RECOVERY PLAN FOR VOLE EARS (*ERIODERMA MOLLISSIMUM*) IN NOVA SCOTIA

A recovery plan adopted by the Nova Scotia Department of Lands and Forestry

2020 - 2025
Recommended citation:


Cover illustration: Vole ears (Erioderma mollissimum). Photo credit: Rob Cameron.

Content (excluding the illustrations) may be used without permission, with appropriate credit to the source.
Adoption of a Recovery Plan per Section 15(9) of the Endangered Species Act

Species:

Vole ears (Erioderma mollissimum)

Reference:


Whereas a Species at Risk Act Recovery Strategy has been prepared for this species by Environment Canada, and that plan has been reviewed by members of the applicable Nova Scotia Recovery Team and determined to fulfil the requirements of Section 15(4) of the Endangered Species Act as they pertain to Nova Scotia, the above-named recovery plan and action plan shall be adopted in lieu of a Nova Scotia Recovery Plan subject to the following:

Date of Adoption: 27 September 2020

Expiry/renewal Date: 27 September 2025

Conditions:

1. Adoption of this recovery plan will be reviewed 5 years from the Date of Adoption.

2. Final version of ECCC (2018) will be automatically adopted once finalized. The Action Plan been reviewed and approved by Nova Scotia and the consultation period has elapsed.

3. Only elements of this plan that are relevant to Nova Scotia and are in accordance with the Endangered Species Act (Nova Scotia) shall be used. This includes the
following sections of the reports:


4. The Nova Scotia Lichens Recovery Team explicitly endorsed the adoption of critical habitat as described in this Recovery strategy and Action plan in lieu of core habitat and that core habitat be described as laid out in Section 7 (ECCC 2018a) and Vole ears-specific elements in Section 1.3 (ECCC 2018b).

5. Should any additional requirements be identified, the Nova Scotia Department of Lands and Forestry may prepare an addendum to this plan under the Endangered Species Act.

Approved:__________

Donna Hurlburt, Manager of Biodiversity

Date:__________

27 September 2020
Appendix A:

Recovery Strategy for the Vole Ears Lichen (*Erioderma mollissimum*) in Canada

Vole Ears Lichen

2014
Recommended citation:


For copies of the recovery strategy, or for additional information on species at risk, including COSEWIC Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk (SAR) Public Registry ([www.sararegistry.gc.ca](http://www.sararegistry.gc.ca)).

Cover photo: Vole Ears Lichen — Frances Anderson

Également disponible en français sous le titre
« Programme de rétablissement de l’érioderme mou (*Erioderma mollissimum*) au Canada »

© Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2014. All rights reserved.
ISBN 978-1-100-25396-1
Catalogue no. En3-4/192-2015E-PDF

*Content (excluding the illustrations) may be used without permission, with appropriate credit to the source.*
PREFACE

The federal, provincial, and territorial government signatories under the Accord for the Protection of Species at Risk (1996) agreed to establish complementary legislation and programs that provide for effective protection of species at risk throughout Canada. Under the Species at Risk Act (S.C. 2002, c.29) (SARA), the federal competent ministers are responsible for the preparation of recovery strategies for listed Extirpated, Endangered, and Threatened species and are required to report on progress within five years.

The Minister of the Environment is the competent minister for the recovery of the Vole Ears Lichen and has prepared this strategy, as per section 37 of SARA. It has been prepared in cooperation with the Provinces of New Brunswick, Newfoundland and Labrador, and Nova Scotia and others as per section 39(1) of SARA.

Success in the recovery of this species depends on the commitment and cooperation of many different constituencies that will be involved in implementing the directions set out in this strategy and will not be achieved by Environment Canada, or any other jurisdiction alone. All Canadians are invited to join in supporting and implementing this strategy for the benefit of the Vole Ears Lichen and Canadian society as a whole.

This recovery strategy will be followed by one or more action plans that will provide information on recovery measures to be taken by Environment Canada and other jurisdictions and/or organizations involved in the conservation of the species. Implementation of this strategy is subject to appropriations, priorities, and budgetary constraints of the participating jurisdictions and organizations.

ACKNOWLEDGMENTS

This recovery strategy was prepared by Julie McKnight (Environment Canada – Canadian Wildlife Service) and Rob Cameron (Nova Scotia – Environment) with extensive input from Mark Elderkin (Nova Scotia Department of Natural Resources), Maureen Toner (New Brunswick Department of Natural Resources), Newfoundland and Labrador Department of Environment and Conservation, and the Newfoundland and Labrador Department of Natural Resources Lichen Working Group. The efforts and contributions of the Nova Scotia Cyanolichen Recovery Team are gratefully acknowledged.
EXECUTIVE SUMMARY

Vole Ears Lichen is a large (up to 12 cm broad), leafy lichen with a felty, grey-brown upper surface that turns grey-green when moistened.

As of January 2012, Vole Ears Lichen was known from two populations at 29 sites along the Atlantic Coast of Nova Scotia comprised of 153 adult thalli and from one population at six sites on the Avalon Peninsula in Newfoundland and Labrador that had 26 adult thalli. The last report of Vole Ears Lichen in New Brunswick was from 1980. The species is listed as Endangered on Schedule 1 of the federal Species at Risk Act (SARA).

One of the most important requirements for cyanolichens is the need for a clean environment including pollutant-free air and precipitation that is free of acidifying contaminants. Acid precipitation may negatively impact the colonisation and survival of Vole Ears Lichen in areas that receive significant and continued acid deposition. In addition to air-borne pollutants, Vole Ears Lichen is threatened by logging and wood harvesting, problematic native and invasive non-native species, climate and natural disasters, roads, and housing and urban areas.

The recovery of the Vole Ears Lichen is considered feasible; however, there are several unknown factors associated with its potential for recovery. Despite these unknowns and in keeping with the precautionary principle, this recovery strategy has been prepared as per section 41(1) of SARA. The population and distribution objectives are to ensure that the species’ known range (2012) and the health and stability of the three known populations (2012) are not impacted by biological resource use (of the species’ host tree), transportation and service corridors, residential and commercial development, or invasive non-native species. The broad strategies to be taken to address the threats to the survival and recovery of Vole Ears Lichen are presented in the section on Strategic Direction for Recovery (Section 6.2).

Critical habitat for Vole Ears Lichen is partially identified in this document based on the best available data. Critical habitat for Vole Ears Lichen is located entirely on non-federal land. As more information becomes available, additional critical habitat may be identified.

One or more action plan for Vole Ears Lichen will be completed within three years of the final version of this recovery strategy being posted on the Species at Risk Public Registry.
RECOVERY FEASIBILITY SUMMARY

Based on the following four criteria outlined in the draft SARA Policies (Government of Canada 2009), the recovery of Vole Ears Lichen is considered feasible; however, there are unknown factors associated with its potential for recovery. Despite these unknowns and in keeping with the precautionary principle, this recovery strategy has been prepared as per section 41(1) of SARA. This recovery strategy addresses the unknowns surrounding the feasibility of recovery.

1. Individuals of the wildlife species that are capable of reproduction are available now or in the foreseeable future to sustain the population or improve its abundance.

Yes. In North America, Vole Ears Lichen is known to occur in the Great Smoky Mountains (Tennessee and North Carolina), and in foggy, coastal areas of Atlantic Canada. Vegetative reproduction is either through fragmentation or specialized structures called soredia. However, lichen soredia have a limited dispersal capability; dispersal is likely not more than hundreds of meters and fragmentation provides dispersal, but only on the same host tree as the parent. Unaided immigration is thus very unlikely.

2. Sufficient suitable habitat is available to support the species or could be made available through habitat management or restoration.

Unknown. It is unknown whether sufficient suitable habitat is available to support the species, or could be made available through habitat management or restoration. Logging and wood harvesting and air-borne pollutants are the primary threats to Vole Ears Lichen habitat. Although habitat still exists in the form of mature/over-mature forests, air-borne pollutants impact this habitat by reducing a host tree’s bark buffering capacity and increasing its acidity (Farmer et al 1991).

Beneficial forest management practices that protect lichens have emerged and have received some support from the industry in recovery work on a similar species, the Boreal Felt Lichen (*Erioderma pedicellatum*). These may lead to practical recommendations for beneficial management practices in the vicinity of Vole Ears Lichen habitat and unoccupied potential sites.

3. The primary threats to the species or its habitat (including threats outside Canada) can be avoided or mitigated.

Unknown. Logging and wood harvesting and air-borne pollutants are the primary threats to Vole Ears Lichen and its habitat.

Cyanolichens are extremely sensitive to air-borne pollutants and acid precipitation (Richardson and Cameron 2004) due to their reliance on air-borne nutrients and water, as well as lack of protective structures (Richardson and Cameron 2004). Sulphur
dioxide (SO₂) dissolved in precipitation, water films, or within moist lichen thalli is highly toxic to cyanolichens and is most toxic under acidic conditions. Vole Ears Lichen may benefit from pollution prevention campaigns and industrial technologies that reduce emissions. However, despite such initiatives, air quality problems are anticipated to continue to be problem for the next 20 to 50 years and Environment Canada (2003) reports that growth in air pollution sources has the potential to outpace any gains made in recent years. At present, many areas in New Brunswick and Nova Scotia and, to a lesser extent, Newfoundland and Labrador, receive acid deposition in excess of critical loads (i.e., the amount of acid deposition that a habitat can tolerate without being significantly harmed (COSEWIC 2009)). Future industrial developments may further negatively impact Vole Ears Lichen and its habitat.

Formal and informal partnerships with industry, scientists, municipal governments, federal/provincial governments, conservation organizations, land owners, and the public may help achieve the long-term conservation and recovery of the Vole Ears Lichen.

International agreements, national commitments, and legislation may all contribute to sustainable forestry practices and the conservation of Vole Ears Lichen through threat reduction/mitigation. In some areas, the forestry industry has taken an interest in the protection of a similar endangered lichen, the Atlantic population of Boreal Felt Lichen, and their input may lead to practical recommendations for beneficial management practices in the vicinity of Vole Ears Lichen habitat and unoccupied potential sites.

4. Recovery techniques exist to achieve the population and distribution objectives or can be expected to be developed within a reasonable timeframe.

Yes. Some success has been achieved in transplanting Boreal Felt Lichen, Boreal population in Newfoundland and Labrador (The Gossan 2010). It is reasonable to assume that this recovery technique may be a viable option for Vole Ears Lichen, should it be required.
# TABLE OF CONTENTS

PREFACE ............................................................................................................................. i  
ACKNOWLEDGMENTS .......................................................................................................... i  
EXECUTIVE SUMMARY ....................................................................................................... ii  
RECOVERY FEASIBILITY SUMMARY ............................................................................... iii  
1. COSEWIC* Species Assessment Information ................................................................. 1  
2. Species Status Information .............................................................................................. 1  
3. Species Information ......................................................................................................... 2  
   3.1 Species Description ..................................................................................................... 2  
   3.2 Population and Distribution ....................................................................................... 2  
   3.3 Needs of the Vole Ears Lichen ................................................................................... 5  
4. Threats ............................................................................................................................. 6  
   4.1 Threat Assessment ..................................................................................................... 6  
   4.2 Description of Threats ............................................................................................... 7  
5. Population and Distribution Objectives ......................................................................... 9  
6. Broad Strategies and General Approaches to Meet Objectives .................................... 9  
   6.1 Actions Already Completed or Currently Underway ................................................ 9  
   6.2 Strategic Direction for Recovery .............................................................................. 11  
   6.3 Narrative to Support the Recovery Planning Table .................................................. 12  
7. Critical Habitat ................................................................................................................ 14  
   7.1 Identification of the Species’ Critical Habitat ............................................................ 14  
   7.2 Schedule of Studies to Identify Critical Habitat ....................................................... 22  
   7.3 Activities Likely to Result in the Destruction of Critical Habitat .............................. 23  
8. Measuring Progress ........................................................................................................ 24  
10. References ...................................................................................................................... 25  
APPENDIX A: Effects on the Environment and Other Species ........................................ 29  
APPENDIX B: Knowledge Gaps to Recovery ................................................................... 30  
APPENDIX C: Provincial Definitions of a Wetland ........................................................... 31
1. COSEWIC* SPECIES ASSESSMENT INFORMATION

<table>
<thead>
<tr>
<th>Date of Assessment:</th>
<th>November 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name (population):</td>
<td>Lichen, Vole Ears</td>
</tr>
<tr>
<td>Scientific Name:</td>
<td><em>Erioderma mollissimum</em></td>
</tr>
<tr>
<td>COSEWIC Status:</td>
<td>Endangered</td>
</tr>
</tbody>
</table>

**Reason for Designation:** This large foliose lichen is known in Canada only from Nova Scotia, New Brunswick, and the island of Newfoundland, where it inhabits cool, humid and coastal conifer forests dominated by Balsam Fir. Although there are 24 known sites for the lichen in these regions, few individuals (133 thalli) are known. While recent surveys have increased the number of known locations, the lichen has been extirpated from 11 sites in the last 30 years. This lichen is a sensitive indicator of air pollution and acid precipitation, which are its main threats. Other threats include forest harvest and browsing by moose.

**Canadian Occurrence:** NB, NS, NL

**COSEWIC Status History:** Designated Endangered in November 2009

* COSEWIC = Committee on the Status of Endangered Wildlife in Canada

2. SPECIES STATUS INFORMATION

**Table 1.** Description of various conservation status ranks for the Vole Ears Lichen (*NatureServe* 2011).

<table>
<thead>
<tr>
<th>Vole Ears Lichen (<em>Erioderma mollissimum</em>)</th>
<th>Global (G) Rank</th>
<th>National (N) Rank</th>
<th>Subnational (S) Rank</th>
<th>COSEWIC Status</th>
<th>SARA Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G4 apparently secure</td>
<td>N1N2 critically imperiled/ imperiled</td>
<td>NB (S1) critically imperiled NS (S1S2) critically imperiled/ imperiled NL (S1) critically imperiled</td>
<td>Endangered</td>
<td>Endangered</td>
</tr>
</tbody>
</table>
3. SPECIES INFORMATION

3.1 Species Description

Vole Ears Lichen is a large leafy lichen with a felty, grey-brown upper surface that turns grey-green when moistened. The thallus is up to 12 cm broad and is comprised of radiating, loosely attached lobes up to 1 cm in width. The lower surface lacks an outer protective layer, and except near the pale, bare margins is densely hairy and light-brown. Granular, bluish vegetative reproductive structures are produced along the lobe margins and may also form in tiny patches on the upper surface of older lobes. Vole Ears Lichen can sometimes be found growing in clusters of individuals that result from fragmentation or regeneration close to the parent thallus.

The photosynthetic component of this lichen has been identified as *Scytonema*, a cyanobacterium that is considered rare in lichens occurring north of subtropical regions. Nevertheless, *Scytonema* is also found in other lichens, including *Coccocarpia palmicola* and *Lichinodium sirosiphoideum*, that are often found in the same habitats as Vole Ears Lichen.

3.2 Population and Distribution

Vole Ears Lichen has a highly disjunct global range and occurs mostly in tropical and subtropical cloud forests. It has been recorded in Central and South America, the Dominican Republic, Mexico, Costa Rica, Venezuela, Columbia, Ecuador, and Brazil (Jørgensen and Arvidsson 2001). It occurs more rarely on the eastern side of the Atlantic Ocean, in Portugal, Spain, the Azores, and the Canary Islands and is known to occur in the mountains of Kenya in East Africa. In North America, it has been recorded in the Great Smoky Mountains of Tennessee and North Carolina, and the coastal region of Atlantic Canada.

Evidence suggests a possible decline in the Canadian population, particularly in Nova Scotia where at least 80% of sites documented in the 1980s no longer support the lichen. As of January 2012, Vole Ears Lichen was known from two populations at 29 sites along the Atlantic Coast of Nova Scotia totaling 153 adults and 23 juveniles. In 2012, Vole Ears Lichen was confirmed to exist on 10 trees at six sites on the Avalon Peninsula in Newfoundland and Labrador totalling 26 adults and 30 juveniles. The last report of Vole Ears Lichen in New Brunswick was from 1980 and has not been relocated at that site despite recent searches; however, it may still occur in the province in small numbers.

A GIS-based predicted distribution model was developed for Vole Ears Lichen in Eastern Canada and results suggest that the population size and distribution of Vole Ears Lichen may be larger than is currently known (COSEWIC 2009).
Figure 1. Distribution of Vole Ears Lichen in Canada (as of January 2012).
**Table 2.** Distribution details of Vole Ears Lichen in Newfoundland and Labrador and Nova Scotia. Sites in Nova Scotia are derived from locations with separation distances of greater than 0.5 km based on expected dispersal distances and historical predicted habitat distances. The number of phorophytes (host trees) was not documented at all sites and this is denoted as n.d.

<table>
<thead>
<tr>
<th>Population Name</th>
<th>Site</th>
<th>Year of discovery</th>
<th>Most recent survey</th>
<th>Number of phorophytes</th>
<th>Number of Juvenile thalli</th>
<th>Number of Adult thalli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avalon (NL)</td>
<td>Halls Gullies 1</td>
<td>2007</td>
<td>2012</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Halls Gullies 2</td>
<td>2007</td>
<td>2012</td>
<td>1</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Halls Gullies 3</td>
<td>2007</td>
<td>2012</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Halls Gullies 4</td>
<td>2008</td>
<td>2012</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Halls Gullies 5</td>
<td>2008</td>
<td>2012</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>South East Placentia</td>
<td>2007</td>
<td>2012</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Blandford</td>
<td>2006</td>
<td>2011</td>
<td>n.d.</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Bon Mature Lake</td>
<td>2008</td>
<td>2008</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Canada Hill / MacKenzies Barren1</td>
<td>2008</td>
<td>2011</td>
<td>&gt; 9</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Clyde River Road1</td>
<td>2008</td>
<td>2008</td>
<td>n.d.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Clyde River Road2</td>
<td>2008</td>
<td>2008</td>
<td>n.d.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Duck Hole</td>
<td>2010</td>
<td>2010</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Four Mile Brook</td>
<td>2007</td>
<td>2007</td>
<td>n.d.</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Fresh Water Brook</td>
<td>2011</td>
<td>2011</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Haley Lake</td>
<td>1981</td>
<td>2008</td>
<td>n.d.</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Johnstons Pond</td>
<td>2011</td>
<td>2011</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Jones Harbour</td>
<td>2008</td>
<td>2008</td>
<td>n.d.</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Jordan River</td>
<td>2011</td>
<td>2011</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Lake John Road2</td>
<td>2007</td>
<td>2007</td>
<td>n.d.</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Martin Brook</td>
<td>2008</td>
<td>2008</td>
<td>n.d.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Misery Lake</td>
<td>2011</td>
<td>2011</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Misery Lake Brook</td>
<td>2010</td>
<td>2010</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Oakhill</td>
<td>2011</td>
<td>2011</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Port L’Hebert</td>
<td>2008</td>
<td>2008</td>
<td>n.d.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Pumpkinvine Brook</td>
<td>2010</td>
<td>2010</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Robarts Pond</td>
<td>2008</td>
<td>2008</td>
<td>n.d.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Robs Lake</td>
<td>2009</td>
<td>2009</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Thomas Raddall, Provincial Park</td>
<td>1980</td>
<td>2008</td>
<td>n.d.</td>
<td>11</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Tidney</td>
<td>2010</td>
<td>2010</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>South Shore (NS)</td>
<td>Bear Lake</td>
<td>2006</td>
<td>2007</td>
<td>n.d.</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Burnt Hill Lake Brook</td>
<td>2010</td>
<td>2010</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Dooks Pond</td>
<td>2005</td>
<td>2007</td>
<td>n.d.</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Fuller Lake</td>
<td>2006</td>
<td>2007</td>
<td>n.d.</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Otter Pond</td>
<td>2006</td>
<td>2007</td>
<td>n.d.</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Webber Lake</td>
<td>2007</td>
<td>2007</td>
<td>n.d.</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

1 This site corresponds to occurrences Lake John Road1 & Lake John Road 2 as stated in the 2010 COSEWIC status report.
2 This site corresponds to occurrences Canada Hill 1 & Canada Hill 2 as stated in the 2010 COSEWIC status report, and has expanded following the discovery of new Vole Ears thalli.
3.3 Needs of the Vole Ears Lichen

In Atlantic Canada, the species occurs within 30 km of the coast at elevations less than 200 m where it experiences warm winters and cool summers. These highly humid coastal forests receive large amounts of moisture in the form of fog and rain, which is often in excess of 1400 mm annually (COSEWIC 2009, Davis and Browne 1996). Vole Ears Lichen is often found in, or very near to, wetlands. A wetland is land that is either periodically or permanently saturated with water and sustains aquatic processes (interpreted from NS Wetland Conservation Policy 2011; refer to Appendix C for provincial definitions).

In the Boreal Forest Region in Newfoundland, Vole Ears Lichen is found in mature to overmature coniferous forest patches dominated by Balsam Fir (*Abies balsamea*) of even ages with characteristically varying tree diameters. These patches occur on flat to gently sloping, imperfectly- to poorly-drained sites in close proximity to wetlands as part of a fragmented landscape which includes coniferous stands in different age classes. Preliminary observations of Vole Ears Lichen in Newfoundland, suggest that it may be found on particularly slow growing trees, however the significance of these observations with respect to its habitat requirements is unknown. In the Acadian Forest Region in Nova Scotia, Vole Ears Lichen is most often found in poorly drained depressions with mature coniferous or mixed forests dominated by Balsam Fir and/or Red Maple (*Acer rubrum*) and/or Yellow Birch (*Betula alleghaniensis*), where *Sphagnum* species cover the ground. In New Brunswick, one thallus was found on a moss–covered rock.

One of the most important habitat requirements for cyanolichens is the need for a clean environment including pollutant-free air and precipitation that is free of acidifying contaminants. Cyanolichens are particularly sensitive to acid rain, sulphur dioxide and nitrogen oxides (Gilbert 1986, Hallingback 1989, Hawksworth and Rose 1970, Sigal and Johnston 1986). Maass and Yetman (2002) partially attribute the decline in Boreal Felt Lichen (*Erioderma pedicellatum*) in Atlantic Canada to acid rain and air-borne pollutants.
## 4. THREATS

### 4.1 Threat Assessment

**Table 3. Threat Assessment Table**

<table>
<thead>
<tr>
<th>General Threat</th>
<th>Level of Concern¹</th>
<th>Extent</th>
<th>Occurrence</th>
<th>Frequency</th>
<th>Severity²</th>
<th>Causal Certainty³</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Biological Resource Use</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logging and wood harvesting</td>
<td>High</td>
<td>Widespread</td>
<td>Current &amp; Anticipated</td>
<td>Recurrent</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td><strong>Pollution</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air-borne pollutants</td>
<td>Medium - High</td>
<td>Widespread</td>
<td>Current &amp; Anticipated</td>
<td>Continuous</td>
<td>Medium - High</td>
<td>High</td>
</tr>
<tr>
<td><strong>Invasive and Other Problematic Species</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problematic native and invasive non-native species (grazing and herbivory)</td>
<td>Medium</td>
<td>Localized</td>
<td>Current &amp; anticipated</td>
<td>Continuous/ Seasonal</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td><strong>Climate and Natural Disasters</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habitat shifting and altering</td>
<td>Medium</td>
<td>Widespread</td>
<td>Current &amp; Anticipated</td>
<td>Recurrent</td>
<td>Unknown</td>
<td>Medium</td>
</tr>
<tr>
<td>Storms (e.g., hurricanes)</td>
<td>Low</td>
<td>Widespread</td>
<td>Current &amp; Anticipated</td>
<td>Recurrent</td>
<td>Unknown</td>
<td>Low</td>
</tr>
<tr>
<td><strong>Transportation and Service Corridors</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roads</td>
<td>Low</td>
<td>Widespread</td>
<td>Current &amp; Anticipated</td>
<td>One-time</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td><strong>Residential and Commercial Development</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housing and urban areas (urban areas/ vacation homes)</td>
<td>Low</td>
<td>Unknown</td>
<td>Anticipated</td>
<td>One-time</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>

¹ **Level of Concern**: signifies that managing the threat is of (high, medium or low) concern for the recovery of the species, consistent with the population and distribution objectives. This criterion considers the assessment of all the information in the table.

² **Severity**: reflects the population-level effect (High: very large population-level effect, Moderate, Low, Unknown).

³ **Causal certainty**: reflects the degree of evidence that is known for the threat (High: available evidence strongly links the threat to stresses on population viability; Medium: there is a correlation between the threat and population viability e.g. expert opinion; Low: the threat is assumed or plausible).
4.2 Description of Threats

Logging and wood harvesting

Besides acid precipitation, forestry activities are considered the other major threat to the species. Forestry practices such as clear cutting or harvesting on a large scale may cause fragmentation and would alter biodiversity and age class structure of potential Vole Ears Lichen habitat. Scheduling of forest harvesting affects habitat availability and, where forest succession is known, can be used to provide mid-term and long-term habitat inputs for modelling exercises. The effect of forest fragmentation on epiphytic lichens has been the subject of much work (Esseen and Renhorn 1998, Rheault et al. 2003, Pykälä 2004, Richardson and Cameron 2004). When lichens are suddenly at the edge of a forest or in a fragmented forest, there is a reduction in dispersal ability and opportunity to recolonize in cutover areas (Rheault et al. 2003). Large-scale logging can increase wind and drying effects (Hunter 1990) and greatly reduce the ability of a forest stand to buffer against times of low humidity while at particular seral stages (Maass and Yetman 2002).

Air-borne pollutants

Cyanolichens are extremely sensitive to air-borne pollutants and acid precipitation due to their reliance on air-borne nutrients and water, as well as their lack of protective structures (Richardson and Cameron 2004). Sulphur dioxide (SO₂) dissolved in precipitation, water films, or within moist lichen thalli is highly toxic to cyanolichens and is most toxic under acidic conditions. Sulphur dioxide and nitrogen oxides (NOx) emitted during the high temperature burning of coal or oil remain in the atmosphere for relatively long periods of time before being washed out by rain and forming acid rain. Acid rain is a combination of sulphuric acid and nitric acid formed from the nitrogen oxides. It is the hydrogen ion component of acid rain that is toxic; it affects cell membranes, leaches metals such as calcium from the lichen, and acidifies the substrata of the host (Richardson 2008). Continued exposure to acid precipitation eventually results in the buffering capacity of the substratum being exceeded so that it becomes too acid for cyanolichens, especially for very young thalli to thrive (Nieboer et al. 1984).

Vole Ears Lichen may benefit from pollution prevention campaigns and industrial technologies that reduce emissions. However, despite such initiatives, air quality problems are anticipated to continue for the next 20 to 50 years and Environment Canada (2003) reports that growth in air-borne pollution sources has the potential to outpace any gains made in recent years. At present, many areas in New Brunswick and Nova Scotia and, to a lesser extent, Newfoundland and Labrador, receive acid deposition in excess of critical loads (i.e., the amount of acid deposition that a habitat can tolerate without being significantly harmed (COSEWIC 2009)). Future industrial developments may further negatively impact the habitat for Vole Ears Lichen.
Problematic native and invasive non-native species

Since the arrival of Europeans, there have been both deliberate and accidental introductions of animal species. The following species are implicated in successional changes to forest composition in Newfoundland and were all introduced: Red-backed Voles (*Clethrionomys gapperi*), Red Squirrels (*Tamiasciurus hudsonicus*), Snowshoe Hare (*Lepus americanus*) and Moose (*Alces alces*) (McLaren et al. 2009, McLaren et al. 2004). Moose were introduced to the island of Newfoundland in 1878 and 1904 and the population quickly expanded; densities are currently much higher than elsewhere in North America. Balsam Fir, the only known substrate for Vole Ears Lichen in Newfoundland, is browsed by Moose resulting in the understocking of Balsam Fir, various hardwood and other native vegetation and a relatively higher spruce proportion, thus potentially limiting the available habitat for the lichen.

Evidence of gastropod grazing on Vole Ears Lichen was recorded in NS (Cameron 2009). Three species of gastropods were found feeding on cyanolichens in Nova Scotia (Cameron 2009): *Pallifera dorsalis*, a small native gastropod; and *Arion subfuscus* and *Deroceras reticulatum*, larger aggressive species introduced from Europe (Davis 1992). Non-native gastropods may also pose a problem for Vole Ears Lichen in Newfoundland (Moss and Hermanutz 2010). Surveys in Newfoundland have noted occurrences of Vole Ears Lichen being lightly grazed, but the taxa / species responsible for the grazing is unknown. Mollusc grazing can play an important part in shaping the epiphytic vegetation of deciduous forests and juvenile thalli seem to be at particular risk (Asplund and Gauslaa 2008).

Habitat shifting and altering and Storms

Lichens such as the Vole Ears Lichen may be particularly sensitive to climate change. Region-wide birch dieback in Eastern Canada and in the adjacent parts of the United States has been attributed to extreme climactic fluctuations (Auclair 1987, Auclair et al. 1992 and the review by Braathe 1995). Modelling by Bourque *et al.* (2010) suggests that Balsam fir may retreat to the coolest portions of Nova Scotia and the area occupied by balsam fir will decline by over 90% by 2100 as a result of a changing climate. This would severely limit the available habitat for Vole Ears Lichen as balsam fir is one of only three substratum currently used by the lichen in Nova Scotia. Research is needed in Newfoundland to understand how climate change may impact fir distribution in that province (COSEWIC).

Preliminary analyses along the Atlantic coast suggest a significant decline in fog frequency in Nova Scotia and the Avalon Peninsula of southeastern Newfoundland and Labrador over the past few decades (Beauchamp et al. 1998, Muraca et al. 2001). Vole Ears Lichen, like several other cyanolichens that mainly occur in coastal fog forests, is very drought–sensitive, and could be negatively impacted if a decline in fog occurs.

Based on field observations, the similar Boreal Felt Lichen cannot endure the desiccation that accompanies extreme weather events such as droughts and hurricanes (Maass and Yetman 2002). A severe storm in Guysborough County, Nova Scotia, created a windfall that destroyed one of the boreal felt lichen populations discovered in the 1980s (Maass and Yetman 2002).
Roads and Housing and urban areas

The development of land for activities such as industry, residences, and agriculture creates disturbance, landscape alterations, and affects micro-climates of nearby forests. New road development may alter the landscape hydrology (Cameron 2006) and also provide access to remote areas that may foster the expansion of cottage country (Maass and Yetman 2002).

5. POPULATION AND DISTRIBUTION OBJECTIVES

The objectives of this strategy are to ensure that the species' known range (2012) and the health and stability of the three known populations (2012) are not impacted by biological resource use (of the species' host tree), transportation and service corridors, residential and commercial development, or invasive non-native species.

As of January 2012, three populations of Vole Ears Lichen were known from the Avalon Peninsula in Newfoundland and Labrador (26 adult thalli), the Eastern Shore of Nova Scotia (29 adult thalli), and the South Shore of Nova Scotia (124 adult thalli).

A GIS-based predicted distribution model was developed for Vole Ears Lichen in Eastern Canada and results from this model suggest that the population size and distribution of Vole Ears Lichen may be larger than is currently known.

6. BROAD STRATEGIES AND GENERAL APPROACHES TO MEET OBJECTIVES

6.1 Actions Already Completed or Currently Underway

In Newfoundland and Labrador, lichen inventories, surveys, pre-harvest forest surveys and opportunistic searching have been ongoing since 1996 by contract staff, Department of Environment and Conservation (Parks and Natural Areas Division and Wildlife Division), Department of Natural Resources, Miawpukek First Nation, and, where required, for proponents of proposals registered in the Environmental Assessments process. Vole Ears Lichen monitoring has been underway since 2010. Some Boreal Felt Lichen sites on the Avalon Peninsula have been re-visited to ensure that Vole Ears Lichen were not misidentified as Boreal Felt Lichen and more sites are slated to be re-visited. As well, numerous lichen photos initially identified as Boreal Felt Lichen were re-examined to locate any potentially misidentified Vole Ears Lichen. The provincial Forestry and Agrifoods Agency has deferred harvest in existing Vole Ears Lichen sites via the Forest Management Planning Process and formal protection for areas of conservation interest is currently being pursued. In Nova Scotia, lichen inventories, surveys, pre-harvest forest surveys, and opportunistic searching have been ongoing since 2003. Informal outreach has been underway since 2006.
There are other recovery and guidance documents pertaining to cyanolichens in Atlantic Canada that propose additional activities and measures that may be pertinent for the conservation of Vole Ears Lichen: The Recovery Strategy for Boreal Felt Lichen, Atlantic population (Environment Canada 2007), The Management Plan for the Blue Felt Lichen [DRAFT] (Environment Canada, in prep), The Management Plan for the Boreal Felt Lichen, Boreal population (Environment Canada 2010), A Five Year Management Plan for the Boreal Felt Lichen in Newfoundland and Labrador (Keeping and Hanel 2006), and Endangered Boreal Felt Lichen Special Management Practices (Nova Scotia Department of Natural Resources 2012).
### 6.2 Strategic Direction for Recovery

**Table 4. Recovery Planning Table**

<table>
<thead>
<tr>
<th>Threats or concerns addressed</th>
<th>Priority</th>
<th>Broad Strategy to Recovery</th>
<th>General Description of Research and Management Approaches</th>
</tr>
</thead>
</table>
| All                           | High    | Law and policy            | • Engage in existing pollution reduction programs for pollution and greenhouse gasses  
|                               |         |                           | • In NL: Support existing relevant programs by the provincial Department of Natural Resources  
|                               |         |                           | • Develop beneficial management practices (BMPs)/ Special Management Practices (SMPs) for the species and habitat  
|                               |         |                           | • Implement private standards and codes that are beneficial for the species |
| All                           | Medium-High | Education and awareness, stewardship, and partnerships | • Foster cooperative relationships with landowners, foresters, industry, and volunteers to maintain habitat  
|                               |         |                           | • Promote volunteer participation in surveys and monitoring  
|                               |         |                           | • Promote ecosystem protection through private sector certifications if deemed effective for recovery of the species  
|                               |         |                           | • Promote compliance with Federal, Provincial, and Municipal Acts and Policies as well as BMPs/SMPs that protect the species and its habitat |
| Logging and wood harvesting Storms, Problematic native and non-native species, Housing and urban areas | Medium | Habitat and species protection and management | • Protect habitat for the species  
|                               |         |                           | • Prevent gastropods from ascending host trees  
|                               |         |                           | • Develop a protocol for transplanting cyanolichens if host tree is lost |
| Knowledge gaps                | High-Medium High | Monitoring and research | • Develop and implement inventory and monitoring protocol(s)  
|                               |         |                           | • Research (Appendix B) |
6.3 Narrative to Support the Recovery Planning Table

Law and policy
Vole Ears Lichen will benefit from reductions in air-borne pollutants such as sulphur dioxide and nitrogen oxides. It is not feasible to initiate a massive campaign to reduce local and transboundary sources of pollution specifically for the benefit of lichens. Instead, partnerships should be strengthened with government departments to encourage compliance with the Canadian Environmental Protection Act and to continue implementing the Canada-Wide Acid Rain Strategy for Post-2000, the Nova Scotia Energy Strategy, the Nova Scotia Climate Change Action Plan, the Newfoundland and Labrador Climate Change Action Plan, and the New Brunswick Climate Change Action Plan.

Managing the effects of herbivory by voles, squirrels, snowshoe hare, and moose on forests is an ongoing challenge in Newfoundland and Labrador. Similar to the plans to mitigate air pollution and greenhouse gasses by supporting partnerships and implementing existing programs, the way forward for this issue will be to support existing research and management programs.

Education and awareness, stewardship, and partnerships
Efforts to communicate with landowners, resource users, developers, land managers, and other stakeholders to promote stewardship and private land conservation are an important part of protecting habitat. It will be necessary to determine beneficial practices for forest management in the vicinity of Vole Ears Lichen sites, in unoccupied potential sites adjacent to critical habitat, and to maintain Balsam Fir across the landscape in Newfoundland and mixed forests of Balsam Fir and/or Red Maple and/or Yellow Birch and associated ground Sphagnum species in Nova Scotia. The experience and knowledge of stakeholders will be important in making management decisions on private and public lands. Protected areas, as well as private lands conserved through private land conservation mechanisms also have a role to play in the conservation of lichens and should be pursued where feasible.

Cyanolichens can be difficult to identify and often take considerable effort to study and learn, but the right educational materials and delivery may pique the interest of industry, foresters, land managers, students, and naturalists. Identification workshops and seminars for various cyanolichens species will provide a foundation for initial steps towards recovery.

Habitat and species protection and management
Habitat protection is required for the conservation and recovery of this lichen and to that end, occupied habitat should be secured where possible. Efforts to communicate with landowners and promote stewardship may prove as important as legislation for the recovery of the species’ (see previous section).
Gastropods will ascend trees to graze lichens. The climbing of trees can be prevented by a variety of devices such as collars, tapes and traps. These devices can be applied to phorophytes to determine the most effective method to prevent gastropod access to Vole Ears Lichen.

Reseaching a successful protocol for transplanting cyanolichens to nearby host trees when a parent tree is threatened by uncontrollable factors (e.g., storms, blow-downs) may be necessary for the maintenance of this lichen at some sites. Transplantation may also provide a means for rescuing rare populations or maintaining the species’ range, but would only be considered in exceptional circumstances. Some success has been achieved in transplanting Boreal Felt Lichen, Boreal population in Newfoundland and Labrador (The Gossan 2010).

**Monitoring and research**

Monitoring is necessary to evaluate the success of recovery efforts. Monitoring will assess the abundance, overall condition of the thalli, habitat characteristics, and apparent threats. Monitoring the health and succession of individual thalli and colonies as well as the long-term habitat conditions will also address some research questions.

Since the GIS predicted distribution model suggested that other Vole Ears Lichen locations may exist, continued lichen surveys / inventories are necessary to gain accurate distribution information for the species. Where appropriate, the model results can be used to prioritize new survey locations.

It is important to identify the lichen’s sensitivity to specific types and levels of pollutants and determine under what conditions (timing, duration, life stage of exposure, etc.) these pose the greatest threat. Through identification of local point sources of air pollution and atmospheric conditions, the impact of these point sources on the location and survival of cyanolichens can be assessed. Permanent lichen pollution sampling plots managed by Nova Scotia Environment may provide some insights into the impact of air quality on the distribution and abundance of cyanolichens.

Information regarding air-borne pollutants, acid deposition, and meteorological events is available through federal and provincial environment departments and should be assembled and interpreted as it relates to the recovery of cyanolichens. Other threats, such as forestry activity and gastropod grazing, will be researched and monitored directly.

Microhabitat parameters such as humidity, forest composition, forest age structure, and indicator species should be monitored at occupied sites to better define the conditions the species requires.

Other knowledge gaps to recovery that should be addressed, such as life cycle characteristics and dispersal distance, are identified in Appendix B.
7. CRITICAL HABITAT

7.1 Identification of the Species’ Critical Habitat

Critical habitat is identified in this document to the extent possible given the best available information. However, at this time, identification is considered to be partial. Distribution-prediction modeling provided convincing evidence that the known habitat preferences of Vole Ears Lichen exist in locations other than currently confirmed sites, meaning that more sites with Vole Ears Lichen in Atlantic Canada will likely be found. Ecological requisites and physical attributes of critical habitat in Nova Scotia and Newfoundland and Labrador are not fully understood at this time and require further study.

Vole Ears Lichen habitat characteristics
The existing Vole Ears Lichen sites share the following habitat characteristics:

In northeastern North America, Vole Ears Lichen is found within 30 km of the coast where winters are warm (mean temperature \(-4.5 \, ^\circ \text{C}\)) and summers are cool (mean temperature of 16.4 \(^\circ \text{C}\)). Over 80\% of the precipitation in these sites falls as rain and fog frequency is high. Vole Ears Lichen is limited to elevations of less than 200 m in Atlantic Canada and occurs at sites with high precipitation, often exceeding 1400 mm (COSEWIC 2009, Davis and Browne 1996).

All trees on which Vole Ears Lichen has been found have been mature or old. Stand tree ages average 65 years in Nova Scotia and 73 years in Newfoundland and Labrador. Dead trees are found at all occurrences and make up as much as 50\% of the forest composition in several stands.

Cinnamon Fern (Osmunda cinnamomea) dominates the herb layer at all occurrences and Sphagnum species are present at all occurrences with a total ground cover of 70\% or more at each location. Other species of moss are present in smaller amounts (5 to 15\% of the ground cover). In Newfoundland, Vole Ears Lichen is frequently found growing alongside or on liverworts, particularly Frullania species and Bryophyte ground cover is high at all sites (dominated by Hylocomium, Pleurozium, Sphagnum, Rhytidiadelphus, Ptilium, and Bazzania).

The Nova Scotia and Newfoundland Vole Ears Lichen habitats are highly humid coastal forests. Host trees are almost always located in, or within 80 m of, a wetland or peatland (COSEWIC 2009). In other respects the habitats are different. In Newfoundland, Vole Ears Lichen is found in mature to overmature coniferous forest patches dominated by Balsam Fir of even ages with characteristically varying tree diameters. These patches occur on flat to gently sloping, imperfectly- to poorly-drained sites in close proximity to wetlands as part of a fragmented landscape which include coniferous stands in different age classes. In Nova Scotia, Vole Ears Lichen habitat is typically in poorly drained
depressions with mature coniferous or mixed forests dominated by Balsam Fir and/or Red Maple.

Vole Ears Lichen is found on a variety of substrata. In Newfoundland and Labrador it has been found only on Balsam Fir, while in Nova Scotia it occurs on Balsam Fir as well as Red Maple and Yellow Birch. In New Brunswick one historical record was from a moss–covered rock.

One of the most important habitat requirements for cyanolichens is the presence of precipitation free of acidifying contaminants. Nutrient enrichment from the upper branches of nearby hardwoods may counter the low buffering capacity of coniferous bark in areas with highly acidic precipitation, thus allowing the lichen to survive (Richardson and Cameron 2004). As a result, there may be a critical threshold for the proportion of Red Maple needed for an area to support Vole Ears Lichen in Nova Scotia. This requires further study.
Critical habitat description

Critical habitat sites are identified in Table 5. At each site, critical habitat for Vole Ears Lichen is identified as the substrata (at present only known from trees), the wetland (which is defined as land that either periodically or permanently has a water table at, near, or above the land’s surface and includes marsh, swamp, fen, bogs, and other shallow open water areas) in which the substrata occurs, or is adjacent to, and a critical function zone. The critical function zone is believed to be necessary to maintain microhabitat characteristics, especially moisture attributes, required for the survival of the lichen and to allow for colonization. The critical function zone is identified as 100 m around the lichen and its substratum and an area around the wetland in which it occurs, or is adjacent to, dependent on wetland size as follows: for wetlands smaller than 100 m$^2$, a critical function zone of 100 m radius surrounding the wetland is identified and for wetlands greater than 100 m$^2$, a critical function zone of 50 m surrounding the wetland is identified. More detailed information on the location of critical habitat to support protection of the species and its habitat may be requested, on a need-to-know basis, by contacting Environment Canada’s Recovery Planning section at: RecoveryPlanning_Pl@ec.gc.ca.

Figure 2. Examples of critical habitat; all areas within the dashed line are included as critical habitat.

Critical habitat is not identified in New Brunswick at this time. If surveys reveal the presence of lichens in the province, critical habitat for the species will be revised.
**Table 5.** Sites containing critical habitat for Vole Ears Lichen in Canada. Critical habitat for Vole Ears Lichen occurs within these 1 km squares where the criteria described in Section 7.1 are met.

<table>
<thead>
<tr>
<th>Population Name</th>
<th>Grid Number</th>
<th>Site Name</th>
<th>Easting</th>
<th>Northing</th>
<th>Number of CH Site Centroids within Grid</th>
<th>CH Site Area (ha) within Grid</th>
<th>Land Tenure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avalon Peninsula (NL)</td>
<td>22BT83_15</td>
<td>South East Placentia</td>
<td>281000</td>
<td>5235000</td>
<td>0</td>
<td>1</td>
<td>Non federal</td>
</tr>
<tr>
<td></td>
<td>22BT83_16</td>
<td>South East Placentia</td>
<td>281000</td>
<td>5236000</td>
<td>1</td>
<td>3</td>
<td>Non federal</td>
</tr>
<tr>
<td></td>
<td>22CT14_37</td>
<td>Halls Gullies 4</td>
<td>313000</td>
<td>5247000</td>
<td>1</td>
<td>2</td>
<td>Non federal</td>
</tr>
<tr>
<td></td>
<td>22CT14_47</td>
<td>Halls Gullies 4</td>
<td>314000</td>
<td>5247000</td>
<td>0</td>
<td>1</td>
<td>Non federal</td>
</tr>
<tr>
<td></td>
<td>22CT14_48</td>
<td>Halls Gullies 1</td>
<td>314000</td>
<td>5248000</td>
<td>0</td>
<td>3</td>
<td>Non federal</td>
</tr>
<tr>
<td></td>
<td>22CT14_58</td>
<td>Halls Gullies 1, Halls Gullies 2</td>
<td>315000</td>
<td>5249000</td>
<td>2</td>
<td>27</td>
<td>Non federal</td>
</tr>
<tr>
<td></td>
<td>22CT14_59</td>
<td>Halls Gullies 3, Halls Gullies 5</td>
<td>315000</td>
<td>5249000</td>
<td>2</td>
<td>19</td>
<td>Non federal</td>
</tr>
<tr>
<td></td>
<td>22CT15_50</td>
<td>Halls Gullies 3</td>
<td>315000</td>
<td>5250000</td>
<td>1</td>
<td>19</td>
<td>Non federal</td>
</tr>
<tr>
<td></td>
<td>22CT15_60</td>
<td>Halls Gullies 3</td>
<td>316000</td>
<td>5250000</td>
<td>0</td>
<td>20</td>
<td>Non federal</td>
</tr>
<tr>
<td></td>
<td>22CT14_68</td>
<td>Halls Gullies 2</td>
<td>316000</td>
<td>5248000</td>
<td>0</td>
<td>1</td>
<td>Non federal</td>
</tr>
<tr>
<td>South Shore (NS)</td>
<td>20KP95_31</td>
<td>Clyde River Road1</td>
<td>293000</td>
<td>4851000</td>
<td>0</td>
<td>2</td>
<td>Non federal</td>
</tr>
<tr>
<td></td>
<td>20KP95_32</td>
<td>Clyde River Road1</td>
<td>293000</td>
<td>4852000</td>
<td>0</td>
<td>0.4</td>
<td>Non federal</td>
</tr>
<tr>
<td></td>
<td>20KP95_40</td>
<td>Clyde River Road2</td>
<td>294000</td>
<td>4850000</td>
<td>0</td>
<td>2</td>
<td>Non federal</td>
</tr>
<tr>
<td></td>
<td>20KP95_41</td>
<td>Clyde River Road1, Clyde River Road2</td>
<td>294000</td>
<td>4851000</td>
<td>2</td>
<td>25</td>
<td>Non federal</td>
</tr>
<tr>
<td></td>
<td>20KP95_42</td>
<td>Clyde River Road1</td>
<td>294000</td>
<td>4852000</td>
<td>0</td>
<td>2</td>
<td>Non federal</td>
</tr>
<tr>
<td></td>
<td>20LP16_01</td>
<td>Oakhill</td>
<td>310000</td>
<td>4861000</td>
<td>0</td>
<td>0.2</td>
<td>Non federal</td>
</tr>
<tr>
<td></td>
<td>20LP16_11</td>
<td>Oakhill</td>
<td>311000</td>
<td>4861000</td>
<td>1</td>
<td>3</td>
<td>Non federal</td>
</tr>
<tr>
<td></td>
<td>20LP16_80</td>
<td>Jordan River</td>
<td>318000</td>
<td>4860000</td>
<td>1</td>
<td>3</td>
<td>Non federal</td>
</tr>
<tr>
<td>Population Name</td>
<td>Grid Number</td>
<td>Site Name</td>
<td>Easting</td>
<td>Northing</td>
<td>Number of CH Site Centroids within Grid</td>
<td>CH Site Area (ha) within Grid</td>
<td>Land Tenure</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>----------------------------------------</td>
<td>-----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>20LP24_99</td>
<td></td>
<td>Canada Hill / MacKenzies Barren</td>
<td>329000</td>
<td>4849000</td>
<td>0</td>
<td>6</td>
<td>Non federal</td>
</tr>
<tr>
<td>20LP25_90</td>
<td></td>
<td>Canada Hill / MacKenzies Barren</td>
<td>329000</td>
<td>4850000</td>
<td>0</td>
<td>18</td>
<td>Non federal</td>
</tr>
<tr>
<td>20LP25_91</td>
<td></td>
<td>Canada Hill / MacKenzies Barren</td>
<td>329000</td>
<td>4851000</td>
<td>0</td>
<td>7</td>
<td>Non federal</td>
</tr>
<tr>
<td>20LP25_92</td>
<td></td>
<td>Canada Hill / MacKenzies Barren</td>
<td>329000</td>
<td>4852000</td>
<td>0</td>
<td>1</td>
<td>Non federal</td>
</tr>
<tr>
<td>20LP25_95</td>
<td></td>
<td>Misery Lake</td>
<td>329000</td>
<td>4855000</td>
<td>1</td>
<td>3</td>
<td>Non federal</td>
</tr>
<tr>
<td>20LP26_00</td>
<td></td>
<td>Lake John Road / Four Mile Brook</td>
<td>320000</td>
<td>4860000</td>
<td>1</td>
<td>14</td>
<td>Non federal</td>
</tr>
<tr>
<td>20LP26_01</td>
<td></td>
<td>Four Mile Brook</td>
<td>320000</td>
<td>4861000</td>
<td>1</td>
<td>34</td>
<td>Non federal</td>
</tr>
<tr>
<td>20LP26_02</td>
<td></td>
<td>Four Mile Brook</td>
<td>320000</td>
<td>4862000</td>
<td>0</td>
<td>5</td>
<td>Non federal</td>
</tr>
<tr>
<td>20LP26_10</td>
<td></td>
<td>Four Mile Brook</td>
<td>321000</td>
<td>4860000</td>
<td>0</td>
<td>5</td>
<td>Non federal</td>
</tr>
<tr>
<td>20LP26_11</td>
<td></td>
<td>Four Mile Brook</td>
<td>321000</td>
<td>4861000</td>
<td>0</td>
<td>9</td>
<td>Non federal</td>
</tr>
<tr>
<td>20LP27_22</td>
<td></td>
<td>Martin Brook</td>
<td>322000</td>
<td>4872000</td>
<td>0</td>
<td>3</td>
<td>Non federal</td>
</tr>
<tr>
<td>20LP27_23</td>
<td></td>
<td>Martin Brook</td>
<td>322000</td>
<td>4873000</td>
<td>1</td>
<td>6</td>
<td>Non federal</td>
</tr>
<tr>
<td>20LP34_09</td>
<td></td>
<td>Canada Hill / MacKenzies Barren</td>
<td>323000</td>
<td>4849000</td>
<td>0</td>
<td>16</td>
<td>Non federal</td>
</tr>
<tr>
<td>20LP34_17</td>
<td></td>
<td>Robs Lake</td>
<td>331000</td>
<td>4847000</td>
<td>0</td>
<td>3</td>
<td>Non federal</td>
</tr>
<tr>
<td>20LP34_18</td>
<td></td>
<td>Canada Hill / MacKenzies Barren Robs Lake</td>
<td>331000</td>
<td>4848000</td>
<td>1</td>
<td>43</td>
<td>Non federal</td>
</tr>
<tr>
<td>20LP34_19</td>
<td></td>
<td>Canada Hill / MacKenzies Barren</td>
<td>331000</td>
<td>4849000</td>
<td>0</td>
<td>40</td>
<td>Non federal</td>
</tr>
<tr>
<td>20LP35_00</td>
<td></td>
<td>Canada Hill / MacKenzies Barren</td>
<td>330000</td>
<td>4850000</td>
<td>1</td>
<td>87</td>
<td>Non federal</td>
</tr>
<tr>
<td>20LP35_01</td>
<td></td>
<td>Canada Hill / MacKenzies Barren</td>
<td>330000</td>
<td>4851000</td>
<td>0</td>
<td>45</td>
<td>Non federal</td>
</tr>
<tr>
<td>Population Name</td>
<td>Grid Number</td>
<td>Site Name</td>
<td>Easting</td>
<td>Northing</td>
<td>Number of CH Site Centroids within Grid</td>
<td>CH Site Area (ha) within Grid</td>
<td>Land Tenure</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>--------------------------------</td>
<td>---------</td>
<td>----------</td>
<td>----------------------------------------</td>
<td>-------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>20LP35_02</td>
<td>Canada Hill / MacKenzie Barren</td>
<td>330000</td>
<td>4852000</td>
<td>0</td>
<td>9</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_03</td>
<td>Misery Lake Brook</td>
<td>330000</td>
<td>4853000</td>
<td>0</td>
<td>2</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_13</td>
<td>Misery Lake Brook</td>
<td>331000</td>
<td>4853000</td>
<td>1</td>
<td>24</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_14</td>
<td>Misery Lake Brook</td>
<td>331000</td>
<td>4854000</td>
<td>0</td>
<td>12</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_21</td>
<td>Robarts Pond</td>
<td>332000</td>
<td>4851000</td>
<td>1</td>
<td>2</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_31</td>
<td>Robarts Pond</td>
<td>333000</td>
<td>4851000</td>
<td>0</td>
<td>1</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_65</td>
<td>Tidney</td>
<td>336000</td>
<td>4856000</td>
<td>0</td>
<td>7</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_66</td>
<td>Tidney</td>
<td>336000</td>
<td>4855000</td>
<td>0</td>
<td>35</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_73</td>
<td>Fresh Water Brook</td>
<td>337000</td>
<td>4853000</td>
<td>1</td>
<td>4</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_74</td>
<td>Tidney</td>
<td>337000</td>
<td>4854000</td>
<td>0</td>
<td>11</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_75</td>
<td>Tidney</td>
<td>337000</td>
<td>4855000</td>
<td>1</td>
<td>82</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_76</td>
<td>Tidney</td>
<td>337000</td>
<td>4856000</td>
<td>0</td>
<td>47</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_77</td>
<td>Tidney</td>
<td>337000</td>
<td>4865700</td>
<td>0</td>
<td>2</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_83</td>
<td>Duck Hole Haley Lake</td>
<td>338000</td>
<td>4853000</td>
<td>0</td>
<td>2</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_84</td>
<td>Tidney Duck Hole</td>
<td>338000</td>
<td>4854000</td>
<td>1</td>
<td>19</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_85</td>
<td>Tidney</td>
<td>338000</td>
<td>4855000</td>
<td>0</td>
<td>30</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_86</td>
<td>Tidney</td>
<td>338000</td>
<td>4856000</td>
<td>0</td>
<td>73</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_87</td>
<td>Tidney</td>
<td>338000</td>
<td>4857000</td>
<td>0</td>
<td>11</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_88</td>
<td>Pumpkinvine Brook</td>
<td>338000</td>
<td>4858000</td>
<td>0</td>
<td>0.3</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_89</td>
<td>Pumpkinvine Brook</td>
<td>338000</td>
<td>4859000</td>
<td>1</td>
<td>3</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_90</td>
<td>Jones Harbour</td>
<td>339000</td>
<td>4850000</td>
<td>1</td>
<td>3</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_93</td>
<td>Haley Lake</td>
<td>339000</td>
<td>4853000</td>
<td>1</td>
<td>2</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>20LP35_96</td>
<td>Tidney</td>
<td>339000</td>
<td>4856000</td>
<td>0</td>
<td>1</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td>Population Name</td>
<td>Grid Number</td>
<td>Site Name</td>
<td>Easting</td>
<td>Northing</td>
<td>Number of CH Site Centroids within Grid</td>
<td>CH Site Area (ha)</td>
<td>Land Tenure</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>---------</td>
<td>----------</td>
<td>----------------------------------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>20LP44_29</td>
<td>Johnston Pond</td>
<td>342000 4849000</td>
<td>0</td>
<td>60</td>
<td>Non federal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20LP44_39</td>
<td>Johnston Pond</td>
<td>343 4849000</td>
<td>0</td>
<td>15</td>
<td>Non federal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20LP45_10</td>
<td>Johnston Pond</td>
<td>341000 4850000</td>
<td>0</td>
<td>2</td>
<td>Non federal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20LP45_20</td>
<td>Johnston Pond</td>
<td>342000 4850000</td>
<td>1</td>
<td>70</td>
<td>Non federal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20LP45_30</td>
<td>Johnston Pond</td>
<td>343000 4850000</td>
<td>0</td>
<td>12</td>
<td>Non federal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20LP45_51</td>
<td>Thomas Randall Provincial Park</td>
<td>345000 4851000</td>
<td>1</td>
<td>3</td>
<td>Non federal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20LP45_62</td>
<td>Port L’Hebert</td>
<td>346000 4852000</td>
<td>1</td>
<td>3</td>
<td>Non federal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20LP45_63</td>
<td>Port L’Hebert</td>
<td>346000 4853000</td>
<td>0</td>
<td>0.1</td>
<td>Non federal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20LP48_42</td>
<td>Bon Mature Lake</td>
<td>344000 4882000</td>
<td>1</td>
<td>9</td>
<td>Non federal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20LP48_52</td>
<td>Bon Mature Lake</td>
<td>345000 4882000</td>
<td>0</td>
<td>7</td>
<td>Non federal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20MQ13_31</td>
<td>Blandford</td>
<td>413000 4931000</td>
<td>1</td>
<td>7</td>
<td>Non federal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Shore (NS)</td>
<td>20MQ87_91</td>
<td>Fuller Lake</td>
<td>489000 4971000</td>
<td>1</td>
<td>3</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20MQ96_26</td>
<td>Dooks Pond</td>
<td>492000 4966000</td>
<td>1</td>
<td>5</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20MQ96_93</td>
<td>Webber Lake</td>
<td>499000 4963000</td>
<td>0</td>
<td>2</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20MQ96_94</td>
<td>Webber Lake</td>
<td>499000 4964000</td>
<td>1</td>
<td>20</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20MQ97_00</td>
<td>Otter Pond</td>
<td>490000 4970000</td>
<td>1</td>
<td>3</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20NQ17_45</td>
<td>Bear Lake</td>
<td>514000 4975000</td>
<td>1</td>
<td>3</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20NQ68_58</td>
<td>Burnt Hill Lake Brook</td>
<td>565000 4988000</td>
<td>1</td>
<td>3</td>
<td>Non federal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20NQ68_59</td>
<td>Burnt Hill Lake Brook</td>
<td>565000 4989000</td>
<td>0</td>
<td>0.01</td>
<td>Non federal</td>
<td></td>
</tr>
</tbody>
</table>

1 The listed coordinates represent the southwest corner of the 1 km Universal Transverse Mercator (UTM) Military Grid Reference System square containing critical habitat sites (see http://maps.nrcan.gc.ca/topo101/mil_ref_e.php for more information on the reference system). The coordinates may not fall within critical habitat and are provided as a general location only.

2 The area presented is of the site boundary containing areas of critical habitat and not necessarily the area of critical habitat itself. Refer to Section 7.1 for a description of how critical habitat within these areas is defined.
3 Land Tenure is provided as an approximation of land ownership of the site containing critical habitat and should be used for guidance purposes only. Accurate land tenure will require cross referencing critical habitat boundaries with surveyed land parcel information.

4 This site corresponds to occurrences Lake John Road 1 and Lake John Road 2 as stated in the 2010 COSEWIC status report.

5 This site corresponds to occurrences Canada Hill 1 and Canada Hill 2 as stated in the 2010 COSEWIC status report, and has expanded following the discovery of new Vole Ears thalli.
## 7.2 Schedule of Studies to Identify Critical Habitat

Table 6. Schedule of Studies

<table>
<thead>
<tr>
<th>Description of Activity</th>
<th>Rationale</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine macro-scale physical environment and functional features that are vital for</td>
<td>Understand requirements of species and is necessary to determine whether the current identification of critical habitat includes sufficient habitat at each site to ensure long-term survival and ability to colonise new areas</td>
<td>preliminary results by 2016; further analysis by 2022</td>
</tr>
<tr>
<td>survival and colonisation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determine microclimate requirements that are vital for survival. Determine whether Red</td>
<td>Understand requirements of species and is necessary to determine whether the current identification of critical habitat includes sufficient habitat at each site to ensure long-term survival; Determines whether additional Red Maple outside the critical function zone should be conserved (in NS) to ensure characteristics at the critical habitat sites are maintained (pH).</td>
<td>2016</td>
</tr>
<tr>
<td>Maple component provides critical microclimate requirements in NS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assess the relationship between wetland size and recharge area required to maintain</td>
<td>May lead to refinement of critical habitat. Determines if zone surrounding wetland is necessary to protect the wetland function and mitigate effects of fragmentation. If deemed necessary, refines area of critical function zone.</td>
<td>2017</td>
</tr>
<tr>
<td>wetland functionality. Determine necessity of critical function zone and area required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>to maintain critical habitat characteristics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determine the necessity of protecting suitable unoccupied habitat for connectivity and</td>
<td>May lead to refinement of critical habitat. Determines whether the current identification of critical habitat is sufficient at each site to ensure long-term survival and ability to colonise new areas.</td>
<td>preliminary results by 2016; further analysis by 2022</td>
</tr>
</tbody>
</table>
7.3 Activities Likely to Result in the Destruction of Critical Habitat

Destruction of critical habitat is determined on a case by case basis. Destruction would result if part of the critical habitat were degraded, either permanently or temporarily, such that it would not serve its function when needed by the species. Destruction may result from a single or multiple activities at one point in time or from the cumulative effects of one or more activities over time (Government of Canada 2009). When critical habitat is identified in a recovery strategy, examples of activities that are likely to result in its destruction will be provided. Activities likely to result in destruction of critical habitat include, but are not necessarily limited to the following:

- Activities that remove or damage host trees. Such activities remove the host trees that are essential for the lichen or may alter the suitability of the tree as a host for the lichen. Examples include tree blazing, clear cutting, logging, and tree harvesting.

- Activities that result in the loss or removal of trees from adjacent areas (including unoccupied trees). The loss of such trees may indirectly lead to a decrease in bark pH in the remaining softwoods; conditions which reduce the survival of cyanolichens (Richardson and Cameron 2004). Such removal may also decrease humidity and increase wind-speeds (and associated wind-throw damage) within critical habitat. Examples include clear cutting, logging, tree harvesting, road construction, and cottage development in adjacent areas.

At this time, it is not possible to define the extent of the area adjacent to critical habitat that may result in the destruction of critical habitat. Additional guidance will be developed once the schedule of studies for Vole Ears Lichen is complete.

- Activities that alter the hydrology of the wetland adjacent to or hosting the lichen. Examples include road construction, infilling, clear cutting, tree harvesting, and cottage development.

Proposed recovery actions and existing legislation may be insufficient to prevent the destruction of Vole Ears Lichen critical habitat via air-borne pollutants, including acid rain/fog.
8. MEASURING PROGRESS

The performance indicators presented below provide a way to define and measure progress toward achieving the population and distribution objectives for Vole Ears Lichen.

This recovery strategy and supporting action plan(s) will be subject to an adaptive management approach, whereby new information will be integrated on an ongoing basis. A five-year evaluation of the recovery strategy will be based upon the performance measures listed below.

Success of the recovery strategy implementation will be measured against the following performance indicators:

- stability of the three known populations of Vole Ears Lichen (as of January 2012) and no loss of adult thalli due to habitat loss, degradation, biological resource use of the species’ host tree, or invasive gastropods.
- no loss in the known range of the three populations (as of January 2012) due to habitat loss, degradation, biological resource use of the species’ host tree, or invasive gastropods.
- improved stewardship of Vole Ears Lichen sites through increased awareness among landowners, land managers, and those approving development plans. Improved stewardship can be measured through landowner and land-manager stewardship agreements, either formal or informal (i.e., ‘hand-shake’ agreements).
- reduced knowledge gaps regarding the distribution, dispersal patterns, population dynamics, threats and ecology of the species.

9. STATEMENT ON ACTION PLANS

One or more action plans will be completed within three years of the final version of this recovery strategy being posted on the Species at Risk Public Registry.
10. REFERENCES


GIS Forest Cover data. Newfoundland Department of Forest Resources and Agrifoods. Corner Brook.


(Accessed 08 February, 2012)
APPENDIX A: EFFECTS ON THE ENVIRONMENT AND OTHER SPECIES

A strategic environmental assessment (SEA) is conducted on all SARA recovery planning documents, in accordance with the Cabinet Directive on the Environmental Assessment of Policy, Plan and Program Proposals. The purpose of a SEA is to incorporate environmental considerations into the development of public policies, plans, and program proposals to support environmentally sound decision-making.

Recovery planning is intended to benefit species at risk and biodiversity in general. However, it is recognized that strategies may also inadvertently lead to environmental effects beyond the intended benefits. The planning process based on national guidelines directly incorporates consideration of all environmental effects, with a particular focus on possible impacts upon non-target species or habitats. The results of the SEA are incorporated directly into the strategy itself, but are also summarized below in this statement.

This action plan will clearly benefit the environment by promoting the recovery of the Vole Ears Lichen. The potential for the plan to inadvertently lead to adverse effects on other species was considered. The SEA concluded that this plan will clearly benefit the environment and will not entail any significant adverse effects.

The effects on other species were also considered. Vole Ears Lichen is one of a suite of rare cyanolichens, many of which occur in similar habitats within the humid Atlantic forest region of Nova Scotia, New Brunswick, and Newfoundland and Labrador. Because these species share similar habitat requirements, actions directed towards better understanding ecosystem-level associations and securing habitat for Vole Ears Lichen will almost certainly result in the protection of populations of other rare cyanolichens. At a regional level, any progress in reducing air-borne pollutants will benefit not only Vole Ears Lichen, but most (if not all) of the flora and fauna of the Atlantic forest region as well.
APPENDIX B: KNOWLEDGE GAPS TO RECOVERY

- Identify life cycle of the species
- Genetic diversity (Newfoundland and Labrador vs. Nova Scotia)
- Dispersal distance: distance and mechanisms
- Track resilience of the lichen
- Identify microclimate requirements and specific effects of pollution and acid deposition
- Identify and examine sensitivity to, and effects of, air-borne pollutants
- Determine how invasive species are affecting forest regeneration and identify efficient and acceptable management actions to reduce invasive species
- Identify mortality factors and determine their population effect
- Effects of gastropod herbivory
APPENDIX C: PROVINCIAL DEFINITIONS OF A WETLAND

A wetland, as defined under the *Newfoundland and Labrador Water Resources Act*, is land that has the water table at, near or above the land surface and includes bogs, fens, marshes, swamps and other shallow open water areas.

As defined under the *Environment Act* (Nova Scotia) a wetland is a marsh, swamp, fen or bog that either periodically or permanently has a water table at, near or above the land's surface or that is saturated with water, and sustains aquatic processes as indicated by the presence of poorly drained soils, hydrophytic vegetation (*Sphagnum* species and Cinnamon Fern) and biological activities adapted to wet conditions.
Appendix B:

Action Plan for the Boreal Felt Lichen (*Erioderma pedicellatum*) (Atlantic population) and Vole Ears Lichen (*Erioderma molissimum*), in Canada

Boreal Felt Lichen (Atlantic population) and Vole Ears Lichen
Recommended citation:


For copies of the action plan, or for additional information on species at risk, including the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) Status Reports, residence descriptions, recovery strategies, and other related recovery documents, please visit the Species at Risk (SAR) Public Registry¹.

**Cover illustration:** Boreal Felt Lichen (Atlantic population) and Vole Ears Lichen on Balsam Fir, eastern shore, Nova Scotia. Photo by Mersey Tobeatic Research Institute (MTRI), used with permission.

Également disponible en français sous le titre

© Her Majesty the Queen in Right of Canada, represented by the Minister of Environment and Climate Change, 2018. All rights reserved.
ISBN
Catalogue no.

*Content (excluding the illustrations) may be used without permission, with appropriate credit to the source.*

Preface

The federal, provincial, and territorial government signatories under the Accord for the Protection of Species at Risk (1996) agreed to establish complementary legislation and programs that provide for effective protection of species at risk throughout Canada. Under the Species at Risk Act (S.C. 2002, c.29) (SARA), the federal competent ministers are responsible for the preparation of action plans for species listed as Extirpated, Endangered, and Threatened for which recovery has been deemed feasible. They are also required to report on progress within five years after the publication of the final document on the SAR Public Registry.

Under SARA, one or more action plan(s) provides the detailed recovery planning that supports the strategic direction set out in the recovery strategy for the species. The plan outlines what needs to be done to achieve the population and distribution objectives (previously referred to as recovery goals and objectives) identified in the recovery strategy, including the measures to be taken to address the threats and monitor the recovery of the species, as well as the proposed measures to protect critical habitat that has been identified for the species. The action plan also includes an evaluation of the socio-economic costs of the action plan and the benefits to be derived from its implementation. The action plan is considered one in a series of documents that are linked and should be taken into consideration together. Those being the COSEWIC status report, the recovery strategy, and one or more action plans.

The Minister of Environment and Climate Change and Minister responsible for the Parks Canada Agency is the competent minister under SARA for the Boreal Felt Lichen (Atlantic population) (hereafter Boreal Felt Lichen) and Vole Ears Lichen and has prepared this action plan to implement the recovery strategies, as per section 47 of SARA. To the extent possible, it has been prepared in cooperation with the Provinces of New Brunswick, Nova Scotia, and Newfoundland and Labrador, the Nova Scotia Lichen Recovery Team, environmental non-government organizations, Indigenous groups, industry stakeholders, and private landowners, as per section 48(1) of SARA.

Success in the recovery of this species depends on the commitment and cooperation of many different constituencies that will be involved in implementing the directions and actions set out in this action plan and will not be achieved by Environment and Climate Change Canada, or any other jurisdiction alone. All Canadians are invited to join in supporting and implementing this action plan for the benefit of the Boreal Felt Lichen and Vole Ears Lichen and Canadian society as a whole.

Implementation of this action plan is subject to appropriations, priorities, and budgetary constraints of the participating jurisdictions and organizations.

The recovery strategy sets the strategic direction to arrest or reverse the decline of the species, including identification of critical habitat to the extent possible. It provides all

---

Canadians with information to help take action on species conservation. When critical habitat is identified, either in a recovery strategy or an action plan, SARA requires that critical habitat then be protected.

In the case of critical habitat identified for terrestrial species including migratory birds SARA requires that critical habitat identified in a federally protected area be described in the *Canada Gazette* within 90 days after the recovery strategy or action plan that identified the critical habitat is included in the public registry. A prohibition against destruction of critical habitat under ss. 58(1) will apply 90 days after the description of the critical habitat is published in the *Canada Gazette*.

For critical habitat located on other federal lands, the competent minister must either make a statement on existing legal protection or make an order so that the prohibition against destruction of critical habitat applies.

If the critical habitat for a migratory bird is not within a federal protected area and is not on federal land, within the exclusive economic zone or on the continental shelf of Canada, the prohibition against destruction can only apply to those portions of the critical habitat that are habitat to which the *Migratory Birds Convention Act, 1994* applies as per SARA ss. 58(5.1) and ss. 58(5.2).

For any part of critical habitat located on non-federal lands, if the competent minister forms the opinion that any portion of critical habitat is not protected by provisions in or measures under SARA or other Acts of Parliament, or the laws of the province or territory, SARA requires that the Minister recommend that the Governor in Council make an order to prohibit destruction of critical habitat. The discretion to protect critical habitat on non-federal lands that is not otherwise protected rests with the Governor in Council.

---

These federally protected areas are: a national park of Canada named and described in Schedule 1 to the *Canada National Parks Act*, The Rouge National Park established by the *Rouge National Urban Park Act*, a marine protected area under the *Oceans Act*, a migratory bird sanctuary under the *Migratory Birds Convention Act, 1994* or a national wildlife area under the *Canada Wildlife Act* see ss. 58(2) of SARA.
Acknowledgments

This action plan was prepared by Brad Toms (Mersey Tobeatic Research Institute), Julie McKnight (Environment and Climate Change Canada – Canadian Wildlife Service), and Rob Cameron (Nova Scotia – Environment) with extensive input from Mark Elderkin (Nova Scotia Department of Natural Resources). Maureen Toner (New Brunswick Department of Natural Resources), Claudia Hanel (Newfoundland and Labrador Department of Environment and Conservation) and André Arsenault (Natural Resources Canada – Canadian Forest Service) provided comments on this action plan. The efforts and contributions of the Nova Scotia Cyanolichen Recovery Team and the Newfoundland and Labrador Department of Natural Resources Lichen Working Group are gratefully acknowledged. Appreciation is also extended to Matt Mahoney (Environment and Climate Change Canada – Canadian Wildlife Service) for developing the critical habitat maps.
Executive Summary

This action plan compliments the amended recovery strategy for Boreal Felt Lichen (*Erioderma pedicellatum*) (Environment and Climate Change Canada 2018), and the recovery strategy for the Vole Ears Lichen (*Erioderma mollissimum*) (Environment Canada 2014). It addresses the population and distribution objectives established in the amended Boreal Felt Lichen recovery strategy and the Vole Ears recovery strategy. Recovery measures are identified, in relation to the broad strategies set out in the recovery strategies for Boreal Felt Lichen and Vole Ears Lichen.

The amended recovery strategy for Boreal Felt Lichen contains the identification of critical habitat for that species.

This action plan identifies new critical habitat for Vole Ears Lichen in Nova Scotia taking into account new population information. 1000 hectares of critical habitat were identified in the recovery strategy and an additional 1420 hectares of critical habitat in Nova Scotia are identified in this action plan. Critical habitat is now identified at a total of 2420 hectares along the Atlantic Coast of Nova Scotia. Critical habitat for Vole Ears Lichen in Newfoundland and Labrador is identified in the recovery strategy for the species at 106 hectares on the Avalon Peninsula (Figures 23-25).

Proposed measures to protect critical habitat are presented in section 1.4. The recovery measures included in this plan build on the recommended approaches outlined in the amended recovery strategy for the Boreal Felt Lichen and the recovery strategy for the Vole Ears Lichen. An implementation schedule is included and prioritizes each recovery measure and delineates timelines.

Proposed recovery measures in this action plan will have limited socio-economic impact and constraints to human land use. Indirect costs are expected to be minimal and the benefits relate to the value of biodiversity to Canadians, positive impacts cultural values, and conservation of other species.
# Table of Contents

Preface ................................................................................................................................. i  
Acknowledgments .................................................................................................................. iii  
Executive Summary .............................................................................................................. iv  
1. Recovery Actions ............................................................................................................ 1  
   1.1 Context and Scope of the Action Plan ........................................................................ 1  
   1.2 Measures to be Taken and Implementation Schedule ............................................ 3  
   1.3 Critical Habitat .......................................................................................................... 8  
   1.4 Proposed Measures to Protect Critical Habitat ....................................................... 34  
2. Evaluation of Socio-economic Costs and of Benefits .................................................. 35  
   2.1 Policy Baseline ......................................................................................................... 35  
   2.2 Socio-economic Profile and Baseline ....................................................................... 37  
   2.3 Socio-economic Costs of Implementing this Action Plan ......................................... 37  
   2.4 Benefits of Implementing this Action Plan ............................................................... 38  
   2.5 Distributional Impacts ............................................................................................. 39  
3. Measuring Progress ....................................................................................................... 39  
4. References ..................................................................................................................... 39  
Appendix A: Effects on the Environment and Other Species ........................................... 41
1. Recovery Actions

1.1 Context and Scope of the Action Plan

Boreal Felt Lichen (*Erioderma pedicilatum*) is an epiphytic cyanolichen. It is restricted to cool, moist, oceanic regions, occurring at elevations less than 200 m above sea level within 25 km of the Atlantic coast only in mature to over mature Balsam Fir (*Abies balsamea*) forests within or adjacent to wetlands where sphagnum species cover the ground. There are two designated populations in Canada: the Boreal population in Newfoundland and the Atlantic population in New Brunswick and Nova Scotia. This action plan covers the Atlantic population. The Boreal Felt Lichen (Atlantic population) (hereafter Boreal Felt Lichen) was listed under the *Species at Risk Act (SARA)* as Endangered in 2005. It is believed to be extirpated from New Brunswick (Cameron et al. 2009).

The Vole Ears Lichen (*Erioderma mollissimum*) is also an epiphytic cyanolichen. It requires cool humid coastal conifer forests in and adjacent to wetlands dominated by Balsam Fir and/or Red Maple (*Acer rubrum*) and/or Yellow Birch (*Betula alleghaniensis*) where sphagnum species cover the ground. Vole Ears Lichen was listed under the *Species at Risk Act* as Endangered in 2012.

The recovery strategy for the Boreal Felt Lichen in Canada was posted on the Species at Risk Registry in 2007 (Environment Canada 2007) and was amended in 2018 (Environment and Climate Change Canada 2018). The recovery strategy for Vole Ears Lichen was posted on the Species at Risk Registry in 2014 (Environment Canada 2014). This action plan should be considered along with the Multi-species Action Plan for Kejimkujik National Park and National Historic Site of Canada (Parks Canada Agency 2017).

The population and distribution objectives established by both recovery strategies are to ensure the species’ extent of occurrence (i.e., known range) and the health of the populations are not impacted by anthropogenic habitat deterioration or loss (i.e., through biological resource use (of the species’ host tree), transportation and service corridors, or residential and commercial development).

All broad strategies and general approaches to meet objectives detailed in the amended recovery strategy for Boreal Felt Lichen and the recovery strategy for Vole Ears Lichen are addressed in this document.
Surveys undertaken from 2005 to present have increased the number of known sites of Boreal Felt Lichen, however, loss of the lichen from sites continues to occur and the estimated 10 year decline is 34% (COSEWIC 2014). Many new sites of Vole Ears Lichen have been found since 2012 due to recent survey efforts but declines continue, particularly in Nova Scotia, where at least 80% of sites documented in the 1980’s no longer contain the lichen. It is important to maintain intact biophysical attributes at sites that have apparently lost their lichens recently because they may still contain the necessary building blocks for colonization and juveniles are difficult to inventory until they reach a certain size.

Critical habitat is partially identified in the amended recovery strategy for Boreal Felt Lichen and the recovery strategy for Vole Ears Lichen. No new critical habitat is identified for Boreal Felt Lichen in this document. New critical habitat is identified for Vole Ears Lichen in this action plan (refer to section 1.3) in addition to the 29 sites in two populations in Nova Scotia and the five sites in one population in Newfoundland and Labrador identified in the recovery strategy.

This action plan should be considered along with the amended recovery strategy for the Boreal Felt Lichen and the recovery strategy for the Vole Ears Lichen. The recovery strategies provide more details on the strategic direction for recovery of the species, critical habitat information, and background information on the species and their threats.
1.2 Measures to be Taken and Implementation Schedule

The recovery measures outlined below are arranged according to the broad strategies identified in the amended recovery strategy for Boreal Felt Lichen and the recovery strategy for Vole Ears Lichen.

Table 1: Implementation schedule

<table>
<thead>
<tr>
<th>#</th>
<th>Recovery Measures</th>
<th>Priority</th>
<th>Threats or objectives addressed</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Broad Strategy: Law and policy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Approach:</strong> Engage in existing pollution reduction programs for local and transboundary pollution and greenhouse gasses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Collaborate to incorporate Boreal Felt Lichen and Vole Ears Lichen in air pollution reduction programs and general air quality education materials.</td>
<td>M</td>
<td>Air-borne pollutants</td>
<td>ongoing</td>
</tr>
<tr>
<td>3</td>
<td>Ensure Vole Ears Lichen in maintained on Crown Land in Nova Scotia (NS) through implementation of 'Special Management Practices'.</td>
<td>H</td>
<td>Logging &amp; wood harvesting</td>
<td>2019</td>
</tr>
<tr>
<td>4</td>
<td>Identify existing or planned land uses that could negatively impact Boreal Felt Lichen or Vole Ears Lichen sites. Implement relevant recovery measures to address threats.</td>
<td>H</td>
<td>Logging &amp; wood harvesting, Roads &amp; railroads, and Housing &amp; urban areas</td>
<td>2018 (NS) as identified (NL)</td>
</tr>
<tr>
<td>5</td>
<td>Quantify extent of the regeneration problem and encourage multi-stakeholder collaboration.</td>
<td>M</td>
<td>Invasive non-native/alien species/diseases and problematic native species</td>
<td>ongoing</td>
</tr>
<tr>
<td>#</td>
<td>Recovery Measures</td>
<td>Priority</td>
<td>Threats or objectives addressed</td>
<td>Timeline</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------------------------------------------------------</td>
<td>----------</td>
<td>---------------------------------------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td><strong>Approach:</strong> Engage forest certification systems to implement private standards and codes governing private sector practice that are beneficial for the species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Evaluate efficacy of private sector certifications in the conservation of cyanolichens at risk. Determine gaps in current certifications and work with certifiers to fill gaps.</td>
<td>L</td>
<td>Logging &amp; wood harvesting and Roads &amp; railroads</td>
<td>2018</td>
</tr>
<tr>
<td></td>
<td><strong>Approach:</strong> Monitor and enforce compliance with relevant laws, policies, and regulations, and voluntary standards and codes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>During surveys and inventory work, identify any potential infractions and engage enforcement branches when necessary.</td>
<td>H</td>
<td>Logging &amp; wood harvesting, Roads &amp; railroads, and Housing &amp; urban areas</td>
<td>ongoing</td>
</tr>
<tr>
<td></td>
<td><strong>Broad Strategy:</strong> Education and awareness, stewardship, and partnerships</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Approach:</strong> Foster cooperative relationships with landowners, foresters, industry, and volunteers to maintain critical habitat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Develop stewardship agreements with landowners where possible.</td>
<td>H</td>
<td>Logging &amp; wood harvesting, Roads &amp; railroads, and Housing &amp; urban areas</td>
<td>2019</td>
</tr>
<tr>
<td>9</td>
<td>Inform interested landowners regarding formal habitat conservation options.</td>
<td>H</td>
<td>Logging &amp; wood harvesting, Roads &amp; railroads, and Housing &amp; urban areas</td>
<td>2019</td>
</tr>
<tr>
<td>10</td>
<td>Contact stakeholders regarding the significance and requirements of Boreal Felt Lichen and Vole Ears Lichen and share BMPs (NL) and SMPs (NS) to conserve the species.</td>
<td>H</td>
<td>Logging &amp; wood harvesting, Roads &amp; railroads, and Housing &amp; urban areas</td>
<td>as new stakeholders are identified</td>
</tr>
<tr>
<td>#</td>
<td>Recovery Measures</td>
<td>Priority</td>
<td>Threats or objectives addressed</td>
<td>Timeline</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>----------</td>
<td>-----------------------------------------------------------------------------------------------</td>
<td>-----------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| 11 | **Approach:** Promote volunteer participation in surveys and monitoring  
Provide identification workshops for interested individuals and organizations.                                                                                                                                  | M        | All                                                                                           | completed in 2008, 2009; thereafter as needed                          |
| 12 | **Approach:** Promote ecosystem conservation through forest certification, if deemed effective for recovery of the species  
Investigate extent of forest certification in Eastern Canada and promote the use of third-party certified sustainable forest management certification standards where appropriate. | L        | Logging & wood harvesting and Roads & railroads                                               | 2020                                                                 |
| 13 | **Approach:** Promote compliance with Federal, Provincial, and Municipal Acts and Policies as well as BMPs/SMPs that protect the species and their habitat  
Evaluate existing education materials, revise and reprint as needed.                                                                                                                                           | M        | All                                                                                           | completed 2008                                                        |
| 14 | **Approach:** Promote the species as an indicator of healthy coastal rain forests  
Publish a website for the dissemination of information on the biology and conservation of Boreal Felt Lichen, Vole Ears Lichen, and other rare cyanolichens. | M        | All                                                                                           | Boreal Felt Lichen: completed 2007; revise as needed  
Vole Ears Lichen: 2017                                               |
| 15 | **Approach:** Conserve habitat for the species  
Develop an outreach plan for engaging Forest managers and private woodlot owners on “lichens at risk” .                                                                                                     | M        | Logging & wood harvesting and Roads & railroads                                               | 2021                                                                 |
| 16 | **Approach:** Prevent gastropods from ascending phorophytes  
Research collars, tapes, and traps to ensure that cyanolichens are not negatively impacted by their use and implement where feasible.                                                                            | L        | Invasive non-native/alien species/diseases and problematic native species                      | 2018                                                                 |
<table>
<thead>
<tr>
<th>#</th>
<th>Recovery Measures</th>
<th>Priority</th>
<th>Threats or objectives addressed</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Develop a protocol for transplanting cyanolichens if phorophyte is lost</td>
<td>L</td>
<td>All</td>
<td>if deemed necessary</td>
</tr>
<tr>
<td>19</td>
<td>Inventory new sites identified by the habitat suitability model.</td>
<td>H</td>
<td>Monitoring</td>
<td>ongoing</td>
</tr>
<tr>
<td>20</td>
<td>Track site size and vigour (e.g., condition, health, presence of disease or herbivory) of individuals.</td>
<td>H</td>
<td>Monitoring</td>
<td>ongoing</td>
</tr>
<tr>
<td>21</td>
<td>Track threats (e.g., Logging and wood harvesting, roads, gastropod grazing).</td>
<td>H</td>
<td>Monitoring</td>
<td>ongoing</td>
</tr>
<tr>
<td>22</td>
<td>Track habitat conditions (e.g., forest composition, forest age structure, presence of indicator species).</td>
<td>H</td>
<td>Monitoring</td>
<td>ongoing</td>
</tr>
</tbody>
</table>

**Approach:** Develop a protocol for transplanting cyanolichens if phorophyte is lost

**Priority** reflects the degree to which the measure contributes directly to the recovery of the species or is an essential precursor to a measure that contributes to the recovery of the species. High priority measures are considered those most likely to have an immediate and/or direct influence on attaining the population and distribution objectives for the species. Medium priority measures may have a less immediate or less direct influence on reaching the population and distribution objectives, but are still important for the recovery of the population. Low priority recovery measures will likely have an indirect or gradual influence on reaching the population and distribution objectives, but are considered important contributions to the knowledge base and/or public involvement and acceptance of the species.
1.2.1 Monitoring

While there is currently no published monitoring protocol for Boreal Felt Lichen or Vole Ears Lichen, monitoring measures for Boreal Felt Lichen are in place and will be applied for Vole Ears Lichen as new sites are found and extant sites are revisited. Each time a site is visited, the following criteria/measures will be recorded:

- maturity of the lichen (i.e., adult or juvenile);
- the width and height of the lichen;
- a rating of the lichen’s health;
- percentage of the thallus area grazed; and
- a score for necrosis (percentage of thallus area discolored by death of the fungus).

Monitoring studies of Boreal Felt Lichen (consisting of a visual assessment of any major changes – e.g., death of trees, cutting) have been conducted and involve collecting habitat parameters using a standardized method. This methodology will be adopted for Vole Ears Lichen as new sites are found and extant sites are revisited.
1.3 Critical Habitat

The critical habitat deemed necessary to meet the population and distribution objectives was partially identified for Boreal Felt Lichen in the amended recovery strategy. The amended recovery strategy contains the methodology for identifying critical habitat and outlines a schedule of studies required to complete the identification of critical habitat. Additional critical habitat for Boreal Felt Lichen is not identified in this action plan.

Critical habitat was also partially identified for Vole Ears Lichen in its recovery strategy. The recovery strategy contains the methodology for identifying critical habitat and outlines a schedule of studies required to complete the identification of critical habitat. Critical habitat for Vole Ears Lichen in Newfoundland and Labrador is identified in the recovery strategy for the species (106 hectares) and is located on the Avalon Peninsula (Figures 23-25). Critical habitat for Vole Ears Lichen in Nova Scotia is identified in the recovery strategy for the species (1000 hectares) in two populations. An additional 1420 hectares, in two populations along the Atlantic Coast of Nova Scotia, are identified in this action plan based on recent survey work, using the same approach described in the recovery strategy.

1.3.1 Identification of Vole Ears Lichen critical habitat

Critical habitat description

Critical habitat for Vole Ears Lichen is presented in Figures 1-25. Critical habitat for Vole Ears Lichen in Canada occurs within the shaded yellow and blue polygons (units where the critical habitat criteria and methodology described section 7.1 of the recovery strategy are met). The UTM grid overlay shown in the figures is a standardized national grid system that indicates the general geographic area containing critical habitat.

More detailed information on the location of critical habitat to support protection of the species and its habitat may be requested, on a need-to-know basis, by contacting Environment and Climate Change Canada’s Recovery Planning section at: ec.planificationduetablissement-recoveryplanning.ec@canada.ca.
Figure 1. Overview map of critical habitat for Vole Ears Lichen in Nova Scotia. Refer to Figures 2-22 for detailed representations of critical habitat.
Figure 2. Critical habitat for Vole Ears Lichen in Yarmouth County (see Nova Scotia overview map area A) is represented by the yellow shaded polygon where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygon do not contain critical habitat.
Figure 3. Critical habitat for Vole Ears Lichen in Shelburne County (see Nova Scotia overview map area B) is represented by the yellow and blue shaded polygons where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygons do not contain critical habitat.
Figure 4. Critical habitat for Vole Ears Lichen in Shelburne County (see Nova Scotia overview map area C) is represented by the yellow and blue shaded polygons where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygons do not contain critical habitat.
Figure 5. Critical habitat for Vole Ears Lichen in Shelburne County (see Nova Scotia overview map area D) is represented by the yellow and blue shaded polygons where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygons do not contain critical habitat.
Figure 6. Critical habitat for Vole Ears Lichen in Shelburne County (see Nova Scotia overview map area E) is represented by the yellow and blue shaded polygons where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygons do not contain critical habitat.
Figure 7. Critical habitat for Vole Ears Lichen in Shelburne County (see Nova Scotia overview map area F) is represented by the yellow and blue shaded polygons where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygons do not contain critical habitat.
Figure 8. Critical habitat for Vole Ears Lichen in Shelburne County (see Nova Scotia overview map area G) is represented by the yellow and blue shaded polygons where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygons do not contain critical habitat.
Figure 9. Critical habitat for Vole Ears Lichen in Queens County (see Nova Scotia overview map area H) is represented by the yellow and blue shaded polygons where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygons do not contain critical habitat.
Figure 10. Critical habitat for Vole Ears Lichen in Queens County (see Nova Scotia overview map area I) is represented by the yellow and blue shaded polygons where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygons do not contain critical habitat.
Figure 11. Critical habitat for Vole Ears Lichen in Queens County (see Nova Scotia overview map area J) is represented by the yellow shaded polygon where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygon do not contain critical habitat.
Figure 12. Critical habitat for Vole Ears Lichen in Kejimkujik National Park Seaside, Queens County (see Nova Scotia overview map area K) is represented by the orange shaded polygon where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygon do not contain critical habitat.
Figure 13. Critical habitat for Vole Ears Lichen in Shelburne County (see Nova Scotia overview map area L) is represented by the blue shaded polygon where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygon do not contain critical habitat.
Figure 14. Critical habitat for Vole Ears Lichen in Queens County (see Nova Scotia overview map area M) is represented by the yellow shaded polygon where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygon do not contain critical habitat.
Figure 15. Critical habitat for Vole Ears Lichen in Queens County (see Nova Scotia overview map area N) is represented by the yellow and blue shaded polygons where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygons do not contain critical habitat.
Figure 16. Critical habitat for Vole Ears Lichen in Halifax County (see Nova Scotia overview map area O) is represented by the blue shaded polygon where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygon do not contain critical habitat.
Figure 17. Critical habitat for Vole Ears Lichen in Halifax County (see Nova Scotia overview map area P) is represented by the blue shaded polygons where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygons do not contain critical habitat.
Figure 18. Critical habitat for Vole Ears Lichen in Halifax County (see Nova Scotia overview map area Q) is represented by the blue shaded polygon where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygon do not contain critical habitat.
Figure 19. Critical habitat for Vole Ears Lichen in Halifax County (see Nova Scotia overview map area R) is represented by the yellow and blue shaded polygons where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygons do not contain critical habitat.
Figure 20. Critical habitat for Vole Ears Lichen in Halifax County (see Nova Scotia overview map area S) is represented by the yellow shaded polygons where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygons do not contain critical habitat.
Figure 21. Critical habitat for Vole Ears Lichen in Halifax County (see Nova Scotia overview map area T) is represented by the yellow shaded polygons where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygons do not contain critical habitat.
Figure 22. Critical habitat for Vole Ears Lichen in Guysborough County (see Nova Scotia overview map area U) is represented by the blue shaded polygon where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygon do not contain critical habitat.
Figure 23. Overview map of critical habitat for Vole Ears Lichen in Newfoundland and Labrador. Refer to Figures 24-25 for detailed representations of critical habitat.
Figure 24. Critical habitat for Vole Ears Lichen on the Avalon Peninsula (see Newfoundland and Labrador overview map area V) is represented by the blue shaded polygon where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygon do not contain critical habitat.
Figure 25. Critical habitat for Vole Ears Lichen on the Avalon Peninsula (see Newfoundland and Labrador overview map area W) is represented by the blue shaded polygons where the criteria and methodology set out in section 7.1 of the recovery strategy are met. The 1 km × 1 km UTM grid overlay shown in this figure is a standardized national grid system that indicates the general geographic area within which critical habitat is found. Areas outside of the shaded polygons do not contain critical habitat.
1.3.2 Examples of activities likely to result in destruction of critical habitat

Examples of activities likely to result in destruction of critical habitat for Vole Ears Lichen may be found in section 7.3 of the recovery strategy for the Vole Ears Lichen.

1.4 Proposed Measures to Protect Critical Habitat

The information below outlines the measures proposed to be taken to protect critical habitat for Boreal Felt Lichen and Vole Ears Lichen.

1.4.1 Measures proposed to protect critical habitat on federal lands

As required under SARA, a description of the portions of critical habitat found in federally protected areas4 are published in the Canada Gazette Part 1. This critical habitat will then be protected under subsection 58(1) of SARA. Gazette statements are available on the Species at Risk Public Registry. In March 2017, a gazette statement associated with the Multi-species Action Plan for Kejimkujik National Park and National Historic Site of Canada (Parks Canada Agency 2017) describing critical habitat for Vole Ears Lichen in Kejimkujik Seaside was posted on the Species at Risk Registry. This critical habitat was protected under s.58(1) of SARA.

1.4.2 Measures proposed to protect critical habitat on non-federal lands

With regard to the portions of critical habitat on non-federal lands, Environment and Climate Change Canada will assess the protection currently in place. This involves first working with the Governments of Nova Scotia and Newfoundland and Labrador to determine which provincial laws and legal instruments are in place to prevent destruction of critical habitat. If there are gaps in the protection of critical habitat, provisions or measures in place under SARA or other federal legislation will be reviewed to determine whether they prevent destruction of critical habitat. The laws and legal agreements in place that protect critical habitat will be monitored for efficacy at least every five years. Conservation measures, including stewardship initiatives, that contribute to preventing critical habitat destruction will also be considered and monitored.

If it is determined that any portions of critical habitat are not protected, and steps are being taken to protect those portions, those steps will be communicated via the Species at Risk Public Registry through the reports referred to in section 63 of SARA.

4 These federally protected areas are: a national park of Canada named and described in Schedule 1 to the Canada National Parks Act, The Rouge National Park established by the Rouge National Urban Park Act, a marine protected area under the Oceans Act, a migratory bird sanctuary under the Migratory Birds Convention Act, 1994 or a national wildlife area under the Canada Wildlife Act see ss. 58(2) of SARA.
2. Evaluation of Socio-Economic Costs and of Benefits

SARA requires that an action plan include an evaluation of the socio-economic costs of the action plan and the benefits to be derived from its implementation (SARA 49(1)(e), 2002). This evaluation addresses only the incremental socio-economic costs of implementing this action plan from a national perspective as well as the social and environmental benefits that would occur if the action plan were implemented in its entirety, recognizing that not all aspects of its implementation are under the jurisdiction of the federal government. It does not address cumulative costs of species recovery in general nor does it attempt a cost-benefit analysis. Its intent is to inform the public and to guide decision making on implementation of the action plan by partners.

The protection and recovery of species at risk can result in both benefits and costs. The Act recognizes that “wildlife, in all its forms, has value in and of itself and is valued by Canadians for aesthetic, cultural, spiritual, recreational, educational, historical, economic, medical, ecological and scientific reasons” (SARA 2002). Self-sustaining and healthy ecosystems with their various elements in place, including species at risk, contribute positively to the livelihoods and the quality of life of all Canadians. A review of the literature confirms that Canadians value the preservation and conservation of species in and of themselves. Actions taken to preserve a species, such as habitat protection and restoration, are also valued. In addition, the more an action contributes to the recovery of a species, the higher the value the public places on such actions (Loomis and White 1996; DFO 2008). Furthermore, the conservation of species at risk is an important component of the Government of Canada’s commitment to conserving biological diversity under the International Convention on Biological Diversity. The Government of Canada has also made a commitment to protect and recover species at risk through the Accord for the Protection of Species at Risk. The specific costs and benefits associated with this action plan are described below.

2.1 Policy Baseline

The provinces of Nova Scotia and Newfoundland and Labrador have access to many legislative, regulatory, and management tools for the conservation and stewardship of Boreal Felt Lichen and Vole Ears Lichen. For example,

in Nova Scotia:

- **Endangered Species Act**: requires recovery planning which must identify areas of habitat to be considered for designation as core habitat. Once core habitat has been designated the Minister may create regulations controlling, restricting or prohibiting access to or activities in the habitat.

- **Parks Act**: preserves unique, rare, representative, or otherwise significant elements of the natural environment and historic resources of Nova Scotia and prevents the willful destruction of park property (including trees and other natural
resources). In addition, the Minister may take such measures as the Minister deems necessary to protect flora and fauna within a provincial park.

- **Crown Lands Act**: enables the Minister to set aside special areas on Crown lands for habitat protection and requires the Minister to integrate appropriate protective measures in forest-management planning for Crown lands to respect wildlife habitats.

- **Environment Act**: protects the environment including biological diversity, requires many activities to undergo an approval process that may incorporate consideration of habitat, and requires environmental assessments for designated undertakings. The Minister can reject an undertaking or place conditions on an undertaking including conditions to protect habitat.

- **Forests Act**: maintains or enhances wildlife and wildlife habitats, and water quality. The intent and purpose of this Act is to ensure that wildlife, wildlife habitats, and the long term diversity and stability of the forest ecosystems, water supply watersheds, and other significant resources are maintained or enhanced. In addition, under the *Wildlife Habitat and Watercourse Protection Regulations*, buffers are maintained around the associated wetland.

- **Special Places Protection Act**: preserves ecological sites containing rare or endangered species in their natural habitats, enables designation of land as ecological sites. The Minister may develop a management plan for an ecological site and the Minister may issue ecological research permits.

- **Nova Scotia Wetland Conservation Policy**: prevents the net loss of wetlands in Nova Scotia through wetland conservation practices that integrate the need for wetland protection with the need for sustainable economic development.

- **Wilderness Areas Protection Act**: provides for the establishment, management, protection, and use of wilderness areas; maintains and restores the integrity of natural processes and biodiversity; and protects representative examples of natural landscapes and ecosystems.

- **Special Management Practices**: this policy requires surveys for the presence of endangered lichens (specifically for Boreal Felt Lichen) on all provincial Crown lands where forest harvesting and silviculture operations are proposed in areas with suitable habitat biophysical attributes (as determined by the habitat supply model (Cameron et al. 2013)) and enacts forested buffers around phorophytes.

- **Endangered Species Act**: prohibits the disturbance or destruction of a designated species’ residence, provides further protection for ‘critical habitat’ and ‘recovery’ habitat.

in Newfoundland and Labrador:

- **Endangered Species Act**: prohibits the disturbance or destruction of a designated species’ residence, provides further protection for ‘critical habitat’ and ‘recovery’ habitat.
• *Environmental Protection Act*: protects the environment through regulation. Prohibits certain activities (refer to regulations) unless the appropriate approvals are in place and requires environmental assessments for certain projects involving endangered species and their habitats.

• *Forestry Act*: requires the proponent to submit a management plan that addresses the impacts to wildlife habitat.

• *Lands Act*: allows for the designation of special management areas to protect wildlife habitat.

• *Water Resources Act*: requires permits for development activities in, and affecting, wetlands.

• *Wilderness and Ecological Reserves Act*: provides the Minister with broad authority to prohibit or control activities within protected areas.

2.2 Socio-economic Profile and Baseline

The forestry industry is primarily affected by the protection of these lichen species and their critical habitat. Stakeholders include the Government of Canada, the governments of Nova Scotia and Newfoundland and Labrador, and private landowners.

Many recovery measures are undertaken with the assistance of federal or provincial species at risk funding programs, in-kind contributions by recovery biologists, or research by universities.

2.3 Socio-economic Costs of Implementing this Action Plan

Implementation of the recovery measures identified in Table 1 may generate direct costs as well as societal costs. These costs are reported in this section only if they result in incremental expenditures or constraints in land uses (including foregoing or modifying current and future activities; e.g., forest harvesting activities) compared to measures already in place (see ongoing measures in Table 1).

A special management practice is already in place on crown lands in Nova Scotia for Boreal Felt Lichen which places restrictions on forestry activities in the vicinity of the species’ critical habitat.

For Boreal Felt Lichen and Vole Ears Lichen, the direct and societal costs are expected to be low (i.e., between $0 and $5 million) over the short term (five years). Costs at the regional or provincial scale are expected to be minimal. These anticipated costs include salary, volunteer time, travel, materials, equipment, and other related costs. Indirect costs are those resulting from implementing the action plan, which may have an impact
on various stakeholders. Impacts to stakeholders include foregoing or modifying current and future activities.

Costs would only be incurred locally as the species occupy a limited geographic area in Nova Scotia and Newfoundland and Labrador. Costs at the regional or provincial scale are expected to be minimal.

### 2.4 Benefits of Implementing this Action Plan

Nearly half (46%) of respondents to the 2012 Canadian Nature Survey (Federal, Provincial, and Territorial Governments of Canada 2014) reported taking some form of direct action to assist in the recovery of species at risk. Care for the environment is consistently ranked as one of Canada’s top priorities in public opinion polls (Environment Canada 2009). A recent opinion poll found that three quarters of Canadian respondents feel that preserving natural areas and the variety of native plant and animal life in Canada is important to them (Ipsos Reid Opinion Poll 2011).

Wetlands are designated by international convention (The Ramsar Convention) specifically to foster conservation because they provide a myriad of essential ecosystem services. Among others, wetlands filter sediments and toxins, serve as groundwater recharge areas, supply food and habitat for wildlife and humans, provide products, and provide areas for outdoor recreational activities such as bird watching, fishing, and hunting.

Forest ecosystems provide a number of goods and services such as: provisional goods (e.g., fishing, hunting and gathering forest plants, fresh water), regulating services (e.g., air quality maintenance, climate and atmospheric regulation, water regulation and supply, water purification, pollination, erosion control and sediment retention), cultural services (e.g., recreation and ecotourism, aesthetic cultural heritage) and supporting services (e.g., soil formation, nutrient cycling, habitat refugium, primary production).

Cyanolichens such as the Boreal Felt Lichen and Vole Ears Lichen contribute to forest ecosystem services through nutrient cycling including converting biologically inactive nitrogen gas into forms usable for other plant species. Cameron and Richardson (2006) show that cyanolichens can contribute significant amounts of nitrogen to ecosystems. Cyanolichens give humans the ability to detect fluctuations in local air quality due to the lichen’s sensitivity to pollution. This makes cyanolichens valuable indicators of environmental and ecosystem health. Given that Nova Scotia receives air pollution from industrialized areas of the eastern United States and central and eastern Canada, Nova Scotia lichens can provide an early warning system for the ecosystem effects of pollutants (Cameron 2004).

By focusing on increasing protection measures, as well as improved public outreach, education and stewardship, it is expected that the recovery approaches outlined in the action plan will benefit the larger ecological community as well. Achieving the goal of this action plan will have a positive impact for Canadians.
2.5 Distributional Impacts

Although Boreal Felt Lichen and Vole Ears Lichen both occur on private properties, landowners are not expected to bear the brunt of the responsibility for the species’ recovery. Non-governmental organizations are active in Nova Scotia and Newfoundland and Labrador where the species occur, and an approach of this action plan is to foster cooperative relationships with landowners and others to maintain critical habitat.

Indirect incremental costs resulting from the impacts of implementing some recovery measures may be absorbed by the forestry industry through increased operating costs.

3. Measuring Progress

The performance indicators presented in the associated recovery strategies provide a way to define and measure progress toward achieving the population and distribution objectives.

Reporting on implementation of the action plan (under s. 55 of SARA) will be done by assessing progress towards implementing the broad strategies.

Reporting on the ecological and socio-economic impacts of the action plan (under s. 55 of SARA) will be done by assessing the results of monitoring the recovery of the species and its long term viability, and by assessing the implementation of the action plan.

4. References


Ipsos Reid Opinion Poll “Nine in Ten (87%) Canadians Say That When Connected to Nature They Feel Happier.” Released January 7, 2011, [www.ispsos.ca](http://www.ispsos.ca)


Appendix A: Effects on the Environment and Other Species

A strategic environmental assessment (SEA) is conducted on all SARA recovery planning documents, in accordance with the Cabinet Directive on the Environmental Assessment of Policy, Plan and Program Proposals. The purpose of a SEA is to incorporate environmental considerations into the development of public policies, plans, and program proposals to support environmentally sound decision-making and to evaluate whether the outcomes of a recovery planning document could affect any component of the environment or any of the Federal Sustainable Development Strategy’s (FSDS) goals and targets.

Recovery planning is intended to benefit species at risk and biodiversity in general. However, it is recognized that implementation of action plans may also inadvertently lead to environmental effects beyond the intended benefits. The planning process based on national guidelines directly incorporates consideration of all environmental effects, with a particular focus on possible impacts upon non-target species or habitats. The results of the SEA are incorporated directly into the action plan itself, but are also summarized below in this statement.

This action plan will clearly benefit the environment by promoting the recovery of the Boreal Felt Lichen and Vole Ears Lichen. The potential for the plan to inadvertently lead to adverse effects on other species was considered. The SEA concluded that this plan will clearly benefit the environment and will not entail any significant adverse effects. The reader should refer to relevant sections in the recovery strategies (e.g., effects on other species; and the recommended approaches for recovery).

The effects on other species were also considered. Boreal Felt Lichen and Vole Ears Lichen are part of a suite of rare cyanolichens, all of which occur in similar habitats within the humid Atlantic forest region of Nova Scotia and Newfoundland and Labrador. In fact, the habitat suitability mapping algorithm for Boreal Felt Lichen in Nova Scotia is much more effective at identifying habitats that support one or more of these species (approx. 50% accuracy) than it is at identifying habitat that supports Boreal Felt Lichen (approx. 7% accuracy). Survey work directed towards locating new Boreal Felt Lichen and Vole Ears Lichen sites has produced many new records for members of this larger group of species (Cameron and Neily 2008). Furthermore, since all of these species share similar habitat requirements, actions directed towards better understanding ecosystem-level associations and securing habitat for Boreal Felt Lichen and Vole Ears Lichen will almost certainly result in the protection of populations of other rare cyanolichens, such as Degelia plumbea (special concern) Frosted Glass-whiskers (Sclerophora peronella) (special concern) and other rare cyanolichens not yet assessed by COSEWIC. At a regional level, any progress in reducing air pollution will benefit not only Boreal Felt Lichen and Vole Ears Lichen, but most (if not all) of the flora and fauna of New Brunswick, Nova Scotia, and Newfoundland and Labrador as well.

5 www.ceaa.gc.ca/default.asp?lang=En&n=B3186435-1
6 www.ec.gc.ca/dd-sd/default.asp?lanq=En&n=F93CD795-1