Geology of the Cumberland Basin, Cumberland, Colchester and Pictou Counties, Nova Scotia

R.J. Ryan and R.C. Boehner

Mines and Energy Branches Memoir 10
Geology of the Cumberland Basin, Cumberland, Colchester and Pictou Counties, Nova Scotia

R.J. Ryan and R.C. Boehner

Mines and Energy Branches Memoir 10

Nova Scotia Department of Natural Resources

Honourable Donald R. Downe
Minister

Halifax, Nova Scotia 1994
Table of Contents

List of Figures, Enclosures and Maps .. v

Abstract .. xv

Chapter 1 - Introduction .. 1
 Scope and Purpose of Study ... 1
 Location and Access .. 1
 Basin Nomenclature .. 1
 Previous Work .. 4
 Acknowledgments ... 5

Chapter 2 - Stratigraphy .. 7
 Introduction ... 7
 Carboniferous Stratigraphy ... 9
 Formal Nomenclature .. 13

Chapter 3 - Paleontology .. 43
 Introduction .. 43
 Ichnology ... 43
 Invertebrate Paleontology of Carbonates 46
 Invertebrate Paleontology of Clastic Sedimentary Rocks 51
 Vertebrate Paleontology .. 53
 Conclusions .. 53

Chapter 4 - Sedimentology ... 57
 Introduction .. 57
 Sediment Dispersal Trends ... 57
 Lithofacies, Lithofacies Associations, and Facies Assemblages 61

Chapter 5 - Structure and Basin Development 99
 Introduction .. 99
 Cobequid - Chedabucto Fault System ... 99
 North Fault .. 101
 The Cumberland Basin .. 104
 Basin Development Structures .. 113
 Cumberland Basin Development .. 116
 Maritimes Basin Development ... 119

Chapter 6 - Thermal Evolution of the Cumberland Basin 129
 Introduction ... 129
 Vitrinite Reflectance ... 129
 Thermal Alteration Index (Spore Coloration) 131
 Apatite Fission Track Results ... 133
 Burial History Plots ... 135
 Interpretation .. 139
Chapter 7 - Mineral Resources of the Cumberland Basin	143
Introduction	143
Metallic Mineral Occurrences of the Cumberland Basin	143
Genetic Model for the Cumberland Basin Cu Occurrences	164
Exploration Model for the Cumberland Basin Cu Occurrences	169
Uranium Rolli (Solution) Fronts	170
Paleoplacers	171
Industrial and Nonmetallic Minerals	174
Energy Resources	179

| Chapter 8 - Conclusions | 185 |

| References | 187 |

| Appendix 1 - Palynology Summary | 213 |
List of Figures

CHAPTER 1 INTRODUCTION

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Regional location map, Maritimes Basin, Atlantic Canada.</td>
<td>2</td>
</tr>
<tr>
<td>1-2</td>
<td>General geology and location map, Cumberland Basin.</td>
<td>4</td>
</tr>
</tbody>
</table>

CHAPTER 2 STRATIGRAPHY

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Evolution of late Paleozoic stratigraphic nomenclature in the Cumberland Basin between 1845 and 1990.</td>
<td>8</td>
</tr>
<tr>
<td>2-2</td>
<td>Diagrammatic stratigraphy in the top eastern and bottom western parts of the Cumberland Basin.</td>
<td>11</td>
</tr>
<tr>
<td>2-3</td>
<td>General geology and location map of Windsor Group stratigraphic sections.</td>
<td>12</td>
</tr>
<tr>
<td>2-4</td>
<td>General correlation of the Visian to Namurian Mabou and Windsor groups in the Cumberland Basin area.</td>
<td>13</td>
</tr>
<tr>
<td>2-5</td>
<td>Stratigraphy of the Windsor Group intersected in Pacific Fox Harbour drillhole C-96V.</td>
<td>16</td>
</tr>
<tr>
<td>2-6</td>
<td>Stratigraphy and general correlation of (Windsor Group) Lime-kiln Brook Formation sections with marine carbonates.</td>
<td>18</td>
</tr>
<tr>
<td>2-7</td>
<td>General geology and location of NSDME drillhole Lower Maccan LMA 88-1.</td>
<td>19</td>
</tr>
<tr>
<td>2-8</td>
<td>Detailed geology and location of NSDME drillhole Lower Maccan LMA 88-1.</td>
<td>20</td>
</tr>
<tr>
<td>2-9</td>
<td>North-south cross-section A-A, through NSDME drillhole Lower Maccan LMA 88-1.</td>
<td>21</td>
</tr>
<tr>
<td>2-10</td>
<td>Middleborough Formation type section in the Wallace River near Middleborough.</td>
<td>23</td>
</tr>
<tr>
<td>2-11</td>
<td>Summary of Upper Carboniferous lithostratigraphic nomenclature and correlation between northern Nova Scotia, Gulf of St. Lawrence area, and the Sydney Basin, Cape Breton Island.</td>
<td>25</td>
</tr>
<tr>
<td>2-12</td>
<td>General geology and index map of detailed type sections of Upper Carboniferous units in the Cumberland Basin.</td>
<td>26</td>
</tr>
<tr>
<td>2-13</td>
<td>Stratigraphy of the classic Joggins Section (adapted from Logan, 1845), type section of the Cumberland Group, Boss Point, Joggins and Ragged Reef formations; reference section of Claremont and Springhill Mines formations, and reference sections of the Mabou Group, Middleborough and Shepody formations.</td>
<td>27</td>
</tr>
<tr>
<td>2-14</td>
<td>Geology and location map with legend of the Joggins Section, the type section of the Cumberland Group, and reference sections of the Mabou Group, and Middleborough and Shepody formations.</td>
<td>28</td>
</tr>
<tr>
<td>2-15</td>
<td>Geological and location map, type section of the Polly Brook Formation and type areas of the Springhill Mines and Claremont formations.</td>
<td>31</td>
</tr>
</tbody>
</table>
Figure 2-16. Stratigraphy of the type section, Springhill Mines Formation, and type-reference sections of related units including the Polly Brook, Claremont and Boss Point formations. ... 33

Figure 2-17. Geological and location map, type section of the Malagash Formation near Malagash Point. 35

Figure 2-18. Stratigraphy of the type section, Malagash Formation. .. 36

Figure 2-19. Geology and location map, type section of the Pictou Group, River John. Note: Bell, 1944 originally included in the Pictou Group rocks now assigned to the Malagash Formation. 37

Figure 2-20. Composite stratigraphy of the Pictou Group type area, including the type section for the Cape John Formation, River John, Tatamagouche - Cape John area. ... 38

Figure 2-21. Geological and location map, type section of the Balfon and Tatamagouche formations, near Tatamagouche. .. 39

Figure 2-22. Stratigraphy of the type section, Balfon Formation. .. 40

Figure 2-23. Stratigraphy of the type section, Tatamagouche Formation. .. 41

Figure 2-24. Geological and location map, type section of the Cape John Formation, near River John. 42

CHAPTER 3 PALEONTOLOGY

Figure 3-1. Location map of the Diplichnites trails in the eastern Cumberland Basin. ... 44

Figure 3-2. (a) Photograph of the trails at Cape John, scale = 25 cm. (b) line drawing of the Cape John trails, scale = 25 cm. .. 45

Figure 3-3. Reconstruction of Arthropleura (after Briggs et al., 1984; Ryan, 1986). ... 45

Figure 3-4. Arthropleura trails, lower surface, Smith Point, Cumberland County. ... 46

Figure 3-5. (a) Turning Arthropleura trail, upper trail surface, Smith Point, scale = 21 cm. (b) Line drawing of the same trail. .. 47

Figure 3-6. Arthropleura trails from Pugwash, scale = 21 cm. .. 47

Figure 3-7. Location map for paleontological study locations in the Cumberland Basin, Upper Carboniferous carbonates: (1) Melville Cove, (2) Murphy Point, (3) Louisville, (4) Chambers Point, (5) Malagash Point, (6) Treen Bluff, (7) Blockhouse Point, (8) Dewar River, (9) Lower Gulf Shore, (10) Pugwash, (11) South Shore Pugwash Bay, (12) Salisbury Point. ... 49

Figure 3-8. Drawing of Paleochara acadica, from Malagash Point locality. ... 51

Figure 3-9. Photomicrograph of Garwoodia sp? from Salisbury Point, identification verified by B. Mamet (pers. comm.). .. 52

Figure 3-10. Drawings of a possible Lingula mold from Salisbury Point. ... 53

Figure 3-11. Palynological sample distribution, Cumberland Basin, Nova Scotia. ... 55
CHAPTER 4 SEDIMENTOLOGY

Figure 4-1. Paleocurrent - sediment dispersal trends in the Cumberland Basin, Nova Scotia. 58

Figure 4-2. Rose diagrams for paleocurrent measurements from the eastern part of the Cumberland Basin. ... 59

Figure 4-3. Photograph of unconformity, Malagash Formation overlying the overturned strata of the Windsor Group, demonstrating the syndepositional nature of diapirism, Dewar Hill Quarry south of Pugwash. ... 60

Figure 4-4. Cartoon illustrating the divergence of dispersal trends in the Cumberland Basin resulting from syndepositional diapirism. ... 60

Figure 4-5. Compilation of paleocurrent data from Devonian to Permian strata in the Maritimes Basin (after Ryan, 1986). ... 61

Figure 4-6. Paleodrainage patterns for Cumberland and Pictou group strata in the Maritimes Basin (after Gibling et al., 1991). ... 62

Figure 4-7. Paleogeographic reconstruction of Upper Paleozoic drainage patterns in eastern North America, after Gibling et al., 1991. ... 63

Figure 4-8. Transition matrices for the Boss Point Formation. ... 68

Figure 4-9. Transition matrices for the Joggins Formation. ... 69

Figure 4-10. Transition matrices for the Spry Hill Mines Formation. ... 69

Figure 4-11. Transition matrices for the Ragged Reef Formation. ... 70

Figure 4-12. Transition matrices for the Malagash Formation. ... 70

Figure 4-13. Transition matrices for the Balfron Formation. ... 72

Figure 4-14. Transition matrices for the Tatamagouche Formation. ... 73

Figure 4-15. Transition matrices for the Cape John Formation. ... 74

Figure 4-16. Lithofacies of the Boss Point and Claremont formations. ... 75

Figure 4-17. Lithofacies of the Boss Point Formation. ... 76

Figure 4-18. Lithofacies of the Polly Brook Formation. ... 77

Figure 4-19. Lithofacies of the Joggins Formation. ... 78

Figure 4-20. Lithofacies of the Spry Hill Mines Formation. ... 79

Figure 4-21. Lithofacies of the Ragged Reef Formation. ... 80

Figure 4-22. Lithofacies of the Malagash Formation. ... 81

Figure 4-23. Lithofacies of the Balfron Formation. ... 82
CHAPTER 5 STRUCTURE AND BASIN DEVELOPMENT
Figure 5-11. Structure contour map on base of the Lucas salt bed with accompanying sections, Malagash Mine. ... 114

Figure 5-12. Geology and cross-section through the King Seaman Syncline near Minudie. 115

Figure 5-13. Rose diagrams of fault and joint strikes in the Cumberland Basin. ... 116

Figure 5-14. SeaSat image with linears from northwestern Nova Scotia. ... 117

Figure 5-15. Generalized stratigraphy of the Maritimes Basin. ... 118

Figure 5-16. Diagrammatic geology of Devonian to Namurian sedimentation represented by the Fountain Lake, Horton, Windsor and Mabou groups in the Cumberland Basin. 118

Figure 5-17. Diagrammatic geology of Devonian to early Westphalian sedimentation including the lower part of the Cumberland Group in the Cumberland Basin. 119

Figure 5-18. Diagrammatic geology of Devonian to middle Westphalian sedimentation including the Polly Brook, Joggins and Springhill Mines formations in the Cumberland Basin. 119

Figure 5-19. Diagrammatic geology of Devonian to late Westphalian sedimentation including the upper part of the Cumberland Group in the Cumberland Basin. .. 120

Figure 5-20. Diagrammatic geology of Devonian to Stephanian-Early Permian sedimentation of the Pictou Group in the Cumberland Basin. ... 121

Figure 5-21. Diagrammatic geology of the Pictou Group in the Cumberland Basin including late Permian to early Mesozoic tectonism. .. 121

Figure 5-22. Representative stratigraphic sections of Carboniferous basin fill adjacent to the Cobequid Highlands Massif illustrating the complex tectonic and sedimentation history through the Late Devonian to Stephanian-early Permian. 122

Figure 5-23. Evolution of sedimentation in the area of the Cobequid Highlands Massif through the Late Carboniferous (Namurian) to Stephanian-early Permian. 123

Figure 5-24. Late Paleozoic to early Mesozoic stratigraphy with interpreted subsidence history and megasequences in the Cumberland Basin area. ... 124

Figure 5-25. Basin classification scheme, after Kingston et al., 1983. ... 125

Figure 5-26. Tectonic evolution of the Cumberland Basin, an example of a lateral wrench basin. 127

Figure 5-27. Perspective diagram illustrating the general structural setting of the Cumberland Basin adjacent to, and parallel with, the Cobequid - Chedabucto Fault System and the Cobequid Highlands Massif, and the resulting complexity related to block tilting in a lateral wrench basin environment. .. 128

CHAPTER 6 THERMAL EVOLUTION OF THE CUMBERLAND BASIN

Figure 6-1. Vitrinite reflectance values for northwestern mainland Nova Scotia. 130
Figure 6-2. Scatter plot of vitrinite reflectance (Ro% max) values versus age of the samples. Plot shows only a crude correlation. .. 130

Figure 6-3. Vitrinite reflectance histograms (all measurements) for three samples from the Cumberland Basin. The lower two samples have a few high reflectances which are probably the result of secondary oxidation. .. 131

Figure 6-4. Compilation of near-surface vitrinite reflectance values (Ro% max) for the Maritimes Basin (after Hacquebard and Donaldson, 1970; Mukhopadhyay, 1991b; Hyde et al., 1991; and this study). 132

Figure 6-5. Histogram of vitrinite reflectance (Ro% max) for 286 near-surface localities from the Maritimes Basin. .. 133

Figure 6-6. Compilation of TAI (thermal alteration index) data for the Maritimes Basin. Data from Mukhopadhyay, 1991b; Dolby, 1987; Barss (various unpublished reports) and from company oil well reports. .. 134

Figure 6-7. Compilation of TAI (thermal alteration index) data for northwestern mainland Nova Scotia. Data from Mukhopadhyay 1991b, and this study. .. 135

Figure 6-8. Compilation of apatite fission track results for the Maritimes Basin (after Ryan, 1993). 136

Figure 6-9. Histogram of apatite fission track corrected ages for the Maritimes Basin. Two samples excluded from the plot are one high elevation sample from the Long Range in Newfoundland that was probably not covered in the Carboniferous and one sample from an oil well in the Gulf of St. Lawrence that has a young age due to depth in the well. The overall mean is approximately 232 Ma. .. 137

Figure 6-10. (a) Example of geological constraints used in the construction of burial history plots. The plot construction shown is for the Pictou Group strata in drillhole NT-47 in the Tatamagouche area in the eastern part of Cumberland Basin. (b) After construction of the time-burial path for the sampled horizon, the stratigraphic intervals are added to complete the burial history plots. .. 138

Figure 6-11. Burial history plot for the western Cumberland Basin as determined from data obtained from the South Athol drillhole SA-1. .. 139

Figure 6-12. Burial history plot for the central Cumberland Basin as determined from data obtained from the Oxford area drillhole BP-06. .. 139

Figure 6-13. Comparisons of Trac3 modelled distribution for track lengths of apatite fission tracks and their ages and the measured values for the Cumberland Basin samples and one sample from Hillsborough Bay, Prince Edward Island. The measured values can be predicted from the burial history plots for the various localities. .. 140

Figure 6-14. Diagrammatic representation of the possible Permo-Carboniferous sedimentary cover through time (after Ryan et al., 1991). .. 141

CHAPTER 7 MINERAL RESOURCES OF THE CUMBERLAND BASIN

Figure 7-1. Metallic mineral occurrences of the Carboniferous basins of Nova Scotia. .. 143

Figure 7-2. Location map of industrial mineral occurrences in the Cumberland Basin. .. 144

Figure 7-3. Location map of metallic minerals in the Cumberland Basin. .. 145
Figure 7-4. Cartoon of the potential mineralization types that may occur in the Cumberland Basin. 146

Figure 7-5. Location and generalized geology of the Canfield Creek occurrence. 147

Figure 7-6. Detailed location map of the Canfield Creek deposit and a plot of the -230 mesh fraction of the regional till samples (after MacDonald et al., 1992). 148

Figure 7-7. Location of drilling, trenches, and ore zone at the Canfield Creek deposit (after MacDonald et al., 1992). ... 149

Figure 7-8. Cross-section of drillhole from the Canfield Creek Cu deposit. Note the upper pyrite with trace of sphalerite zone and the underlying Cu zone. 150

Figure 7-9. Core sample from ESSO drilling at Canfield Creek with disseminated chalcolcite. 151

Figure 7-10. Core sample from ESSO drilling at Canfield Creek showing chalcolcite nodules up to 2 cm in diameter. ... 151

Figure 7-11. Location and generalized geology of the Scotsburn copper occurrence. 152

Figure 7-12. Detailed section as exposed on the stream at the Scotsburn occurrence. 153

Figure 7-13. Stream geochemical anomalies associated with the Fitzpatrick Mountain fault, the Scotsburn occurrence. ... 154

Figure 7-14. Location and generalized geology of the Donaldson’s Mill Brook occurrence. 154

Figure 7-15. Sketch of the mineralization at Donaldson’s Mill Brook. .. 155

Figure 7-16. Permineralized plant cell structure, replaced by pyrite, chalcolcite, and minor bornite, Oliver occurrence, French River. Note the detail that is preserved by the sulphide minerals. Some workers have argued that this proves that the copper mineralization was early diagenetic; however, only the pyrite need be early as the other minerals replaced pyrite. Py = pyrite, BO = bornite, CC = chalcolcite, Dg = digenite. ... 155

Figure 7-17. Pyrite replaced by bornite and chalcolcite, sample is from a chalcolcite nodule from the Oliver Copper Mine, on French River. This sample is the exception to the rule, as there is perhaps a little late-stage pyrite present. Py = pyrite, BO = bornite, CC = chalcolcite, Dg = digenite. 156

Figure 7-18. Exsolution features in pyrite and bornite, replaced by chalcolcite and digenite. Py = pyrite, BO = bornite, CC= chalcolcite, Dg = digenite. ... 156

Figure 7-19. Star-shaped blebs of bornite in a pyrite matrix, from large nodules collected at the Donaldson’s Mill Brook occurrence; outer parts of the nodule are massive chalcolcite. Py = pyrite, BO = bornite, CC = chalcolcite, Dg = digenite. 157

Figure 7-20. Plot of sulphur isotopes contrasting the Tatamagouche (Cumberland Basin) occurrences with world class deposits. ... 158

Figure 7-21. Copper versus zinc for unmineralized red and grey sandstone. .. 159

Figure 7-22. Geochemistry of red (circles) vs. grey (squares) unmineralized sandstone; (a) Cu vs. SiO₂ (b) Zn vs. SiO₂. ... 160
Figure 7-23. FeO vs. Fe₂O₃ plot with grey sandstone as squares and red sandstone as circles; where values of the slope (S) are greater than 1.00 the rocks are grey, if they are less than 1.00 they are red. 160

Figure 7-24. Geochemistry of the Eatonville till in the Cumberland Basin. Dots are samples with 80% red clasts and circles are grey clast dominated, the line indicates the limits of the grey subset, and the boxes represent the mean and standard deviation for the red and grey populations. These plots show the same depletion of Cu+Zn for red beds. .. 162

Figure 7-25. Plot of stream sediment geochemistry for streams in the Cumberland Basin. The stream sediment samples taken over red beds show a depletion of Cu similar to the bedrock and till geochemistry. 162

Figure 7-26. Catchment basin geochemistry plot of residual Cu-As. Note that although the Cumberland Basin area has numerous Cu occurrences the geochemical background is low (negative anomaly). 163

Figure 7-27. Drawing of quartz grain to matrix relationships in a typical red sandstone. Note that hematite never occurs between the quartz grain contacts, indicating a later diageneric timing for the reddening. Q = quartz, H = hematite, R = rock fragment, P = plagioclase. Striped areas are fine clay matrix or primary porosity. .. 165

Figure 7-28. Cartoon of a cross-section of the Cumberland Basin indicating the relative position of basin saline brines and meteoric water interface. Cartoons show that there is an infiltration of oxygenated groundwater entering porous sandstones, which reddens them except for the carbon-rich lags at the base of the channel sequences. .. 166

Figure 7-29. Possible paleogeographic reconstruction of the Cumberland Basin in the late Permian, looking southwest. Note the infiltration of the oxygenated water and the possible mixing with chlorine-rich salt springs. .. 167

Figure 7-30. Sandstone-hosted red bed Cu occurrence with the reddened strata and the concentration of Cu-Ag-Zn, etc., at the interface with the local reduced beds at the channel lag or with overlying grey organic and pyrite-rich mudstone. .. 168

Figure 7-31. Cartoon depicting the possible origin of the shale-hosted redbed copper occurrences in the Cumberland Basin. .. 169

Figure 7-32. Exploration model for the sandstone-hosted redbed, Cu deposits of the Cumberland Basin: (a) large scale overview of the redox boundary with the various geochemical responses; (b) a close up view of the redox boundary depicting the remobilization of the chalcophile elements to the redox front or interface. .. 170

Figure 7-33. Possible location of a uranium roll front in the Port Phillip area. Drillholes have gamma ray responses typical of backtails (updip from roll front) and remote seepage zones (downdip from roll fronts). The roll front possibly occurs between these drillholes. .. 172

Figure 7-34. Schematic representation of the development of secondary roll fronts within channel sequences in the Cumberland Basin. .. 172

Figure 7-35. Gold occurrences and sediment dispersal patterns for northern Nova Scotia (after Ryan et al., 1988). Triangles = Au occurrences, circles = Sn occurrences, and arrows indicate Carboniferous paleoflow directions. .. 173

Figure 7-36. Weighted fine fraction Sn values for tills in the Cumberland Basin - Cobequid Highlands Massif areas. Note that the high tin values extend into the basin although the till moved predominately southward. This indicates a Carboniferous source for the Sn values (after Ryan et al., 1988). .. 174
Figure 7.37. Cartoon model for tin paleplacer concentration in the basin fill strata of the Cumberland Basin (after Ryan et al., 1988). ... 175

Figure 7.38. Plot of the Au stream geochemistry and mineral occurrences for the Cumberland Basin. The Au anomalies closely correspond to outcrops of conglomeratic strata. ... 176

Figure 7.39. Photographs of the celestite - galena occurrences at Beekwith. The celestite appears to be crystallizing in a clay hydration zone between the evaporates and Upper Carboniferous strata that are in fault contact with each other. ... 177

Figure 7.40. Energy resource occurrences in the Cumberland Basin. ... 180

ENCLOSURES AND MAPS (REAR POCKET)

Enclosure 1. Stratigraphy of the Joggins area, Nova Scotia; Nova Scotia Department of Natural Resources Open File Illustration 90-001.

Enclosure 2. Stratigraphy of the Springhill area, Cumberland Basin.

Enclosure 3. Stratigraphy of the French River - River John section; Nova Scotia Department of Natural Resources Open File Illustration 90-002.

Enclosure 5. Detailed drillhole correlation - Tatamagouche area, Nova Scotia; Nova Scotia Department of Natural Resources Open File Illustration 90-004.

Map 90-11. Cumberland Basin Geology Map, Apple River and Cape Chignecto, Cumberland County, scale 1:50 000.

Map 90-12. Cumberland Basin Geology Map, Amherst, Springhill and Parrsboro, Cumberland County, scale 1:50 000.
