.1	-	50.3	< 0.1	< 0.1	0.9	0.32 14.0
0.1 < 5 0.89 44.5 0.46	< 5 0.89 44.5	0.89 44.5		0.46		490	0.1	0.79	0.062	59.8	0.002	8.0	9.4	× 0.1	v	48.9	< 0.1	< 0.1	0.6	0.16 14.3
0.1 <5 0.50 13.9 0.12	< 5 0.50 13.9	0.50 13.9		0.12	1	361	0.1	0.61	0.094	30.5 <	- 0.001	6.0	6.8	× 0.1	21	30.7	< 0.1	< 0.1	0.9	0.19 12.9
0.1 <5 1.38 59.9 0.92	5 1.38 59.9	1.38 59.9		0.92	L.	848	0.2	1.25	060.0	103 <	- 0.001	2.2	15.6	× 0.1	v	68.5	< 0.1	< 0.1	1.8	0.18 16.6
, ru	× 5 0.86 54.3	0.86 54.3		0.4	9	358	0.2		0.041	85.9 A	< 0.001	1.2	4.6	× 0.1	CI	46.7	L	L	< 0.5	0.13 14.3
< 5 1.37 49.1	< 5 1.37 49.1	1.37 49.1		0	98.0	766	0.2	┸	690.0	102 <	< 0.001	1.6	11.8	< 0.1	٧	62.4	┺	┺	L	
< 5 1.66 52.2	< 5 1.66 52.2	1.66 52.2		-	1.03	1060	0.2	_	690.0		< 0.001	2.1	12.7	× 0.1	-	76.8	╄	┺	L	
< 5 1.23	< 5 1.23 125	1.23 125		0.7	ω	1130	0.1	┺	0.068	69.69	,000	,	;	-	ľ	000	L	ļ	L	
_											20.0	ó	 	- - V	v	N N	۰.۰	× 0.1	6.	0.33

age 5/27

Page 6/27

				צ	Results			ACLIV	Activation Laboratories Ltd.	Labor	atorie	S LIG.			Ľ	eport	Report: A17-00034	4000					
Analyte Symbol	8	β	u	<u>_</u>	조		Mg	All I	₽ P	Na		Ro Re Sb	Re	gs	Sc	eg,	Sc Se Sn Sr	[,e	Те	Ē	Ė	돈
Unit Symbol	mdd	cdd	qdd wdd	qdd	%	, udd	%	b wdd	6 udd	94	88	mdd	mdd	ppm	mdd	mdd	mdd mdd mdc mdd mdd mdd mdd mcd	t mdc	d udo	mdo	, wdd	20	mdd
Lawer Limit	0.1	10	0.1	2	10.0	0.5	- 10.0	_).1 (0.01	0.001	0.2	100.0	0.1	0.1	0.1).2 (1.1	1.1	0.5	10.0	0.1
Method Code	TD-MS	O-MS TD-MS	TD-MS	INAA	D-MS INAA TO-ICP TD-MS INAA TD-ICP TD-MS INAA TD-ICP MULT1 TD-MS INAA TD-ICP MULT1 TD-MS MULT1 TD-MS TD-MS MULT1 TD-MS TD-MS MULT1 TD-MS TD-MS MULT1 T	TD-MS	TD-ICP	TD-ICP	ID-MS	NAA	TD-ICP	MULTI NAA/T D-ICP- MS	TD-MS	INAA	INAA	MULT I NAAJT D-ICP- MS	. SIM-DI	SIM-OT	AULT 1 NAA/T D-ICP- AS	rD-MS	NAA	D-ICP	MULT I MAA/T D-ICP- VIS
17DB0125	< 0.7	20	0.1	< 5	0.1 <5 2.49 48.2 1.11 799 0.2 1.63 0.060 154 <0.001	48.2	1.11	662	0.2	1.63	090'0	154	< 0.001	1.4		10.9 < 0.1		144 < 0.1 < 0.1	< 0.1	< 0.1	0.8	0.15	19.8
						1																	

				Re	Results			Activa	ation L	abora-	Activation Laboratories Ltd	Ltd.			8	Report: A17-08634	417-08	1634					
Analyte Symbol	П	^	Ω	W	, ,	Zr	La	П	П	Ce Pr		PN	П	Sm S	Sm	Eu G	d Dy	y Tb	oH c	Ē	프	PΩ	
Unit Symbol	mdd	mdd	udd	udd	d udd	m	d mdd		d udd	td udd	dd wdd	dd wdd	d udd	d udd	_	id udd	ld udd	dd udd	mdd mdd	m ppm	med n	mdd u	'n
Lower Limit	0.05	2	0.1	+	0.1	1	0.1	0.5				П	0	ا 0	П		1.00.1				0.1	0.1	
Method Code	TD-MS	TD-ICP	MULT I NAA/T D-ICP- MS	INAA	TD-MS	TD-MS	IID-MS	INAA	II SM-OL	INAA	TD-MS TI	IN LD-MS	INAA	II SM-CIT	INAA	TD-MS	TD-MS	IL SM-QL	DT SM-OT	TD-MS TD	ar sm-ar	TD-MS TD	TD-MS
17DB045	0.63	L	l	v	35.9	29	40.6	45.5	87.8	118	9.2	38.8	\$	7.6	8.3	1.16	7.4	7.6	1.1	اب تن	6.4	9.0	4.2
17DB046	0.66		3.7	v	30.4	83	25.8	27.7	55.0	70	6.2	56.9	4	5.8	œ —	0.66	6.4	9.9	6.0	ь. Б.	3.9	9.0	4.2
17DB047	0.68			v	43.2	56	38.1	41.3	79.3	109	9.7	41.2	48	9.1	9.6	1.04	1.6	6.6	4.	2.0	5.8	6.0	6.2
17DB048	0.63			v	43.4	20	38.6	41.5	77.1	104	9.2	41.4	57	9.1	9.6	1.0.1	6.8	9.5	4.1	т. Со:	5.7	8.0	6.0
17DB049	0.59			v	26.5	175	33.7	36.7	73.6	94	7.5	32.0	64	5.9	6.5	0.90	5.7	5.5	8.0	1.1	3.2	9.0	3.5
17DB050	0.34		1.7	v	24.4	179	Ш	29.0	62.0	78	6.3	28.4	30	5.3	5.8	1.33	5.3	4.9	0.7	1.0	2.8	9.4	2.9
17DB051	0.48			۰ ۲	46.1	230	Ш	43.7	101	133	6.6	42.6	69	9.0	10.0	1.02	10.2	10.6	1.5	2.1	5.7	9.0	5.4
17DB052	0.87			٠ ۲	25.6	208		42.5	94.4	125	9.1	37.2	46	7.6	7.6	0.93	6.8	6.2	1.0	1.1	3.1	0.5	3.0
17DB053	0.54		2.4	٠ ۲	18.8	198		26.7	53.6	78	4.6	19.8	41	3.8	5.1	0.70	4.2	4.1	9.0	9.0	2.3	0.3	2.4
17DB054	0.62			v	27.3	156		36.3	75.4	97	7.8	32.8	24	6.4	6.9	1.13	6.3	5.8	6.0	1.1	3.2	0.5	3.2
17DB055	0.72			۲ ۲	28.0	14	33.4	33.8	86.5	105	5.5	32.3	36	6.3	6.7	1.07	6.3	6.3	6:0	1.2	3.3	6.5	3.3
17DB056	0.62			v	31.8	13		34.8	93.8	107	7.5	36.0	22	6.9	7.3	1.07	7.2	7.4	1.1	1.4	3.9	9.0	3.8
17DB057	0.92			v	20.0	63	46.0	43.5	93.6	114	9.7	40.7	g	7.1	6.6	1.16	6.2	4.6	8.0	9.0	2.2	0.3	2.1
17DB058	0.67			v	35.6	17		42.3	94.8	106	8.8	37.1	9	7.2	7.6	1.09	7.3	7.0	1.0	4.1	4.2	0.7	4.6
17DB059	0.75			r	27.9	61		28.3	75.4	93	6.5	28.0	45	5.5	5.8	68:0	5.8	6.1	6:0	- Zi	3.3	0.5	3.3
17DB060	0.73			٠ ۲	38.4	7	34.1	35.5	90.2	109	8.2	35.3	83	7.7	7.9	1.16	8.0	9.8	1.2	1.6	4.6	0.7	4.3
17DB061	1.20			v	43.0	210	39.9	45.3	101	118	9.2	40.4	31	9.8	9.4	1.50	8.9	9.2	1.4	8. 1	5.0	0.7	4.7
17DB062	0.85			v	25.9	33	34.6	37.3	75.1	100	7.7	32.3	49	5.9	6.7	66:0	5.9	5.7	6.0	1.1	3.2	0.5	3.2
17DB063	1.72			v	46.5	46	39.5	39.1	137	158	9.7	41.4	ä	9.0	9.8	1.68	9.3	9.5	4.1	i. Di	5.3	8.0	52
17DB064	1.25			, ,	25.0	238	25.5	56.9	63.3	83	6.1	26.8	36	5.9	9.9	26.0	5.9	5.9	8.0	1.1	3.0	9.4	3.0
17DB065	0.98			۲ v	60.4	13	50.8	48.6	122	144	12.7	53.9	42	11.4	10.9	1.20	11.6	12.4	1.8	2.4	7.0	1.0	6.8
17DB066	0.72		3.2	v	38.8	11	45.7	53.9	114	141	10.7	46.1	51	g.	11.3	1.12	9.7	9.0	1.4	1.6	4.5	9.0	4.2
17DB067	0.86			v	54.0	7	49.4	46.2	125	142	12.3	52.3	64	10.9	10.6	1.24	11.4	11.4	1.7	23 23	6.3	6.0	6.0
17DB063	0.95		-	v	62.2	50	52.8	20.0	135	155	13.2	57.0	8	12.0	11.7	ь Б	12.6	13.0	ტ ტ	2.5	7.2	1:0	6.8
17DB069	0.89			v	38.8	31	36.6	35.0	103	121	8.7	38.3	æ	7.5	7.7	1.14	7.9	8.2	t. Gi	6	4.6	0.7	4.4
17DB070	0.72			v	40.5	50	43.2	43.0	107	137	10.1	42.2	4	8.8	e	10.1	8.5	8.4	ri Si	1.7	8.4	0.7	4.8
17DB071	0.65			v	35.1	24	36.0	36.2	85.4	108	8.57	9.98	1	7.6	7.8	1.04	8.2	7.8	ri Si	ro.	4.0	9.0	3.8
17DB072	0.63		-	v	54.0	우	48.6	60.7	125	160	12.6	9.99	8	9: 1	15.6	1.54	12.6	12.3	8.	23.3	6.2	6:0	5.6
17DB073	0.73		5.6	v	26.2	27	31.3	30.1	65.3	83	6.9	28.3	ន	5.4	5.6	0.79	5.3	5.2	0.7	1.0	3.1	0.5	3.4
17DB074	0.88		١	v	88.6	418	20.0	77.9	179	321	15.0	70.1	8	18.0	22.8	1.90	20.8	24.2	3.5	4 2.	10.7	1.5	9.0
17DB075	0.74			v	23.4	149	43.1	40.8	83.0	86	9.4	39.4	49	8.8	6.6	1.38	6.3	4.9	0.8	9.O	5.6	9.4	2.6
17DB076	1.12			v	53.3	40	61.7	65.9	936	1080	14.1	64.0	57	13.8	13.9	1.71	16.8	13.2	2.1	2.3	6.0	9.0	5.0
17DB077	0.72		2.7	v	30.3	14	29.4	30.4	62.4	87	6.7	28.0	55	5.7	9.0	0.88	6.2	6.2	6.0	1.3	3.7	9.0	3.9
17DB078	0.75			v	27.2	59	41.4	41.5	160	210	9.6	41.6	48	8.9	9.1	1.04	8.5	7.2	1.2	1.2	3.2	0.5	3.0
17DB079	0.46			v	35.7	-	25.1	25.4	49.5	70	5.8	24.9	83	5.5	5.8	0.70	6.3	7.1	1.0	1.5	4.5	0.7	4.5
17DB080	0.91			v	45.9	32	48.6	58.2	152	200	11.0	47.6	65	9.5	12.1	1.32	9.8	8.6	1.4	D)	5.3	9.0	5.1
17DB081	0.62			v	42.5	47	19.2	18.5	57.5	80	4.3	17.7	7	4.1	£.	0.58	5.0	7.8	1.0	1.7	5.4	9.0	5.8
17DB082	0.89			v	33.2	65	29.8	32.5	125	147	6.6	28.4	ę	9.0	6.3	68.0	6.7	7.0	0.	4.	3.9	9.0	3.9
17DB083	1.12	52		v	39.5	88	31.4	32.3	135	149	7.3	31.2	ន	8.8	6.7	<u>-</u>	7.8	8.4	ri Gi	1.7	8.4	0.7	4.6
17DB084	0.50		3.2	v	38.7	6	35.8	37.7	90.4	107	9.1	40.5	51	ω ω	4.8	1.75	8.8	7.6	ci Si	г. г.	4.4	9.0	4.4
		-			•		•	•	•				•		•				-	-			

Page 8/2

	٥	mda	_	TD-MS	4.5	2.3	2.9	1.2	2.3	2.9	2.5	2.3	3.4	6.8	2.7	2.8	2.8	2.5	3.0	3.0	3.6	8,8	4.8	4.6	3.6	3.2	3.8	3.5	3.3	5.4	2.7	2.3	4.0	7.9	2.9	3.4	2.7	2.3	2.5	6.1	2.7	2.3	2.8	2.7
	Tm Yb	Ę	0.1 0.1	TD-MS	0.7	0.4	4.0	0.3	0.3	4.0	0.4	0.4	0.5	1.0	4.0	0.4	9.4	4.0	6.0	4.0	9.0	9.0	0.7	0.5	0.5	0.5	9.0	9.0	0.5	0.8	0.4	0.3	0.5	1.2	9.4	0.5	0.4	4.0	4.0	0.3	4.0	0.4	9.4	4.0
	Г	۶	Г	TD-MS	4.5	2.5	2.9	2.1	2.1	3.0	2.5	2.4	3.1	6.8	2.5	2.8	2.7	2.7	3.1	3.2	3.9	ci	5.0	3.3	3.5	3.0	3.8	3.8	3.1	5.4	2.8	2.3	3.1	7.7	5.9	3.3	3.0	2.3	2.5	6.	2.8	2.4	2.7	5.6
	ш			TD-MS T	6	9.0	0.	9.0	9.0	1.1	9.0	9.0	1.0	2.3	9:0	9.0	9.0	ū.⊢	1.1	⊥. c⁄i	اب تن	ا۔ 60	τ ασί	⊥ cγi	Si	0. F	£.	7.5	1.1	ار ون	1.1	9.0	1.1	2.6	1.0	1.1	٦.	8.0	O.0	0.7	0.1	9.0	0.	6:0
	오			OT SM-OT	0.1	8.0	0.7	0.7	9.0	6.0	8.0	8.0	2.0	1.7	2.0	0.7	2.0	8.0	6.0	6.0	Ξ	1.2	1.5	1.0	1.0	2.0	1.0	1.2	8.0	1.4	6.0	9.0	8.0	1.7	0.7	6.0	1.1	9.0	0.7	6.5	8.0	9.0	0.7	2.0
4	٩	udd	0		9.7	4.9	2.0	4.4	4.0	5.8	5.0	6.4	5.1	1.5	4.4	4.8	4.7	5.1	6.9	6.1	2.8	8.3	9.5	5.4	6.4	5.0	9.7	6.7	5.4	9.4	5.8	4.2	5.4	2.4	5.0	2.7	6.9	4.2	4.6	3.5	5.1	4.3	4.8	4.5
-086	Dγ	mdd	D.1	S TD-MS		5.4	5.4	5.9	4.4	6.2	5.3		5.4			5.2	5.2			6.2		7.2		2.0			7.5			8.9				10.1		6.3		4.7	5.1	3.5	5.6		5.6	
t: A17	gg	mdd	1.0	TD-MS																			ľ																					Ш
Report: A17-08634	ı i	μdd	90.0	TD-MS		1.32		1.07	0.87		0.96		0.87		1.11		1.13	1.41		1.80		0.53				16:0	1.14		0.68		0.98		0.76		1.35		1.30			0.89	1.38		1.20	
ш.	Sπ	mdd	0.1	INAA		5.3		9.9	5.1		5.8		5.3	ľ	2'9		6.2						l					8.2			6.3		6.2			6.3		5.3		4.0	6.3	Ш	6.4	
	Sm	mdd	1.0	SM-G□	4.2	5.2	5.7	6.9	4.7	6.3	5.2	5.8	5.5	10.0	5.7	0.9	6.4	5.2	6.4	6.3	6.8	6.1	10.5	7.7	7.0	5.5	6.9	8.1	5.0	8.1	5.7	4.0	5.8	8.9	5.5	6.1	8.2	4.8	5.4	3.5	0.9	4.9	6.2	5.6
	PN	_	Г	INAA	26	38	22	31	32	34	53	37	32	55	33	41	41	36	34	29	41	32	59	72	36	31	34	34	39	50	29	25	34	29	31	28	37	29	20	24	23	25	41	27
Ltd.	PN	Ę		TD-MS	18.3	23.8	29.4	37.8	28.0	30.6	27.7	29.8	1.62	44.9	33.3	33.7	35.7	1.92	30.1	28.4	31.8	27.4	51.8	39.5	35.6	30.4	37.6	36.6	24.7	37.7	28.6	18.7	30.2	38.3	29.0	30.8	39.1	26.8	29.5	18.0	30.7	25.0	35.4	31.6
tories		٦	Г	TD-MS	4.5	5.3 E.3	6.7	£.0	6.7	7.1	6.7	7.3	7.2	10.5	8.0	8.4	8.8	ro ai	60 80	5.4	7.7	6.7	11.8	9.5	8.6	7.4	8.8	8.3	5.9	8.6	6.7	4.3	7.5	9.0	9.6	7.1	9.1	5.5	7.0	4.0	7.1	9.0	8.5	7.7
abora	à	Г		INA.A	7.1	85	89	66	87	92	74	84	99	117	81	81	93	29	99	9	87	8/	112	114	102	62	107	134	20	157	8	61	75	126	22	83	103	77	87	25	7	98	93	8
Activation Laboratories Ltd		mdc L		IN TD-MS	54.8	47.9	64.2	88.4	78.7	67.7	58.9	65.0	61.5	94.9	75.4	73.0	85.1	61.1	9.69	55.3	70.4	62.3	95.9	94.0	95.0	8.89	92.0	116	56.0	138	71.9	50.2	80.8	103	63.4	67.2	9.98	68.3	77.3	38.8	4.	61.5	9.9/	78.3
ctival	පී				22.2	24.5	27.8	45.6	32.9	33.3	32.1	35.1	31.7	45.1	96.9	38.2	39.5	23.5	28.8	23.1	35.6	34.1	9.09	45.6	36.7	32.6	36.6	36.3	29.2	36.3	29.5	20.3	37.3	37.9	26.8	29.5	39.5	28.5	28.5	17.8	28.2	24.6	36.3	59.5
∢	Гa		Г	JS INAA		22.3		43.2	31.3	31.5	29.5							23.9		23.1						32.6				35.2			33.5		26.6				30.5				Ш	Ш
	ľa	udd	0.1 1.0	IS TD-MS	ı	44		135	135		50 2		10 3		121		71 3	118		160		244				43				231				15	89		40 4		115				Ш	Ш
"	Zr	шdd	_	S TD-MS		21.6											9-																									Ш	23.0	9
Results	>-	mdd	F.0	SM-C⊤	L	L	L	3 19	L	L		Ц	1 26.1		L			L			L	1 33.5		L	L	Ц	2 32		L				1 25.5			1 27.3			1 20.1	L	L	Ц	Ц	\perp
œ	3	med	_	<u>₹</u>	· ·				v		< 1	٠ ۲	۱,	١ >	,	٠,	^	×	~				,		^	٠,		- 1	۷,	٠ ۲	, ,	٧,	^	,	٠,	۱ >	< 1		^	,	v		~	~
	n	mdd	0.1	TD-ICP MULT I I NAAT D-ICP- MS	3.5	1.6		L	L	L	2.3								1.9			4.0							L										2.1			Ш	Ш	
	>	mdd	2	TD-ICP	50	86	57	54	<u>ب</u>	29	58	77	42	56	33	20	26	82	74	140	74	≅	38	39	35	23	32	69	47	85	75	84	09	70	59	37	52	38	43	100	57	99	34	56
	E	mdd	ı	ა_	0.79	0.55	0.34	16.0	0.52	0.57	0.45	0.43	0.46	0.77	0.54	65.0	0.47	0.31	68.0	0.28	0.83	1.09	62.0	0.70	0.62	62'0	19.0	85.0	0.74	1.08	0.54	0.57	0.71	1.46	0.33	14.0	0.62	0.48	0.44	0:30	0.42	0.37	0.63	0.49
	Analyte Symbol	Unit Symbol		Method Code	17DB085	17DB086	17DB087	17DB088	17DB089	17DB090	17DB091	17DB092	17DB093	17DB094	17DB095	17DB096	17DB097	17DB098	17DB099	17DB0100	17DB0101	17DB0102	17DB0103	17DB0104	17DB0105	17DB0106	17DB0107	17DB0108	17DB0109	17DB0110	17DB0111	17DB0112	17DB0113	17DB0114	17DB0115	17DB0116	17DB0117	17DB0118	17DB0119	17DB0120	17DB0121	17DB0122	17DB0123	17DB0124

age 9/27

				Ĕ	Results			ACEIN	Activation Laboratories Ltd.	labo	atorie	S Ltd.			_	Report: A17-00034	7	1000					
Analyte Symbol	E	>	<u></u>	×	>	Zr La La La Ge Ge Pr Nd Nd Sm Sm Eu Gd Dy Tb Ho Er Tm	La	La	8	Oe O	Pr	PΝ	PR	Sm	Sm	E	Gd	Dγ	<u>-</u>	윈	ŭ	Tm	Υb
Unit Symbol	mdd	mad	mdd	mdd	mdd	und o mad unde unde med unde unde unde unde unde unde unde un	mdd	mdd	1 udc	mda	mdd	mdd	mdd	mdd	μdd	mdd	mdd	mdd	udd	mdd	udd.	mdd mdd	mdd
Lower Limit	0.05	CI	1.0	-	0.1	-	0.1	0.5	5.1	3	0.1 0.1	0.1	2	0.1	0.1	90.0	0.1	0.1 0.1	0.1	0.1	0.1	0.1	0.1
Method Code	TD-MS	TD-ICP	MULT I NAA/T D-ICP- MS	INAA	TD-MS	ULT! INAA TD-MS TD-MS TD-MS TD-MS INAA TD-MS INAA TD-MS INAA TD-MS INAA TD-MS	TD-MS	INAA	TD-MS	INAA	TD-MS	TD-MS	INAA	TD-MS	INAA	TD-MS	TD-MS	TD-MS	SM-OT	TD·MS	TD-MS	TD-MS	TD-MS
17DB0125	20.0	GP :	4.7	- 1	P 06	47 - 1 204 70 453 408 936 108 99 407 43 71 69 116 61 47 08 08 09 08	45.3	40 B	93.0	103	66	40.7	43	7 1	ű	-	9	47	αο	ď	66	0.3	5

Report: A17-08634

Alianyte Symbol	2			
Unit Symbol	mdc	mdd	mdd	0)
Lower Limit	0.2	0.1	0.05	
Method Code	INAA	SM-QL	INAA	INAA
17DB045	5.4	9.0	0.78	5.26
17DB046	4.6	9.0	0.69	
17DB047	6.8	9.0	0.95	5.37
17DB048	7.3	9.0	0.97	5.33
17DB049	4.7	0.5	0.57	9.16
17DB050	3.5	9.0	0.49	6.25
17DB051	6.4	0.7	19.0	5.29
17DB052	3.8	9.4	0.47	5.61
17DB053	3.5	0.3	0.47	4.39
17DB054	4.8	9.0	0.66	9.50
17DB055	3.7	0.4	0.52	5.64
17DB056	4.3	0.5	0.52	5.72
17DB057	3.5	0.3	0.46	6.49
17DB058	5.9	9.0	0.34	31.4
17DB059	3.8	0.4	0.55	5.01
17DB060	4.9	0.5	0.63	5.14
17DB061	5.2	9.0	0.28	27.2
17DB062	4.3	9.0	0.54	5.02
17DB063	5.2	0.7	0.66	7.97
17DB064	3.8	9.0	0.41	5.86
17DB065	6.8	0.9	0.96	5.87
17DB066	5.7	9.0	0.32	20.0
17DB067	6.1	9.0	0.77	7.07
17DB068	6 9	0.0	0.86	80
170000	3 3	8 6		3
4700070	9 4	9 6	9 0	7 6
OVOBOVI	0.0	9.0	0.68	9.7
17DB071	4.3	0.5	0.53	5.24
17DB072	7.6	0.7	0.44	17.4
17DB073	4.2	0.5	0.59	5.82
17DB074	6.9	1.0	1.10	6.52
17DB075	3.6	0.4	0.40	90'9
17DB076	5.8	9.0	19.0	2:30
17DB077	4.9	0.5	0.63	4.87
17DB078	3.5	0.4	0.54	4.90
17DB079	5.4	0.7	0.64	3.98
17DB080	6.4	9.0	0.34	17.2
17DB081	6.1	0.8	0.78	4.94
17DB082	4.4	0.5	0.28	5.47
17DB083	5.0	9.0	0.29	68.8
17DB084	5.4	9.0	0.32	6.50
17DB085	5.4		L	Ľ
17DB086	80		L	
2000	Ņ			

Page 11/2

Report: A17-08634

Analyte symbol	٩	בת	n.	NGBN
Unit Symbol	ppm	ppm	ppm	g
Lower Limit	0.2	1.0	90.0	
Method Code	INAA	SIM-Q1	WAA	WW
17DB087	3.2	0.4	0.22	5.98
17DB088	3.3	6.0	0.20	29'9
17DB089	3.5	6.0	0.23	6.49
17DB090	3.9	0.4	0.24	4.76
17DB091	3.5	6.0	0.20	4.73
17DB092	3.0	6.0	0.18	4.56
17DB093	4.5	90	0.28	99'9
17DB094	7.1	6'0	0.45	4.24
17DB095	3.7	0.4	0.23	7.16
17DB096	3.7	0.4	0.23	7.11
17DB097	4.1	6.4	0.25	7.95
17DB098	3.1	0.3	0.14	6.07
17DB099	3.6	0.4	0.17	6.16
17DB0100	3.5	5.0	0.13	6.93
17DB0101	4.2	0.4	0.25	5.02
17DB0102	4.6	9'0	0.31	4.09
17DB0103	5.8	9'0	96.0	7.28
17DB0104	4.6	5.0	0.32	6.07
17DB0105	4.6	4.0	0.28	00'4
17DB0106	3.8	6.0	0.23	06'9
17DB0107	4.7	9'0	0.31	7.28
17DB0108	4.2	0.4	0.27	5.36
17DB0109	4.5	9'0	0.26	2.37
17DB0110	5.8	0.7	0.36	6.47
17DB0111	3.5	5.0	0.18	5.27
17DB0112	3.1	6.0	0.18	4.54
17DB0113	4.5	9'0	0.28	98'9
17DB0114	9.7	1.0	0.97	18.4
17DB0115	4.2	0.4	0.47	7.42
17DB0116	4.6	9'0	0.42	6.19
17DB0117	4.0	6.0	68.0	5.18
17DB0118	4.0	6.0	6.33	15.51
17DB0119	3.6	6.0	14.0	6.19
17DB0120	2.4	6.0	0.32	4.59
17DB0121	3.6	0.4	0.37	6.73
17DB0122	3.6	0.3	0.38	4.93
17DB0123	3.8	6.4	0.48	6.05
17DB0124	4.1	5.0	979	6.53
100000	,	0	9, 0	

age 12/2

	Be	mdd	1.0	TD-MS	6.0	1.22	6.0	1.22							2.1	1.90	2.0	1.90			2.9	3.00	3.0	3.00			1.1	1.40	1.0	1.40							3.2	3.20	3.5	3.20			2.0	-
	Ba	med	50	INAA																																								_
	Ba	_	-	TD-MS	601	750	597	750							80	1640	138	1640			560	630	545	630			1070	1300	1070	1300	89	118	90	118			592	788.0	530	788.0			164	-
	As	mdd	0.5																																									
	٧	%	10.0	TD-ICP INAA	2.08	3.52	1.86	3.52	2.00	3.52					6.19	7.20	5.77	7.20	5.95	7.20	7.59	8.34	15.7	8.34	7.62	8.34	11.4	17.7	11.9	17.7													7.39	_
334	S	%	0.01	TD-ICP	97.0	0.257	97.0	0.257	0.25	0.257					1.84	1.77	1.82	1.77	1.84	1.77							0.05	0.0160	0.05	0.0160													0.04	_
Report: A17-08634	Zn	шса	50	INAA																																								_
ort: A	υZ	۽		TD-ICP	730	780	734	760	733	760					73	73.0	70	73.0	72	73.0		103.00	66	103.00	99	103.00	130	118	131	118	53	70	53	70	56	70	169	186	183	186	170	186	42	_
Rep	Zn	mdd	0.5	TD-MS	618	092	842	760							65.2	73.0	66.7	73.0			103	103.00	104	103.00			128	118	131	118	54.8	70	63.2	70			180	186	187	186			38.9	
	z	mdd	20	NAA																																								_
	Ē	mdd		TD-ICP	45	41.0	42	41.0	42	41.0					54	42.0	42	42.0	43	42.0	38	3	36	38.0	37	38.0		27.0				247			252			83	06		87	83	250	
Ë	Ē	udc	0.5	TD-MS	37.8	41.0	97.6	41.0							37.4						32.1		31.2	38.0								247						82.8		82.8			222	_
ories	Pp	med	e	TD-ICP					721	730					49	52.0	42	52.0	42	52.0	21		23	55	22	55			35	101					< 3	6.3		35.0		35.0	27	35.0	21	_
aborat	Pb	mdd	0.5														48.7				24.7	25.00	23.9	25.00			104		·		0.9	6.3	6.3	6.3			35.9	35.0	35.8	35.0			21.3	
Activation Laboratories Ltd.	Mo	ωdd	_	TD-ICP TD-ICP	14	18.0	15	18.0	14	18.0								310		310							-	2.40		2.40							3	CI		2	1	01	v	_
Activa	g	mdd	6.0	TD-ICP	3.6	3.30	3.0	3.30	3.4	3.30					0.4	0.860	0.4	098'0	0.3	0.860								Ĺ		1.00								0.40		0.40	0.4	0.40		_
	8	udd	D.1	TD-MS	2.7	3.30	2.7	3.30							× 0.1	0.860	× 0.1	098'0												1.00								0.40	0.4	_				_
	J.	mda	-	TD-ICP	1150	1110	1140	1110	1140	1110					6560	6520	6490	6520	6480	6520	31	30.000	30	30.	32	30.000		۳	99	9					g	90		31.0000 31.0000	32	31.0000 31.0000	23	31.0000	367	_
ပ္မ	ਹੋ	mad	0.2	TD-MS	1110	1110	1130	1110							5990	6520	6100	6520			27.4	30.000	28.8	30.000			63.6	0.99	65.2	66.0	90.3	100	95.4	100			29.8	31.0000	25.6	31.0000			358	_
	Ag	mdd	2	D-ICP INAA																																								_
	Ag	mdd	6.3	_			31.5		31.1	31.0					3.5	4.0	3.5	4.0	3.5	4.0								Ľ		1.30														_
	Ag	mdd	90.0	TD-MS	31.5	31.0	32.1	31.0							3.51	4.00	3.58	4.00									60.0	1.30	0.14	1.30														_
	ΑU	qdc	CΙ	INAA																																								
	Analyte Symbol	Unit Symbol	Lower Limit	Method Code	GXR-1 Meas	GXR-1 Cert	GXR-1 Meas	GXR-1 Cert	GXR-1 Meas	GXR-1 Cert	DH-1a Meas	DH-1a Cert	DH-1a Meas	DH-1a Cert	GXR-4 Meas	GXR-4 Cert	GXR-4 Meas	GXR-4 Cert	GXR-4 Meas	GXR-4 Cert	SDC-1 Meas	SDC-1 Cert	SDC-1 Meas	SDC-1 Cert	SDC-1 Meas	SDC-1 Cert	GXR-6 Meas	GXR-6 Cert	GXR-6 Meas	GXR-6 Cert	DNC-1a Meas	DNC-1a Cert	DNC-1a Meas	DNC-1a Cert	DNC-1a Meas	DNC-1a Cert	SBC-1 Meas	SBC-1 Cert	SBC-1 Meas	SBC-1 Cert	SBC-1 Meas	SBC-1 Cert	OREAS 45d (4-Acid) Meas	

age 13/27

	Ba	шс	20	INAA												13,	127	11,	127	15.	127	100	127												
	Ba	шdd	_	TD-MS	183.0	172	183.0			842	066	889	990											231	246	228	225	139	136	387	377	۲,	, t	,	< 1
		ωdd	0.5													1680	1790	1680	1790	1740	1790	1810	1790						1			T		T	
	As	ā	l	TD-ICP INAA	8.150	7.36	8.150	7.51	8.150															6.19	6.15	6.56	6.49	4.84	4.84	7.19	7.08	> 0.01	× 0.01	0.02	> 0.01
	₹	%	0.01		0.049 8	0.05	0.049 8	90.0	0.049 8								Н		H				H	Ц								_	Ľ		> 0.01
8634	Ŋ	%	0.01	H	0.0	•	0.0	•	0.0															٥	°	°	°	°	4	٥	_	$\stackrel{\circ}{\dashv}$	Ŷ,	2 4	o >
117-0	Zu	mdd	20	INAA																			L									\bot		\perp	
Report: A17-08634	Zu	шdd	_	TD-ICP	45.7	41	45.7	42	45.7	779	750	805	750	805	750									143	+	197	195	48	47	92	90	~	Ţ	Ţ	^
Rep	Zu	mdd	0.5		45.7	38.2	45.7			870	760	860	760											151	154	224	227	43.9	46.6	98.8	98.6	< 0.5	< 0.5	> 0.5	< 0.5
		d mdd																								1			1		1	1	Ī	T	_
	Z		20	TD-ICP INAA	231.0	252	231.0	254	231.0	55	94	54	9	55	64								Н	58	53	4	9	무	5	84	45	-	-	- T	v
	Z	mdd	-	-	231.0	529	231.0		64	48.2	48.8	46.5	48.8				Н						H	25.4	26.4	37.5	36.3	8 2.2	7.7	44.0	39.7	< 0.5	< 0.5	< 0.5	< 0.5
, Et	Z	mdd	0.5	\vdash		8			Φ.					6	8											- 1		-							× ک
tories	Вb	шес	ო	₽	21.8		21.8	-	21.8	801	808	818	808	819	808																				
abora	Pb	шdd	9.0	TD-MS	21.8	21.5	21.8			752	808	748	808											55.2	56.4	78.9	77.6	38.6	38.5	27.0	27.2	< 0.5	< 0.5		< 0.5
Activation Laboratories Ltd.	Mo	_		TD-ICP TD-ICP	2.500	, ,	2.500	, ,	2.500	13	13	12	13	13	13									^	, _	۸ _	۸ ۲	۸	, _	۸ ۲	^	^	, ,	v .	٧
ctivat	PO	١	0.3	D-ICP						5.4	5.1	5.5	5.1	5.3	5.1									< 0.3	< 0.3	0.5	4.0	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	o.03	< 0.3
ď			<u> </u>	TD-MS T						- i.	5.1	5.2	5.1											0.2	0.2	9.	0.5	0.2	0.2	× 0.1	× 0.1	× 0.1	- O -	0.1	v 0.1
	8	mdd	0	TD-ICP TD	37.1	375	371	37.7	37.1	234	236.00	244	236.00	250	236.00									8	88	82	27	9	위			-			-
	ટ	ud d	_	_	371	379	371			536		539			236		Н		H				H	28.8	29.8	28.0	29.0	8.1	9.0	46.1	35.5	7		-	
ဗွ	ਹ	mdd	0.2	TD-MS	8	8	3			C)	236.00	Ci	236.00				Ц						L	32	X	×	X		<u>"</u>	4	86	< 0.2	< 0.2	< 0.2	< 0.2
	Αg	шdd	ς.	INAA																															
	Ag	wdd	6.0	TD-ICP																				0.3	< 0.3	0.5	< 0.3	< 0.3	< 0.3	< 0.3	0.3	< 0.3	< 0.3	× 0.3	< 0.3
	Ag	udd	0.05	TD-MS TD-ICP																				< 0.05	0.10	< 0.05	< 0.05	0.39	0.32	< 0.05	< 0.05	< 0.05	< 0.05	o.05	< 0.05
			ľ	NAA T												781	727	634	727	721	727	753	727			1	1	1	7		1	1	1	T	٦
	n ∀n	qdd	21	ℤ						as	_	as	-	as	1		Sert		Sert		Sert		Sert			\dashv	1	+	\forall	6	۵	+	\dagger	+	_
	Analyte Symbol	Unit Symbol	Lower Limit	Method Code	OREAS 45d (4-Acid) Cert	OREAS 45d (4-Acid) Meas	OREAS 45d (4-Acid) Cert	OREAS 45d (4-Acid) Meas	OREAS 45d (4-Acid) Cert	SdAR-N2 (U.S.G.S.) Meas	SdAR-W2 (U.S.G.S.) Cert	SdAR-W2 (U.S.G.S.) Meas	SdAR-W2 (U.S.G.S.) Cert	SdAR-W2 (U.S.G.S.) Meas	SdAR-W2 (U.S.G.S.) Cert	DMMAS 120 Meas	DMMAS 120 Cert	17DB045 Orig	17DB045 Dup	17DB083 Orig	17DB083 Dup	17DB085 Orig	17DB085 Dup	17DB0121 Orig	17DB0121 Dup	Method Blank	Method Blank	Method Blank	Method Blank						

age 14/27

15/27	
Page	

0					
	1 1 1 1 1 1	0.1	 (0.3) (0.3) (0.3) (0.3) (0.3) (0.1) (0.2) (0.1) (0.2) (0.1) (0.2) (0.1) (0.2) (0.1) (0.2) 	 (0.3) (0.3) (0.3) (0.3) (0.3) (0.1) 	 6.03 6.03 6.03 6.03 7 1 1 2 3 4 5 6 6 7 1 1

	Mg	%	0.01	TD-ICP	0.21	0.217		0.217	0.21	0.217					1.71	1.96	1.68	1.96	1.70	1.96					1.02	1.02		-		0.809						I						0.24	0.245	0.24
		mdd	0.5	TD-MS	4.7	8.20	7.4	8.20							11.5	1111	10.7	1111			35.0	34.0	35.6	34.0			34.6	32.0	33.4	32.0	4.5	5.2	4.6	5.2		18.	163	172	163			20.6	21.5	21.3
	$^{\sim}$	%	0.01	TD-ICP	10.04	0.050	0.04	0.050	0.04	0.050					2.15	10.4	3.98	4.01	4.13	4.01	1.27	2.72	1.52	2.72	2.29	2.72	1.00	1.87	1.85	1.87												0.39	0.412	0.40
	<u>_</u>	qdd	5	INAA																																								
	ء	mdd	ı	TD-MS	0.7	0.770	8.0	0.770							0.2	0.270	0.2	0.270									< 0.1	0.260	< 0.1	0.260												< 0.1	960.0	< 0.1
334	Ε̈́Ξ			TD-MS	4110	3900	3310	3900							210	110	190	110			40	200.00	20	200.00			90	68.0	50	68.0														
17-086		mdd																																	T									
Report: A17-08634	1	ωdd	ı	TD-MS TD-MS	8.2	13.8	8.5	13.8							16.2	20.0	15.6	20.0			18.1	21.00	19.0	21.00			24.4	35.0	25.1	35.0	1 0.	15	12.4	12		000	02.0	23.6	27.0			19.1	21.20	19.7
Rep	Ξ	mdd		INAA																																								
	±	mda		TD-MS	0.2	0.960	4.0	0.960							1.2	6.30	1.1	6.30			0.8	8.30	1.0	8.30			2.4	4.30	1.8	4.30						o o	2 6	3.5	3.7			4.1	3.830	2.5
	Fe		5	7																																								
ള	Eu	Ę	Г	4																															T		Ī							
ories I	Cs	٦		INAA																																								
Activation Laboratories Ltd.	ඊ	٤		SM-0⊥	2.88	3.00	2.92	3.00							2.72	2.80	2.60	2.80			3.86	4.00	3.85	4.00			4.38	4.20	4.15	4.20					T	S	i c	8.29	8.2			3.91	3.910	3.99
ion La	Г	mdd		INAA																																								
\ctivat	ò	٤	ı	TD-MS	> 10.0	12.0	> 10.0	12.0							> 10.0	64.0	> 10.0	64.0			> 10.0	64.00	> 10.0	64.00			> 10.0	96.0	> 10.0	96.0	> 10.0	270	> 10.0	270		0 01 /	100	> 10.0	109			> 10.0	549	> 10.0
4	8	Ĺ		INAA																																								
	8	Ĺ	Г	TD-MS	7.3	"		8.20							13.3	14.6	13.2	14.6			15.2	18.0	16.1	18.0			12.2	13.8	12.5	13.8	48.1	57	49.8	57		σ.	20.0	20.5	22.7			28.4	29.50	29.1
ပ္ပ	g	%	10.0	TD-ICP	0.89	0.960	0.87	0.960	0.87	0.960					1.09	1.01	1.05	1.01	1.05	1.01	1.07	1.00	1.07	1.00	1.09	1.00	0.17	0.180	0.17	0.180												0.20	0.185	0.20
	ä	med																																										
	iā	m	Г	ΙĦ	1390	1380	1390	1380	1390	1380					11	19.0	11	19.0	11	19.0							< 2	0.290	< 2	0.290					T	0	1 07 0	\ \ \ \ \ \	0.70	, 21	0.70	< 2	0.31	^
	m m	Ę	ı	TD-MS	1340	1380	1340	1380							18.1	19.0	17.8	19.0									0.19	0.290	0.18	0.290					T	ď	0.70	0.66	0.70			0.33	0.31	0.34
	Be	٦		TD-ICP	1	1.22	-	1.22	-	1.22					2	1.90	2	1.90	2	1.90	3	3.00	3	3.00	9	3.00	-	1.40	-	1.40						6	2 00 6	6	3.20	9	3.20	, _	62.0	-
	Analyte Symbol	Unit Symbol		Method Code	GXR-1 Meas	3XR-1 Cert	GXR-1 Meas	GXR-1 Cert	GXR-1 Meas	GXR-1 Cert	DH-1a Meas	DH-1a Cert	DH-1a Meas	DH-1a Cert	GXR-4 Meas	GXR-4 Cert	GXR-4 Meas	GXR-4 Cert	GXR-4 Meas	GXR-4 Cert	SDC-1 Meas	SDC-1 Cert	SDC-1 Meas	SDC-1 Cert	SDC-1 Meas	SDC-1 Cert	GXR-6 Meas	GXR-6 Cert	GXR-6 Meas	GXR-6 Cert	DNC-1a Meas	DNC-1a Cert	DNC-1a Meas	DNC-1a Cert	UNC-1a Meas	CNC-18 Cert	SBC-1 Ced	SBC-1 Meas	SBC-1 Cert	SBC-1 Meas	SBC-1 Cert	OREAS 45d (4-Acid) Meas	OREAS 45d	OREAS 45d

age 16/27

	Νg	%	0.01	S TD-ICP	- 1	.5 0.245	0.25	0.245	5	17.9	17.9	17.9												- 1	- 1	- 1	- 1	- 1	0. 8	- 1		.5 < 0.01		< 0.01	< 0.01
	=	mdd	0.5	TD-MS		21.5		\	18.	1,	17.	17.											Ш			┙	7 21.0			L		╙	< 0.5	-	
	×	85	0.01	TD-ICP		0.412	0.40	0.412															1.32	1.31	1.64	39.	0.97	6.3	.38	, O 0 2	0.0	< 0.01	< 0.01	< 0.01	< 0.01
	느	pdd	2	INAA																						_		1	\downarrow	\perp					
	드	mdd	0.1	TD-MS		960:0																	< 0.1		D. 0	┙		- - -		, c			Ш		
534	Ρģ	qdd	10	TD-MS					1140	1440.00	720	1440.00											100	8	9 1	ą	96	200	20 25	100	> 10	> 10	> 10		
17-08	Ge	ppm	0.1	TD-MS																			< 0.1	< 0.1	< 0.1	< 0.1	c 0.1	٠٥٠١	0.1	0.1	< 0.1	0.1	< 0.1		
Report: A17-08634	g		0.1	TD-MS		21.20			14.6	17.6	14.7	17.6											17.0	17.7	17.5	c./_	25.3	4.62	6.6	S. C	0.1	0.2	0.1		
Rep	П	mdd		NAA																								1	T	T					
	П	ppm r	0.1	TD-MS		3.830			i.	7.29	4.8	7.29						T					2.5	0.2	4 o	9. 4.	F. 6	y i	E 6	9 C	× 0.1	L.0 ^	× 0.1		
	9			INAA	1										3.45	3.54	3.72	3.54	3.46	3.54	3.48	3.54				1		1	\dagger	T					
Ę.	П	6 mdd		NAA																						1		1	Ť	T			П		
ries L	ജ		0	INAA																					1	1		1	T	T			П		
Activation Laboratories Ltd.	သ		0.05	TD-MS II		3.910			1.76	1.82	1.88	1.82											7.64	7.68	10.9	9:0	1. c) i	8.07 0- 8	0 0 0 0	< 0.05	< 0.05	< 0.05		
on Lak	ŏ			INAA	1										129	138	137	138	133	138	125	138			†	†		†	\dagger	T		T	Н		
tivatic	11	ppm mdd	2	TD-MS IN	1	549			v 10.0	49.6	a.01 <	49.6											> 10.0	> 10.0	10.0	0.01 ^	0.01	20.01	0.05 5	2 -	~	CVI	CΛI		
Ac	П	ppm mqq	-	INAA TE	1				<u> </u>						20	47.0	20	47.0	9 ,	47.0	55	47.0		^		1	^	+	+	+			Н		
	8		-	NI SM-CI	1	29.50			12.2	12.4	12.3	12.4						H					17.1	17.7	24.9	24.6	3.6	0 1	9 8	4.0.4	, O.1	۰0.1	c 0.1		
	П	mdc	١٠ ٥	TD-ICP TE	- 1	0.185	0.20	0.185								\vdash		H		\vdash			0.87	0.85	0.54	0.54	0.17		4.1	600	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
ဗ	П		.0.01		+																				+	+	+	+	\dagger	Ť	Ť	ľ	·	_	V
	B		0.5	TD-ICP INAA	+	E	\ 01	0.31	2 >	1.05	ν Ω	1.05	o 0	1.05									< 2	۲ د	V V	N N	Q 9	y 1	0 0	y 0	2 4	, 2	۰ 2	< 2	< 2
	ΞĒ	n ppm		TD-MS TD	+	Б			66:0	1.05	66.0	1.05				\vdash		H					0.22	0.23	0.30	0.28 0.28	0. to	2 :	0.16 6 4	0 0	0.02	< 0.02	< 0.02		
	B	mdd (0.05	TD-ICP TD		62.0	-	92.0	l>	9.9	ω	9.9	ω	9.9		\vdash		H					ო			╛	(1)		01 0			- -	۰ ۲	< 1	< 1
	- Be	ppm	-	Ţ	+			F	92	H_	SE	<u> </u>	SE.	<u> </u>		je,		ert		ert		jert	Н	\dashv	+	+	+	+	1	+		<u> </u>	Н		_
	Analyte Symbol	Unit Symbol	Lower Limit	Method Code	(4-Acid) Meas	OREAS 45d (4-Acid) Cert	OREAS 45d 44-Acid) Meas	OREAS 45d	SdAR-M2 (U.S.G.S.) Meas	SdAR-M2 (U.S.G.S.) Cert	SdAR-M2 (U.S.G.S.) Meas	SdAR-W2 (U.S.G.S.) Cert	SdAR-M2 (U.S.G.S.) Meas	SdAR-M2 (U.S.G.S.) Cert	DMMAS 120 Meas	DMMAS 120 Cert	17 DB045 Orig	17 DB 045 Dup	17DB083 Orig	17 DB083 Dup	17 DB085 Orig	dna conan / I	17DB0121 Orig	Method Blank											

age 17/27

				-	ည္		•	Activation Laboratories Ltd.	ion La	Dorat	ries l	텯			Kep	Keport: A17-08634	17-086	4					
Analyte Symbol	Be	ii	Bi	à	Ça	Co	ပိ	ö	ō	్ర	Cs	III	Fe	Ė	Ī	Se Se	Ge	5	_	Ĺ	Ţ	٦	Mg
Unit Symbol	mdd	mdd	mcd	шdd	%	⊥udd	mdd	mdd	udd	udd	wdd	6 mdd	%	d mdd	d wdd	d wdd	d wdd	qdd	d udd	6 qdd	%	5 mad	%
Lower Limit	1	0.02	2	0.5	0.01	0.1	1	-	2	0.05		0.2	10.0	1.1).1	0.1	0	1 2		0.01	0.5	0.01
Method Code	TD-ICP	TD-MS	TD-ICP	O-ICP INAA	TD-ICP T	TD-MS	TD-WS INAA	TD-MS INAA		TD-MS INAA INAA	NAA	NAA	INAA	I SW-C⊥	NAA	NAA TD-MS TD-MS TM-OT	LD-MS	_D-MS	TD-MS INAA	NAA	TD-ICP 1	TD-MS	TD-ICP
Method Blank	>		< 2		> 0.01																< 0.01		< 0.01
Method Blank	٧ ـ		< 2		< 0.01																< 0.01		< 0.01
Method Blank	V	< 0.02	< 2		< 0.01	1.0 >		^		< 0.05				< 0.1		0.2	< 0.1	ot >	< 0.1		< 0.01	< 0.5	< 0.01
Method Blank	٧	< 0.02	< 2		< 0.01	< 0.1		2		< 0.05				< 0.1		1.0	< 0.1	> 10	< 0.1		< 0.01	< 0.5	< 0.01
Method Blank				< 0.5			٧		۸ 2		۲ ۷	< 0.2 < 0.01	< 0.01		۲,					v 2			
Method Blank				< 0.5			۲,		< 2		۲ >	< 0.2 < 0.01	< 0.01		۲,					۷ ک			

Page 18/2

	<u></u>	mda	0.5	INAA	•	•	Ĺ								-		^'						(C				+	1+	_	7+									3	,			10		
	_	mad	0.1	TD-MS		34.9		L			2130	2629	2090	2629	Ш	ᆫ	5.2	ᆫ	┖					3.10			4.1	1.54		1.54								-	5.3		Ц		2.5	2.63	2.6
	E	mdd	0.05	TD-MS	0.39	0.390	0.39	0.390							3.27	3.20	3.19	3.20			0.60	0.70	0.59	0.70			2.23	2.20	2.15	2.20							0.89	0.89	0.92	0.89			0.23	0.27	0.25
	두	mdd	0.2	INAA																																									
	卢	mdc	0.1	ZM-CT		2.44					> 500	910	> 500	910			17.3				10.8			12.00			5.0	5.30	4.9	5.30									14.7	15.8			13.6	14.5	13.7
634	iΞ	%	10.0	TD-ICP	0.03	0.036	0.02	0.036	0.03	0.036					0.29	0.29	0.29	0.29	0:30	0.29	0.17	0.606	0.20	909:0	0.20	909:0					0.27	0.29	0.29	0.29	0.29	0.29	0.48	0.51	0.55	0.51	0.52	0.51	0.15	0.773	0.44
17-08	<u>a</u>	mdd	0.5	INAA																																									
Report: A17-08634	ı	ωdd	ı	TD-MS INAA	8.2	13.0	6.6	13.0							1.0	0.970	0.9	0.970									> 0.1	0.0180	< 0.1	0.0180															
Rek	Τa	ωdd	0.5	NAA																																									L
	_a _	mdd	D.1	TD-MS	< 0.1	0.175	< 0.1	0.175							_		9.0		-		× 0.1	ı	< 0.1				< 0.1	0.485		0.485									0.8	Ĺ			× 0.1	1.02	< 0.1
	ග්	mdd	0.2			275	268								192		195				153	180.00		8			L		33.5		122	144	134	144				-	170	178.0			24.7	31.30	29.5
Ltd.	ا ا	mad	_	TD-MS	24	54.0	27	54.0							7	5.60	7	5.60			v	3.00	۷,	3.00			^	1.70	۷ -	1.70							3	3.3	4	3.3			, ,	2.78	Ÿ
tories	Se	mdd	ო	INAA																																									L
abora	Se	шda	0.1	TD-MS	14.1	16.6	14.0	16.6							4.7	5.60	4.9	5.60									> 0.1	0.940	< 0.1	0.940															
Activation Laboratories Ltd.	တ္တ	mdc	0.1	INAA																																				L	Ц				
Activa	Sp	mdd	0.1	INAA																																									
	Re	mdd	0.001	TD-MS INAA																																				L	Ц			L	
	윤	ωdd	5	NAA		0	0	0							01		_						m				10	0		0	10	5	2	5			OL	_	m		Ц		m	<u> </u>	m
ပ္ထ	윤	mdd	0.2	TD-MS						_					112		157				8 60.9	153		152		_	ı			٥	3.5	•	3.7	ì			95.2	147	153	147	Ц		43.3	42.1	3 45.3
	<u>a</u>	%	0.001	TD-ICP	0.058	0.0850	0.059	0.0850	0.058	0.0850					0.133	0.12	0.132	0.120	0.131	0.120	0.05	0.089	0.055	690.0	0.05	0.0890	0.035	0.035	0.034	0.035										L	Ш		0.032	0.042	0.036
	Na	%	10.0		9	С	_	0							8	0	CI.	0			-		21	0			21	0	-	0	4	3	3	3			ιΩ	3	3	· ·	Ш		OI		10
	ŝ	ωdd	0.1	TD-ICP TD-MS		0.800			a	2					8.8	10.0		10.0		22	0.1	21.00		Ι.,		0	0.2	0 7.50		0 7.50	1.4		1.3				9.5	15.3	12.3	15.3			3 0.2	14.50	7 0.5
	Mn	μdd	-	TD-ICF	863	852	8	8	87	852					154	155	151	15	147	5	858	980.0	887	980.0	988	880.00	1070	101	1080	1010							_						503	490.000	517
	Analyte Symbol	Unit Symbol	Lower Limit	Method Code	GXR-1 Meas	GXR-1 Cert	GXR-1 Meas	GXR-1 Cert	GXR-1 Meas	GXR-1 Cert	DH-1a Meas	DH-1a Gert	DH-1a Meas	DH-1a Cert	GXR-4 Meas	GXR-4 Cert	GXR-4 Meas	GXR-4 Cert	GXR-4 Meas	GXR-4 Cert	SDC-1 Meas	SDC-1 Cert	SDC-1 Meas	SDC-1 Cert	SDC-1 Meas	SDC-1 Cert	GXR-6 Meas	GXR-6 Cert	GXR-6 Meas	GXR-6 Cert	DNC-1a Meas	DNC-1a Cert	DNC-1a Meas	DNC-1a Cert	DNC-1a Meas	DNC-1a Cert	SBC-1 Meas	SBC-1 Cert	SBC-1 Meas	SBC-1 Cert	SBC-1 Meas	SBC-1 Cert	OREAS 45d (4-Acid) Meas	OREAS 45d (4-Acid) Cert	OREAS 45d

age 19/27

		mdd	U.5 INAA	Γ										10.9	11.7	12.7	11.7	11.6	11.7	14.0	11.7													Τ
	П	\prod	TO-OT		2.63			2.2	2.53	2.3	2.53											3.8	3.9	3.6	3.5	ο Ο υ	200	202	× 0.1	< 0.1	< 0.1	< 0.1	1	\dagger
	П	Т	0.05 TD-MS	_	0.27										T		T					0.65	0.62	1.13	1.12	67.0	20.0	1-1-1	< 0.05	< 0.05	< 0.05	< 0.05	1	†
	П		۷	Т																		Н			†	\dagger	t						†	+
	ΙI	٦	S.	+	14.5			13.2	14.2	13.5	4.2											11.0	11.6	13.5	13.5	Σ ÷	ρ α	7.7	× 0.1	c 0.1	< 0.1	< 0.1	1	+
4	П	T	9	+	0.773	0.39	0.773										t					0.32	9:00	0.35	0.14	0.32	8 6	0.21	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	× 0.01
-0863	П	Т	Т	Т													\vdash					Н	\dashv	1	+	+	\dagger	-	ľ	·	_	Ť	Ť	+
: A17	2	- 1	AS INAA	_											\vdash		\vdash					< 0.1	< 0.1	> 0.1	> 0.1	1.0 0	5 6	0.1	< 0.1	< 0.1	< 0.1	< 0.1	+	+
Report: A17-08634	<u>a</u>	<u>و</u> .	LO-CIT	Т											L		┞					٧	<u> </u>	V	V	v '	+	/ V	٧	٧	٧	٧	+	+
œ	la l	<u>ق</u> ا	0.0 A A		N			m	ω	o o	ω											-	_	-	_	- -			-	-	_	-	1	4
	e H	E dd	L.0 TD-MS		1.02			0.3	1.8	0.3	1.8											, 0.1				0.0			Ш	< 0.1	< 0.1	× 0.1	_	\perp
	ю́	mad.	Z D		31.30			130	144	132	144											8.66	108	75.9	77.7	41.8	100	90,	< 0.2	< 0.2	< 0.2	< 0.2		
ţġ.	S.	mad.	TD-MS		2.78																	v -	, ,	-	-	~ ,	1	7	~	^	^	, ,		
ories I	Se	Т	NA A	1																														Τ
Activation Laboratories Ltd.	es S	- 1	0.1 TD-MS																			× 0.1	× 0.1	× 0.1	v 0.1	50 5	; ;	, 60.	k.0 ×	< 0.1	< 0.1	> 0.1		T
on La	SS		Z A A N	Т										0.9	6.50	6.2	6.50	6.2	6.50	6.3	6.50	П				T								Ť
ctivati	g S	Т	NAA	1										8.9	7.30	6.5	7.30	6.9	7.30	6.2	7.30	П			1	T	T						1	Ť
ď	П	- 1	LOO-O																			< 0.001	< 0.001	< 0.001	> 0.001	0.001	00.00	0.001	> 0.001	< 0.001	< 0.001	< 0.001	1	T
		٦	UAA	1																		Ť	V	Ť	Ť	<u> </u>	Ť		ľ	V	V	V	†	\dagger
ပ္ပ	П		ZO TD-MS		42.1			55.9	149	<u>+</u>	149											78.0	81.1	124	121	67.9	0 10	72.0	< 0.2	< 0.2	< 0.2	< 0.2	1	\dagger
G	П	Т	TO-ICP		0.042	0.035	0.042															0.074	690.0	0.074	0.064	0.078	1 7800	980.0	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	× 0.001
	П	%	Τ.	Т										2.02	2.16	2.18	2.16	2.05	2.16	214	2.16	Н			1	\dagger	t		ľ	V	V		Ť	+
	Н	- 1	υ <u>ς</u>		14.50			6.6	26.2	5.5	26.2				H		t					0.2	0.5	0.2	0.5	- 2	5 6	1.0	< 0.1	< 0.1	< 0.1	< 0.1	\dagger	+
	Н	T	TD-ICP TD-	+	000 001	522	490.000								\vdash		\vdash					963	937	1080	1030	329	丄			Н			\dagger	+
	П	udd .	T	Т	- E	3	1 64		_	S.	_	SE SE	_		t e		t e		Į.		p.	Н	\dashv	-	+	+	+	╁		Н	Н	+	+	+
	Analyte Symbol	Unit Symbol	Lower Limit Method Gode	(4-Acid) Meas	OREAS 45d (4-Acid) Cert	OREAS 45d (4-Acid) Meas	OREAS 45d (4-Acid) Cert	SdAR-M2 (U.S.G.S.) Meas	SdAR-M2 (U.S.G.S.) Cert	SdAR-M2 (U.S.G.S.) Meas	SdAR-N2 (U.S.G.S.) Cert	SdAR-M2 (U.S.G.S.) Meas	SdAR-M2 (U.S.G.S.) Cert	DMMAS 120 Meas	DMMAS 120 Cert	17DB045 Orig	17DB045 Dup	17DB083 Crig	17DB083 Dup	17DB085 Orig	17 DB0121 Orio	17DB0121 Dup	Method Blank											

age 20/27

				-	ပ္ပ		⋖	ctivati	on La	Activation Laboratories Ltd.	ries L	ē			Rep	Report: A17-08634	17-086	34					
Analyte Symbol	Mn	S	Na	۵	86	2	Re	Sp	Sc	Se	Se S	Su	ر ن	.e	ق	Te	٩	i=	<u>ا</u>	Ē	_	Ĺ	lъ
Unit Symbol	шdd	mdd	%	%	udd	mdd	d mdd	mdd	udc	ld udd	d wdd	d mdd	d udd	udd	wdd	udd	mdd	%	udd	udd	d wdd	mdd	gd
Lower Limit	_	1.0	0.01	0.001	0.2	15	0.001	0.1	0.1	3.1	-		0.2	F.	0.5	0.1	0.5	10.0	1.0	0.2	0.05	-	0.5
Method Code	TD-ICP	E	-MS INAA	TD-ICP	TD-ICP TD-MS INAA	Ė	TD-MS INAA	-	NAA	TD-MS INAA		TD-MS TD-MS TD-MS INAA	D-MS	D-MS		TD-MS INAA	NAA	TD-ICP	TD-ICP TD-MS INAA		TD-MS TD-MS		l₫
Method Blank				< 0.001						T	r	r	l					< 0.01					ı
Method Blank				< 0.001														< 0.01					
Method Blank		< 0.1		< 0.001	< 0.2		< 0.001			< 0.1		٧	< 0.2	< 0.1		< 0.1		< 0.01	< 0.1		< 0.05	< 0.1	
Method Blank		< 0.1		< 0.001	< 0.2		< 0.001			< 0.1		٧	< 0.2	< 0.1		< 0.1		< 0.01	< 0.1		< 0.05	< 0.1	
Method Blank			< 0.01			< 15		< 0.1	< 0.1		< 3				< 0.5		< 0.5			< 0.2			·
Method Blank			< 0.01			< 15		< 0.1	< 0.1		< 3				< 0.5		< 0.5			< 0.2			•

Page 21/2

	2	mdd	0.1	TD-MS	0.3	0.280	0.3	0.280							0.1	0.170	0.1	0.170									0.3	0.330	0.3	0.330						Ç	Q.	4.0	0.54			0.2	0.18	0.2
	γp	mad	Γ	INAA																																								
	٨	mdd	0.1	TD-MS		1.90	ı	l							1.0	1.60	0.9	1.60			3.0	4.00	3.0	4.00			1.6	2.40	1.6	2.40	1.7	2.0	1.8	2.0		3.0	Ľ		Ľ			1.3	1.33	4.
	Tm	mdd		TD-MS TD-MS	6.0	0.430	0.3	0.430							0.2	0.210	0.2	0.210				0.65	0.5	0.65												7.0	0.56	0.5	0.56					
	Δì	udo	0.1	SM-CT																		4.10		4.10												G,			Ľ.			1.2	1.38	.i.3
634	운	mdd	1:0	TD-MS																		1.50														10	ľ		Ľ			6.4	0.46	0.4
Report: A17-08634	Q.	mdd	0.1	TD-MS TD-MS		0.830	—	0.830								0.360						1.20					- 1	۲I		0.415						-	ľ		Ĺ			0.3	0.400	0.3
oort: A	à	mdd	0.1		4.4	4.30	4.4	4.30							2.7	2.60		2.60				6.70		6.70					2.3							e c	Ľ		Ľ	┖		2.2	2.28	2.2
Rel	B	ωdd	0.1	TD-MS		4.20	l	4.20										5.25				7.00				- 1	- 1		2.2							7.0						Si Si	2.42	2.3
	Œ	mdd	0.05	TD-MS	0.55	0.690	0.57	0.690							1.30	1.63	1.30	1.63			1.35	1.70	1.40	1.70			0.59	0.760	0.59	0.760	0.50	0.59	0.51	0.59	1	1 2	1.98	1.75	1.98			9.54	0.57	0.55
	S.	mdd	1.0	INAA			L																												\downarrow				L					
Ltd.	Sm	mad	0.1	TD-MS	2.6	2.70	2.6	2.70							6.5	9.80	6.0	9.90			6.9	8.20	7.1	8.20			5.6	2.67	2.5	2.67						9	9.6	9.2	9.6			2.7	2.80	2.7
tories	Nd	mdd	2	TD-MS INAA	1	(,			_	,									70											m	_	
abora.	₽	mdd	0.1		8.4	18.0	8.7	18.0							40.8	45.0	41.6	45.0			37.7	40.00	38.6	40.00			12.6	13.0	12.3	13.0	4.6	5.20	4.7	5.20		48.0	┸					13.8	13.4	14.2
Activation Laboratories Ltd.	ģ	udc	1.0	ZM-C⊥																															4	÷	12.6	11.2	12.6			3.5	3.70	3.5
Activa	ලී	mdd	m	INAA	3	0		0							0	~	_	2			_	0	4	0			4	_	_	0					_							OI.	_	10
	Ce	mdd	0.1	TD-MS	13.3	17.0	13.	17.0							96.0	102	97.1	102			76.1	93.00	77.4	93.00			31.4	36.0	31.1	36.0					\downarrow	900	108.0	95.7	108.0			32.2	37.20	33.5
	Б	mdd	0.5	NAA	m	0	m	0							81	22	ω	2			o)	0	7	0			ဖွ	o	_	o	Ω	w	2	9	_	<u> </u>	. 10		2			m	o o	_
ဗ္ဗ	_a	mdd	0.1	TD-MS	0 7.3			0 7.50									8 54.8				37.9			ľ										3.6		48 1						52 16.3	16.9	92 16.7
	ź	mdd	-	TD-MS		0.38.0	18	0.38.0									0 38				2	290.00	8	290.0					9 61			<u>" </u>		0.38:0	_	20,	1	1	-	ı			141	
	>	шdd	0.1	TD-MS	24.	35.	53	32.							117	14.	12.0	14.									10.	14.	10.	14.	13.	18.0	4	18.0	4	8	36.5	8	88			9.1	9.53	10.0
	3	ωdd	-	TD-ICP INAA	2	0	8	0	8	0					0	0	6	0	6	0	4	0	2	0	89	0	0	9	0	9	6	80	8	80	0 0	0 0	1 0	8	0	3	0	T	0	0
	>	ωdd	2	TD-IC	87	80.0	88	80.0	88	80.0					06	87.0	89	87.0	68	87.0	44	102.C	u)	102.C	u()	102.C	5	35	120	35	5	148	138	148	140	212	220.0	223	220.0	213	220.0	101	235.0	170
	Analyte Symbol	Unit Symbol	Lower Limit	Method Code	GXR-1 Meas	GXR-1 Cert	GXR-1 Meas	GXR-1 Cert	GXR-1 Meas	GXR-1 Cert	DH-1a Meas	DH-1a Cert	DH-1a Meas	DH-1a Cert	GXR-4 Meas	GXR-4 Cert	GXR-4 Meas	GXR-4 Cert	GXR-4 Meas	GXR-4 Cert	SDC-1 Meas	SDC-1 Cert	SDC-1 Meas	SDC-1 Cert	SDC-1 Meas	SDC-1 Cert	GXR-6 Meas	GXR-6 Cert	GXR-6 Meas	GXR-6 Cert	DNC-1a Meas	DNC-1a Cert	DNC-1a Meas	DNC-1a Cert	DNC-1a Meas	SBC-18 Cen	SBC-1 Cert	SBC-1 Meas	SBC-1 Cert	SBC-1 Meas	SBC-1 Cert	OREAS 45d (4-Acid) Meas	OREAS 45d (4-Acid) Cert	OREAS 45d

age 22/27

		mdd		TD-MS	9	5				1	0.3	0.54	0.4	0.54												9.0	9.0	9.0	9.0	9.0	9.0	4.0	4.0	, 0.1	, 0.1	× 0.1	< 0.1		Τ
	П	П		П	\dagger		\dagger			+								\dagger	t						Н	\exists	\dashv	1	1	+	+	1	\dagger	\dashv	+	1	\forall	\dagger	+
	П	- 1	0.2	S)		 	+				5.5	3.63	69 69	3.63				+	+	-			Н		Н	4.2	4.3	4. تن	Δ. Ö.	4.5	4.5	2.7	2.7	≥ 0.1	× 0.1	× 0.1	- 0.1	+	+
	۶	mdd		S TD-MS	<u> </u>						4.0	0.54 3	9.0					+	+								╝	0.7				4.0		_				4	+
	٤	mdd	0.1	TD-MS		20								8 0.54																				_	_	_	\perp	4	4
	ù	mdd		TD-MS		8					5.6	3.58	2.7	3.58					1													2.8	_	_	4	4	× 0.1		\perp
634	운	med	0.1	TD-MS		0.46				ı	6.0	1.21	6:0	1.21												1.5				1.6		1:0	\perp	_	_	, 0.1	> 0.1		
17-08	a P	mdd	0.1	TD-MS	9	0.400					0.7	0.97	0.7	0.97												1.1	1.1	1.2	1.2	1.0	0.	0.8	0.8	× 0.1	× 0.1	,0 ×	× 0.1		
Report: A17-08634	á	- 1	0.1	TD-MS TD-MS	3	5.26				1	9.	5.88	9.4	5.88												7.5	7.7	4.8	80 173	7.6	7.7	ις 21	5.1	× 0.1	× 0.1	× 0.1	< 0.1		
Rep	П	٦	_	_D-MS	5	2.42				1	დ დ	6.28	5.0	6.28					T							7.3	7.6	7.6	7.9	5.2	5.4	5.6	5.7	< 0.1	< 0.1	c 0.1	< 0.1	1	Ť
	П	П)5 0.1	LD-MS ⊢	!	0.57	T			1	- - - -	1.44	1.22	 44				+	t							1.15	1.17	-08	1.01	0.50	0.50	1.39	1.37	< 0.05	< 0.05	< 0.05	< 0.05	1	\dagger
	П	mdd u		- 1	\dagger		+			\dagger							2.3	0 70	2 6		2.70	2.5	2.70	2.4	2.70		\dashv	+	1	\dashv	+	+	+	<u> </u>	Ť	<u> </u>	+	\dagger	+
	П	П		VIS INAA	- 1	08.7	<u> </u>			<u> </u>	τ. (D	7.18	4.0	7.18				+	+				Н		H	7.4	7.7	ω σ:	6.8 8.	4 2.	<u>+</u> .	5.9 6.0	9.0	× 0.1	× 0.1	× 0.1	× 0.1	+	+
Activation Laboratories Ltd.	П	шdd		TD-MS	+		╁			+		_						+	+				Н		Н	\dashv	4	+	\dashv	\dashv	+	+	+	۷	<u> </u>	<u> </u>	$\frac{}{}$	+	+
atorie	₽	mda		NAA	4	4:	_			1	τί	4.	21	4.				+	+							- -	5	- -	65	∞.	<u>ه</u>	- -	_ω	- .	-		-	4	+
abor	ž	mad	0.1	TD-MS		4.8.					37.5	39.4	4 37.2	39.4					1												\perp		_	_	4	4	- 0.1	_	_
tion L	Ē.	шаа	0.1	TD-MS	- [3.70	L			ľ	9.5	11.0	9.4	11.0				\perp	╽							9.1	9.3	7.3	7.4	4.3	4.6	7	7.0	× 0.1	× 0.1	× 0.1	× 0.1	\perp	
\ctiva	Ce	mdd	8	NAA													88	66	2.25		32.0	34	32.0	26	32.0														
•	පී	ppm	0.1	TD-MS	02.00	37.20				1	86.5	98.8	85.4	98.8												86.4	89.1	135	135	54.0	55.6	64.2	63.9	< 0.1	< 0.1	< 0.1	0.1		
	La			NAA						Ī							17.6	17.6	16.7		17.6	16.9	17.6	18.0	17.6														T
O	La		1	TD-MS		9.9	T			1	6.44 6.3	46.6	43.0	46.6				t	t							39.7	41.5	31.2	31.7	20.3	21.3	30.3	29.7	< 0.1	- 0 - 0	-0.	0.1	1	$^{+}$
မွ	Η	- 1	0	TD-MS TI	1	4	t			†	29	529	86	529				\dagger	t						П	121	13	177	6	m	위	112	2	- V	-	- v	v	\dagger	+
	П	udd (-	TD-MS TD	- 1	50.8 50.8	+			1	<u>4</u> .	32.7	22.0	32.7				+	+				\forall		Н	35.6	36.2	39.5	39.5	93.1 1.1	35.5	23.0	4.	i 0.1	£.0.1	× 0.1	F.0.1	+	+
	П			Т	+		_			+								+	+						Н						+		+	v	v	Ť	Ť	+	+
	≩	mdd	-	NAA	4	0.0	151		0.0	1	56	25.2	56	25.2	27	25.2		+	+				Н		Н	92	97	94	4	26	43	90	54	< 2	< 2	< 2	< 2	2 >	2 2
	>	mdd	CI	TD-ICP	-	235.0	-		235.0	\downarrow		ξί		δí				1.	_		Į		Ļ		Ļ		_	\downarrow	\downarrow		\downarrow	4	4	<u> </u>	Ý	۷	$\overset{}{+}$		+
	Analyte Symbol	Unit Symbol	Lower Limit	Method Code	(4-Acid) Meas	CHEAS 45d (4-Acid) Cert	OREAS 45d	(4-Acid) Meas	OREAS 45d	(4-Acid) Cert	SdAR-M2 (U.S.G.S.) Meas	SdAR-M2 (U.S.G.S.) Cert	SdAR-M2 (U.S.G.S.) Meas	SdAR-M2 (U.S.G.S.) Cert	SdAR-M2 (U.S.G.S.) Meas	SdAR-M2 (U.S.G.S.) Cert	DMMAS 120	Meds DMMAS 190 Cort	DAIMAS 120 Cel	Meas	DMMAS 120 Cert	DMMAS 120 Meas	DMMAS 120 Cert	DMMAS 120 Meas	DMMAS 120 Cert	17DB045 Orig	17DB045 Dup	17DB083 Orig	17DB083 Dup	17DB085 Orig	17DB085 Dup	17DB0121 Orig	17DB0121 Dup	Method Blank	Method Blank	Method Blank	Method Blank	Method Blank	Method Blank

Page 23/27

					ပ္မ		•	Activa	tion L	aborat	Activation Laboratories Ltd.	-td			Rep	Report: A17-08634	17-086	34				
Analyte Symbol	>	3	>	Zr	La	La	e C	ලී	ρ̈́	ρ	PN	Sm	Sm	nΒ	РБ	à	٩	유	Ēr	Tm	Ą	٩
Unit Symbol	mdd	mdd	mdd	mdd	mdd	mdd	mdd	mdd	mdd	udd	_ wdd	udd	mdd	mdd	udd	d wdd	mdd	mdd	mdd	шdd	mdd	mdd
Lower Limit	2	-	1.0	-	0.1	6.5	0.1	3	0.1	0.1	5	0.1	0.1	0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Method Code	TD-ICP	TD-ICP INAA	_D-MS	ZM-UL	TD-MS	INAA	TD-MS TD-MS INAA TD-MS	INAA	TD-MS	TD-MS	TD-MS TD-MS INAA	TD-MS INAA	INAA	TD-MS	TD-MS	SM-OT SW-OT SM-OT SM-OT SM-OT SW-OT SW-OT	TD-MS	TD-MS	TD-MS	TD·MS	TD-MS	INAA
Method Blank	< 2																					
Method Blank	< 2																					
Method Blank	< 2		< 0.1	v	1.0		< 0.1		< 0.1	1.0 >		< 0.1		< 0.05	< 0.1	< 0.05 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Method Blank	< 2		< 0.1	v	1.0		< 0.1		< 0.1	< 0.1		< 0.1		< 0.05	< 0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Method Blank		٧				< 0.5		< 3			> 5		< 0.1									< 0.
Method Blank		^				< 0.5		< 3			Λ 1		< 0.1									< 0.

Page 24/

Report: A17-08634

ဗ္ဗ

Analyte Sympol	3	
Unit Symbol	ωdd	o o
Lower Limit	90.0	
Method Code	NAA	INAA
GXR-1 Meas		
GXR-1 Cert		
GXR-1 Meas		
GXR-1 Cert		
l -,		
GXR-1 Cert		
DH-1a Meas		
DH-1a Cert		
DH-1a Meas		
DH-1a Cert		
GXR-4 Meas		
4		
GXR-4 Meas		
4		
GXR-4 Meas		
GXR-4 Cert		
SDC-1 Meas		
SDC-1 Cert		
SDC-1 Meas		
SDC-1 Cert		
SDC-1 Meas		
SDC-1 Cert		
GXR-6 Meas		
φ		
GXR-6 Meas		
φ		
DNC-1a Meas		
DNC-1a Cert		
DNC-1a Meas		
DNC-1a Cert		
DNC-1a Meas		
DNC-1a Cert		
SBC-1 Meas		
SBC-1 Cert		
$\overline{}$		
SBC-1 Cert		
7		
SBC-1 Cert		
OREAS 45d (4-Acid) Meas		
OREAS 45d (4-Acid) Cert		
1		

Report: A17-08634

ဗ္ဗ

it Symbol	mdd	g
ower Limit	0.05	
Code	INAA	NAA
-Acid) Meas		
DREAS 45d		
OREAS 45d		
(U.S.G.S.) Meas		
SdAR-M2 (U.S.G.S.) Cert		
SdAR-M2 (U.S.G.S.) Meas		
SdAR-M2 (U.S.G.S.) Cert		
SdAR-M2 (U.S.G.S.) Meas		
SdAR-M2 (U.S.G.S.) Cert		
DMMAS 120 Meas		
15		
DMMAS 120 Meas		
-		
DMMAS 120 Meas		
DMMAS 120 Cert		
DMMAS 120 Meas		
DMMAS 120 Cert		
17DB045 Orig		
17DB083 Orig		
7DB083 Dup		
\sim 1		
-		
17DB0121 Dup		
Method Blank		
Jethod Blank		
Contract Disease		

ge 27/27

Activation Laboratories Ltd.

Report: A17-08634

ဗွ

Analyte Symbol	n	Mass
Unit Symbol	mdd	5
Lower Limit	0.05	
Method Code	NAA	INAA
Method Blank		
Method Blank	< 0.05	30.0
Wethod Blank	< 0.05	10.0

Quality Analysis ...

Innovative Technologies

Date Submitted: 26-Sep-17 **Invoice No.:** A17-10547 **Invoice Date:** 16-Nov-17

Your Reference:

Nova Scotia Department of Natural Resources 1723 Hollis Street 5th Floor Halifax NS B3J 2N3 Canada

ATTN: Denise Brushett

CERTIFICATE OF ANALYSIS

67 Soil samples were submitted for analysis.

The following analytical package(s) were requested:

Code UT-3 INAA(INAAGEO)/Total digestion ICP(Total)Total Digestion ICP/MS

REPORT A17-10547

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Unaltered silicates and resistate minerals may not be dissolved. Values which exceed upper limit should be assayed.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Γ					£			ACTIVE		anora	Tories	. h	ŀ	ŀ		Dor.	፲ [_ [-	ŀ	ŀ	ſ
00			П	╗	П	\neg	Z	╗			П	╗	m	à			T	٦		П	Ξ	ဇ္ဗ	_
Unit Symbol p	ppp	ppm r		_	ppm	n	ppm p	% udd			dd wdd	_	да шаа	ppm mqq	% udd	id %	ppm pp	mdd mdd	m ppm	% ر	mad	mdd L	Ε
Lower Limit 2	5	0.05		0.1	,	0.5 C	0.5 0	0.5 0.	0.01 0.	0.01 0.	0.5	0.1				0.01 0.1			15 0.2	0.01	1 0.1	0	
Method Code	NAA	MULT I MULT NAAT TD- D- ICP/TD ICP/TD- ICP-MS MS	1 10	MULT TD- ICP/TD- ICP-MS	TD-CP	MULT N TD- ICP,TD- ICP-MS H	MULT I N NAAT N D- D ICP/TD- K MS N	MULT I TI NAA/T D- ICP/TD- MS	TD-ICP TE	N-07-07	INAA M D N/V	MULT I MI NAAT TE D-ICP- IC MS IC	MULT W TD- TCP/TD- IC ICP-MS IC	MULT IN TD- ICP/TD- ICP-MS	INAA	90-0T N Q M	MULT I MI NAAT NA D-ICP- D- MS MI	MULT I ML NAA/T NA D-ICP- D-I MS MS	MULT I INAA NAA/T D-ICP- MS	A NAA		MULT I TE NAA/T D-ICP- MS	D-MS
17DB127	< 2		25.5	< 0.1	^	20.2	31.4	71.0	0.01	80.9	8.4	279	1.8	0.2	26.9	0.37	16.4	62	16.5	 εο:	3.63	0.2	10.7
17DB128	< 2	٧	26.2	0.1	٧ -	24.3	39.2	128	0.03	7.42	10.6	376	2.1	0.2	82.0	0.37	21.4	26	44.0	1.7	6.44	6.0	15.7
17DB129	5	0.18	45.7	0.3	٧,	22.6	27.2	112	0.02	6.99	16.0	554	1.6	1.8	6.3	1.96	16.0	71	1.00	1.4	4.53	0.2	12.0
17DB130	10	80.0	152	0.3	۲>	32.4	39.4	120	0.03	8.05	24.8	481	3.5	4.9	9.0	26.0	13.4	72	11.9	2.	3.67	2.4	16.5
17DB131	< 2	< 0.05	47.7	< 0.1	۲>	23.5	36.5	102	< 0.01	06.9	9.6	346	2.1	0.2	15.1	0.25	20.5	99	9.76	1.4	3.72	0.3	13.3
17DB132	4	90.0	46.9	0.2	٧ -	25.2	202	105	0.03	7.18	7.8	318	1.9	< 0.1	74.4	1.27	36.6	28	6.47	2.0	5.88	0.7	13.6
17DB134	< 2	< 0.05	26.9	0.1	۲>	27.4	35.8	118	< 0.01	6.77	9.0	378	2.0	0.2	10.8	0.39	18.8	83	5.09	1.4	3.89	0.3	13.3
17DB135	< 2	< 0.05	36.7	0.1	۲>	41.4	36.8	113	0.01	98.9	11.0	354	2.1	0.2	51.0	0.39	18.3	99	4.81	1.1	4.14	0.3	14.8
17DB136	< 2	< 0.05	11.4	< 0.1	۲>	42.2	50.9	125	0.04	5.61	11.4	248	2.1	0.2	286	12.0	8.2	51	5.25	6:0	4.30	6.8	15.1
17DB137	< 2	< 0.05	31.0	0.2	4	64.0	34.1	223	0.03	7.76	38.2	151	1.4	< 0.1	179	0.47	14.2	87	8.17	1.7	4.16	3.1	11.0
17DB138	< 2	< 0.05	23.3	0.2	۲,	44.1	26.3	156	0.03	7.27	14.0	342	2.2	0.2	114	0.26	21.0	99	5.61	1.1	5.02	9.0	15.3
17DB139	< 2	< 0.05	16.8	0.2	~	18.4	17.4	149	90.0	7.30	6.7	228	2.0	0.1	197	0.33	13.8	47	5.07	4.1	5.63	1.8	15.1
17DB141	< 2	< 0.05	34.5	4.0	-	70.1	28.3	189	0.02	99.9	10.4	407	4.1	1.0	40.6	1.12	6.61	99	3.53	1.1	4.13	4.	11.3
17DB142	۸ 2	20.0	28.5	4.0	Ĺ	92.7	25.3	187	0.02	6.24	38.4	287	2.7	4.0	38.0	0.36	17.0	92	5.51	1.7	4.36	4.0	14.0
17DB143	< 2	< 0.05	34.7	× 0.1	-	32.7	40.7		0.04	7.14	7.8	282	1.9	1.0	94.3	0.57	21.0	99	17.2	1.1	4.42	3.6	13.8
17DB144	۸ 2	< 0.05	44.3	< 0.1	Ĺ	26.2	37.5		< 0.01	7.11	8.6	388	2.1	0.2	13.3	0.25	19.3	88	5.94	4.1	4.00	3.2	14.4
17DB145	< 2	< 0.05	20.6	0.2	-	26.9	27.0		0.03	6.17	9.6	303	2.0	1.0	74.1	0.33	17.7	99	5.86	1.1	4.12	3.2	12.9
17DB146	< 2	< 0.05	38.9	0.2	-	32.6	37.8		< 0.01	86.9	13.5	470	2.7	0.2	9.	19:0	19.4	69	7.88	9.	4.35	3.2	15.3
17DB147	< 2	< 0.05	33.0	1.0	l	22.7	32.7		0.01	6.55	7.9	291	2.2	0.2	61.7	0.70	20.6	92	5.69		4.08	4.0	13.4
17DB148	^ 2	< 0.05	24.2	0.2		23.3	29.7	601	0.07	6.49	8.6	279	2.7	× 0.1	114	1.0.1	36.4	103	15.3	2.5	9.50	3.2	17.9
17DB149	ω	< 0.05	48.8	0.2	ı	14.9	47.2		0.02	98.9	5.7	270	1.6	< 0.1	48.4	2.02	26.5	ı	4.14		5.06	3.8	12.3
17DB150	< 2	< 0.05	26.5	0.2	۲,	19.5	39.9		0.02	7.46	8.9	283	2.0	0.1	87.3	0.69	22.3		7.54	1.5	4.62	2.4	14.2
17DB151	< 2	< 0.05	30.5	0.2	۲>	29.6	26.8	107	0.01	6.77	9.7	433	2.0	0.2	49.0	0.55	20.7		4.03	£.	4.21	9.0	12.8
17DB152	< 2		36.3	0.1	۲ >	36.4	41.0		< 0.01	8.27	14.2	548	3.0	0.2	< 0.5	0.44	23.1	62	8.16	E. L	5.18	1.3	16.9
17DB153	< 2	< 0.05	4.14	0.2	^	34.1	1.61	103	0.04	6.43	11.1	324	1.5	0.2	47.5	0.34	13.1	61	4.01	μ. ω.	4.36	4.2	14.5
17DB154	80	< 0.05	22.4	4.0	^	44.3	21.6	118	0.02	6.81	8.6	427	2.1	0.2	34.3	0.43	15.3	35	4.96	4.1	4.19	6.4	15.6
17DB155	< 2	< 0.05	37.6	0.3	۲>	40.8	33.3	126	9.05	6.18	6.0	401	1.6	0.2	72.2	0.93	17.2	8	3.87	1.5	5.64	6.4	16.4
17DB156	^ 2		24.6	0.2	^	25.0	56.9	102	0.01	5.89	7.3	320	1.7	0.1	35.6	0.36	16.2	4	4.72	1.1	3.86	4.6	12.3
17DB157	< 2		24.0	0.8	^	93.1	26.5	130	0.07	6.12	16.8	262	5.0	0.1	110	0.57	20.0	83	9.62	J.D	6.05	3.2	15.3
17DB158	< 2		23.4	0.5	٧,	153	33.1	344	0.03	5.96	27.6	231	3.3	0.2	103	0.43	21.0	65	6.45	1.0	4.56	6.7	12.5
17DB159	< 2		13.1	< 0.1	۲,	49.6	14.9	75.1	0.04	5.47	10.3	319	2.7	4.0	37.4	0.47	7.6	84	5.93	J.D	4.78	0.7	32.2
17DB160	< 2	< 0.05	24.2	0.2	۲>	48.6	23.0	106	0.03	6.36	8.0	230	2.4	0.2	141	0.83	15.4	20	4.89	1.1	4.95	9.0	14.9
17DB161	4	< 0.05	23.2	0.4	٧,	43.8	17.0	115	< 0.01	5.09	11.4	204	2.8	0.2	35.9	1.2.1	14.0	92	3.56	1.6	3.99	9.4	13.1
17DB162	< 2	< 0.05	74.0	0.2	۲>	48.2	32.5	186	0.03	7.24	12.8	275	2.2	0.3	9.68	0.74	20.0	20	8.25	1.4	4.55	1.8	13.5
17DB163	3	0.27	34.9	9.0	۲>	73.0	35.9	191	0.02	6.51	12.0	270	3.1	0.3	34.2	1.61	30.1	99	7.35	1.2	5.54	1.0	15.2
17DB164	10	< 0.05	11.3	0.2	^	31.9	10.0	96.5	0.04	5.78	11.8	142	5.9	0.2	115	0.17	5.2	88	3.29	9.0	4.16	1.2	17.3
17DB166	< 2	< 0.05	38.7	0.1	^	48.5	47.4	130	0.02	89.9	8.1	328	1.6	< 0.1	98.3	0.87	30.9	98	85.9	1.4	5.36	3.1	13.2
17DB167	< 2	< 0.05	37.5	0.2	Ÿ	42.7	51.4	136	0.04	7.11	8.1 L.	294	1.5	< 0.1	132	0.87	33.9	62	6.10	⊥ Si	5.52	4.0	13.6
17DB168	< 2	< 0.05	27.6	0.1	۲>	22.3	44.6	114	0.03	6.93	10.3	291	2.0	0.1	81.4	16:0	28.4	26	8.65	1.8	5.32	3.8	13.3
	_		_		_			_	_		_	_	_	_	_			_	_	-	-		_

Page 2/25

			হ	14.1	16.4	14.2	13.5	13.8	13.5	2.7	13.2	7.0	14.8	14.9	14.4	13.9	14.3	14.7	16.0	5.3	13.9	11.8	10.5	14.1	15.0	12.6	13.9	16.3	41.1	16.0
Ga	mad	1.0	SM-QT .	1.5										1.									1 2.			1.4				
Ξ	mdd	0.1	MULT I NAA/T D-ICP- MS	ļ.,	9.0	2.8	2.4	3.1	3.3	3.1	4.1	5.7	0.8	1,	0.5	0.5	2.9	3.3	5.2	3.8	4.2	4.9	1,	9.0	0.5	1	3.7	3.9	41.5	5.1
Fe	%	0.01	NAA	5.08	4.28	5.69	4.94	5.48	4.36	4.25	3.87	4.54	5.07	4.74	4.04	3.83	4.52	5.19	5.01	7.97	5.90	3.76	3.44	3.64	2.81	3.94	4.33	3.51	1.33	4.52
П	ppm 9	Ť	NAA .	1.7	1.1	1.0	1.4	L.	L.3	ι. ω	1.4	1.2	1.6	۲. 2i	1.1	1.0	- 2i	- 2i	1.5	1.5	6.1	1.1	1.0	1.1	4.1		ω	6.0	0.2	1.1
Ш			MULT I IN NAA/T D-ICP- MS	4.65	6.05	99.9	8.78	9.59	62.7	6.65	5.33	6.53	7.50	7.19	5.35	4.87	5.09	7.57	7.19	5.70	16.6	4.30	4.92	4.66	7:90	4.64	1.04	11.4	2.07	5.68
ర		0.05		25	78	9/	22	22	95	6	28	75	97	61	95	20	£	54	73	39	96	22	29	94	73	20	98	92	3	84
ŏ	med	-	TI MULTI T NAA/T P- D-ICP- MS	Φ.	1.61	33.5	28.0	36.6	23.8	20.6	19.3	21.9	24.3	26.0	17.8	17.5	5.5	21.8	23.8	48.3	35.0	17.2	14.6	17.7	6:	6.9	5.5	5.6	0.3	16.9
ಽ	mdd	0.1	MULTI NAAT D-ICP- MS	3 29.													23.								9.	3 15.	9 16	Ĺ		
g	%	0.01	TD-ICP	0.93	0.11	0.81	0.58	0.99	0.65	0.45	0.42	0.21		0.75	0.26	0.23	0.50	0.54	0.64		Ů		9.05	0.31	0.25	98.0	1.99	0.95	0.04	0.19
'n	mdd	0.5	INAA	115	26.6	127	80.5	63.2	46.9	74.7	24.4	8.1	119	45.2	70.7	55.3	32.2	85.5	19.0	00↓	54.4	46.7	93.2	9.7	7.2	84.2	5.5	10.2	3.5	58.9
П	mdd	0.1	MULT I TD- KCP/TD- KCP-MS	× 0.1	0.2	< 0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.2	0.2	0.1	0.1	0.2	< 0.1	< 0.1	0.1	0.1	0.2	0.2	0.2	1.8	4.7	< 0.1	0.2
Bi			MULT N TD- ICP/TD- K ICP-MS K	÷.	2.5	1.6	1.8	1.9	1.7	1.8	2.1	2.1	1.9	1.9	1.7	1.8	2.0	1.8	2.4	1.4	1.8	1.8	1.5	1.9	2.1	2.4	1.7	3.5	6.4	2.1
Be	n ppm	0.1	MULTI MI NAA/T TE D-ICP- IC MS IC	204	374	303	297	345	333	308	363	410	304	349	313	322	347	318	425	324	362	366	264	354	408	277	009	629	48	325
Ba	mdd	-		11.2	13.9	10.1	10.8	17.5	12.3	10.8	10.6	12.1	6.7	11.2	10.4	15.1	12.9	10.8	0.6	4.2	8.2	6.3	7.4	7.3	6.7	10.4	16.1	23.3	1.3	12.1
As	mdd	0.5	P INAA	L	7.65	7.36	7.16	6.96	1 68	6.92						6.92	6.85	7.15	7.48	8.26	7.56	5.31	6.26	6.55	6.70	6.83	7.04	7.94	5.26	7.12
₹	%	0.01	TD-ICP TD-ICP	8.21	Ц				9																				Ц	
S	%	0.01	TD-ICE	0.04	< 0.01	0.03	0.03	0.02		0.02	٧	٧				0.02		0.03					0.02	10.01	< 0.01	0.03	0.02	0.03	< 0.01	0.02
Zu	mdd	6.5	MULT I NAAJT D- ICP/TD- MS	87.3	105	134	119	144	111	114	115	101	110	101	112	111	114	132	101	94.7	122	115	125	111	75.2	114	111	120	19.6	103
Ξ	ppm	0.5	MULT I NAA/T D- ICP/TD- MS	35.3	37.0	51.4	44.2	56.2	41.8	45.0	34.6	42.3	38.5	44.0	35.4	36.4	46.6	36.3	44.2	65.1	49.2	30.6	28.0	31.6	24.8	27.6	27.0	38.6	< 0.5	33.1
	_	5	MULT N TD- KCP/TD- ICP-MS II	14.5	29.3	23.4	28.3	46.1	40.5	27.1	27.2	25.8	24.3	23.3	25.9	30.0	28.1	31.7	33.5	15.5	31.7	26.7	27.2	24.1	17.3	40.0	23.1	31.8	5.4	30.2
-B	П	0.5	M POI-OT TI OI	, V	-	٧ -	٧ -	٧ -	٧ -	٧ -	٧ -	٧ -	۷ ا	٧ 1	٧ -	٧ -	۲ ۷	٧ -	٧ -	٧ -	- V	٧ -	٧	٧ -	٧ -	٧ -	٧ -	٧ -	-	·
Mo	mdd t	-	⊢ GEN	0.2	< 0.1	0.2	0.2	0.3	: 0.1	0.2	0.1	: 0.1	0.2	1.0	0.1	0.1	1.0 :	9.4	0.2	9.4	0.3	0.3	0.2	1.0	1.0 :	0.2	0.3	0.3	1.0:	1.0
Ö	mdd	0.1	T MUL TD- TD-ICP/ MS ICP-	36.1		35.2	34.2	47.1	43.2 <	49.0	37.5	34.8	26.8	1.5	25.7	8.8	9.7	27.0	39.4	51.3	46.6	37.2	35.4	83.9	2.4	22.7	46.4	25	4.1	23.5
O	mdd	0.2	MULT 1 TD- 1 CP/TD- 1 CP/TD- 1 CP/MS 1 CP/MS	ı																					١.	3				
Ag	mdd	0.05	MULT I NAA/T D- ICP/TD- MS	< 0.05	4 < 0.05	> 0.05	< 0.05	< 0.05		< 0.05	-	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05					< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Αu	qdd	2	INAA	10	4	6	< 2	< 2	< 2	< 2	3	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	3	< 2	< 2	4	< 2	< 2	< 2
Analyte Symbol	loc	mit	Sode												,						,,									
alyte	Unit Symbol	Lower Limit	Method Code	17DB169	17DB170	17DB171	17DB172	17DB173	17DB174	17DB175	7DB176	17DB177	17DB178	17DB179	17DB180	17DB181	17DB182	17DB183	DB184	7DB185	17DB186	7DB187	7DB188	17DB189	7DB190	17DB191	17DB192	17DB193	17DB194	17DB195

Page 3/2.

	ج.	maa	0.1	MULT I NAA/T D-ICP- MS	12.6	12.6	5.2	16.4	1.1	7.5	10.4	11.5	12.4	7.3	14.0	7.8	8.5	14.5	9.8	112	10.2	11.3	10.8	6.0	6.7	4.6	10.4	12.6	10.9	11.3	10.1	10.0	7.7	6.6	19.6	10.8	10.9	10.2	10.4	12.3	7.2	9.9	8.3	0.9
	E	8	0.01	TD-ICP N	0.27	0.11	0.24	0.22	0.18	0.13	0.23	0.29	0.55	0:30	0:30	0.28	0.12	0.11	91.0	60:0	0.13	0.12	0.13	0.47	0.25	0.21	9.14	0.12	0.20	0.29	0.52	0.24	0.28	0.55	0.26	0.21	0.19	0.18	0.14	0.11	0.20	0.37	0.20	0.25
	Tb 1	Ę	Г	< <	2.3	9.0	< 0.5	4.1	< 0.5	1.0	1.5	9.0	< 0.5	< 0.5	1.1	9.0	< 0.5	1.7	8.0	8.0	< 0.5	0.8	0.5	0.7	< 0.5	4.	0.7	1.1	< 0.5	1.5	< 0.5	0.5	< 0.5	1.3	< 0.5	1.0	2.1	1.7	6.0	1.5	< 0.5	< 0.5	1.3	< 0.5
	Te	Ĺ	Γ	TD:MS	< 0.1	× 0.1	+ 0.1	+ 0.1	× 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	× 0.1	< 0.1	× 0.1	+ 0.1	+ 0.1	1.0 >	< 0.1	< 0.1	× 0.1	× 0.1	< 0.1	× 0.1	× 0.1	× 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	× 0.1	× 0.1
	_a _	_ ا	l	MULT T	× 0.1	× 0.1	< 0.1	< 0.1	× 0.1	< 0.1	< 0.1	< 0.1	6.4	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	× 0.1	× 0.1	× 0.1	× 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	× 0.1	< 0.1	< 0.1	0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	× 0.1	× 0.1
0547	ŗ	ε	Г	SM-CT	84.6	6.98	302	150	92.4	132	116	101	51.5	56.2	81.6	67.3	149	9'8'	84.6	93.8	86.5	± 41	266	122	133	85.2	108	107	82.2	92.3	8	92.1	80.7	75.2	75.3	81.7	115	97.4	135	53.1	110	67.7	9	92.4
A17-1	Sn	Ę	Γ	TD-MS	٧	٧	۸	٧	٧ -	۸	۲ >	٧ -	2	۸ 1	۸ 1	^	^	۷	^	, -	^	۸	, ,	٧ 1	۸	٧	^	٧	۸	۸ _	-	^	۸	2	1	٧ 1	۸ 1	۷ 1	۲ >	۸ 1	۸ 1	۲ >	, ,	~ V
Report: A17-10547	S)	L		MULT I NAA/T D-ICP-	< 0.1	0.3	0.4	0.3	< 0.1	9.4	0.2	0.2	1.3	9.0	1.0	4.1	0.3	9.4	6.0	0.2	0.4	0.2	0.3	6.0	0.4	0.2	< 0.1	< 0.1	9.0	0.5	1.0	0.3	0.9	1.2	0.8	0.7	< 0.1	0.5	0.4	1.0	0.8	1.1	9.0	9.4
č	Sc	ے	Г	A A A	11.3	15.1	12.0	11.0	12.0	19.4	11.7	11.7	9.8	14.5	11.6	12.8	13.3	9.7	12.4	12.1	10.4	13.6	11.8	22.1	21.0	15.2	12.8	16.2	11.0	11.6	10.4	10.5	13.1	11.1	9.1	12.4	11.3	12.9	13.2	6.3	14.8	15.1	16.9	16.2
	qs	mdd		NAA	0.1	₹ö.	6.3	0.1	0.1	7.0	6.0	1.2	8.0	8.0	1.1	8.0	8.0	4.↑	8.0	0.1	0.7	4.1	0.5	< 0.1	0.3	6.0	0.8	<u>-</u> :-	1.1	6.0	9.0	9.0	0.1	1.1	0.9	9.0	8.0	1.4	1.4	8.0	8.0	0.4	0.	0.5
	Re Be	_	_	SM-CT	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
s Ltd.	Rb	٦	Γ	MULT I NAA/T D-ICP- MS	67.8	4.18	40.5	114	6.97	43.2	81.0	75.3	42.1	43.6	30.4	40.1	54.5	91.8	53.1	82.8	209		61.7	28.2	44.6	9.09	79.7	110	55.2		44.9	59.2	49.6	43.2		62.1	58.1	1.77	30.2	41.7			46.3	30.2
atorie	Г	96	5	TD-ICP	0.036	190.0	0.073	0.062	0.036	0.093	0.034	0.038	0.082	680.0	0.067	0.141	0.051	0.042	0.095	0.028	0.063	0.047	0.057	0.230	0.078	0.079	0.041	0.036	0.076	0.061	0.132	0.025	0.124	0.081	0.056	0.061	0.038	620.0	0.083	0.041	0.093	0.112	0.081	0.131
Labor	Г	%	L	NAA	1.17	0.87	2.18	1.82	1.07	1.28	1.34	1.17	0.80	0.73	1.01	0.73	1.38	1.10	1.03	1.20	1.17	1.15	1.26	1.08	1.58	1.09	1.56	1.10	1.15	1.42	1.15	1.36	0.97	1.09	1.19	1.33	1.50	1.00	1.38	62.0	1.10	0.95	1.10	0.87
Activation Laboratories Ltd	9	L	Г	TD-MS	D.1	× 0.1	1.0	0.2	× 0.1	0.1	< 0.1	1.0	11.9	0.2	0.5	1.0	1.0	1.0	0.1	× 0.1	1.0	1.0	× 0.1	0.2	< 0.1	× 0.1	0.1	× 0.1	0.1	0.3	2.6	0.2	< 0.1	ω ω.	0.1	1.0	1.0	< 0.1	0.2	1.0	< 0.1	0.4	-: -:	F:0
Activ	Mn	ے	_	TD-ICP	599	999	1390	786	749	1030	644	881	507	453	992	815	1030	385	645	647	517	972	851	1710	1010	909	638	955	642	843	848	490	1070	620	617	641	821	969	1110	358	1160	1310	842	937
	Г	3%	10.0	TD-ICP	0.63	1.06	1.24	1.07	0.77	1.43	0.79	0.86	0.43	0.98	0.52	0.44	96.0	0.63	0.84	0.84	0.65	0.91	0.87	0.90	1.96	0.39	0.79	1.05	0.56	0.63	0.79	0.57	0.74	0.76	0.52	0.76	0.58	0.85	1.20	0.24	1.32	1.26	1.03	9:
	- I	mad	Γ	TD-MS	50.8	97.9	15.3	46.9	53.0	37.3	49.8	53.3	39.8	31.4		38.3	38.6	31.5	43.3	49.7	39.6	56.1	35.3	38.1	27.1	34.5	32.4	62.7	37.6	33.9	29.7	35.4	29.7	46.2	24.6	32.8	28.2	58.0	44.4	29.7	39.8	41.7	45.8	27.0
Results	×	%	0.01	TD-ICP	1.10	1.58	1.41	1.61	1.34	1.10	1.36	1.28	26'0	18.0	1.28	1.01	1.30	1.64	1.35	l	1.56			0.93	1.16	1.12	1.42		1.37	1.68			0.96	0.81	1.42	1.14	1.25	1.36	1.90	26'0	1.03	26.0		0.83
æ	ı	qdc	5	INAA	< 5	< 5	9 >	< 5	< 5	9 >	9 >	9 >	9 >	9 >	9 >	9 >	9 >	9 >	9 >	< 5	< 5	< 5	< 5	9 >	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	9 >	9 >	9 >	9 >	9 >	9 >	9 >	< 5	v 2
	므	mdd	0.1	TD-MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1										< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1.0	1.0 >	< 0.1		< 0.1
	ŝ	L		MS	70	140	100	110	50	120	90	06	150	180	160	170	06	70	120	30	90	30	90	130	70	130	80	20	20			40	50	140	100	140	70	130	80	150	100	30	50	150
	Ge	l,		TD-MS	< 0.1	× 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	× 0.1	× 0.1
	Analyte Symbol	Unit Symbol	Lower Limit	Method Gode	17DB127	17DB128	17DB129	17DB130	17DB131	17DB132	17DB134	7DB135	7DB136	17DB137	17DB138	17DB139	17DB141	17DB142	7DB143	7DB144	7DB145	7DB146	17DB147	7DB148	7DB149	7DB150	7DB151	7DB152	7DB153	17DB154	7DB155	7DB156	7DB157	7DB158	7DB159	7DB160	17DB161	17DB162	7DB163	17DB164	17DB166	7DB167	7DB168	7DB169

age 4/25

				ב ב	Kesults			ACTIV	ation	Activation Laboratories Ltd.	iioliei	Ltg.			Ě) indi	кероп: А17-1054,	747					
Analyte Symbol	g e	Нg	u	<u> </u>	Υ	Ī	Mg	Mn N	QN QN	Na P		Rb R	ReS	s qs	Sc	Se Sn	n Sr		Ta T	Te	Tb 1	L L	부
Unit Symbol	mdd	qdd	mdd	qdd	%	pp.m.	%	ld udd	6 udd	% %		d mdd	ld udd	d mdd	udd udd	pp.m. pp	d wdd	d mdd	d udd	bpm p	ppm 9	%	mdd
Lower Limit	0.1	10	0.1	2	0.01	9.5	10.0	0	0.1 0	0.01 0.	0.001	0.2 0	0.001	0.1 0	0.1 C	1 1	0	0.2 0	0.1 0	0.1	0.5	0.01	0.1
Method Code	TD-MS	TD-MS TD-MS	TD-MS	INAA	TD-ICP	TD-MS T	TD-ICP T	TD-ICP T	II SW-QL	INAA T	TD-ICP N	MULTIT NAA/T D-ICP- MS	AID-MS	INAA	NAA NAA	MULT I TI NAA/T D-ICP- MS	TD-MS T	N SIM-OT	MULT I T NAA/T D-ICP- MS	TD-MS	INAA I	TD-ICP	MULT I NAA/T D-ICP- MS
17DB170	< 0.1	09	< 0.1	g >	1.53	62.1	0.82	222	< 0.1	1.02	0.017	93.4 <	< 0.001	1.1	12.6	< 0.1	٧ ا	84.2	< 0.1	1.0 >	1.5	0.12	12.8
17DB171	< 0.1	110	< 0.1	g >	1.00	44.4	1.31	838	< 0.1	1.06	0.083	43.5	< 0.001	2.0	15.1	9.0	٧	101	< 0.1	< 0.1	< 0.5	0.14	7.4
17DB172	< 0.1	80	< 0.1	6 >	1.36	43.5	1.02	826	< 0.1	1.17	0.083	51.5	< 0.001	6.0	14.0	0.4	٧	106	< 0.1	< 0.1	< 0.5	0.15	6.3
17DB173	< 0.1	70	< 0.1	< 5	1.33	51.0	1.71	1310	< 0.1	1.19	0.065	50.2	< 0.001	0.7	15.8	0.4	٧ -	116	< 0.1	< 0.1	0.7	0.12	8.8
17DB174	< 0.1	30	< 0.1	< 5	1.44	43.8	1.01	970	< 0.1	1.16	0.068	90.0	< 0.001	6.0	13.2	0.3	٧ -	104	< 0.1	< 0.1	6.0	0.15	6.7
17DB175	< 0.1	100	< 0.1	< 5	1.39	42.7	0.87	705	< 0.1	1.08	0.070	56.4	< 0.001	8.0	11.4	9.6	٧	87.8	< 0.1	< 0.1	< 0.5	0.12	8.6
17DB176	< 0.1	20	< 0.1	g >	1.91	44.7	0.83	910	0.1	1.17	150.0	50.3	< 0.001	2.0	11.0	0.2	٧	107	< 0.1	< 0.1	< 0.5	0.15	10.0
17DB177	< 0.1	50	< 0.1	< 5	0.88	68.2	0.88	818	5.5	0.94	0.034	54.7	< 0.001	9.0	14.2	0.3	1	100	0.2	< 0.1	< 0.5	0.51	11.5
17DB178	< 0.1	140	< 0.1	g >	1.26	52.9	62:0	829	0.2	0.92	0.092	52.0	< 0.001	9.0	14.1	0.7	٧	91.2	< 0.1	< 0.1	< 0.5	0.32	9.4
17DB179	< 0.1	70	< 0.1	< 5	1.18	43.9	1.19	991	0.1	1.08	0.076	95.8	< 0.001	0.7	13.6	0.3	٧ -	109	< 0.1	< 0.1	0.5	0.22	8.5
17DB180	< 0.1	130	< 0.1	g >	1.45	53.7	69.0	787	< 0.1	98.0	0.062	> 0.5	< 0.001	6.0	11.0	0.5	٧	86.2	< 0.1	< 0.1	< 0.5	0.16	10.8
17DB181	< 0.1	100	< 0.1	< 5	1.47	55.3	79.0	790	< 0.1	0.97	0.044	71.3 <	< 0.001	6.0	10.5	0.3	٧ -	93.7	< 0.1	< 0.1	< 0.5	0.10	11.4
17DB182	< 0.1	50	< 0.1	< 5	1.20	50.0	1.07	829	< 0.1	1.14	0.056	53.1	< 0.001	6.0	12.6	0.3	٧ -	101	< 0.1	< 0.1	0.9	0.11	9.4
17DB183	< 0.1	80	< 0.1	g >	26.0	39.9	0.85	810	0.1	1.10	0.108	47.8 <	47.8 < 0.001	0.4	12.8	0.6	٧	92.5	< 0.1	< 0.1	< 0.5	0.23	8.3
17DB184	0.1	10	< 0.1	9 >	1.73	50.9	1.07	944	6.2	1.19	0.063	76.1	< 0.001	6.0	16.0	0.6	-	110	0.1	< 0.1	9.0	0.50	10.8
17DB185	0.1	< 10	< 0.1	< 5	0.63	51.8	2.54	1170	2.1	1.21	0.137	18.5 <	< 0.001	< 0.1	19.2	0.9	٧	144	< 0.1	< 0.1	< 0.5	0.53	3.8
17DB186	< 0.1	< 10	< 0.1	< 5	1.20	39.4	1.74	1180	0.8	1.31	0.089	44.3	< 0.001	6.0	20.3	0.5	٧	119	< 0.1	< 0.1	1.1	0.34	6.2
17DB187	< 0.1	80	< 0.1	< 5	06.0	43.2	0.77	983	2.2	1.09	0.065	41.2	< 0.001	6.0	11.0	0.5	٧	87.8	< 0.1	< 0.1	< 0.5	0.46	9.3
17DB188	< 0.1	110	< 0.1	< 5	1.17	39.3	0.76	693	0.1	1.11	0.057	54.3	< 0.001	8.0	10.1	0.6	٧ -	95.6	< 0.1	< 0.1	0.6	0.26	8.6
17DB189	< 0.1	100	< 0.1	< 5	1.27	50.2	0.75	786	< 0.1	1.04	0.018	77.5 <	< 0.001	6.0	11.4	0.1	٧ -	96.6	< 0.1	< 0.1	< 0.5	0.28	11.0
17DB190	< 0.1	40	< 0.1	< 5	1.49	42.9	0.63	655	0.1	0.92	0.013	96.8	< 0.001	9.0	11.5	< 0.1	٧ -	71.2	< 0.1	< 0.1	0.6	0.20	14.3
17DB191	< 0.1	120	< 0.1	g >	1.29	44.7	0.68	883	0.1	96.0	990.0	56.2	56.2 < 0.001	9.0	10.3	0.7	٧	222	< 0.1	< 0.1	1.5	0.18	11.1
17DB192	< 0.1	100	< 0.1	< 5	1.82	15.9	1.27	1400	0.6	2.15	0.082	42.1 <	< 0.001	6.2	11.9	0.3	٧ -	307	< 0.1	< 0.1	< 0.5	0.22	5.0
17DB193	< 0.1	70	< 0.1	< 5	1.64	47.5	1.08	798	0.2	1.78	0.064	> 2.62	< 0.001	1.1	10.9	0.3	٧ -	144	< 0.1	< 0.1	< 0.5	0.19	15.7
17DB194	0.7	30	< 0.1	< 5	4.68	1.4	< 0.01	105	12.0	3.61	0.002	184 <	< 0.001	0.2	0.8	0.2	2	13.0	1.2	< 0.1	< 0.5	0.09	6.4
17DB195	0.2	< 10	< 0.1	< 5	1.65	54.7	0.74	646	4.4	0.99	0.033	80.0	< 0.001	1.0	12.1	0.8	1	83.5	< 0.1	< 0.1	< 0.5	0.35	13.5
17DB133	< 0.1	90	< 0.1	< 5	1.03	50.8	1.88	1610	< 0.1	1.30	0.098	49.2	49.2 < 0.001	8.0	20.8	< 0.1	٠ -	126	< 0.1	< 0.1	< 0.5	0.21	6.8

	۵	mdd	0.1	ZM-0⊥	32	 1.	2.8	2.1	2.7	3.5	2.7	2.8	2.9	2.3	3.3	2.9	2.4	4.6	2.5	5.6	2.7	3.4	3.0	4.8	2.9	3.0	2.8	 T.	2.4	3.3	2.2	2.5	2.6	2.6	3.6	3.1	4.1	2.9	3.4	5.0	2.1	2.1	3.0	5.5
	Tm Yb	Ę	0.1	TD-MS	0.5	0.5	4.0	0.3	4.0	9.0	0.4	0.4	0.4	0.4	0.5	0.5	4.0	0.7	4.0	4.0	4.0	9.0	0.5	0.8	0.4	0.5	4.0	0.5	9.4	0.5	0.3	0.4	0.4	0.4	0.5	0.5	0.7	0.5	0.5	0.8	0.3	0.3	9.0	4.0
	Г	۶	Г	TD-MS T	3.2	3.2	3.0	2.3	2.8	3.9	2.7	2.9	2.9	2.9	3.4	3.3	2.5	6.4	5.6	2.7	2.7	3.8	3.2	5.2	3.0	3.2	3.1	3.1	2.3	3.3	2.3	2.4	2.6	2.8	3.4	3.4	4.5	3.4	3.7	5.5	2.2	2.3	3.3	5.9
	Ho Er	Ĺ		TD-MS T	J.D	1.1	J.D.	9.0	Q. F	4.1	9.0	1.1	1.0	1.0	1.2	r. Si	9.0	1.7	9.0	9.0	O. O.	ι. ω	1.1	1.7	J.D	L Si	J. D.	1.1	0.7	1.1	9.0	0.8	0.9	1.0	1.0	⊥ Si	6.	1.1	1.3	8.	9.0	9.0	.⊢ Ci	0.
	모	٦		T SM-CT	8.0	8.0	0.7	8.0	0.7	1.1	0.7	8.0	0.7	8.0	6.0	6.0	9.0	1.2	2.0	0.7	6.7	1.0	8.0	1.2	0.8	6.0	0.8	0.8	0.5	0.8	9.0	9.0	0.6	8.0	0.7	6.0	1.2	6.0	1.0	1.3	9.0	9.0	6.0	8.0
1547	Г	۶		TD-MS	5.6	6.1	5.2	5.0	5.3	7.3	4.8	5.5	5.3	5.9	6.4	6.5	4.3	9.8	6.4	4.5	5.0	9.9	5.6	8.7	5.5	6.3	5.7	5.9	3.9	6.0	4.2	4.5	4.8	5.8	5.1	6.1	8.5	6.2	6.7	8.6	4.3	4.4	6.1	5.7
417-10	d Dy	d wdd		TD-MS	6.2	5.9	5.3	0.9	5.7	7.7	5.0	2.5	4.9	0.9	6.3	6.4	4.5	4.	5.1	8.4	5.2	7.5	5.8	8.4	5.4	6.2	5.5	6.5	4.1	5.9	4.3	4.7	4.5	6.4	4.4	5.8	0.6	9.9	7.0	9.4	4.3	4.5	6.4	5.7
Report: A17-10547	Eu		0.05	<u>ω</u>	1.30	1.26	1.32	1.08	1.24	1.88	1.07	1.13	0.83	1.37	1.20	1.30	1.00	1.23	1.16	1.0.1	1.04	1.47	66:0	2.12	1.14	1.35	1.02	1.37	0.84	1.12	1.07	0.90	0.98	0.89	69.0	0.95	1.23	1.19	1.09	0.85	1.03	1.10	1.54	04.
Re	Sm	d wdd		INAA T	₩ 	7.2	4.4	5.8	8 5	83	6.1	6.3	6.7	89 89	7.8	7.3	το εύ	ο εύ	τ. 86	6) CA	ю ю	1.8	6.2	9.1	5.9	B.	6.7	 E.	57 12	Ω Θ	το αό	τυ αό	4.9	1.8	5.6	7.3	10.4	7.5	7.3	10.5	5.0	5.2	7.8	πο
	Sm	d udd		II SW-CL	8.4	7.3	6.2	8.8	7.7	9.8	7.1	7.6	6.2	7.1	7.9	7.0	5.3	11.0	6.5	6.2	9.9	8.2	7.3	9.0	6.1	8.2	8.9	0.6	5.3	7.6	5.6	9.9	5.2	7.8	5.3	0.9	11.2	8.2	8.1	12.8	4.8	5.3	8.3	5.9
	PN	_		INAA	36	27		38	33	32	32	27	31	43	41	59	83	51	37	32	24	37	25	36	20	4	32	83	₂ 6	42	27	26	20	43	33	4	49	32	31	90	21	31	88	24
s Ltd.	П	mad	Г	TD-MS	39.4	32.3	30.9	41.4	35.5	39.0	32.3	35.6	27.3	27.1	36.1	33.1	26.6	46.3	27.9	33.5	31.2	46.5	32.6	34.7	26.0	32.8	30.4	41.7	26.9	31.3	24.4	27.6	22.5	34.0	23.3	30.9	50.4	35.4	36.8	52.8	23.9	24.0	34.0	25.8
atorie	П	 ج	l	. SW-QL	9.55	7.6	7.4	10.5	8 8	8. 9.	8.2	0.6	6.7	6.3	0.6	8.0	6.5	11.4	6.8	8.4	7.7	11.2	7.7					İ								7.4	12.4	8.6	8.8	12.7	5.9	5.8	8.0	rò Di
Labor	П	mdd		INAA	100	75	63	96	83	112	73	84	83	75	96	72	99	114	29	88	83	91	06	73	63	83	8	86	67	87	65	88	63	124	75	94	132	98	85	175	69	19	112	70
Activation Laboratories Ltd.	දී	_		TD-MS	96.4	87.8	72.5	108	90.4	60 L	79.1	91.1	69.1	71.3	89.5	8.69	66.3	119	68.3	87.4	80.0	102	91.2	61.6	58.9	81.1	78.3	94.1	65.1	80.8	55.8	85.3	57.5	111	64.8	84.1	133	86.7	93.5	180	66.5	57.7	102	71.3
Activ	La	E	0.5	INAA	48.7		25.2	42.6	40.3	36.9	37.6	40.0	38.6	27.4	45.2	35.3	31.5	51.0	29.8	40.8	36.6	46.5	34.7	30.8	26.9	32.6	36.9	47.8	32.8	35.4	30.1	33.1	24.1	40.5	31.6	36.5	55.7	39.3	38.1	54.8	25.6	25.0	34.7	83
	La	mdd	0.1	TD-MS		29.2		43.9	35.4	31.8	33.5		28.4				l	l						23.5					28.2								48.8	35.4	8.38	51.1			29.8	Ш
	Zr	mdd	_	TD-MS		42					21				53					105							28				168			219	40				23					\perp
Results	>-	mdd	0.1	TD-MS	25.6	25.0	25.3	21.0	23.9	33.9	22.6	24.3	23.3	23.0	29.3		20.7	40.2	22.2		L	31.9	25.9				24.8	_			Ц	Ц					37.9					Ш	27.7	_
Ϋ́	₃	mda	-	INAA	^	~	^	^	^	^	۰ 1	< 1	< 1	· 1	۰ 1	^	, -	~	, -	v		^	< 1	< 1	^	^	v	^	^	^	v	^	,	· 1	< 1	^	^	< 1	< 1	· 1	< 1	, 1		~
	ַ	med	1.0	MULT I NAA/T D-ICP- MS	L	3.1					2.7											3.4																					Ш	\perp
	>_	l	01	TD-ICP	40						37											53		_	70										89			. 22		31			56	\perp
	E	mdd	90.0	TD-MS	0.44	-9.0	0.38	1.01	0.52	0.35	0.55	19.0	0.63	0.72	0.70	0.38	0.47	0.66	0.56	0.63	-5.0	69:0	0.53	0.35	0.35	0.54	0.57	0.79	0.59	0.68	0.44	0.54	0.85	0.68	0.73	0.78	0.56	0.87	0.88	-9.0	0.37	0.34	0.41	0.30
	Analyte Symbol	Unit Symbol	Lower Limit	Method Code	17DB127	17DB128	17DB129	17DB130	17DB131	17DB132	17DB134	17DB135	17DB136	17DB137	17DB138	17DB139	17DB141	17DB142	17DB143	17DB144	17DB145	17DB146	17DB147	17DB148	17DB149	17DB150	17DB151	17DB152	17DB153	17DB154	17DB155	17DB156	17DB157	17DB158	17DB159	17DB160	17DB161	17DB162	17DB163	17DB164	17DB166	17DB167	17DB168	17DB169

age 6/25

	П			ফ	2.8	2.2	2.8	5.6	2.5	2.4	3.0	2.5	2.7	2.5	4.5	2.5	5.6	2.2	3.0	2.3	3.0	2.0	2.2	2.4	3.2	3.0	2.8	2.0	2.1	2.5	3.3
	Αb	mdc	1.0	S TD-MS	0.4	0.4	0.5		0.4	0.4	9.0		0.5	0.4					0.5		0.5	0.3	0.3	0.4	0.5		0.5	0.3	0.3	0.4	9.0
	μ	mdd	0.1	TD-MS			0.	0.4				0.4			0.4	0.4	0.4	0.4		0.4											
	Ĕ	mdd	0.1	TD-MS	2.8	2.3	3.1	2.9	2.8	2.5	3.2	2.6	2.9	2.6	2.5	2.5	2.8	2.4	3.3	2.6	3.5	2.0	2.2	2.4	3.2	3.6	3.1	2.3	1.6	2.5	3.2
	Нo	μdd	0.1		6.0	6.0	1.0	1.0	0.9	0.9	1.1	0.8	1.0	0.9	0.8	0.8	6.0	0.9	1.1	0.9	1.2	0.8	0.7	0.8	1.0	1.2	1.0	0.8	0.4	0.8	1.3
		d udd		TD-MS TD-MS	0.7	9.0	8.0	8.0	0.7	9.0	8.0	9.0	8.0	0.7	9.0	9.0	0.7	9.0	0.9	0.7	9.0	0.5	9.0	9.0	0.7	1.0	0.7	0.7	0.3	9.0	L Si
547	ď.	ld udd	1 0.1	TD-MS T	4.9	4.5	5.5	5.5	5.1	4.7	5.9	4.6	5.8	4.9	4.4	4.3	5.0	4.4	6.1	5.5	6.4	3.4	4.1	4.1	5.2	7.0	5.2	4.6	2.2	4.3	9.9
Report: A17-10547	Ъy		0.1	TD-MS TE	9.0	4.6	5.7	5.3	5.5	5.0	6.1	4.7	6.1	5.0	4.6	4.7	5.1	4.5	6.8	5.3	8.9	3.8	6.3	4.1	9.5	7.0	5.6	0.9	1.4	4.4	7.0
īt: A	g	mdd	0.1		0.94	1.07	1.31	1.19	.22	1.01	.26	90:	32	1.11	96:0	0.95	20:	0.98	39	1.40	.55	0.78	0.89	06.0	1.10	1.11	1.33	10.	0.10	0.83	.95
Repo	Ē	mdd	0.05	TD-MS	6.2 0	5.3	6.6	5.7	5.9	5.6	6.7	6.5	6.8	5.5	5.3	5.5	6.2	5.0	8.1	5.7	7.4	5.2 0	4.9	5.4 0	7.1	7.7	4.4	5.6	0 2.1	0.0	1.3
	Sm	mdd	0.1	INAA	9																								Ċ		
	Sm	mdd	0.1	TD-MS	2	6.7	6.8	6.8	7.9	6.2	8.6	6.4	7.4	6.1	6.1	6.7	7.6	5.5	9.6	6.5	8.6	4.9	5.7	6.1	7.3	8.6	6.4	7.6	1.5	5.8	7.2
	P	mdd	5	INAA	29	38	20	29	29	28	27	28	33	12	27	34	22	32	39	23	26	25	24	32	32	34	24	35	< 5	26	21
Ltd.	PN	mdd	0.1	TD-MS	32.3	24.7	31.6	27.1	30.1	28.1	35.5	31.5	31.3	28.2	28.7	30.0	30.5	24.6	37.2	22.3	32.8	23.1	24.6	28.9	40.4	36.0	30.0	37.4	4.7	29.3	33.5
Activation Laboratories Ltd		ppm p	0.1	LD-MS	8.4	0.9	9.7	6.5	9.7	6.9	8.7	7.8	7.5	7.0	7.3	27	7.7	6.2	9.1	5.1	7.7	5.8	6.2	7.5	10.2	8.8	7.2	9.4	1.1	5.6	7.7
abora	P		0	INAA	88	92	80	29	22	84	86	82	22	7.1	72	73	81	97	66	20	92	73	70	73	66	117	94	87	18	90	99
ion L	ဝိ	med n	ო	TD-MS IN	6.88	95.5	74.8	6.99	81.4	84.0	106	177.1	72.9	73.7	70.1	6.87	81.4	9.99	94.8	61.3	91.7	57.8	6.99	72.6	97.0	121	71.2	97.0	9.5	80.4	76.5
ctivat	Ce	ppm	0.1		41.1	26.5	31.9	27.5	32.0	30.4	35.0	39.8	33.0	28.4	32.0	35.2	32.9	26.5	40.6	18.9	31.1	29.5	25.8	34.1	44.8	36.7	24.6	42.8	5.1	38.0	91.9
⋖	La	ppm	0.5	IS INAA	38.1	24.7	30.1	26.4	31.3	29.0	35.7	32.4	30.2	28.3	31.9	33.6	31.6	25.0 2	36.3	17.4	29.4	24.4	26.1 2	32.5	43.9		26.7	40.0	3.6	34.7	28.7
	ľa	mdd	0.1	S TD-MS	27 38	03 2	82 30	07 26	3.	110 28	37 38	85 33	57 30	86 28	32 3.		.00	115 25	172 36	34 1	144 29	62 2	71 26	25 33	27 4:	92 36	30 26	27 40	257	9.	129 28
	Zr	mdd		TD-MS								_																			
Results	>	mdd	0.1	TD-MS	22.1	19.7	24.1	23.4	22.0	20.3	25.5	20.1	23.3	20.3	20.1	20.5	22.0	19.3	27.7	21.5	28.1	16.8	18.1	18.9	25.3	28.4	25.6	19.3	10.0	20.1	29.1
č	×	mdd	1	INAA	٧,	^	٧,	٧,	>	٧,	٧,	٧,	· ^	, ,	٧,	٧,	^	٧,	^	>	^	> 1	٧,	٧,	< 1	> 1	^	٧,	> 1	^	^
	U	ppm	0.1	MULT I NAA/T D-ICP- MS	2.8	1.9	2.5	2.2	2.4	2.4	2.9	2.8	3.8	2.2	2.7	2.8	2.5	2.1	2.4	1.1	1.8	2.4	2.2	2.7	3.8	2.7	1.9	4.5	2.3	3.0	1.9
		mdd	_	D-ICP	21	20	45	39	33	37	58	06	88	29	42	27	6	22	98	102	72	77	45	43	34	40	52	45	5	58	57
	-		0.05	TD-MS TD-ICP MULTI IN NAAT D-ICP-	99.0	0.40	89.0	0.55	0.48	0.47	0.52	29.0	0.53	0.50	0.54	0.53	0.50	0.48	0.68	0.26	0.44	0.45	0.47	0.55	12.0	0.55	0.38	66.0	98.0	0.61	0.46
	lo(dd	0.0		H																										Н
	Analyte Symbol	Unit Symbol	Lower Limit	Method Code	170	171	172	1173	174	175	176	1177	1178	1179	1180	181	1182	1183	184	185	186	187	188	189	190	191	192	193	194	195	133
	Analy	Unit	Lowe	Meth.	17DB170	17DB171	17DB172	17DB173	17DB174	17DB175	17DB176	17DB177	17DB178	17DB179	17DB180	17.DB	17DB182	17DB183	17DB184	17DB185	17DB186	17DB187	17DB188	17DB189	17DB190	17DB191	17DB192	17DB193	17DB194	17DB195	17DB133

Page 7/25

2	
3	
S	
œ	

Report: A17-10547

Unit Symbol _ower Limit	mdd	mdd	maa	Ţ
ower Limit	0			S
opod Code	0.2	0.1	90'0	
and on one	INAA	TD-MS	NAA	INAA
7DB127	5.0	6.4	0.29	1.72
7DB128	4.1	4.0	0.22	21.3
7DB129	3.3	4.0	0.48	1.38
7DB130	2.9	6.0	05.0	1.22
7DB131	4.1	0.4	0.23	28.1
7DB132	4.4	9.0	0.19	25.1
7DB134	4.0	6.0	0.19	26.6
7DB135	3.8	0.4	0.22	25.3
7DB136	4.6	0.4	0.26	9.1.9
7DB137	3.0	0.3	0.14	19.8
7DB138	4.4	0.5	0.24	21 80
7DB139	4.1	0.4	0.20	20.3
7DB141	3.8	0.4	0.17	25.8
7DB142	6.0	0.7	0.34	27.3
7DB143	2.9	0.4	0.15	: :
7DB144	4.2	0.4	0.21	23.7
7DB145	3.0	0.4	81.0	2.0
7DB146	4.4	30	0.25	
700147	0.7	200	200	
/DB14/	3.	C'O	0.21	- C2
7DB148	5.8	8.0	0.32	20.5
7DB149	3.8	0.4	0.17	27.9
7DB150	3.9	0.4	0.17	23.3
7DB151	3.8	0.4	0.22	23.2
7DB152	4.1	0.4	0.23	23.9
7DB153	3.5	6.4	0.18	18.9
7DB154	1.4	0.5	0.28	20.1
7DB155	3.5	0.3	0.18	19.2
7DB156	4.0	0.4	0.22	26.0
7DB157	3.4	0.4	0.15	17.9
7DB158	3.8	0.4	0.22	23.3
7DB159	4.9	0.5	0.29	19.8
7DB160	4.4	0.5	0.21	20.9
7DB161	5.1	9.0	0.29	26.9
7DB162	3.9	0.4	0.22	21.9
7DB163	4.1	0.5	0.23	26.9
7DB164	5.8	0.7	0.31	21.0
7DB166	2.9	0.3	0.16	23.4
7DB167	3.0	0.3	0.14	22.3
7DB168	4.1	0.4	0.22	22.3
7DB169	2.7	0.4	0.16	20.7
7DB170	3.9	0.4	0.22	20.7
7DB171	2.9	0.3	0.12	21.9

Reculte	2

Report: A17-10547

	ppm	ppm	ppm	g
Lower Limit (0.2	1.0	90.0	
Method Code	INAA	ZM-G⊥	NAA	WW
17DB172	3.7	5.0	070	23.3
17DB173	3.1	0.4	0.17	25.5
17DB174	3.6	6.4	0.17	28.0
17DB175	3.4	6.0	0.18	\$22.4
17DB176	3.8	0.4	0.23	26.7
17DB177	3.4	6.4	0.20	22.7
17DB178	3.3	0.4	0.16	20.0
17DB179	3.3	0.4	0.18	24.5
17DB180	3.4	4.0	61.0	5 1.4
17DB181	3.5	4.0	12.0	53.4
17DB182	3.8	0.4	0.19	26.4
17DB183	2.9	6.0	0.17	19.8
17DB184	3.8	0.4	0.23	23.9
17DB185	2.8	6.0	0.11	50.6
17DB186	3.9	0.4	0.17	23.8
17DB187	3.2	0.3	0.18	24.3
17DB183	3.0	6.0	0.18	1.82
17DB189	3.9	6.4	0.19	26.3
17DB190	4.9	0.5	0.29	24.5
17DB191	4.2	0.4	0.21	23.7
17DB192	2.9	4.0	14.0	1.52
17DB193	3.1	0.3	0.38	1.29
17DB194	4.0	0.4	0.31	19.0
17DB195	4.0	0.4	0.22	20.5
17DB133	3.5	0.5	0.38	27.7

	Be Be	mdd	0.1	ZM-U⊥	1.0	1.22	6.0	1.22	2.0	1.23	6.0	1.23									2.0	1.90	1.9	1.90	2.2	1.90	2.1	1.90	3.2	3.00	3.1	3.00	2.8	3.00	2.7	3.00	1.1	1.40	1.1	1.40						
	Г	_	Г	⊢																																										\dagger
	Ba		20	TD-MS IN	200	750	699	750	655	750	909	750				l			l		79	1640	126	1640	87	1640	75	1640	664	630	635	630	617	630	596	630	1190	1300	1160	1300	104	118	26	118	106	118
	Ba	mdd u	-																																											
	As	шdd	0.5	TD-ICP INAA	1.84	3.52	2.31	3.52													6.45	7.20	6.62	7.20					8.05	8.34	8.16	8.34					13.2	17.7	12.7	17.7						+
	₹	}¢	0.01		0.25		0.25	0.257													1.78		1.82		H						_	_					0.02		0.02							+
0547	s	ેર્	0.01	TD-ICP	0	0.3	ľ	0.5												-	F	_	-	-			L										0	0.0160	0	0.0160	L	L				+
Report: A17-10547	Zu	mdd	50	TD-ICP INAA	ıŞ.	O.	rύ	Ō													69	0	72	0					88	Ō	88	Ō					4	8	Ö	118	57	0.	56	0.		1
port:	ম	E dd	_				L							L					L			73.0		73.0	_		L			103.00		103.00					124		130	L		L				
æ	Zn	шdd	9.5	TD-MS	988	260	830	260	825	260	260	260									75.3	73.0	77.3	73.0	83.3	73.0	63.7	73.0	104	103.00	115	103.00	116	103.00	94.9	103.00	144	118	124	118	63.3	70	64.7	70	73.0	70
	Ξ	mdd	20	NAA																																										
	Z	mdd		TD-ICP	42	41.0	42	41.0													42	42.0	45	42.0					35	38.0	37	38.0					26	27.0	27	27.0	251	247	251	247		
ā		mdd	0.5	TD-MS	44.9	41.0	41.2	41.0	41.7	41.0	38.5	41.0									42.9	45.0	39.7	42.0	40.0	42.0	39.2	42.0	36.2	38.0	35.8	38.0	35.9	38.0	33.6	38.0	25.4	27.0	1.42	27.0	285	247	254	247	283	247
ries L	2	ے	ı	TD-ICP T	738	730	740	730				Ī		l		T	l	Ī	T	T	42	52.0	43	52.0					12	25.00	22	25.00					83	101	62	101	ω V	6.3	< 3	6.3		Ť
Activation Laboratories Ltd.	-B	ے		IL SM-OT	300	730	747	730	711	730	716	730									51.7	52.0	47.8	52.0	46.2	52.0	45.7	52.0	25.6	25.00	24.0	25.00	23.4	25.00	22.7	25.00	94.0	101	95.3	101	6.7	6.3	5.7	6.3	5.3	6.3
n Lab	g.		0.5	TD-ICP TO	15	18.0	15	18.0													325	310	335	310													٠ 1	2.40	- -	2.40						\dagger
ivatio	Mo	Г	-	TD-ICP TD	2.6	3.30	2.4	3.30						L		L		H	H	H	< 0.3	0.850	< 0.3	0.880	\vdash				\vdash		L						< 0.3	1.00	6.0	1.00				Н	H	+
Act	8	l	0.3	√IS TD-	5.9			3.30	2.6	3.30	3.1	3.30									0.2	0.860	0.5	0.860	0.2	0.860	0.3	0.860									< 0.1	1.00	× 0.1	1.00						+
	S	mdd	0.1	SP TD-MS	1150	1110	1130	1110								_		_	_	H	6480	6520 0.3	0999	6520 0.3	L	0		0	53	00	32	00					74 <	66.0	72 <	66.0	94	100	99	100	\Box	+
	Ç	μdd	_	S TD-ICP					05	01	စ္က	0									┖	L			9	SO	Si Oi	Si Si	28.9	30.000		30.000	33.5	00	26.8	00		9 0.99	69.5	9 0.99		100			101	100
ဗွ	3	иdd	0.2	TD-MS	1190	1110	1190	1110	1150	1110	1180	1110									0699	9520	9330	9520	9260	9520	5920	9520	28	30.000	31.2	30.000	33	30.000	26	30.000	71.3	99	69	99	96.1	F	93.1	Ť	÷	Ť
	ĄĜ	mdc.	ιΩ	D-ICP INAA		0	<u></u>	_													_		-	(0	_							
	ρĄ	mdd	0.3				ı	31.0										L			3.3		3.2	4.0													0.3	1.30	< 0.3	1.30						
	Ag	mdd	0.05	TD-MS	33.2	31.0	29.5	31.0	29.0	31.0	30.1	31.0									3.50	4.00	3.16	4.00	3.14	4.00	3.17	4.00									0.19	1.30	0.23	1.30						
	Αn	pdc	2	NAA																																										
	П				38	ţ	sg	Ţ	se	Ţ	SE	Ţ	S.		S.		ω		2		SS	Ţ	SE	ţ	SE	Ţ	SE		S		ş	_	S	_	3S	_	SE		se	Ţ	as	<u>.</u>	as	i.i	as	Ę
	Analyte Symbol	Unit Symbol	Lower Limit	Method Code	GXR-1 Meas	GXR-1 Cert	DH-1a Meas	DH-1a Cert	DH-1a Meas	DH-1a Cert	DH-1a Meas	DH-1a Cert	DH-1a Meas	DH-1a Cert	GXR-4 Meas	GXR-4 Cert	SDC-1 Meas	SDC-1 Cert	GXR-6 Meas	GXR-6 Cert	GXR-6 Meas	GXR-6 Cert	DNC-1a Meas	DNC-1a Cert	DNC-1a Meas	DNC-1a Cerl	DNC-1a Meas	DNC-1a Cert																		

age 10/25

	Be	mda	0.1	ZM-U⊥			3.4	3.20	2.9	3.20	3.2	3.20	3.5	3.20	0.8	0.79	9.0	0.79	0.8	0.79	0.7	0.79	8.0	0.79	6.7	9.9	9.9	9.9	6.8	9.9	6.9
	Ba	_	Г	INAA																											
	Ba	mdd	1	TD-MS	<u>m</u>	118	464	788.0	613	788.0	404	788.0	548	788.0	177	183.0	183	183.0	180	183.0	180	183.0	170	183.0	666	086	2967	086	937	086	973
	As	mdd	0.5																												
	∀	<i>≫</i>	0.01	TD-ICP INAA											7.81	8.150	7.98	8.150	7.96	8.150											
547	s	%	10.0	TD-ICP											0.04	0.049	0.04	0.049	0.04	0.049											
Report: A17-10547	Zu	mdd	50	INAA																											
oort: A	ξ	mdd	-	TD-ICP			182		175						46	45.7	45	45.7	44	45.7						760	794	760	790	760	
Re	Zu	ωdd	9.5	TD-MS	58.9	70	206	186	203	186	213	186	180	186	41.0	45.7	44.9	45.7	47.6	45.7	9. ⊢4	45.7	42.3	45.7	799	260	815	760	822	260	800
	Ξ	mdd	20	NAA																											L
	Z	mdd	_	TD-ICP				88	98				L		244	231.0	247	231.0	241	231.0					25	49	23	64	72	49	
Ltd.	z	mad	0.5	TD-MS	259	247		82.8		82.8	88.4	82.8	84.7	82.8	236	231.0	229	231.0	237	231.0	244	231.0	232	231.0	51.7	48.8	51.9	48.8	53.2	48.8	53.1
Activation Laboratories Ltd.	РЪ	udd	_ω	TD-ICP				35.0	28	ю					18	121 86.	17	8. 12	17	8. 12					811	808	818	808	818	808	L
abora	8	шdс	9.5	SM-QL	5.3	6.3	37.7	35.0	37.0		33.3	32.0	33.1	35.0	20.9	21.8	20.3	21.8	20.2	21.8	19.6	21.8	19.6	21.8	797	808	764	808	735	808	745
ıtion L	Νo	udo	_	TD-ICP			1	21	_	2					< 1	2.500	,	2.500	< 1	2.500					13	13	55	5.	12	13	L
Activa	8	mdd	6.0	TD-ICP				0.40	6.0		_		_												5.3	5.1	5.3	5.1	5.7	5.1	L
	g	mdd	0.1	TD-MS				0.40	9.03		0.3	0.40	0.6	0.40											5.5	5.1	6.4	5.1	4.9	5.1	6.0
	Ç	mdd	-	TD-ICP	(0)	29	31.0000	53	0000 31.0000	0	0	m	0	5 373	371	374	1 371		371	m		01		3 239	236.00	242	236.00		236.00	
ပ္မ	ਹੌ	udd	0.2	TD-MS	93.6	100	30.2	31.0000	30.4	31.0000	31.0	31.0000	29.8	31.0000	355	371	355	371	348	371	378	371	372	371	236	236.00	242	236.00	235	236.00	246
	ĄĜ	mdd	ιΩ	TD-ICP INAA																											L
	Ą	med	0.3																												
	Åg	mdd	0.05	TD-MS																											
	Α̈́	qdd	2	NAA																											
	Analyte Symbol	Unit Symbol	Lower Limit	Method Code	DNC-1a Meas	DNC-1a Cert	SBC-1 Meas	SBC-1 Cert	SBC-1 Meas	SBC-1 Cert	SBC-1 Meas	SBC-1 Cert	SBC-1 Meas	SBC-1 Cert	OREAS 45d (4-Acid) Meas	OREAS 45d (4-Acid) Cert	SdAR-M2 (U.S.G.S.) Meas	SdAR-M2 (U.S.G.S.) Cert	SdAR-M2 (U.S.G.S.) Meas	SdAR-M2 (U.S.G.S.) Cert	SdAR-M2 (U.S.G.S.) Meas	SdAR-M2 (U.S.G.S.) Cert	SdAR-M2								

Page 11/25

Report: A17-10547	Zu	man man man man man man	0.5 1 50 0.01 0.5 1 50	TD-MS TD-ICP INAA TD-ICP INAA TD-WS INAA		9:9 0:66 092	282		760 990 6.6	1710 1150	1270	1680		1750 870	1790	086 0591	1670	70.2 60 0.01 6.00 280 1.9	61 0.01 6.17	110 8.0 160	117 94 0.03 6.83 299	112 94 0.03 7.04 284	105 < 0.01 7.56 377	105 < 0.01 7.73 371	V	50 v C V C V C V C V C V C V C V C V C V C	, ,	c 1 c 0.01 c 0.01	< 50 > 0.5	< 50	< 0.5 < 1 < 0.01 < 0.01	< 50 < 0.5 < 50	< 1 < 0.01 < 0.01 < 1	1 < 0.01 0.04 7	1000	10:00	V	7		
	As	, E	0.5	P INAA			-			1710	1790	1680	1790	1750	1790	1650	1670	8	21		ಜ	4	92	23	1	-		5	< 0.5			Ц	5	4	,			\downarrow	ļ	_
	₹	\ \begin{align*}	0.01	10-IC	L		_				L		L					L	L					_	4	+	_	-		ш	_	Н	v	┙	_	_	1	\downarrow	\downarrow	_
0547	8	8	0.01				+				-		_					Ö	Ö		Ö	Ö	, 0 ×	, 0 .0	4	+	+	, O	50			ш	, 0	Ö	-	,	+	\perp	ļ	_
A17-1	Z	E G	202	NAA			+				L							90	91		94	94	05	92	4	+	\perp	-	Ÿ	, ,		v	-	-	ļ	-	+	\downarrow	\downarrow	_
eport:	ΓZ	Ę				09	88	3	09		<u> </u>														5.5	ς; 4	2 5							က္ မ			D) C	, c	, rc	,
Œ	Zu	E	0.5		L	7	12	_	7		L		_					22	71		~	_	÷	F	Ÿ	7 7	/ Ÿ	Ĭ	20					+	<u> </u>	<u> </u>	1	_	F	_
	Z	E 0	2	TD-ICP INAA			+				H							31	32	٧	43	43	36	36	+	+	+	T-V	٧	٧	۲ ۲	٧	- V	- V	1	v	+	\downarrow	\downarrow	-
	Z	Т	П			48.8	50.1		48.8		<u> </u>							31.6	31.1					36.8	< 0.5	δ. δ. π.	0.5				< 0.5				ν υ σ		o C	0.5	× 0.5	
ss Ltd.	Z	Т	П		L	4	140	,	4		$\frac{\mid}{\mid}$		<u> </u>					16		Ш	20 4		26	- 1	<u> </u>	<u> </u>	<u> </u>	v დ v			× 3			v က	\perp	2	<u> </u>	v	<u> </u>	-
ratorie	8	Τ	П	AS TD-ICP	L	808	744	_	808		\vdash							20.1	20.3		22.9	971	29.9	28.7	< 0.5	< 0.5 0.5	< 0.5			H	< 0.5				C.U.S		0.05	< 0.5	< 0.5	?
Labo	Г	, E		CP TD-MS	L		+				\vdash							- V	- v		< 1	Ш	۸ ۲	Λ -	v	v '	<u> </u>	V V			۰ +		4	v - v	+	'	<u> </u>	v	<u> </u>	-
Activation Laboratories Ltd	₩	, and	ı	TD-ICP TD-ICP			+				H							< 0.3	< 0.3					< 0.3	+	+	+	< 0.3		_	< 0.3			× 0.3			+	+	+	-
Acti	8	Τ				5.1	24	ļ	5.1		<u> </u>							> 0.1	> 0.1		0.1			Ц	× 0.1	L.O ^	0.1	┡			< 0.1 <	Ц	4	4	- T	┸		0.1	100	-
	8	Τ		CP TD-MS			+				<u> </u>		\vdash					24				56			v	v '	<u> </u>	, ,			< 1 ×	\dashv	4	۷ -	4	v	<u> </u>	ľ	ľ	′
	3	Τ	Π	AS TD-ICP		236.00	251		236.00		\vdash		\vdash					5.3	25.7		28.7	6.5	56.9	26.3	< 0.2	2.0 >	× 0.2 × 0.2				< 0.2	\dashv			7 O S		2.0 >	20.5	× 0.2	4
ဗ	3	maa	0.0			236	+		236		-							2	2	< 5	2	2	0	C/I	٧	v '	/ V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	< 5 5	< 5		د 5	v	<u> </u>	v	'	'	<u> </u>	- V	-
	Ā	Т	Г	CP INAA	L		+				H							< 0.3	< 0.3		< 0.3	< 0.3	< 0.3	< 0.3	+	+	+	< 0.3			< 0.3		< 0.3	× 0.3	5	9	+	+	ł	_
	Aa	Т	Т				+				_		H						90.0				l	- 1	89	ઈ ફ	8 8	ı						- 1	- 1	-	8 8	ਵਿ	3.0	3
	Ao	2 00	0.05		L		+			632	727	798	727	731	727	739	726	< 0.05	0	< 2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	× 0.05	< 0.05	< 0.05	< 2	< 2	< 0.05	< 2	< 0.05	< 0.05	0.02 5 6	20.00	× 0.05	< 0.05	< 0.05	>
	Α̈́	П	2 2	NAA A			+				L		┖	_	L		L			_		Ц		\dashv	4	+	+		_	_		Ť	4	+	+	\downarrow	+	\perp	\downarrow	-
	Analyte Symbol	Init Symbol	Lower Limit	Method Code	U.S.G.S.) Meas	SdAR-M2	SdAR-M2	U.S.G.S.) Meas	SdAR-M2 (U.S.G.S.) Cert	DMMAS 120 Meas	DMMAS 120 Cert	DMMAS 120 Meas	DMMAS 120 Cert	DMMAS 120 Meas	DMMAS 120 Cert	DMMAS 121 Meas	DMMAS 121 Cert	17DB127 Orig	7DB127 Dup	17DB160 Orig	7DB168 Orig	17DB168 Dup	7DB170 Orig	(7DB170 Dup	Method Blank	Wethod Blank	Wethod Blank	Method Blank	Method Blank	Method Blank	Method Blank	Method Blank	Method Blank	Method Blank	Vietnod Blank	Method Diank	Method Black	Method Blank	Wethod Blank	201000

Page 12/28

				,	ပ္ပ		•	Activation Laboratories Ltd.	ion La	borat	ories L	ţġ.			Rep	ort: A	Report: A17-10547	547			
Analyte Symbol	Αn	Ag	Αg	Ag	J.	Cu	PO	B	Mo	P _D	Pb	z	Ē	Ξ	Zu	ار الا	Zn	S	A	As	Ba
Unit Symbol	qdd	mdd	mcd	mdd	mdd	_ wdd	mdd	b mdd	udc	udd	udd .	mdd	mdd	mdd	udd	ωdd	mdd	%	%	bbm	ωdd
Lower Limit	2	90.0	6.0	D.	0.2	-	0.1	0.3		9.5	8	0.5	_	20	0.5	1	50	10.0	10.0	0.5	1
Method Code	NAA	TD-MS	TD-ICP	TD-MS TD-ICP INAA	TD-WS TD-CP TD-MS TD-ICP TD-ICP TD-WS TD-ICP TD-MS TD-ICP INAA TD-ICP INAA TD-ICP TD-ICP TD-ICP TD-ICP	TD-ICP	TD-MS	TD-ICP	TD-ICP	TD-MS	TD-ICP	TD-MS	TD-ICP	NAA	TD-MS	TD-ICP	INAA	TD-ICP	TD-ICP	INAA	Y-O-L
Method Blank	L	< 0.05			< 0.2		< 0.1			< 0.5		< 0.5			L. Gi						
Method Blank		< 0.05			< 0.2		< 0.1			< 0.5		< 0.5			μ 80						
Method Blank		< 0.05	< 0.3		< 0.2	٧	< 0.1	< 0.3	< 1	< 0.5	٥	< 0.5	1		< 0.5	۲ ۷		< 0.01	0.02		

Page 13/2

age 14/25

	9		۵.01	TD-ICP		T									0.24	0.245	0.24	0.245	0.23	0.245												
	Mg			TD-MS TI	4 r 4 c	о У.	166	163	159	163	160	163	161	163	20.3	21.5	20.2	21.5	1.1	21.5	21.0	21.5	19.8	21.5	16.2	17.9	17.7	17.9	17.7	17.9	19.0	17.9
	그	mdd		TD-ICP TD		+	\dagger								0.45	0.412	0.45	0.412	0.40	0.412												
	ㅗ	%	0.01			+	+	-								0		•		0												Н
	≐	qdd	ιΩ	IS INAA		+	+	4							1.0	96	1.	960.0	< 0.1	96	0.1	96	0.1	96								
	드	щd	0.1	S TD-MS		4	4	4							< 0.1	960.0	× 0.1	0.0	v	960.0	_	960.0	_	960.0	0	2	0:	9	0.	0.	0	9
1547	Εğ	ca d	10	TD-MS			4																		1310	1440.00	1130	1440.00	1080	1440.00	1310	1440.00
117-10	ge e	mdd	0.1	TD-MS																												
Report: A17-10547	Ga	mdd	1.0	TD-MS	13.7	2	24.3	27.0	19.8	27.0	23.5	27.0	25.5	27.0	19.1	21.20	19.3	21.20	18.2	21.20	22.5	21.20	123	21.20	13.1	17.6	9.6	17.6	13.7	17.6	16.9	17.6
Rep	Ξ	mcd		INAA																												
	Ī	mdd	0.1	TD-MS		1	3.4	3.7	3.4	3.7	3.5	3.7	3.0	3.7	3.0	3.830	2.2	3.830	2.0	3.830	2.5	3.830	2.1	3.830	6:0	7.29	3.4	7.29	1.8	7.29	9.4	7.29
				INAA T		1	1																									
÷	e L	% u		INAA		1	1																									П
Activation Laboratories Ltd.		Ę	0.2			+	\dagger	1																								
rator	ပ္သ		т .с	TD-MS INAA		+	8.39	8.2	7.77	8.2	7.92	8.2	8.36	8.2	3.57	3.910	3.42	3.910	3.61	3.910	4.11	3.910	3.77	3.910	1.78	1.82	1.64	1.82	1.69	1.82	1.89	1.82
Labo						+	+	+	_						.,	eri		eri		roi e		eri		ei ei	<u> </u>	<u> </u>						H
ation	ŏ	udd d		SINAA	10.0	<u> </u>	9	<u>6</u>	0	-00	0	60.	0	40L	0.	549	0.	549	0.	549	0.	549	0.	549	0.	49.6	0.	49.6	0.	49.6	0.	49.6
Activ	ဝံ	mdd	-	_D-MS	> 10.0	N	> 10.0	Ť	> 10.0	÷	> 10.0	ř	> 10.0	Ļ	> 10.0	ம்	> 10.0	ιά	> 10.0	Ċ	> 10.0	ம்	> 10.0	ம்	> 10.0	46	> 10.0	46	> 10.0	46	> 10.0	94
	ပိ	mdd	-	NAA					,	,	Ĺ	,																	1		_	
	၀	ωdd	0.1	TD-MS	52.5	ñ	22.9	22.7	22.6	22.7	21.7	22.7	21.6	22.7		29.50	28.7	29.50	27.7	29.50	28.9	29.50	27.5	29.50	13.4	12.4	12.8	12.4	12.4	12.4	14.4	12.4
ပ္ပ	Ca	%	0.01	TD-ICP											0.20	0.185	0.20	0.185	0.20	0.185												
-	Β̈́	mdd		INAA																												
	im	mdd		TD-ICP		1	7	0.70	< 2	0.70					ဇ	0.31	0	0.31	^ 2	0.31					۸ ۸	1.05	< 2	1.05	< 2	1.05		
	Ē	d wdd	0.02	TD-MS T		1	0.72	0.70	0.69	0.70	99.0	0.70	0.65	0.70	62'0	0.31	0.28	D.31	0.27	0.31	0.33	0.31	0.34	0.31	1.04	1.05	66.0	1.05	66.0	1.05	1.00	1.05
	В		ő	TD-ICP T		+	m	3.20	ю	3.20					, -	0.79	,	0.79	<u>_</u>	0.79						9.9	7	9.9	æ	9.9		$\mid \mid \mid$
	ol Be	udc	-			+	+	-																	as as		as	+	as	+	as	
	Analyte Symbol	Unit Symbol	Lower Limit	Method Code	DNC-1a Meas	JNC-18 Cert	SBC-1 Meas	SBC-1 Cert	OREAS 45d (4-Acid) Meas	OREAS 45d (4-Acid) Cert	SdAR-M2 (U.S.G.S.) Meas	SdAR-M2 (U.S.G.S.) Cert																				

age 15/25

	Mg	%	10.0	TD-ICP											0.62	0.64		1.03	1.03	0.82	0.83					< 0.01		< 0.01			< 0.01		< 0.01								
		mdd		TD-MS	19.2	17.9									50.4	51.2		46.5	45.0	63.2	6.09	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	l
	Ī	%	0.01	TD-ICP											1.10	1.11		1.01	0.98	1.65	1.41					× 0.01		× 0.01		< 0.01	< 0.01		< 0.01					П			
		qdd		NAA													< 5										v v		۸												ĺ
	Ē	mdd	l	_D-MS											< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	× 0.1		× 0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	× 0.1	< 0.1	< 0.1	
47	ĒΗ			TD-MS	1140	1440.00									99	20		40	50	20	90	40	30	40	30	8		8		20	40	40	ၜ	30	30	30	30	40	30	20	l
Report: A17-10547	Ge	L													< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	- O V	T	, O ×		× 0.1	< 0.1	< 0.1	- O - V	0.1	< 0.1	< 0.1	× 0.1	0.1	0.1	0.3	l
ort: A1	ı	mdd	l	TD-MS TD-MS	17.5	17.6		T							10.5	10.8		13.7	12.9	19.5	16.2	< 0.1	> 0.1	< 0.1	< 0.1	r.0 v	T	× 0.1		0.3	0.3	0.3	0.2	0.3	0.2	0.3	0.2	0.2	0.2	0.2	l
Rep	Ī	udd		NAA													11									1	V 7		~	П								П			l
	Γ	d mdd	1.0		2.7	7.29									0.2	0.1		4.2	3.3	0.7	9.0	< 0.1	< 0.1	< 0.1	< 0.1	, 0.1		¢ 0.1		c 0.1	< 0.1	c 0.1	× 0.1	< 0.1	< 0.1	< 0.1	< 0.1	c 0.1	< 0.1	< 0.1	
	Fe III		0.01	INAA			3.46	3.54	3.53	3.54	3.65	3.54	3.60	3.45			4.95									1	0.0 0		> 0.01	П								П			
<u> </u>	Eu	_	Г	٨				t		T		T					1.1									_	2.0 0	_	< 0.2	П			1					П			
ries L		_	0	INAA II													8									1	V 7		-				1					П			l
orato	S	ld udd	0.05	TD-MS IN	1.79	1.82		T		T					12.5	12.9		8.83	8.47	90.9	6.01	< 0.05	< 0.05	< 0.05	< 0.05	\$ 0.0 ₅	t	< 0.05	T	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
on Lak	Г	d mdd		INAA			148	88	8	88	140	88	38	142			20										V 0	_	× 2	Н								П	П		
Activation Laboratories Ltd.		٤	l	TD-MS IN	> 10.0	49.6		T		l					> 10.0	> 10.0		> 10.0	> 10.0	> 10.0	> 10.0	2	2	01	9	01	t	61		> 10.0	2	7	> 10.0	4	9	8	9	ιO	3	4	
Ą	ŏ	<u>_</u>	-	INAA TI	^		4	47.0	47	47.0	64	47.0	ش	45.2		^	15	^	^	^	^					+	V V	+	v	^			^					П			
	8	_	-		13.3	12.4		<u> </u>		t					12.7	12.6		25.2	23.0	16.2	15.3	< 0.1	< 0.1	< 0.1	< 0.1	-0.1 -0.1	\dagger	-0.1	H	× 0.1	< 0.1	× 0.1	+ 0 ×	< 0.1	< 0.1	< 0.1	+ D.1	× 0.1	< 0.1	< 0.1	
	8			TD-ICP TD				T							98.0	0.37		0.91	0.91	0.11	0.11					< 0.01	t	< 0.01	H	Ш	< 0.01		< 0.01					Н			
ဗ	ී	Г	10.0	П				t		t		H		H			141			Н			H	_	\dashv	_	< 0.5 < 0.5		< 0.5	ľ	٧	1	<u> </u>					Н	H	\exists	
	ă	mag n		TD-ICP INAA				+		t		\vdash			۸ 2	< 2		< 2	< 2	< 2	< 2					V V	+	, 2	H	۸ 2	< 2		۷ دی			_		Н		\exists	
	區		l	TD-MS TD	1.00	1.05		+		H		\vdash			0.16	0.16		0.11	0.11	0.22	0.21	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	+	< 0.02	\vdash	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	
	<u>=</u>	٦	0.02	TD-ICP TD-				+				_		_	2			2	2	3	3	٧	٧	٧	٧	~ -	+	- - -	-	~ - - -	v ا	v	v - v	v	٧	v	٧	٧	٧	v	
	ol Be	mdc	-	ďΣ	se	E	_	Sert	_	Sert		Sert		Sert	L	_			_	Ц				+		+	+	+	H	H		\dashv		\dashv				Н	\dashv	\dashv	-
	Analyte Symbol	Juit Symbol	-ower Limit	Method Code	SdAR-M2 (U.S.G.S.) Meas	SdAR-M2 (U.S.G.S.) Cert	DMMAS 120	DMMAS 120 Cert	DMMAS 120 Meas	DMMAS 120 Cert	DMMAS 120 Meas	DMMAS 120 Cert	DMMAS 121 Meas	DMMAS 121 Cert	17DB127 Orig	17DB127 Dup	17DB160 Orig	17DB168 Orig	17DB168 Dup	17DB170 Orig	17DB170 Dup	Method Blank	Method Blank	Method Blank	Method Blank	Methoc Blank	Method Blank	Method Blank	Vethod Blank	Method Blank	Viethod Blank	Method Blank	Vethod Blank	Vethod Blank	Viethod Blank	Method Blank	Vethod Blank	Method Blank	Method Blank	Method Blank	

age 16/25

				Ø	မွ		∢	ctivati	on La	borato	Activation Laboratories Ltd.	ij			Rep	Report: A17-10547	17-10	347					
Analyte Symbol	Mn	dN Na	a P	Г	BB EE	Г	Re	1		1	uS es	Г	σ̈	-B	⊤a	1	٩	i=	T	Th TT		┡	
Unit Symbol	_	٦	%		٦	d wdd	_ ا	u udd	mdd	d udd	d wdd	Ę	٤	٦	٦	mdd	mdd		_ ا	Г	d wdd	d wdd	mg.
Lower Limit	_			0.001			l_							0.1	Г	0.1	0.5	Ξ.	ı	0.2 0		0.1	0.5
Method Code	TD-ICP	TD-MS	INAA TI		TD-MS IN		TD-MS INAA	ΙI	INAA		INAA T	TD-MS T	TD-MS	TD-MS	INAA	S	H	TD-ICP	TD-MS IN		TD-MS T		NAA
GXR-1 Meas	888			0.050	2.7					14.3		32	_	< 0.1		9.6		0.03	2.6		0.43	35.4	
GXR-1 Cert	852	- 1		0.0650	14.0					16.6		54.0		0.175		13.0		0.036	2.44		0.390	34.9	
GXR-1 Meas	606			0.059	2.6					14.5		27		< 0.1		9.0		0.03	5.6		0.40	31.3	
GXR-1 Cert	852	0.800	_	0.0650	14.0					16.6		54.0		0.175		13.0		0.036	2.44		0.390	34.9	
GXR-1 Meas		9:0			2.5					13.6		56	282	< 0.1		8.4			2.5		0.38	30.2	
GXR-1 Cert		0.800			14.0					16.6		54.0	275	0.175		13.0			2.44		0.390	34.9	
GXR-1 Meas		9:0			2.8					16.1		30	297	< 0.1		9.1			2.4		0.38	33.7	
GXR-1 Cert		0.800			14.0					16.6		54.0	275	0.175		13.0			2.44		0.390	34.9	
DH-1a Meas																			> 500			2540	
DH-1a Cert																			910			2629	
DH-1a Meas																			> 500			2430	
DH-1a Cert			T	T															910			2629	
DH-1a Meas			T																200			2320	
DH-1a Cert			t			Ī			l		l	l	l						910	l	T	2629	
DH-1a Meas																			002			2410	
DH-1a Cert			t	t	T	T		Ī		T	l	T	Ī						910	T	T	2629	
GXR-4 Meas	151	10.4	t	131	.52	T	T	l	l	4.2	T	00	203	9		-		0 20	20.7	t	3.22	9	
GXB-4 Cert	. 55		t	0 150	18	T		Ī		5	t	, 68	120	0.790		0 970		0.00	20.55	l	200	200	
GYR-4 Mass	171		t	0.136	3	l				F.A		3 (0	80,	2 12		α α		000	2 8 8		200	u u	
0 4 O 4 O 4 O 4 O 4 O 4 O 4 O 4 O 4 O 4	144		t		3 5	T	T			5 9	T	2 6	3 5	200		25.0		3 6	2 4	t	3 6	3	
GVD 4 Veri	8	2 6	\dagger	0.1	20 5	Ť	T	T	T	20.0	†	0.00	- 22	00/30	T	0.870		87.0	2,4	†	3 6	0.60	T
GXR-4 Meas		xo xo	\dagger	\dagger	132	1		İ		ດ	1	1	3	9.0					18.3	1	3.20	0.0	
GXR-4 Cert		10.0	\dagger	1	160			1		9.60		2.60	221	0.790		0.970			22.5		3.20	9.20	
GXR-4 Meas		10.6	+	1	143					5.4	1	80	i L	0.5		0.9			17.9		3.20	5.8	
GXR-4 Cert				1	160					2.60		5.60	221	0.790		0.970			22.5		3.20	6.20	
SDC-1 Meas	870				114							_	162	< 0.1				0.12	12.6		0.68	3.0	
SDC-1 Cert	880.00	21.00	Ĭ		127.00							3.00	180.00	1.20				0.606	12.00		0.70	3.10	
SDC-1 Meas	307			0.055	110							v	176	< 0.1				0.20	12.9		0.64	3.1	
SDC-1 Cert	880.00	21.00		0.0690	127.00							3.00	180.00	1.20				0.606	12.00		0.70	3.10	
SDC-1 Meas		0.1			87.9							٧	173	< 0.1					11.9		0.62	2.7	
SDC-1 Cert		21.00			127.00							3.00	180.00	1.20					12.00		0.70	3.10	
SDC-1 Meas		< 0.1			102								171	< 0.1					11.6		0.64	2.8	
SDC-1 Cert		21.00			127.00							3.00	180.00	1.20					12.00		0.70	3.10	
GXR-6 Meas	1050			0.035	69.1					0.7		v	37.0	< 0.1		< 0.1			5.5		2.20	1.4	
GXR-6 Cert	1010	09"2		0.0350	0.06					0.940		1.70	35.0	0.485		0.0180			5.30		2.20	1.54	
GXR-6 Meas	1080	1.0		0.034	79.1					< 0.1		v	37.1	< 0.1		< 0.1			5.0		2.20	1.4	
GXR-6 Cert	1010	05.7	Ť	0.0350	0.06					0.940		1.70	35.0	0.485		0.0180			5.30		2.20	1.54	
DNC-1a Meas		1.5			3.3								134					0.29					
DNC-1a Cert		ε			5								144					0.29					
DNC-1a Meas		1.5			3.1								141					0.28					
DNC-1a Cert		ო	П	П	5	П	П	П	П			П	144	П	П	П		0.29		П	П	П	
DNC-1a Meas		7.5			3.4								146										
DNC-1a Cert		в			5								144									П	
			_	_	_				_		_	_	_	_				_	_				

age 17/25

	n	mdd	0.5	INAA																											
	_	mdd	0.1	TD-MS		ď	5.76	82	5.76	5.5	5.76	5.8	5.76	2.8	2.63	2.6	2.63	2.5	2.63	2.7	2.63	2.8	2.63	2.5	2.53	2.4	2.53	2.4	2.53	2.5	2.53
	F	ppm		TD-MS		90.0	0.80	0.93	0.89	0.90	0.89	0.92	0.89	0.27	0.27	0.25	0.27	0.25	0.27	0.25	0.27	0.24	0.27								
	Τh	mdd	0.2	INAA																											
	Lh	mdd	0.1	TD-MS		47.0		16.4	15.8	15.7	15.8	15.3	15.8	14.9	14.5	14.6	14.5	14.4	14.5	14.4	14.5	14.0	14.5	14.4	14.2	14.7	14.2	14.5	14.2	13.7	14.2
547	įΞ	%	0.01	TD-ICP		o, o	0.51	5.51	0.51					0.39	0.773	0.34	0.773	0.27	0.773												
Report: A17-10547	Q L	mdd	0.5	INAA																											
port: A	Те	mdd	0.1	TD-MS																											
Rel	Та	μdd	6.6	NAA					L																						
	Τa	ppm	0.1	TD-MS		1	1.10	1	ľ		1.10		1.10	< 0.1	1.02	+.0 ×	1.02	٥٠.1	1.02	, 1.0 ^	1.02	.0 >	1.02	v 0.1	8.	< 0.1	8. 1	0.2	9. 1	< 0.1	1.8
	જે	mdd		₽	4 5	_	3 178.0						178.0		31.30	33.1	31.30	31.1	31.30	31.8	31.30	29.4	31.30	130	<u>+</u>	140	<u>+</u>	136	144	151	144
Ltd.	ર્જ	mdd	-	TD-MS			# 66	"	3.3	8	3.3	3	3.3	٧ 1	2.78	v	2.78	v	2.78	Ÿ	2.78	, ,	2.78								
Activation Laboratories Ltd.	Se	mdd	ო	TD-MS INAA	1																										
-abora	Se	mdd	0.1	TD-MS	_	_																									
ation L	Sc	mdd	0.1	NAA	_																										
Activa	Sp	mdd	٥.٦	INAA	1	1			L																						
	Re	mdd	0.001	TD-MS	1	1			\perp																						
	Ro	mad	15	NAA	0.0 Tr) 0	147	. 0	1 12	e	-	4	2	8	-	C)	-	-	-	7	-	4	-	m	o,	128	D)	80	on on	4	D)
ဗ္ဗ	Rb	mdd	0.2	TD-ICP TD-MS INAA	e	ç	3 4	7	=	12	14	13	14	36.3	42.1	36.2	42.1	34.1	12 42.1	40.7	42.1	39.4	42.1	113	149	12	149	90.8	149	88.4	149
	Δ.	%		П	1	-								0.036	0.042	950.0	0.042	0.033	0.042												
	Na	%	0	SINAA	2. 0) 0	15.3	13.5	15.3	11.7	15.3	8.8	15.3	0.1	20	0.3	22	0.3	20	7	20	0.2	20	6.1	26.2	3.0	26.2	3.8	26.2	2.1	26.2
	윈	mdd	0.1	₫	+	 	1	1	1	F	#		16	512 0	14.50	512 0	14.50	512 0	14.50	, 0.1	14.50		14.50		ম		ผ		×		×
	M	mdd	-	TD-CP	+	\downarrow		-	-		L			2	490.000	ις	490.000	φ.	490.000							"					
	Analyte Symbol	Unit Symbol	Lower Limit	Method Code	DNC-1a Meas	SPC-1 Moor	SBC-1 Cert	SBC-1 Meas	SBC-1 Cert	SBC-1 Meas	SBC-1 Cert	SBC-1 Meas	SBC-1 Cert	OREAS 45d (4-Acid) Meas	OREAS 45d (4-Acid) Cert	OREAS 45d (4-Acid) Meas	OREAS 45d (4-Acid) Cert	OREAS 45d (4-Acid) Meas	OREAS 45d (4-Acid) Cert	OREAS 45d (4-Acid) Meas	OREAS 45d (4-Acid) Cert	OREAS 45d (4-Acid) Meas	OREAS 45d (4-Acid) Cert	SdAR-M2 (U.S.G.S.) Meas	SdAR-M2 (U.S.G.S.) Cert						

age 18/25

Activation Laboratories Ltd. Report: A17-10547	Sb Sc Se Sn Sr Ta Ta Te Tb	% udd udd udd ucc ucd udd udd udd ucd udd i	0.1 0.1 0.1 3 1 0.2 0.1 0.5 0.1 0.5 0.01 0.1 0.2 0.05 0.1	TD-MS INAA INAA TD-MS INAA TD-MS TD-MS TD-MS INAA TD-NS INAA TD-ICP TD-MS INAA TD-ICP TD-MS INAA TD-MS INAA	14.3 2.5	144 1.8	6.0 6.1	730 650	64 6.3	7 30 6.50	6.4 6.4	7.30 6.50 1.1.7	3.5 6.4 11.6	7 60 610 115	0.2 <1 83.1 <0.1 <0.1 0.26 12.1 0.43 3.4	< 0.1 < 1 86.0 < 0.1 0.29 13.2 0.44 3.5	10.8	0.7 <1 103 <0.1	0.6 <1 98.2 <0.1 <0.1 0.18 7.8 0.39	<0.1 <1 84.2 <0.1 <0.1 0.12	 6.1 7 84.2 6.1 7 13.8 15.4 10.1 13.8 15.4 10.1 10.2 13.8 10.64 10.1 10.2 10.1 10.1<!--</th--><th>100 000</th><th> <</th><th><1 < 0.2 < 0.1 < 0.1 < 0.1 < 0.05</th><th>< 6.001</th> < 0.1	100 000	 <	<1 < 0.2 < 0.1 < 0.1 < 0.1 < 0.05	< 6.001	<0.1 <3 <0.5 <0.5 <0.2	 	 < 0.1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 	< 0.1	0.1 <1 <0.2 <0.1 <0.1 <0.01 <0.1	02 <1 0.2 <0.1 <0.1 <0.1	<1 0.6 < 0.1 < 0.1 < 0.01 < 0.05	<0.1 < 0.1 < 0.1 < 0.05	< 0.2 < 0.1 < 0.1 < 0.05	200 201 201 201 201 201 201 201 201 201	 40.001 50.01 60.01 <li< th=""><th>< 0.1< 1< 0.1< 0.1< 0.1< 0.05< 0.1< 0.05< 0.05</th><th></th></li<>	< 0.1< 1< 0.1< 0.1< 0.1< 0.05< 0.1< 0.05< 0.05	
Repo	П	Г															< 0.5			1		t				< 0.5	۸ دن دن	< 0.5					+	1				
	П			TD-MS											┖	Ш					\perp	L		Ш	Ш		\perp	┸					┙		┸			l
	Š	mdd	0.2		145	144									L	Щ		_	_	┙		┸	╄	Ш	Щ		_	┸	Ц		\Box	\perp	┙	4	\perp	┸	Ľ	ļ
, Ltd.	Sn	ωdd	_	TD-MS											v	v	ღ	٧	٧	٧	V	ĺ	' V	v	v	m -				V	٧	٧	٧	v	v	v v	٧	
atories	Se	mdd	n												2	-	v	Ŀ	9	-			-	-	-	v				.1	7	N	_	- 0	7 4	2 -	-	
Labor	Se	udd	1:0	TD-M8			- -	92	rq.	9	4.	99	4.	0	0	ľ	4	0	0	o v	\$ \f	7	2 0	v	0		┸	┸	Ц	0	0	0	o v	9		7	0 V	
ation	ઝ	шаа	1.0	INAA				┖		L		Ш						4		1	_		_	L		4	_	┸	Ш				4	4		\downarrow		1
Activ	Sb	mdd	Г	SINAA			9	7.3	9	7.3	9	7.3	3	7.6	L	Ц	٥	5	5	5	5 5	1 5	5 5	5	5	Ŷ	4	┸	Ш	Н.	5	5	=	5 7	5 5	1 5	5	1
	Re	иdd	0.001	П				_							× 0.00		83	× 0.00	× 0.0	× 0.0	9.0	00	0.0	× 0.00	> 0.0	LΩ I			> 0.00	< 0.00	× 0.0	× 0.0	0.0 V	9.0	8 8	0.0	v 0.0	
	₽	udo	15	INAA	6	6		_							20						-		1 0	2	2	× 15	ر د ا	, 51	2	2	~	2	N	2 0	2 0	1 2	2	
ပ္မ	윤	med	9.2		601	149										69.0	- 1	46.6		- 1		202	0,0	< 0.2	< 0.2		001		< 0.2		Ш	< 0.2	, 0.	< 0.2	9 6	< 0.2	< 0.2	
	Ь	85	0.001	TD-ICP											0.036	0.036	_	0.083	0.08(0.017	0.01				< 0.001		000	2	< 0.001	0.002		< 0.001						
	Na	%	0.01	NAA			2.15	2.16	2.08	2.18	2.15	2.16	2.33	2.18			1.33									× 0.01	0.0 v	> 0.01										
	g	mdd	0.1	TD-MS	5.5	26.2									1.0	0.1				<u> </u>	1.0	, ,	, 0.1	< 0.1	× 0.1		, -	;	× 0.1	< 0.1	< 0.1	, 0.1	× 0.1	0.1	,	0.1	× 0.1	
	Mn	mdd	_	TD-ICP												610		853	831	228	220								Ш									
	Analyte Symbol	Jnit Symbol	ower Limit	Method Code	SdAR-M2 (U.S.G.S.) Meas	SdAR-M2 (U.S.G.S.) Cert	DMMAS 120 Meas	DMMAS 120 Cert	DMMAS 120 Meas	DMMAS 120 Cert	DIMMAS 120 Meas	DMMAS 120 Cert	DMMAS 121 Meas	IMAS 121 Cert	17DB127 Orig	17DB127 Dup	JB160 Orig	17DB168 Orig	17DB168 Dup	17DB170 Orig	17DB170 Dup Method Blank	Method Blank	Method Blank	Method Blank	Viethod Blank	Method Blank	Vietnod Blank	Method Blank	Method Blank	Method Blank	Method Blank	Method Blank	Viethod Blank	Method Blank	vietriod blank	Method Blank	Method Blank	

age 19/25

	3	mdd	0.1	ZM-U⊥	0.3	0.280	0.3	0.280	0.3	0.280	0.3	0.280									0.2	0.170	0.1	0.170	1.0	0.170	0.2	0.170									0.2	0.330	0.3	0.330						
	q,	_	Г	NAA																																										7
	ş	u dd	Π	TD-MS	2.3	1.90	2.1	1.90	2.1	1.90	2.3	1.90									1.1	1.60	6.0	1.60	6.0	1.60	1.0	1.60	3.5	4.00	3.1	4.00	3.0	4.00	3.3	4.00	1.6	2.40	1.7	2.40	2.0	2.0	1.7	2.0	1.8	2.0
	Tm		Γ	TD-MS 1	4.0	0.430	4.0	0.430	4.0	0.430	4.0	0.430									0.2	0.210	0.2	0.210	0.2	0.210	0.2	0.210	0.5	0.65	0.5	0.65	0.5	0.65	0.5	0.65										
		lε	ı	TD-MS T																									3.7	4.10	3.7	4.10	3.4	4.10	3.5	4.10										
47	H E	٦		TD-MS																									1.3	1.50	1.3	1.50	1.2	1.50	1.3	1.50										
Report: A17-10547		Ę		TD-MS ⊺	0.7	0.830	9.0	0.830	9.0	0.830	8.0	0.830									0.5	0.360	4.0	0.360	0.5	0.360	9.0	0.360	1.0	1.20	6.0	1.20	6.0	1.20	1.1	1.20	0.3	0.415	4.0	0.415						\exists
rt: A1	T _D	_ ا	ı	TD-MS T	5.0	4.30	4.7	4.30		4.30		4.30									2.8	2.60	2.7	2.60	2.7	2.60	2.9	2.60	6.4	6.70	6.4	6.70	6.2	6.70	6.0	6.70	2.3	2.80	2.3	2.80						\exists
Repo	Ď	٦		TD-MS TI	4.2	4.20	3.9	4.20	3.9	4.20	4.1	4.20				-					5.0	5.25	4.4	5.25	4.5	5.25	4.7	5.25	7.5	7.00	6.9	7.00	9.6	7.00	7.0	7.00	2.3	2.97	2.4	2.97					П	1
	8	۶	П	TD-MS T	0.63	0.690	0.53	0.690	0.54	0.690	0.59	0.690									1.48	1.63	1.25	1.63	± 23.	1.63	1.41	1.63	1.55	1.70	1.40	1.70	1.32	1.70	1.49	1.70	0.54	092'0	0.60	092.0	0.58	0.59	0.51	0.59	0.50	0.59
	J.		Π	INAA																																								Н		\dashv
÷	n S		Γ	TD-MS IN	2.8	2.70	5.6	2.70	3.1	2.70	3.2	2.70									6.1	9.60	5.8	9.60	6.5	9.90	7.8	9:80	8.2	8.20	6.7	8.20	8.5	8.20	8.4	8.20	1.8	2.67	3.0	2.67						\exists
ies Lt	Sm	_ ا		INAA TE	-																										_															\dashv
Activation Laboratories Ltd.	2	_ ا		TD-MS IN	в. Б.	18.0	8.8	18.0	8.8	18.0	9.0	18.0									45.6	45.0	42.0	45.0	0.14	45.0	44.3	45.0	41.8	40.00	42.7	40.00	38.9	40.00	45.4	40.00	13.0	13.0	12.7	13.0	5.3	5.20	4.7	5.20	9.9	5.20
n Lab	₹	Г	П	□LD-MS TD																										`		_		_		_								Н		\dashv
tivatio	à	Г	Γ																L																									Н		\dashv
Aci	ı	mdd	ı	TD-MS INAA	15.5	17.0	15.6	17.0	15.7	17.0	15.1	17.0									=	102	111	102	108	102	114	102	88.8	93.00	95.7	93.00	90.1	93.00	92.6	93.00	35.7	36.0	35.5	36.0						\dashv
	S	Г	Г																											6,		63		u,		63										\dashv
	La	Γ	l	TD-MS INAA	8.0	7.50	7.1	7.50	7.4	7.50	7.3	7.50									60.3	64.5	52.5	64.5	52.3	64.5	57.0	64.5	41.9	42.00	40.3	42.00	37.4	42.00	40.3	42.00	12.4	13.9	12.3	13.9	3.7	3.6	3.3	3.6	3.6	3.6
ဗွ	La	T		TD-MS TD	16	38.0	80	38.0	7	38.0	5	38.0									48	98	36	98	88	98⊦	43	18€	53	290.00	25	290.00	41	290.00	47	290.00	53	110	69	110		38.0	8	38.0	37	38.0
	Ž	mda r		TD-MS TD	32.0		56.6	l	25.8	l											14.3	14.0	11.4	14.0	11.7	14.0	13.2	14.0		58		58		58		58	11.4	14.0	12.1	14.0	16.5		13.2	18.0		18.0
	>	mdd	Γ	П																																										\dashv
	≥	П	П	TD-ICP INAA	98	80.0	88	80.0													68	87.0	92	87.0					37	102.00	56	102.00					148	186	108	186	140	148	141	148		\dashv
	>	mad	0	Ė						\vdash				\vdash				L		_									H	103		103	Н											Н	\vdash	\dashv
	Analyte Symbol	Unit Symbol	Lower Limit	Method Code	GXR-1 Meas	GXR-1 Cert	GXR-1 Meas	GXR-1 Cert	GXR-1 Meas	GXR-1 Cert	GXR-1 Meas	GXR-1 Cert	DH-1a Meas	DH-1a Cert	DH-1a Meas	DH-1a Cert	DH-1a Meas	DH-1a Cert	DH-1a Meas	DH-1a Cert	GXR-4 Meas	GXR-4 Cert	GXR-4 Meas	GXR-4 Cert	GXR-4 Meas	GXR-4 Cert	GXR-4 Meas	GXR-4 Cert	SDC-1 Meas	SDC-1 Cert	SDC-1 Meas	SDC-1 Cert	SDC-1 Meas	SDC-1 Cert	SDC-1 Meas	SDC-1 Cert	GXR-6 Meas	GXR-6 Cert	GXR-6 Meas	GXR-6 Cert	DNC-1a Meas	DNC-1a Cert	DNC-1a Meas	DNC-1a Cert	DNC-1a Meas	DNC-1a Cert

age 20/25

Report: A17-10547

Activation Laboratories Ltd.

ဗ္ဗ

0.4

3.63

0.54

0.4

3.63

0.54

Ľ	원	0		Ц	Ц																										
	ppm	0.1	TD-MS			3.7	3.80	3.4	3.80	3.5	3.80	3.7	3.80	1.3	1.38	1.3	1.38	1.3	1.38	4.1	1.38	1.5	1.38	2.8	3.58	2.8	3.58	2.7	3.58	3.0	3.58
	mdd	0.1	_D-MS			1.3	1.40	1.2	1.40	1.2	1.40	1.4	1.40	0.5	0.46	4.0	0.46	4.0	0.46	0.5	0.46	9.0	0.46	1.0	1.21	6:0	1.21	6:0	1.21	1.1	1.21
	_	0.1	TD-MS			1.2	1.20	1.0	1.20	1.0	1.20	1.2	1.20	0.4	0.400	0.3	0.400	0.3	0.400	0.4	0.400	0.4	0.400	0.8	0.97	0.7	0.97	0.7	0.97	6.0	0.97
	mdd	0.1	TD-MS			6.9	7.10	6.5	7.10	6.3	7.10	6.6	7.10	2.4	2.26	2.2	2.26	2.3	2.26	2.4	2.26	2.4	2.26	6.4	5.88	4.7	5.83	4.7	5.88	5.0	5.88
	μdd	0.1	TD-MS			9.2	8.5	8.0	8.5	7.8	8.5	7.9	8.5	2.5	2.42	2.3	2.42	4.2	2.42	2.7	2.42	2.4	2.42	5.7	6.28	5.4	6.28	r.	6.28	8.	6.28
		0.05	TD-MS	0.57	0.59	1.98	1.98	1.70	1.98	1.67	1.98	1.85	1.98	0.58	0.57	0.51	0.57	0.51	0.57	0.61	0.57	0.57	0.57	1.37	1.44	1.16	1.44	1.14	1.44	1.31	1.44
П	mdd	0.1	INAA																												
	mdd	0.1	TD-MS	Ħ		10.3	9.6	10.4	9.6	9.5	9.6	9.0	9.6	2.3	2.80	2.7	2.30	2.7	2.30	5.6	2.80	2.8	2.30	7.0	7.18	8.9	7.18	7.0	7.18	7.4	7.18
	mdd M	5	INAA																												
	d mdd	0.1	TD-MS	5.0	5.20	52.8	49.2	48.8	49.2	48.3	49.2	51.9	49.2	14.7	13.4	14.2	13.4	13.5	13.4	15.7	13.4	14.9	13.4	40.3	39.4	38.9	39.4	37.3	39.4	42.7	39.4
	mdd	-	TD-MS			13.6	12.6	11.8	12.6	11.9	12.6	12.2	12.6	ည စ	3.70	3.6	3.70	3.57	3.70	ည 80	3.70	3.6	3.70	10.9	0.11	9.7	11.0	9.	0.11	10.5	11.0
П	ppm pp	0	INAA																												
	d mdd	0.1	TD-MS			110	108.0	110	108.0	110	0.801	112	0.80	35.8	37.20	36.4	37.20	34.9	37.20	38.8	37.20	36.2	37.20	96.3	98.8	60+	98.8	97.1	98.8	106	98.8
П		0.5	INAA																												
	۶	0.1	TD-MS	3.4	3.6	53.9	52.5	47.5	52.5	47.3	52.5	50.2	52.5	16.7	16.9	15.6	16.9	15.4	16.9	16.9	16.9	16.2	16.9	65.9	46.6	4 1.2	46.6	4.14	46.6	46.6	46.6
	mdd	-	. SM-QL	38	38.0	132	134.0	112	134.0	113	134.0	123	Ÿ	124	141	-8	141	73	141	109	141	98	141	28	259	102	259	71	259	32	259
	mdd	0.1	_SM-Q_	14.8	18.0	33.0	36.5	27.5	36.5	28.1	36.5	30.1	36.5	11.0	9.53	2.6	9.53	8.6	9.53	11.0	9.53	10.2	89.6	25.5	32.7	21.5	32.7	21.8	32.7	25.5	32.7
	mdd	_	INAA																												
>	mdd	ÇI.	TD-ICP			219	220.0	218	220.0					167	235.0	149	235.0	143	235.0					27	25.2	27	25.2	56	25.2		
<u>ŏ</u>		imit	Code	a Meas	Cert	Meas	Sert	Meas	Sert	Neas	Sert	Meas	Sert	45d Meas	3 45d) Cert	45d Meas	.45d Cert	45d Meas	45d Cert	45d Meas	45d Cert	45d Meas	5 45d) Cert	//2 S.) Meas	/I2 S.) Cert	A2 S.) Meas	/IZ S.) Cert	//2 S.) Meas	VI2 .S.) Cert	A2 S.) Meas	vl2 .S.) Cert

Page 21/25

		mdd	1.0	TD-MS	0.4	0.54									0.5	0.4		4.0	6.4	4.0	4.0	< 0.1	< 0.1	° 0.1	, 0.1	, 0.1	T	, 0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	, 0.1	× 0.1	
	Vb L	d mdd		INAA													4.							1	1	0	4 0 0		< 0.2										1		
	ΥÞ	u udd		TD-MS	3.0	3.63				l		T			3.1	3.2		3.1	3.0	2.8	2.7	< 0.1	< 0.1	× 0.1	v 0.1	v 0:1	1			< 0.1	× 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	7.0	0.1	l
	⊥m Y	d udd		TD-MS T	4.0	0.54									0.5	0.5		0.5	0.5	0.5	9.0	< 0.1	< 0.1	× 0.1	× 0.1	× 0.1		-0.		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	× 0.1	£.0 2	0.1	l
		d udd		TD-MS T	3.2	3.58									3.1	3.3		3.3	3.2	2.8	2.7	< 0.1	< 0.1	٠0.1	× 0.1	× 0.1	\dagger	0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	× 0.1	0.1	× 0.1	
14	Ē	٦		TD-MS T	Ţ	1.21				l		r			1.0	1.1		1.2	1.2	6.0	6.0	< 0.1	< 0.1	- 0°	v 0.1	v 0.1	\dagger	-0 -0		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-0 -0 -7	< 0.1	l
Report: A17-10547	오	۽			6.0	0.97				l					9.0	0.8		6.0	0.8	0.7	0.7	< 0.1	< 0.1	< 0.1	× 0·1	× 0.1	\dagger	, O		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-0,	< 0.1	l
t: A17	<u>1</u>	l	l	TD-MS TD-MS	5.1	5.88		\vdash		l		H			5.5	5.6		œ czi	9.0	6.4	4 6:	< 0.1	< 0.1	4	4	× 0.1	\dagger	1.0 ×	┖	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	4	× 0.1	
Repo	à	Г		TD-MS TD	ඩ ව:	6.28		\perp		l					0.9	6.4		6.4	6.3	5.0	5.0	< 0.1	< 0.1	4	4	v 0.1	\dagger	, 0.1	Ш	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	4	< 0.1	١
	පි	udd u		□⊥ SW-Q⊥	1.31	1.44		\vdash		l		\vdash			1.26	1.33		1.57	1.50	96.0	0.93	< 0.05		< 0.05	- 1	< 0.05	+	< 0.05	ı	< 0.05	< 0.05		< 0.05		< 0.05		< 0.05	l	< 0.05	1 1	ĺ
	En	mdd	0.05				2.2	2.70	2.5	2.70	5.6	2.70	2.5	2.20			7.3				\dashv	٧	٧	V	v	-		-	< 0.1	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	v v	
	S	mdd	-0	SINAA	6.0	7.18		I CV				L.VI		(2)	8.4	3.5		8.4	8.1	7.0	7.3	=		-	_	4	<u> </u>	╄	┖	1.1	Τ.	1.1	1.1	1.1	1.1	1.1	1.1	=	=		l
, Ltd.	Sm	μdd	0.1	TD·MS	φ	7.									8	80	44	ω	89	7		< 0.1	× 0.1	, 0.1	v 0.1	, O >	0 10	0.0	v 22	< 0.1	× 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	0.0	
torie	NG	udd	ß	INAA											_		4	10		10							v `							_							
abora	P	mdd	1.0	TD-MS	42.8	39.4				L					37.4	41.3		34.5			_	< 0.1	< 0.1	4	4	, 0.1		, 0.1		< 0.1	< 0.1	< 0.1	Ш	< 0.1	< 0.1	0.3		Ц	_	× 0.1	
tion L	Ā	mad	1.0	TD-MS	10.7	11.0									9.1	6.6		8.0	8.0	8.5	8.8	× 0.1	< 0.1	, 0.1	× 0.1	× 0.1		0.1	Ш	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1	9	, 0.1 , 0.1	
Activation Laboratories Ltd.	e Ce	mdd	ო	INAA			8	32.0	32	32.0	27	32.0	30	29.8			94										2 6	┖	× 3												
	Se Se	ωdd	0.1	TD-MS	107	8.86									1.59	266		103	102	89.8	87.9	× 0.1	× 0.1	< 0.1	× 0.1	v 1.0 1.0		> 0.1		L.0 >	4:0	> 0.1	< 0.1	< 0.1	< 0.1	0.9	> 0.1	r.0 >) F: 0	, O.1	
	۲a	mdd	0.5	NAA			16.3	17.6	17.3	17.6	18.2	17.6	18.0	16.6			36.5										0 C		< 0.5												
ပ္ထ	La	mdd	0.1	SM-Q1	47.0	46.6									36.3	39.2		30.1	29.4	38.3	37.9	< 0.1	< 0.1	< 0.1	0.1	< 0.1		< 0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2	< 0.1	< 0.1	× 0.1	< 0.1	
J	Zr	mdd	_	TD-MS	114	259									20	8			112	29		٧	٧	Ÿ	v	· v		Ÿ		^	v	٧	٧)	۷ ا	۷ ا	٧	٧	۷ -	- ·	V	
	>		0.1	S	25.4	32.7									25.0	26.3		28.4	26.9	22.3	22.0	< 0.1	< 0.1	× 0.1	v 0.1	v 0.1		, 0.1		< 0.1	0.2	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	۷.0	-0,	× 0.1	
	M	udd	l	NAA													, -									,	v 7		, -												
	Ĺ	udd		TD-ICP											36	42		29	52	21	21					^ 2		۷2		< 2	< 2		< 2							< 2	
	Analyte Symbol	Unit Symbol			SdAR-M2 (U.S.G.S.) Meas	SdAR-M2 (U.S.G.S.) Cert	DMMAS 120 Meas	DMMAS 120 Cert	OMMAS 120 Meas	DMMAS 120 Cert	DMMAS 120 Meas	DMMAS 120 Cert	DIMMAS 121 Meas	DMMAS 121 Cert	17DB127 Orig	17DB127 Dup	17DB160 Orig	17DB168 Orig	17DB168 Dup	17DB170 Orig	17DB170 Dup	Method Blank	Method Blank	Vethod Blank	Method Blank	Method Blank	Method Blank	Method Blank	Method Blank	Viethod Blank	Method Blank	Method Blank									

Page 22/25

Report: A17-10547

ö

Lu Mass	Г		INAA INAA																																									
a division in the control of the con	Jnit Symbol	ower Limit	Method Code	GXR-1 Meas	GXR-1 Cert	GXR-1 Meas	GXR-1 Cert	GXR-1 Meas	GXR-1 Cert	GXR-1 Meas	GXR-1 Cert	DH-1a Meas	DH-1a Cert	DH-1a Meas	DH-1a Cert	DH-1a Meas	DH-1a Cert	DH-1a Meas	DH-1a Cert	GXR-4 Meas	GXR-4 Cert	GXR-4 Meas	GXR-4 Cert	GXR-4 Meas	GXR-4 Cert	GXR-4 Meas	GXR-4 Cert	7	7	Ψ	SDC-1 Cert	7	τl	Ţ	-	GXR-6 Meas	GXR-6 Cert	GXR-6 Meas	GXR-6 Cert	DNC-1a Meas	DNC-1a Cert	DNC-1a Meas	- a	

Report: A17-10547

ဗွ

Init Symbol	maa	c
<u>۱</u>	0.05	n
170	NAA	INAA
ONC-1a Meas		
DNC-1a Cert		
SBC-1 Meas		
SBC-1 Cert		
SBC-1 Meas		
SBC-1 Cert		
SBC-1 Meas		
SBC-1 Cert		
SBC-1 Meas		
SBC-1 Cert		
OREAS 45d (4-Acid) Meas		
DREAS 45d 4-Acid) Cert		
OREAS 45d (4-Acid) Meas		
DREAS 45d 4-Acid) Cert		
(4-Acid) Meas		
REAS 45d -Acid) Meas		
OREAS 45d (4-Acid) Cert		
OREAS 45d 4-Acid) Meas		
SdAR-M2 (U.S.G.S.) Meas		
SdAR-M2 (U.S.G.S.) Cert		
SdAR-M2 (U.S.G.S.) Meas		
SdAR-M2 (U.S.G.S.) Cert		
JAR-M2 J.S.G.S.) Meas		
SdAR-M2 (U.S.G.S.) Cert		
dAR-M2 J.S.G.S.) Meas		
JAR-M2		

亨
-Si
ž
ă

Report: A17-10547

Activation Labor

ဗွ

	2	
Unit Symbol	mdd	6
Lower Limit	90.0	
Method Code	INAA	INAA
SdAR-M2 (U.S.G.S.) Meas		
SdAR-M2 (U.S.G.S.) Cert		
DMMAS 120 Meas		
DMMAS 120 Cert		
DMMAS 120 Meas		
-		
DMMAS 120 Meas		
DMMAS 120 Cert		
DMMAS 121 Meas		
DMMAS 121 Cert		
127		
7DB127		
9	0.21	20.9
8		
7DB168		
7DB170		
17UB170 Dup		
Method Blank	< 0.05	
Method Blank	< 0.05	1.00
Method Blank		ć
	c0:0 >	30.0
Method Blank		
Method Blank		
Method Blank		
Method Blank		
Method Blank		
Method Blank		
Method Blank		
Method Blank		
Method Blank		
nl		

Page 25/″

Appendix E. Final Lab Report Received From Bureau Veritas (VAN17003090)

BUREAU MINERAL LABORATORIES
VERITAS Canada

www.bureauveritas.com/um

Halifax Nova Scotia B3J 2T9 Canada P.O. Box 698

Denise Brushett

Submitted By:

Nova Scotia Dept. of Natural Resources 1701 Holls St.

Client

Canada-Vancouver December 28, 2017 February 05, 2018 Receiving Lab: Report Date: Received:

1 of 3

VAN17003090.

CERTIFICATE OF ANALYSIS

None Given

53

Number of Samples:

Shipment ID: P.O. Number

Project:

CLIENT JOB INFORMATION

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

PHONE (604) 253-3158

Bureau Veritas Commodities Canada Ltd.

	Report	Status		Completed		
	Test	Wgt (g)		8		
SAMPLE PREPARATION AND ANALYTICAL PROCEDURES	Number of Code Description		Sorting, labeling and boxing samples received as pulps	Fire assay fusion Au Pt Pd by ICP-MS	Environmental disposal charge-Fire assay lead waste	Warehouse handling / disposition of pulps
REPARATION	Number of	Samples	52	52	25	25
SAMPLE P	Procedure	Code	SLBHP	FA130	EN002	DRPLP

YAN. a P

ADDITIONAL COMMENTS

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Return After 90 days

RTRN-PLP

SAMPLE DISPOSAL

Nova Scotia Dept. of Natural Resources 1701 Hollis St. Invoice To:

P.O. Box 698

Halifax Nova Scotia B3J 2T9

Canada

ö

This reports to essets all previous pratin may and final reports with this file nurbed dated prior to the cale on this centificate. Signature indicates final approval; profering and an arranged and should be used for reference only. As little approved the confidential property of the cleant Burners of vertices assumes the abilities for actual cost of analysis only. As surbes as submitted.

All results apply to samples as submitted in oncote provided due to unusually high leves of inferteence from other element from other element.

STAN PROPERTY OF THE PROPERTY		Client:	Nova Scotia Dept. of Natural Resources 1701 Hollis St. P.O. Box 686 Halfax Nova Scotia B3J 279 Carada	ς,
BUREAU MINERAL LABORATORIES VERITAS Canada	www.bureauveritas.com/um	Project:	None Given	
Bureau Veritas Commodities Canada Ltd.		Report Date:	February 05, 2018	
9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada	P 6E5 Canada			
PTONE (804) 233-3 138		Page:	2 of 3 Part: 1 of 1	<u>-</u>
CERTIFICATE OF ANALYSIS			VAN17003090.1	
Method FA130 FA130 FA130	FA130			

	Analyte	Ψ	ă	Ď
	Unit	qdd	qdd	qdd
	MDL	-	0.1	0.5
16DB206	Till Pulp	9	0.2	0.6
16DB218 T	Till Pulp	ო	0.3	0.6
17DB004	Till Pulp	4	0.3	0.8
17DB011 T	Till Pulp	4	0. 4	o. 0
17DB013 T	Till Pulp	m	0. 4	8.0
17DB014 T	Till Pulp	m	0.7	<u>د</u> ن
17DB036 T	Till Pulp	гo	0.5	L Ri
17DB041 T	Till Pulp	23	1.2	2.7
17DB042 T	Till Pulp	œ	0.8	2.1
17DB053 T	Till Pulp	N. R.	L'N.R.	N. R.
17DB054	Till Pulp	4	0. 4	0.0
17DB055 T	Till Pulp	m	0.3	0.8
17DB059	Till Pulp	4	0.3	8.0
17DB060 T	Till Pulp	ယ	0.2	0.6
17DB061 T	Till Pulp	m	0.3	0.0
17DB062 T	Till Pulp	4	0 4	0.7
17DB064	Till Pulp	ю	0.3	0.0
17DB065 T	Till Pulp	7	0.2	0.7
17DB066 T	Till Pulp	m	0. 4	0.1
17DB067	Till Pulp	12	0.7	Ĺ πύ
17DB068 T	Till Pulp	4	0. 4	8.0
17DB069	Till Pulp	m	0.0	0.7
17DB070 T	Till Pulp	4	0.2	0.7
17DB071 T	Till Pulp	m	0.2	0.7
17DB072 T	Till Pulp	ო	0.3	0.6
17DB073 T	Till Pulp	m	0.2	0.6
17DB074 T	Till Pulp	2	0.2	0.7
17DB077	Till Pulp	ιΩ	0.3	1.
17DB030 T	Till Pulp	m	0.2	O TÜ
17DB081 T	Till Pulp	2	0.1	۵ ت

AS STATE OF THE ST	o	Client:	Nova Scotia Dept. of Natural Resources 1701 Holls St. P.O. Box 686 Halffax Nova Scotia B3J 279 Carada	ırces
BUREAU MINERAL LABORATORIES VERITAS Canada	www.bureauveritas.com/um	Project:	None Given	
Bureau Veritas Commodities Canada Ltd.	œ	Report Date:	February 05, 2018	
9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada	ia V6P 6E5 Canada			
PHONE (604) 253-3158		Page:	3 of 3 Part:	1 of 1
CERTIFICATE OF ANALYSIS	SIS		VAN17003090.1	

Unit
Till Pulp

Part: 1 of 1

1 of 1

Page:

QUALITY CONTROL REPORT

VAN17003090.1

Nova Scotia Dept. of Natural Resources 1701 tells St. P.O. Box 686 Halifax Nova Scotia B3J 2T9 Canada None Given February 05, 2018 Project: Report Date: Client: www.bureauveritas.com/um 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 BUREAU MINERAL LABORATORIES
VERITAS Canada Bureau Veritas Commodities Canada Ltd.

	Method	FA130	FA130	FA130
	Analyte	Αn	ď	В
	Unit	qdd	qdd	qdd
	MDL	-	0.1	0.5
Pulp Duplicates				
17DB067	Till Pulp	12	0.7	L Ri
REP 17DB067	ac	16	9.0	_ Qj
7DB082	Till Pulp	9	0.2	1.2
REP 17DB082	ac	9	0.3	£.
17DB165	Till Pulp	13	9.0	1.7
REP 17DB165	ac	16	0.4	£. f
Reference Materials				
STD PD05	Standard	542	454.2	615.3
STD PD05	Standard	534	455.9	630.3
STD PD05	Standard	533	454.8	607.9
STD PD05	Standard	527	445.8	613.4
STD PD05 Expected		519	430	596
3LK	Blank	3	0.3	0.8
3LK	Blank	2	0.3	0.8
3LK	Blank	2	<0.1	0.0
3LK	Blank	2	<0.1	\$ 5.5
	I			

This record supersedes all previous pretiminary and that reports with this report with this report with the report with this report with the report