Appendix M

Surface Water Data

Appendix M1 – Watercourse Fish and Habitat Field Data Sheets (WC#1 & WC#2)

Appendix M2 – Watercourses in the Vicinity of the Project Footprint Area Photo Plate

Appendix M3 – Summary of General Physical Characteristics of Predicted Watercourse Crossings Along the Pipeline Route (Conducted on December 3, 2018)

Appendix M4 – Maxxam Laboratory Certificates

Appendix M5 – Middle River of Pictou Water Availability – Final Report

Appendix M1

Watercourse Fish and Habitat Field Data Sheets (WC#1 & WC#2)

Project Number:	1-6461	Date	June 12/	19,	rew. (2K+	KR			
Weather:	SUNNU W	/ Claude			A N					
UTM Location: North	- Andrews		Easting			Zone	- Sim			
Waypoint:	6	_		A .	00.			-		
Watercourse Name:	WC#1		Site Leng	th:	OUm					
Size of Watercourse:	Large Perr	n. Small	Perm. Inter	mittent	E phei	meral				
Stage: High Mid	Low Di	ry Frozer								
Morphology: (Run)		ool Rifle		ade Sn	ye Ox	bow				
Channel: Class	3: <0.5m Cl	ass 2: 0.5m-:	Lm Class	1: > 1m						
Islands: None	Occasiona	•	-		Anato	omising				
Bars: None Side	Diagonal	Mid	Span Braic							
Pattern: Straig			_	andering	•	eanders		eanders		
Confinement: None	Entrenche	d Confin	ed F. Co	nfined	O. Co	nfined	Unco	nfined		
Substrate							Wat	er Quality		
% Bedrock		% Large	Gravel (17-64m	ım)	10			Temp ^o C	13.60	
	1		Gravel (2-16mi		•			0.0. (mg/l)	775	
% Boulder (>256mm)				11)	10		Con	pH (ma/au) la	6.75	
% Cobble (65-256mm		% Fines (<2mm)		10		Cor	nd (μs/cm)	0.64	-
	No. of Contract Contr		Ten Carlo					Turbidity (NTU)		
		race, moderate, abundant) estimate % if a lot								-
Boulder None	Undercut	med		race				Salinity TDS		-
Overhanging about	Deep	none	Instream	oundant	-			103		4
Vegetation	poor		veg.							
LWD None	THE RESERVE OF THE PERSON NAMED IN		; few or abund		SERVICE VI		1000		F 100 F	
Channel	T1	T2	T3	T4		T5	a eff	Average		
Distance from Crossin		156						0 16		
Channel Width (m)	Q,	13				Co-that grantes of the	~	0.10		
Wetted Width (m)	O.	12 =					<u>ーフ</u>	0.00		
Water Depth (m)	0.	05 -					<u></u>	0.05		
Pool Depth (m)			To the same of the					40	no pools	•
Riparian	0	1.25	26.50	E1 7E		76-100	\neg			
Crown Closure (%)		1-25	26-50 Cobble	51-75 Boulde		Bedrock	-+	Man Mado		
Bank Texture		Gravel	Undercut	Overha		Beurock		Man Made		
Left Bank Shape		Vertical 🗦	Undercut	Overha						
Right Bank Shape Riparian Vegetation	. 1		1						7	
(Give Description)	Dominates	ly co	Hails + blue	Hog ir	15					
,										
Vegetation Stage	Initial	Shrub	Pole-Sapling	Young I	Forest	Mature F	orest	(N/A)		
Velocity									1	
Water Depth										
Velocity (m/sec)										
Wetted Width		Discharge			Averag	ge			ĺ.	

Habitat Quality	Rating	Species and Rational
Spawning	P) M / G	Lack of appropriate substrate, lack of permanent Plan
Rearing	P/ M / G	Lack of permanent water depth + Flow
Overwintering	P/ M / G	Likely to completely Freeze through for months during winter
Overall	P/ M / G	Above seasons

Potential for Fish Presence	Rat	ing			Reason
Open Water	Nil	Low	Moderate	High	Very Shallow likely only used times of high flow
Winter (frozen conditions)	Nih	Low	Moderate	High	Very likely to remain frozen for most winter months

Photo (facing towards flow)	Photo #	Description
Upstream		
Downstream		
Right Bank		
Left Bank		
Substrate		

	•	•		l, overhanging culverts, with measuring tape in
picture.				
			ne i	
	- 10-10-11-			

	L_6461	T	ine 12"	119	1	k +	K)	
Project Number:	-0101		meir	/ 10 Ci	rew:				
Weather:	SUNNY W/	clouds							
UTM Location: North	ing		Easting			Zone			
Waypoint:	10:42		Site Lengt		135.				
Watercourse Name:			The state of the s						
Size of Watercourse:	Large Perm		m.) Inter	mittent	Ephe	meral			
Stage: High Mid	Low Dry					I			
	(Flat) Poo		apid Casca		ye Ox	bow			
		ss 2: 0.5m-1m		1: > 1m	A +	! _ !			
Islands: None		Irregular	Frequ		Anato	omising			
Bars: None Side	Diagonal		pan Braid		- 0 1/4		T 1.4.	andare	
Pattern: Straig		1	A STATE OF THE PARTY OF THE PAR	andering		eanders		eanders nfined	
Confinement: None	Entrenched	Confined	F. Co	nfined	0. 00	nfined	Unco	mmeu	
Substrate	100 C						Wat	er Quality	
Supstrate		7				_	- Contract	Temp °C	17.50
% Bedrock		% Large Gra	vel (17-64m	nm)	20			.O. (mg/l)	11.5
% Boulder (>256mm)	5	% Small Gra	vel (2-16mr		7 5		<u> </u>	pH	6/6
				4			Con	d (μs/cm)	13 63
% Cobble (65-256mm) ()	% Fines (<2r	nm)	1.	+0			Turbidity	0.00
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N	· · · · · · · · · · · · · · · · · · ·	(500)			(NTU)	
Instream Cover (none				THE RESERVE OF THE PARTY OF THE	100			Salinity	
Boulder trace	Undercut	1110.00		race				TDS	-
Overhanging Mod	Deep		stream a	bundan	4			100	
vegetation	pool		eg.						
LWD None		mped, even; fe		The second second			Sales Sept.		10 mm 1 m
Channel	T1	T2	T3	T4	ALIGNES STREET	T5		Average	(A9201B)
Distance from Crossin	g (m) WP		O WP	101 M	/P_157		67	A 71	
Channel Width (m)	Q,	70, 0,5	-	55. 1	2m		The same of the sa	O. 74,	20
Wetted Width (m)	0,			ion C	0.8m		3	0 6 5 5 x	n
Water Depth (m)	0,	10. 0.10	2 O. L	15× 0	10 m		9	Oclim	
Pool Depth (m)	O.	250	0.3	5m	/		9	0 . 30 m	
Riparian									
Crown Closure (%)			-50-)	51-75		76-100			_
Bank Texture			bble	Boulde		Bedrock	ļ P	Man Made	
Left Bank Shape			dercut	Overha					
Right Bank Shape	Sloped	ertical Ur	ndercut)	Overha	1				_
Riparian Vegetation	Permanily	hertaceous	days 11	13m 8m	Hat	soft rus			
(Give Description)	1 & Harrat A	1010000033	C C AN LYGIT A	9 00	10(12)	201 , 402	1		
Vegetation Stage	Initial S	hrub Po	le-Sapling	Young f	Forest	Mature F	orest	(N/A)	
Velocity									1
Water Depth									
Velocity (m/sec)									
Wetted Width		Discharge			Averag	ge			1

Habitat Quality	Rating	Species and Rational
Spawning	P)M/G	Insufficient depth, pour sparing substrate quality
Rearing	P/(M) G	Good instream cover
Overwintering	P/ M / G	Pour depth + relatively low Flow rates
Overall	PyM/G	Reasons above

Potential for Fish Presence	Rat	ing			Reason
Open Water	Nil	Low	Moderate	High	Minnous were observed Water goality + flow are sufficient
Winter (frozen conditions)	Nil	Lów)	Moderate	High	a times a top shaller

Photo (facing towards flow)	Photo#	Description
Upstream		
Downstream		
Right Bank		
Left Bank		
Substrate		


Notes [e.	g. fish b	arriers, be	aver da	ms and	d lodges , c	observed	d fish, ur	ndergrour	nd section	s, waterfall,	overhangin	g culverts,
observed	l spawni	ng areas]	Please ta	ake me	easuremer	nts wher	n possibl	e and a p	hoto whei	n possible w	th measuri	ng tape in
picture.	Very	5Mg	minn	ins	Were	obs	erved	glone	2 He	Length	of	
	the	worterc	ovese	1		1	0.1	1				
			114	10	reliert	40	Luly	ert				
				- 14								

Appendix M2

Watercourses in the Vicinity of the Project Footprint Area Photo Plate



M2: Watercourses in the Vicinity of the Project Footprint Area Photo Plate

Appendix M3

Summary of General Physical Characteristics of Predicted Watercourse Crossings Along the Pipeline Route (Conducted on December 3, 2018)

M3: Summary of general physical characteristics collected for predicted watercourse crossings along the pipeline route (conducted on December 3, 2018).

WC No.	WC Name	WL No.	Assessment Loca ti on (UTM NAD 83)	WC Features		Direc ti on	
			5055813 N	paths from parking area	moderate flow		forested
	Tributary to Pictou Harbour		5055792 N	project footprint area; within footprint intermittent to tidal connected with Pictou Harbour	intermittent, low to moderate flow, tidally influenced		cobbles
	Pictou Harbour	WL3 WL4	5056680 N		high flow, tidal		
	Tributary to Pictou Harbour		5057441 N	culvert under Highway 106 to wetland drainage	moderate flow		
	Pictou Harbour		5057513 N	drainage and WL4 drainage	flow		cobble
	Haliburton Brook	D)	5058792 N	with roundabout	intermittent low flow	W	
	Tributary to Haliburton Brook	D)	5059083 N	upstream of Highway 106, defined channel downstream of Rte 6	to moderate		cobble
	Haliburton Brook		5060240 N		moderate flow		
	Haliburton Brook		5060520 N	from WL8	moderate flow		
	Haliburton Brook	WL9	5061335 N		Permanent, slow flow		
	Mill Brook	WL11	5061869 N		Permanent, slow flow		organics
	Tributary to Mill Brook	WL13	5062212 N	upstream ponded downstream	moderate flow		organics
	Mill Brook	WL13	5062564 N		moderate flow		organics
	Mill Brook		5063285 N	between wetlands	moderate flow		
	Caribou Harbour		5064206 N		moderate flow		
	Caribou Harbour		5064837 N		flow		cobble

M3

*Flow observations are described as either slow (minimal laminar flow or trickling), moderate or fast (gushing and/or relatively high water levels). Flow descriptions are subjective and based on only one observation; therefore, relative flow descriptions are based on available site observations of typical flow velocity and flow at the time of assessment.

**NA- not assessed, due to the conditions during the assessment (i.e., ice coverage, very high water level, etc.), the substrate was not visible or accessible for observation.

Appendix M4

Maxxam Laboratory Certificates

M4: Laboratory Certificates

Your Project #: 17-6461 Your C.O.C. #: D29810, D29811

Attention: Kelly Regan

Dillon Consulting Limited 137 Chain Lake Dr Suite 100 Halifax , NS CANADA B3S 1B3

Report Date: 2018/12/17

Report #: R5528049 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8W8094 Received: 2018/12/06, 16:01

Sample Matrix: Water # Samples Received: 13

Analyses Quantity Extracted Analyzed Laboratory Method Carbonate, Bicarbonate and Hydroxide 11 N/A 2018/12/11 N/A Carbonate, Bicarbonate and Hydroxide 2 N/A 2018/12/12 N/A Alkalinity 13 N/A 2018/12/12 ATL SOP 00013 Chloride 11 N/A 2018/12/12 ATL SOP 00014 Chloride 2 N/A 2018/12/13 ATL SOP 00020 Colour 13 N/A 2018/12/12 ATL SOP 00020	Reference SM 23 4500-CO2 D SM 23 4500-CO2 D EPA 310.2 R1974 m
Carbonate, Bicarbonate and Hydroxide 2 N/A 2018/12/12 N/A Alkalinity 13 N/A 2018/12/12 ATL SOP 00013 Chloride 11 N/A 2018/12/12 ATL SOP 00014 Chloride 2 N/A 2018/12/13 ATL SOP 00014 Colour 13 N/A 2018/12/12 ATL SOP 00020	SM 23 4500-CO2 D
Alkalinity 13 N/A 2018/12/12 ATL SOP 00013 Chloride 11 N/A 2018/12/12 ATL SOP 00014 Chloride 2 N/A 2018/12/13 ATL SOP 00014 Colour 13 N/A 2018/12/12 ATL SOP 00020	
Chloride 11 N/A 2018/12/12 ATL SOP 00014 Chloride 2 N/A 2018/12/13 ATL SOP 00014 Colour 13 N/A 2018/12/12 ATL SOP 00020	EPA 310.2 R1974 m
Chloride 2 N/A 2018/12/13 ATL SOP 00014 Colour 13 N/A 2018/12/12 ATL SOP 00020	
Colour 13 N/A 2018/12/12 ATL SOP 00020	SM 23 4500-Cl- E m
	SM 23 4500-Cl- E m
	SM 23 2120C m
Conductance - water 11 N/A 2018/12/11 ATL SOP 00004	SM 23 2510B m
Conductance - water 2 N/A 2018/12/12 ATL SOP 00004	SM 23 2510B m
Hardness (calculated as CaCO3) 2 N/A 2018/12/11 ATL SOP 00048	Auto Calc
Hardness (calculated as CaCO3) 8 N/A 2018/12/12 ATL SOP 00048	Auto Calc
Hardness (calculated as CaCO3) 3 N/A 2018/12/13 ATL SOP 00048	Auto Calc
Metals Water Total MS 2 2018/12/10 2018/12/11 ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS 8 2018/12/10 2018/12/12 ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS 3 2018/12/10 2018/12/13 ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference) 13 N/A 2018/12/13 N/A	Auto Calc.
Anion and Cation Sum 13 N/A 2018/12/13 N/A	Auto Calc.
Nitrogen Ammonia - water 13 N/A 2018/12/12 ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite 13 N/A 2018/12/13 ATL SOP 00016	USGS I-2547-11m
Nitrogen - Nitrite 13 N/A 2018/12/12 ATL SOP 00017	SM 23 4500-NO2- B m
Nitrogen - Nitrate (as N) 13 N/A 2018/12/13 ATL SOP 00018	ASTM D3867-16
pH (1) 11 N/A 2018/12/11 ATL SOP 00003	SM 23 4500-H+ B m
pH (1) 2 N/A 2018/12/12 ATL SOP 00003	SM 23 4500-H+ B m
Phosphorus - ortho 13 N/A 2018/12/12 ATL SOP 00021	SM 23 4500-P E m
Sat. pH and Langelier Index (@ 20C) 13 N/A 2018/12/13 ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C) 13 N/A 2018/12/13 ATL SOP 00049	Auto Calc.
Reactive Silica 13 N/A 2018/12/12 ATL SOP 00022	EPA 366.0 m
Sulphate 13 N/A 2018/12/12 ATL SOP 00023	ASTM D516-16 m
Total Dissolved Solids (TDS calc) 13 N/A 2018/12/13 N/A	Auto Calc.
Organic carbon - Total (TOC) (2) 3 N/A 2018/12/14 ATL SOP 00203	SM 23 5310B m
Organic carbon - Total (TOC) (2) 1 N/A 2018/12/15 ATL SOP 00203	SM 23 5310B m
Organic carbon - Total (TOC) (2) 9 N/A 2018/12/16 ATL SOP 00203	SM 23 5310B m

M4

Your Project #: 17-6461 Your C.O.C. #: D29810, D29811

Attention: Kelly Regan

Dillon Consulting Limited 137 Chain Lake Dr Suite 100 Halifax , NS CANADA B3S 1B3

Report Date: 2018/12/17

Report #: R5528049 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8W8094 Received: 2018/12/06, 16:01

Sample Matrix: Water # Samples Received: 13

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Total Suspended Solids	13	2018/12/10	2018/12/13	ATL SOP 00007	SM 23 2540D m
Turbidity	1	N/A	2018/12/11	ATL SOP 00011	EPA 180.1 R2 m
Turbidity	11	N/A	2018/12/12	ATL SOP 00011	EPA 180.1 R2 m
Turbidity	1	N/A	2018/12/13	ATL SOP 00011	EPA 180.1 R2 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.
- (2) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Encryption Key

M4

Your Project #: 17-6461 Your C.O.C. #: D29810, D29811

Attention: Kelly Regan

Dillon Consulting Limited 137 Chain Lake Dr Suite 100 Halifax , NS CANADA B3S 1B3

Report Date: 2018/12/17

Report #: R5528049 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8W8094 Received: 2018/12/06, 16:01

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Heather Macumber, Senior Project Manager

Email: HMacumber@maxxam.ca Phone# (902)420-0203 Ext:226

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

M4

Dillon Consulting Limited Client Project #: 17-6461 Sampler Initials: KSR

RESULTS OF ANALYSES OF WATER

Maxxam ID		IMN595			IMN596			IMN597		
Sampling Date		2018/12/03			2018/12/03			2018/12/03		
Jamping Date		09:40			09:55			10:25		
COC Number		D29810			D29810			D29810		
	UNITS	WC16	RDL	QC Batch	WC15	RDL	QC Batch	WC14	RDL	QC Batch
Calculated Parameters										
Anion Sum	me/L	2.41	N/A	5877080	1.26	N/A	5877080	3.80	N/A	5877080
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	16	1.0	5877076	<1.0	1.0	5877076	8.8	1.0	5877076
Calculated TDS	mg/L	140	1.0	5877085	79	1.0	5877085	220	1.0	5877085
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	5877076	<1.0	1.0	5877076	<1.0	1.0	5877076
Cation Sum	me/L	2.16	N/A	5877080	1.40	N/A	5877080	3.38	N/A	5877080
Hardness (CaCO3)	mg/L	32	1.0	5877077	17	1.0	5877077	25	1.0	5877077
Ion Balance (% Difference)	%	5.47	N/A	5877079	5.26	N/A	5877079	5.85	N/A	5877079
Langelier Index (@ 20C)	N/A	-2.35		5877082	NC		5877082	-3.31		5877082
Langelier Index (@ 4C)	N/A	-2.60		5877083	NC		5877083	-3.56		5877083
Nitrate (N)	mg/L	0.073	0.050	5876806	0.052	0.050	5876806	<0.050	0.050	5876806
Saturation pH (@ 20C)	N/A	9.18		5877082	NC		5877082	9.61		5877082
Saturation pH (@ 4C)	N/A	9.43		5877083	NC		5877083	9.86		5877083
Inorganics										
Total Alkalinity (Total as CaCO3)	mg/L	16	5.0	5881677	<5.0	5.0	5881677	8.8	5.0	5881677
Dissolved Chloride (Cl-)	mg/L	68	1.0	5881681	45	1.0	5881681	120	1.0	5881681
Colour	TCU	120	25	5881688	160	25	5881688	62	25	5881688
Nitrate + Nitrite (N)	mg/L	0.073	0.050	5881711	0.052	0.050	5881711	<0.050	0.050	5881711
Nitrite (N)	mg/L	<0.010	0.010	5881724	<0.010	0.010	5881724	<0.010	0.010	5881724
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	5881454	<0.050	0.050	5881454	0.057	0.050	5881445
Total Organic Carbon (C)	mg/L	12	0.50	5888741	20	0.50	5888741	8.5	0.50	5886633
Orthophosphate (P)	mg/L	<0.010	0.010	5881702	<0.010	0.010	5881702	<0.010	0.010	5881702
рН	рН	6.82	N/A	5883620	5.40	N/A	5881255	6.29	N/A	5881260
Reactive Silica (SiO2)	mg/L	4.2	0.50	5881684	3.5	0.50	5881684	3.4	0.50	5881684
Total Suspended Solids	mg/L	6.4	2.0	5879412	3.5	2.5	5879412	1.2	1.0	5879412
Dissolved Sulphate (SO4)	mg/L	8.3	2.0	5881682	<2.0	2.0	5881682	9.0	2.0	5881682
Turbidity	NTU	2.2	0.10	5883750	2.9	0.10	5883746	1.7	0.10	5883746
Conductivity	uS/cm	250	1.0	5883621	170	1.0	5881257	420	1.0	5881262
RDL = Reportable Detection Limit										

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Dillon Consulting Limited Client Project #: 17-6461 Sampler Initials: KSR

M4

RESULTS OF ANALYSES OF WATER

Maxxam ID		IMN598			IMN599			IMN600		
Sampling Date		2018/12/03			2018/12/03			2018/12/03		
Sampling Date		10:45			10:35			11:05		
COC Number		D29810			D29810			D29810		
	UNITS	WC13A	RDL	QC Batch	WC13B	RDL	QC Batch	WC12	RDL	QC Batch
Calculated Parameters										
Anion Sum	me/L	0.450	N/A	5877080	1.69	N/A	5877080	0.720	N/A	5877080
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	5.7	1.0	5877076	11	1.0	5877076	14	1.0	5877076
Calculated TDS	mg/L	31	1.0	5877085	98	1.0	5877085	45	1.0	5877085
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	5877076	<1.0	1.0	5877076	<1.0	1.0	5877076
Cation Sum	me/L	0.570	N/A	5877080	1.59	N/A	5877080	0.790	N/A	5877080
Hardness (CaCO3)	mg/L	14	1.0	5877077	18	1.0	5877077	20	1.0	5877077
Ion Balance (% Difference)	%	11.8	N/A	5877079	3.05	N/A	5877079	4.64	N/A	5877079
Langelier Index (@ 20C)	N/A	-4.19		5877082	-2.95		5877082	-2.84		5877082
Langelier Index (@ 4C)	N/A	-4.44		5877083	-3.20		5877083	-3.09		5877083
Nitrate (N)	mg/L	0.054	0.050	5876806	0.052	0.050	5876806	0.066	0.050	5876806
Saturation pH (@ 20C)	N/A	10.0		5877082	9.64		5877082	9.40		5877082
Saturation pH (@ 4C)	N/A	10.3		5877083	9.89		5877083	9.65		5877083
Inorganics										
Total Alkalinity (Total as CaCO3)	mg/L	5.7	5.0	5881677	11	5.0	5881677	14	5.0	5881677
Dissolved Chloride (Cl-)	mg/L	12	1.0	5881681	49	1.0	5881681	16	1.0	5881681
Colour	TCU	130	25	5881688	42	5.0	5881688	76	25	5881688
Nitrate + Nitrite (N)	mg/L	0.054	0.050	5881711	0.052	0.050	5881711	0.066	0.050	5881711
Nitrite (N)	mg/L	<0.010	0.010	5881724	<0.010	0.010	5881724	<0.010	0.010	5881724
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	5881454	<0.050	0.050	5881454	<0.050	0.050	5881454
Total Organic Carbon (C)	mg/L	15	0.50	5886636	7.7	0.50	5888741	10	0.50	5886636
Orthophosphate (P)	mg/L	<0.010	0.010	5881702	<0.010	0.010	5881702	<0.010	0.010	5881702
pH	рН	5.81	N/A	5881255	6.69	N/A	5881255	6.56	N/A	5881255
Reactive Silica (SiO2)	mg/L	3.4	0.50	5881684	3.1	0.50	5881684	4.5	0.50	5881684
Total Suspended Solids	mg/L	<2.0	2.0	5879412	2.0	2.0	5879412	<1.0	1.0	5879412
Dissolved Sulphate (SO4)	mg/L	<2.0	2.0	5881682	4.0	2.0	5881682	<2.0	2.0	5881682
Turbidity	NTU	3.0	0.10	5883746	5.3	0.10	5883746	0.66	0.10	5883746
Conductivity	uS/cm	60	1.0	5881257	190	1.0	5881257	86	1.0	5881257

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

M4

Dillon Consulting Limited Client Project #: 17-6461 Sampler Initials: KSR

RESULTS OF ANALYSES OF WATER

ID		IN ANICOA	İ	IN ANICOD	İ	INANICOO			IN ANICOO		
Maxxam ID		IMN601		IMN602		IMN603			IMN603		
Sampling Date		2018/12/03		2018/12/03		2018/12/03			2018/12/03		
COC Name have		11:20		11:30		11:45			11:45		
COC Number		D29810		D29810		D29810			D29810		
	UNITS	WC11	QC Batch	WC10	QC Batch	WC09	RDL	QC Batch	WC09 Lab-Dup	RDL	QC Batch
Calculated Parameters											
Anion Sum	me/L	0.220	5877080	0.430	5877080	0.550	N/A	5877080			
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	5877076	<1.0	5877076	<1.0	1.0	5877076			
Calculated TDS	mg/L	18	5877085	29	5877085	36	1.0	5877085			
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	5877076	<1.0	5877076	<1.0	1.0	5877076			
Cation Sum	me/L	0.360	5877080	0.510	5877080	0.650	N/A	5877080			
Hardness (CaCO3)	mg/L	8.6	5877077	7.4	5877077	7.7	1.0	5877077			
Ion Balance (% Difference)	%	24.1	5877079	8.51	5877079	8.33	N/A	5877079			
Langelier Index (@ 20C)	N/A	NC	5877082	NC	5877082	NC		5877082			
Langelier Index (@ 4C)	N/A	NC	5877083	NC	5877083	NC		5877083			
Nitrate (N)	mg/L	<0.050	5876806	<0.050	5876806	<0.050	0.050	5876806			
Saturation pH (@ 20C)	N/A	NC	5877082	NC	5877082	NC		5877082			
Saturation pH (@ 4C)	N/A	NC	5877083	NC	5877083	NC		5877083			
Inorganics		•					•			,	
Total Alkalinity (Total as CaCO3)	mg/L	<5.0	5881677	<5.0	5881677	<5.0	5.0	5881677	<5.0	5.0	5881677
Dissolved Chloride (Cl-)	mg/L	7.8	5881681	15	5881681	19	1.0	5881681	19	1.0	5881681
Colour	TCU	190	5881688	150	5881688	140	25	5881688	140	25	5881688
Nitrate + Nitrite (N)	mg/L	<0.050	5881711	<0.050	5881711	<0.050	0.050	5881711	<0.050	0.050	5881711
Nitrite (N)	mg/L	<0.010	5881724	<0.010	5881724	<0.010	0.010	5881724	<0.010	0.010	5881724
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	5881454	<0.050	5881454	<0.050	0.050	5881454			
Total Organic Carbon (C)	mg/L	24	5888741	20	5888741	18	0.50	5888741			
Orthophosphate (P)	mg/L	<0.010	5881702	<0.010	5881702	<0.010	0.010	5881702	<0.010	0.010	5881702
рН	рН	5.14	5881255	4.75	5881255	4.83 (1)	N/A	5881255	4.61	N/A	5881255
Reactive Silica (SiO2)	mg/L	2.8	5881684	3.1	5881684	2.3	0.50	5881684	2.3	0.50	5881684
Total Suspended Solids	mg/L	<1.0	5879412	<1.0	5879412	2.4	1.0	5879412			
Dissolved Sulphate (SO4)	mg/L	<2.0	5881682	<2.0	5881682	<2.0	2.0	5881682	<2.0	2.0	5881682
Turbidity	NTU	0.84	5883746	0.38	5883750	1.1	0.10	5883734			
Conductivity	uS/cm	46	5881257	76	5881257	86	1.0	5881257	86	1.0	5881257
										•	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Poor duplicate recovery, insuficent sample for reanalysis.

M4

Dillon Consulting Limited Client Project #: 17-6461 Sampler Initials: KSR

RESULTS OF ANALYSES OF WATER

5										
Maxxam ID		IMN604			IMN607			IMN608		
Sampling Date		2018/12/03			2018/12/03			2018/12/03		
Jamping Jate		12:05			12:55			13:30		
COC Number		D29810			D29811			D29811		
	UNITS	WC08	RDL	QC Batch	WC06	RDL	QC Batch	WC05	RDL	QC Batch
Calculated Parameters										
Anion Sum	me/L	1.83	N/A	5877080	5.14	N/A	5877080	6.09	N/A	5877080
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	20	1.0	5877076	41	1.0	5877076	110	1.0	5877076
Calculated TDS	mg/L	110	1.0	5877085	290	1.0	5877085	350	1.0	5877085
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	5877076	<1.0	1.0	5877076	<1.0	1.0	5877076
Cation Sum	me/L	1.78	N/A	5877080	4.73	N/A	5877080	5.81	N/A	5877080
Hardness (CaCO3)	mg/L	27	1.0	5877077	63	1.0	5877077	170	1.0	5877077
Ion Balance (% Difference)	%	1.39	N/A	5877079	4.15	N/A	5877079	2.35	N/A	5877079
Langelier Index (@ 20C)	N/A	-2.07		5877082	-1.03		5877082	0.00800		5877082
Langelier Index (@ 4C)	N/A	-2.32		5877083	-1.28		5877083	-0.241		5877083
Nitrate (N)	mg/L	0.11	0.050	5876806	0.11	0.050	5876806	0.22	0.050	5876806
Saturation pH (@ 20C)	N/A	9.10		5877082	8.47		5877082	7.62		5877082
Saturation pH (@ 4C)	N/A	9.35		5877083	8.72		5877083	7.87		5877083
Inorganics										
Total Alkalinity (Total as CaCO3)	mg/L	20	5.0	5881677	41	5.0	5881677	110	25	5881655
Dissolved Chloride (Cl-)	mg/L	46	1.0	5881681	140	1.0	5881681	90	1.0	5881659
Colour	TCU	48	5.0	5881688	24	5.0	5881688	14	5.0	5881662
Nitrate + Nitrite (N)	mg/L	0.11	0.050	5881711	0.11	0.050	5881711	0.22	0.050	5881670
Nitrite (N)	mg/L	<0.010	0.010	5881724	<0.010	0.010	5881724	<0.010	0.010	5881673
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	5881445	<0.050	0.050	5881445	<0.050	0.050	5881445
Total Organic Carbon (C)	mg/L	6.5	0.50	5886644	4.4	0.50	5888773	5.7	0.50	5888741
Orthophosphate (P)	mg/L	0.025	0.010	5881702	<0.010	0.010	5881702	<0.010	0.010	5881668
рН	рН	7.03	N/A	5881255	7.44	N/A	5881255	7.63	N/A	5881255
Reactive Silica (SiO2)	mg/L	4.2	0.50	5881684	4.1	0.50	5881684	3.6	0.50	5881661
Total Suspended Solids	mg/L	3.0	1.0	5879862	4.0	2.0	5879412	6.8	2.0	5879412
Dissolved Sulphate (SO4)	mg/L	5.6	2.0	5881682	18	2.0	5881682	63	2.0	5881660
Turbidity	NTU	3.2	0.10	5883746	4.5	0.10	5886137	9.2	0.10	5881459
Conductivity	uS/cm	200	1.0	5881257	550	1.0	5881257	600	1.0	5881257
RDL = Reportable Detection Limit										

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

,

Dillon Consulting Limited Client Project #: 17-6461 Sampler Initials: KSR

M4

RESULTS OF ANALYSES OF WATER

Maxxam ID		IMN608			IMN609		
IVIAAAAIII ID		2018/12/03					
Sampling Date		13:30			2018/12/03 14:30		
COC Number		D29811			D29811		
		WC05					
	UNITS	Lab-Dup	RDL	QC Batch	WC03	RDL	QC Batch
Calculated Parameters							
Anion Sum	me/L				5.62	N/A	5877080
Bicarb. Alkalinity (calc. as CaCO3)	mg/L				130	1.0	5877076
Calculated TDS	mg/L				320	1.0	5877085
Carb. Alkalinity (calc. as CaCO3)	mg/L				<1.0	1.0	5877076
Cation Sum	me/L				5.73	N/A	5877080
Hardness (CaCO3)	mg/L				140	1.0	5877077
Ion Balance (% Difference)	%				0.970	N/A	5877079
Langelier Index (@ 20C)	N/A				-0.238		5877082
Langelier Index (@ 4C)	N/A				-0.487		5877083
Nitrate (N)	mg/L				0.058	0.050	5876806
Saturation pH (@ 20C)	N/A				7.66		5877082
Saturation pH (@ 4C)	N/A				7.91		5877083
Inorganics							
Total Alkalinity (Total as CaCO3)	mg/L	110	25	5881655	130	25	5881677
Dissolved Chloride (CI-)	mg/L	90	1.0	5881659	92	1.0	5881681
Colour	TCU	15	5.0	5881662	210	25	5881688
Nitrate + Nitrite (N)	mg/L	0.22	0.050	5881670	0.058	0.050	5881711
Nitrite (N)	mg/L	<0.010	0.010	5881673	<0.010	0.010	5881724
Nitrogen (Ammonia Nitrogen)	mg/L				<0.050	0.050	5881454
Total Organic Carbon (C)	mg/L				58 (1)	5.0	5888741
Orthophosphate (P)	mg/L	<0.010	0.010	5881668	0.13	0.010	5881702
рН	рН				7.42	N/A	5883620
Reactive Silica (SiO2)	mg/L	3.7	0.50	5881661	4.8	0.50	5881684
Total Suspended Solids	mg/L				120	17	5879412
Dissolved Sulphate (SO4)	mg/L	61	2.0	5881660	17	2.0	5881682
Turbidity	NTU	9.0	0.10	5881459	40	0.10	5883746
Conductivity	uS/cm				540	1.0	5883621
RDI - Reportable Detection Limit	*	•					

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Elevated reporting limit due to turbidity.

M4

Dillon Consulting Limited Client Project #: 17-6461 Sampler Initials: KSR

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		IMN595	IMN596	IMN597		IMN598	IMN599	IMN600		
Compline Date		2018/12/03	2018/12/03	2018/12/03		2018/12/03	2018/12/03	2018/12/03		
Sampling Date		09:40	09:55	10:25		10:45	10:35	11:05		
COC Number		D29810	D29810	D29810		D29810	D29810	D29810		
	UNITS	WC16	WC15	WC14	QC Batch	WC13A	WC13B	WC12	RDL	QC Batch
Metals										
Total Aluminum (Al)	ug/L	250	400	190	5879593	230	280	89	5.0	5879792
Total Antimony (Sb)	ug/L	<1.0	<1.0	<1.0	5879593	<1.0	<1.0	<1.0	1.0	5879792
Total Arsenic (As)	ug/L	<1.0	<1.0	<1.0	5879593	<1.0	<1.0	<1.0	1.0	5879792
Total Barium (Ba)	ug/L	39	31	41	5879593	42	67	54	1.0	5879792
Total Beryllium (Be)	ug/L	<1.0	<1.0	<1.0	5879593	<1.0	<1.0	<1.0	1.0	5879792
Total Bismuth (Bi)	ug/L	<2.0	<2.0	<2.0	5879593	<2.0	<2.0	<2.0	2.0	5879792
Total Boron (B)	ug/L	<50	<50	<50	5879593	<50	<50	<50	50	5879792
Total Cadmium (Cd)	ug/L	0.037	0.056	0.025	5879593	0.018	0.017	<0.010	0.010	5879792
Total Calcium (Ca)	ug/L	9600	4700	7000	5879593	3500	4500	6000	100	5879792
Total Chromium (Cr)	ug/L	<1.0	<1.0	<1.0	5879593	<1.0	<1.0	<1.0	1.0	5879792
Total Cobalt (Co)	ug/L	<0.40	0.45	<0.40	5879593	<0.40	<0.40	<0.40	0.40	5879792
Total Copper (Cu)	ug/L	<2.0	<2.0	<2.0	5879593	<2.0	<2.0	<2.0	2.0	5879792
Total Iron (Fe)	ug/L	360	490	240	5879593	420	280	300	50	5879792
Total Lead (Pb)	ug/L	<0.50	1.6	<0.50	5879593	<0.50	<0.50	<0.50	0.50	5879792
Total Magnesium (Mg)	ug/L	2000	1200	1800	5879593	1200	1500	1200	100	5879792
Total Manganese (Mn)	ug/L	81	140	66	5879593	44	50	64	2.0	5879792
Total Molybdenum (Mo)	ug/L	<2.0	<2.0	<2.0	5879593	<2.0	<2.0	<2.0	2.0	5879792
Total Nickel (Ni)	ug/L	<2.0	<2.0	<2.0	5879593	<2.0	<2.0	<2.0	2.0	5879792
Total Phosphorus (P)	ug/L	<100	<100	<100	5879593	<100	<100	<100	100	5879792
Total Potassium (K)	ug/L	730	410	860	5879593	360	850	550	100	5879792
Total Selenium (Se)	ug/L	<1.0	<1.0	<1.0	5879593	<1.0	<1.0	<1.0	1.0	5879792
Total Silver (Ag)	ug/L	<0.10	<0.10	<0.10	5879593	<0.10	<0.10	<0.10	0.10	5879792
Total Sodium (Na)	ug/L	34000	24000	66000	5879593	6300	28000	8500	100	5879792
Total Strontium (Sr)	ug/L	22	14	18	5879593	10	16	16	2.0	5879792
Total Thallium (TI)	ug/L	<0.10	<0.10	<0.10	5879593	<0.10	<0.10	<0.10	0.10	5879792
Total Tin (Sn)	ug/L	<2.0	<2.0	<2.0	5879593	<2.0	<2.0	<2.0	2.0	5879792
Total Titanium (Ti)	ug/L	5.2	4.9	2.4	5879593	4.0	7.2	<2.0	2.0	5879792
Total Uranium (U)	ug/L	<0.10	<0.10	<0.10	5879593	<0.10	<0.10	<0.10	0.10	5879792
Total Vanadium (V)	ug/L	<2.0	<2.0	<2.0	5879593	<2.0	<2.0	<2.0	2.0	5879792
Total Zinc (Zn)	ug/L	6.8	8.9	<5.0	5879593	<5.0	<5.0	<5.0	5.0	5879792
RDL = Reportable Detection L	imit									

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Dillon Consulting Limited Client Project #: 17-6461 Sampler Initials: KSR

M4

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		IMN601	IMN602	IMN603	IMN604	IMN607	IMN608	IMN609		
Sampling Date		2018/12/03	2018/12/03	2018/12/03	2018/12/03	2018/12/03	2018/12/03	2018/12/03		
Sampling Date		11:20	11:30	11:45	12:05	12:55	13:30	14:30		
COC Number		D29810	D29810	D29810	D29810	D29811	D29811	D29811		
	UNITS	WC11	WC10	WC09	WC08	WC06	WC05	WC03	RDL	QC Batch
Metals										
Total Aluminum (Al)	ug/L	180	220	260	220	120	310	5300	5.0	5879792
Total Antimony (Sb)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5879792
Total Arsenic (As)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.6	1.0	5879792
Total Barium (Ba)	ug/L	38	16	21	32	39	71	190	1.0	5879792
Total Beryllium (Be)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5879792
Total Bismuth (Bi)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5879792
Total Boron (B)	ug/L	<50	<50	<50	<50	<50	<50	<50	50	5879792
Total Cadmium (Cd)	ug/L	0.033	0.019	0.050	0.032	0.041	0.43	0.23	0.010	5879792
Total Calcium (Ca)	ug/L	2300	1900	2100	8600	22000	59000	44000	100	5879792
Total Chromium (Cr)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	7.4	1.0	5879792
Total Cobalt (Co)	ug/L	<0.40	0.41	0.54	<0.40	<0.40	0.63	5.3	0.40	5879792
Total Copper (Cu)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	12	2.0	5879792
Total Iron (Fe)	ug/L	780	380	420	260	150	520	8400	50	5879792
Total Lead (Pb)	ug/L	<0.50	<0.50	0.53	0.53	<0.50	1.2	7.5	0.50	5879792
Total Magnesium (Mg)	ug/L	680	680	610	1300	2100	6700	6600	100	5879792
Total Manganese (Mn)	ug/L	240	100	150	29	15	500	1300	2.0	5879792
Total Molybdenum (Mo)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5879792
Total Nickel (Ni)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	2.2	11	2.0	5879792
Total Phosphorus (P)	ug/L	<100	<100	<100	<100	<100	<100	500	100	5879792
Total Potassium (K)	ug/L	<100	<100	170	1100	1400	4700	12000	100	5879792
Total Selenium (Se)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5879792
Total Silver (Ag)	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5879792
Total Sodium (Na)	ug/L	3500	7600	11000	28000	79000	50000	55000	100	5879792
Total Strontium (Sr)	ug/L	11	8.1	9.1	35	66	220	110	2.0	5879792
Total Thallium (TI)	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5879792
Total Tin (Sn)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5879792
Total Titanium (Ti)	ug/L	2.5	2.3	4.6	6.4	2.3	4.6	64	2.0	5879792
Total Uranium (U)	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.28	0.36	0.10	5879792
Total Vanadium (V)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	11	2.0	5879792
Total Zinc (Zn)	ug/L	5.9	<5.0	6.1	8.2	5.3	57	68	5.0	5879792
RDI = Reportable Detection	Limit							-		-

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Dillon Consulting Limited Client Project #: 17-6461 Sampler Initials: KSR

M4

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.3°C

Sample IMN595 [WC16]: Poor RCAp Ion Balance due to sample matrix.

Sample IMN596 [WC15]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample IMN597 [WC14]: Poor RCAp Ion Balance due to sample matrix.

Sample IMN598 [WC13A]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample IMN601 [WC11]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample IMN602 [WC10]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample IMN603 [WC09]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Results relate only to the items tested.

Dillon Consulting Limited Client Project #: 17-6461 Sampler Initials: KSR

M4

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5879412	AM6	QC Standard	Total Suspended Solids	2018/12/13	¥ and C	99	%	80 - 120
5879412	AM6	Method Blank	Total Suspended Solids	2018/12/13	<1.0	33	mg/L	00 120
5879412	AM6	RPD	Total Suspended Solids	2018/12/13	18		%	20
5879593		Matrix Spike	Total Aluminum (Al)	2018/12/11		97	%	80 - 120
			Total Antimony (Sb)	2018/12/11		103	%	80 - 120
			Total Arsenic (As)	2018/12/11		96	%	80 - 120
			Total Barium (Ba)	2018/12/11		97	%	80 - 120
			Total Beryllium (Be)	2018/12/11		95	%	80 - 120
			Total Bismuth (Bi)	2018/12/11		100	%	80 - 120
			Total Boron (B)	2018/12/11		99	%	80 - 120
			Total Cadmium (Cd)	2018/12/11		100	%	80 - 120
			Total Calcium (Ca)	2018/12/11		101	%	80 - 120
			Total Chromium (Cr)	2018/12/11		94	%	80 - 120
			Total Cobalt (Co)	2018/12/11		95	%	80 - 120
			Total Copper (Cu)	2018/12/11		NC	%	80 - 120
			Total Iron (Fe)	2018/12/11		98	%	80 - 120
			Total Lead (Pb)	2018/12/11		95	%	80 - 120
			Total Magnesium (Mg)	2018/12/11		102	%	80 - 120
			Total Manganese (Mn)	2018/12/11		94	%	80 - 120
			Total Molybdenum (Mo)	2018/12/11		102	%	80 - 120
			Total Nickel (Ni)	2018/12/11		96	%	80 - 120
			Total Phosphorus (P)	2018/12/11		104	%	80 - 120
			Total Potassium (K)	2018/12/11		101	%	80 - 120
			Total Selenium (Se)	2018/12/11		96	%	80 - 120
			Total Silver (Ag)	2018/12/11		100	%	80 - 120
			Total Sodium (Na)	2018/12/11		98	%	80 - 120
			Total Strontium (Sr)	2018/12/11		98	%	80 - 120
			Total Thallium (TI)	2018/12/11		101	%	80 - 120
			Total Tin (Sn)	2018/12/11		104	%	80 - 120
			Total Titanium (Ti)	2018/12/11		98	%	80 - 120
			Total Uranium (U)	2018/12/11		102	%	80 - 120
			Total Vanadium (V)	2018/12/11		98	%	80 - 120
			Total Zinc (Zn)	2018/12/11		95	%	80 - 120
5879593	AWL	Spiked Blank	Total Aluminum (AI)	2018/12/11		97	%	80 - 120
			Total Antimony (Sb)	2018/12/11		103	%	80 - 120
			Total Arsenic (As)	2018/12/11		93	%	80 - 120
			Total Barium (Ba)	2018/12/11		94	%	80 - 120
			Total Beryllium (Be)	2018/12/11		97	%	80 - 120
			Total Bismuth (Bi)	2018/12/11		100	%	80 - 120
			Total Boron (B)	2018/12/11		100	%	80 - 120
			Total Cadmium (Cd)	2018/12/11		99	%	80 - 120
			Total Calcium (Ca)	2018/12/11		101	%	80 - 120
			Total Chromium (Cr)	2018/12/11		92	%	80 - 120
			Total Cobalt (Co)	2018/12/11		95	%	80 - 120
			Total Copper (Cu)	2018/12/11		93	%	80 - 120
			Total Iron (Fe)	2018/12/11		98	%	80 - 120
			Total Lead (Pb)	2018/12/11		94	%	80 - 120
			Total Magnesium (Mg)	2018/12/11		100	%	80 - 120
			Total Manganese (Mn)	2018/12/11		94	%	80 - 120
			Total Molybdenum (Mo)	2018/12/11		102	%	80 - 120
			Total Nickel (Ni)	2018/12/11		94	%	80 - 120
			Total Phosphorus (P)	2018/12/11		101	%	80 - 120
			Total Potassium (K)	2018/12/11		100	%	80 - 120
			Total Selenium (Se)	2018/12/11		95	%	80 - 120

Dillon Consulting Limited Client Project #: 17-6461 Sampler Initials: KSR

M4

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Silver (Ag)	2018/12/11		97	%	80 - 120
			Total Sodium (Na)	2018/12/11		97	%	80 - 120
			Total Strontium (Sr)	2018/12/11		93	%	80 - 120
			Total Thallium (TI)	2018/12/11		100	%	80 - 120
			Total Tin (Sn)	2018/12/11		102	%	80 - 120
			Total Titanium (Ti)	2018/12/11		98	%	80 - 120
			Total Uranium (U)	2018/12/11		99	%	80 - 120
			Total Vanadium (V)	2018/12/11		96	%	80 - 120
			Total Zinc (Zn)	2018/12/11		96	%	80 - 120
879593	AWL	Method Blank	Total Aluminum (AI)	2018/12/11	<5.0		ug/L	
			Total Antimony (Sb)	2018/12/11	<1.0		ug/L	
			Total Arsenic (As)	2018/12/11	<1.0		ug/L	
			Total Barium (Ba)	2018/12/11	<1.0		ug/L	
			Total Beryllium (Be)	2018/12/11	<1.0		ug/L	
			Total Bismuth (Bi)	2018/12/11	<2.0		ug/L	
			Total Boron (B)	2018/12/11	<50		ug/L	
			Total Cadmium (Cd)	2018/12/11	< 0.010		ug/L	
			Total Calcium (Ca)	2018/12/11	<100		ug/L	
			Total Chromium (Cr)	2018/12/11	<1.0		ug/L	
			Total Cobalt (Co)	2018/12/11	<0.40		ug/L	
			Total Copper (Cu)	2018/12/11	<2.0		ug/L	
			Total Iron (Fe)	2018/12/11	<50		ug/L	
			Total Lead (Pb)	2018/12/11	<0.50		ug/L	
			Total Magnesium (Mg)	2018/12/11	<100		ug/L	
			Total Manganese (Mn)	2018/12/11	<2.0			
							ug/L	
			Total Molybdenum (Mo)	2018/12/11	<2.0		ug/L	
			Total Nickel (Ni)	2018/12/11	<2.0		ug/L	
			Total Phosphorus (P)	2018/12/11	<100		ug/L	
			Total Potassium (K)	2018/12/11	<100		ug/L	
			Total Selenium (Se)	2018/12/11	<1.0		ug/L	
			Total Silver (Ag)	2018/12/11	<0.10		ug/L	
			Total Sodium (Na)	2018/12/11	<100		ug/L	
			Total Strontium (Sr)	2018/12/11	<2.0		ug/L	
			Total Thallium (TI)	2018/12/11	<0.10		ug/L	
			Total Tin (Sn)	2018/12/11	<2.0		ug/L	
			Total Titanium (Ti)	2018/12/11	<2.0		ug/L	
			Total Uranium (U)	2018/12/11	<0.10		ug/L	
			Total Vanadium (V)	2018/12/11	<2.0		ug/L	
			Total Zinc (Zn)	2018/12/11	<5.0		ug/L	
879593	AWL	RPD	Total Copper (Cu)	2018/12/11	1.7		%	20
			Total Iron (Fe)	2018/12/11	2.3		%	20
			Total Lead (Pb)	2018/12/11	4.1		%	20
			Total Manganese (Mn)	2018/12/11	0.10		%	20
879792	MLB	Matrix Spike	Total Aluminum (AI)	2018/12/12		101	%	80 - 120
			Total Antimony (Sb)	2018/12/12		109	%	80 - 120
			Total Arsenic (As)	2018/12/12		99	%	80 - 120
			Total Barium (Ba)	2018/12/12		95	%	80 - 120
			Total Beryllium (Be)	2018/12/12		95	%	80 - 120
			Total Bismuth (Bi)	2018/12/12		101	%	80 - 120
			Total Boron (B)	2018/12/12		94	%	80 - 120
			Total Cadmium (Cd)	2018/12/12		99	%	80 - 120
			Total Calcium (Ca)	2018/12/12		NC	%	80 - 120
			Total Chromium (Cr)	2018/12/12		95	% %	80 - 120
			rotal Chronnulli (Cl)	2010/12/12		33	/0	00 - 12U

Dillon Consulting Limited Client Project #: 17-6461 Sampler Initials: KSR

M4

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Copper (Cu)	2018/12/12		92	%	80 - 120
			Total Iron (Fe)	2018/12/12		102	%	80 - 120
			Total Lead (Pb)	2018/12/12		95	%	80 - 120
			Total Magnesium (Mg)	2018/12/12		102	%	80 - 120
			Total Manganese (Mn)	2018/12/12		97	%	80 - 120
			Total Molybdenum (Mo)	2018/12/12		106	%	80 - 120
			Total Nickel (Ni)	2018/12/12		95	%	80 - 120
			Total Phosphorus (P)	2018/12/12		109	%	80 - 120
			Total Potassium (K)	2018/12/12		102	%	80 - 120
			Total Selenium (Se)	2018/12/12		100	%	80 - 120
			Total Silver (Ag)	2018/12/12		100	%	80 - 120
			Total Sodium (Na)	2018/12/12		NC	%	80 - 120
			Total Strontium (Sr)	2018/12/12		NC	%	80 - 120
			Total Thallium (TI)	2018/12/12		102	%	80 - 120
			Total Tin (Sn)	2018/12/12		110	%	80 - 120
			Total Titanium (Ti)	2018/12/12		98	%	80 - 120
			Total Uranium (U)	2018/12/12		107	%	80 - 120
			Total Vanadium (V)	2018/12/12		98	%	80 - 120
			Total Zinc (Zn)	2018/12/12		96	%	80 - 120
5879792	MLB	Spiked Blank	Total Aluminum (Al)	2018/12/12		103	%	80 - 120
3073732	IVILD	Spiked Blank	Total Antimony (Sb)	2018/12/12		108	%	80 - 120
			Total Arsenic (As)	2018/12/12		98	%	80 - 120
			Total Barium (Ba)	2018/12/12		97	%	80 - 120
			Total Beryllium (Be)	2018/12/12		95	%	80 - 120
			Total Bismuth (Bi)	2018/12/12				
						105	%	80 - 120
			Total Boron (B)	2018/12/12		93	%	80 - 120
			Total Cadmium (Cd)	2018/12/12		100	%	80 - 120
			Total Calcium (Ca)	2018/12/12		105	%	80 - 120
			Total Chromium (Cr)	2018/12/12		97	%	80 - 120
			Total Cobalt (Co)	2018/12/12		98	%	80 - 120
			Total Copper (Cu)	2018/12/12		96	%	80 - 120
			Total Iron (Fe)	2018/12/12		105	%	80 - 120
			Total Lead (Pb)	2018/12/12		98	%	80 - 120
			Total Magnesium (Mg)	2018/12/12		105	%	80 - 120
			Total Manganese (Mn)	2018/12/12		101	%	80 - 120
			Total Molybdenum (Mo)	2018/12/12		105	%	80 - 120
			Total Nickel (Ni)	2018/12/12		99	%	80 - 120
			Total Phosphorus (P)	2018/12/12		108	%	80 - 120
			Total Potassium (K)	2018/12/12		104	%	80 - 120
			Total Selenium (Se)	2018/12/12		100	%	80 - 120
			Total Silver (Ag)	2018/12/12		102	%	80 - 120
			Total Sodium (Na)	2018/12/12		100	%	80 - 120
			Total Strontium (Sr)	2018/12/12		104	%	80 - 120
			Total Thallium (TI)	2018/12/12		103	%	80 - 120
			Total Tin (Sn)	2018/12/12		108	%	80 - 120
			Total Titanium (Ti)	2018/12/12		98	%	80 - 120
			Total Uranium (U)	2018/12/12		106	%	80 - 120
			Total Vanadium (V)	2018/12/12		99	%	80 - 120
			Total Zinc (Zn)	2018/12/12		99	%	80 - 120
5879792	MLB	Method Blank	Total Aluminum (Al)	2018/12/12	<5.0	33	∕∘ ug/L	00 - 120
JUI JI JZ	IVILD	WIEUTOU DIGITA	Total Antimony (Sb)	2018/12/12	<1.0		ug/L ug/L	
			Total Antimony (50) Total Arsenic (As)	2018/12/12	<1.0			
							ug/L	
			Total Barium (Ba)	2018/12/12	<1.0		ug/L	
			Total Beryllium (Be)	2018/12/12	<1.0		ug/L	

Dillon Consulting Limited Client Project #: 17-6461 Sampler Initials: KSR

M4

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Bismuth (Bi)	2018/12/12	<2.0		ug/L	
			Total Boron (B)	2018/12/12	<50		ug/L	
			Total Cadmium (Cd)	2018/12/12	<0.010		ug/L	
			Total Calcium (Ca)	2018/12/12	<100		ug/L	
			Total Chromium (Cr)	2018/12/12	<1.0		ug/L	
			Total Cobalt (Co)	2018/12/12	<0.40		ug/L	
			Total Copper (Cu)	2018/12/12	<2.0		ug/L	
			Total Iron (Fe)	2018/12/12	<50		ug/L	
			Total Lead (Pb)	2018/12/12	< 0.50		ug/L	
			Total Magnesium (Mg)	2018/12/12	<100		ug/L	
			Total Manganese (Mn)	2018/12/12	<2.0		ug/L	
			Total Molybdenum (Mo)	2018/12/12	<2.0		ug/L	
			Total Nickel (Ni)	2018/12/12	<2.0		ug/L	
			Total Phosphorus (P)	2018/12/12	<100		ug/L	
			Total Potassium (K)	2018/12/12	<100		ug/L	
			Total Selenium (Se)	2018/12/12	<1.0		ug/L	
			Total Silver (Ag)	2018/12/12	<0.10		ug/L	
			Total Sodium (Na)	2018/12/12	<100		ug/L	
			Total Strontium (Sr)	2018/12/12	<2.0		ug/L	
			Total Thallium (Tl)	2018/12/12	<0.10		ug/L	
			Total Tin (Sn)	2018/12/12	<2.0		ug/L	
			Total Titanium (Ti)	2018/12/12	<2.0		ug/L	
			Total Uranium (U)	2018/12/12	<0.10		ug/L	
			Total Vanadium (V)	2018/12/12	<2.0		ug/L	
			Total Zinc (Zn)	2018/12/12	<5.0		ug/L	
5879792	MLB	RPD	Total Arsenic (As)	2018/12/12	NC		%	20
5879862	AM6	QC Standard	Total Suspended Solids	2018/12/13		101	%	80 - 120
5879862	AM6	Method Blank	Total Suspended Solids	2018/12/13	<1.0		mg/L	
5879862	AM6	RPD	Total Suspended Solids	2018/12/13	8.7		%	20
5881255	NHU	QC Standard	рН	2018/12/11		100	%	97 - 103
5881255	NHU	RPD [IMN603-02]	рН	2018/12/11	4.7		%	N/A
5881257	NHU	Spiked Blank	Conductivity	2018/12/11		101	%	80 - 120
5881257	NHU	Method Blank	Conductivity	2018/12/11	1.9,		uS/cm	
					RDL=1.0			
5881257	NHU	RPD [IMN603-02]	Conductivity	2018/12/11	0.34		%	25
5881260	NHU	QC Standard	рН	2018/12/11		100	%	97 - 103
5881260	NHU	RPD	рН	2018/12/11	0.49		%	N/A
5881262	NHU	Spiked Blank	Conductivity	2018/12/11		101	%	80 - 120
5881262	NHU	Method Blank	Conductivity	2018/12/11	100,		uS/cm	
					RDL=1.0			
5881262	NHU	RPD	Conductivity	2018/12/11	0.39		%	25
5881445	SRM	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2018/12/12		87	%	80 - 120
5881445	SRM	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2018/12/12		93	%	80 - 120
5881445	SRM	Method Blank	Nitrogen (Ammonia Nitrogen)	2018/12/12	<0.050		mg/L	
5881445	SRM	RPD	Nitrogen (Ammonia Nitrogen)	2018/12/12	NC		%	20
5881454	SRM	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2018/12/12		NC	%	80 - 120
5881454	SRM	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2018/12/12		94	%	80 - 120
5881454	SRM	Method Blank	Nitrogen (Ammonia Nitrogen)	2018/12/12	<0.050		mg/L	
5881454	SRM	RPD	Nitrogen (Ammonia Nitrogen)	2018/12/12	0.45		%	20
5881459	NHU	QC Standard	Turbidity	2018/12/11		97	%	80 - 120
5881459	NHU	Spiked Blank	Turbidity	2018/12/11		100	%	80 - 120
5881459	NHU	Method Blank	Turbidity	2018/12/11	<0.10		NTU	
5881459	NHU	RPD [IMN608-02]	Turbidity	2018/12/11	2.1		%	20
5881655	MCN	Matrix Spike [IMN608-02]	Total Alkalinity (Total as CaCO3)	2018/12/12		NC	%	80 - 120

Dillon Consulting Limited Client Project #: 17-6461 Sampler Initials: KSR

M4

01/00				<u> </u>				
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5881655	MCN	Spiked Blank	Total Alkalinity (Total as CaCO3)	2018/12/12	value	105	%	80 - 120
5881655	MCN	Method Blank	Total Alkalinity (Total as CaCO3)	2018/12/12	<5.0	103	mg/L	00 - 120
5881655	MCN	RPD [IMN608-02]	Total Alkalinity (Total as CaCO3)	2018/12/12	2.3		%	25
5881659	MCN	Matrix Spike [IMN608-02]	Dissolved Chloride (Cl-)	2018/12/12	2.5	95	%	80 - 12 0
5881659	MCN	QC Standard	Dissolved Chloride (Cl-)	2018/12/12		104	%	80 - 120
5881659	MCN	Spiked Blank	Dissolved Chloride (CI-)	2018/12/12		97	%	80 - 120
5881659	MCN	Method Blank	Dissolved Chloride (CI-)	2018/12/12	<1.0	37	mg/L	00 - 120
5881659	MCN	RPD [IMN608-02]	Dissolved Chloride (CI-)	2018/12/12	0.055		111g/ L %	25
5881660	MCN	Matrix Spike [IMN608-02]	Dissolved Sulphate (SO4)	2018/12/12	0.055	NC	%	80 - 120
5881660	MCN	Spiked Blank	Dissolved Sulphate (SO4)	2018/12/12		100	% %	80 - 120
5881660	MCN	Method Blank	Dissolved Sulphate (SO4)	2018/12/12	<2.0	100	mg/L	80 - 120
5881660			. , ,	• •				25
	MCN	RPD [IMN608-02]	Dissolved Sulphate (SO4)	2018/12/12	1.9	04	%	25
5881661	MCN	Matrix Spike [IMN608-02]	Reactive Silica (SiO2)	2018/12/12		94	%	80 - 120
5881661	MCN	Spiked Blank	Reactive Silica (SiO2)	2018/12/12	-0.50	97	%	80 - 120
5881661	MCN	Method Blank	Reactive Silica (SiO2)	2018/12/12	<0.50		mg/L	
5881661	MCN	RPD [IMN608-02]	Reactive Silica (SiO2)	2018/12/12	1.5		%	25
5881662	MCN	Spiked Blank	Colour	2018/12/12		102	%	80 - 120
5881662	MCN	Method Blank	Colour	2018/12/12	<5.0		TCU	
5881662	MCN	RPD [IMN608-02]	Colour	2018/12/12	4.4		%	20
5881668	MCN	Matrix Spike [IMN608-02]	Orthophosphate (P)	2018/12/12		90	%	80 - 120
5881668	MCN	Spiked Blank	Orthophosphate (P)	2018/12/12		96	%	80 - 120
5881668	MCN	Method Blank	Orthophosphate (P)	2018/12/12	<0.010		mg/L	
5881668	MCN	RPD [IMN608-02]	Orthophosphate (P)	2018/12/12	NC		%	25
5881670	MCN	Matrix Spike [IMN608-02]	Nitrate + Nitrite (N)	2018/12/13		93	%	80 - 120
5881670	MCN	Spiked Blank	Nitrate + Nitrite (N)	2018/12/13		99	%	80 - 120
5881670	MCN	Method Blank	Nitrate + Nitrite (N)	2018/12/13	<0.050		mg/L	
5881670	MCN	RPD [IMN608-02]	Nitrate + Nitrite (N)	2018/12/13	2.3		%	25
5881673	MCN	Matrix Spike [IMN608-02]	Nitrite (N)	2018/12/12		107	%	80 - 120
5881673	MCN	Spiked Blank	Nitrite (N)	2018/12/12		100	%	80 - 120
5881673	MCN	Method Blank	Nitrite (N)	2018/12/12	< 0.010		mg/L	
5881673	MCN	RPD [IMN608-02]	Nitrite (N)	2018/12/12	NC		%	20
5881677	MCN	Matrix Spike [IMN603-02]	Total Alkalinity (Total as CaCO3)	2018/12/12		101	%	80 - 120
5881677	MCN	Spiked Blank	Total Alkalinity (Total as CaCO3)	2018/12/12		107	%	80 - 120
5881677	MCN	Method Blank	Total Alkalinity (Total as CaCO3)	2018/12/12	<5.0		mg/L	
5881677	MCN	RPD [IMN603-02]	Total Alkalinity (Total as CaCO3)	2018/12/12	NC		%	25
5881681	MCN	Matrix Spike [IMN603-02]	Dissolved Chloride (CI-)	2018/12/12		94	%	80 - 120
5881681	MCN	QC Standard	Dissolved Chloride (CI-)	2018/12/12		106	%	80 - 120
5881681	MCN	Spiked Blank	Dissolved Chloride (Cl-)	2018/12/12		97	%	80 - 120
5881681	MCN	Method Blank	Dissolved Chloride (Cl-)	2018/12/12	<1.0		mg/L	
5881681	MCN	RPD [IMN603-02]	Dissolved Chloride (Cl-)	2018/12/12	2.6		%	25
5881682	MCN	Matrix Spike [IMN603-02]	Dissolved Sulphate (SO4)	2018/12/12		114	%	80 - 120
5881682	MCN	Spiked Blank	Dissolved Sulphate (SO4)	2018/12/12		99	%	80 - 120
5881682	MCN	Method Blank	Dissolved Sulphate (SO4)	2018/12/12	<2.0		mg/L	
5881682	MCN	RPD [IMN603-02]	Dissolved Sulphate (SO4)	2018/12/12	NC		%	25
5881684	MCN	Matrix Spike [IMN603-02]	Reactive Silica (SiO2)	2018/12/12		97	%	80 - 120
5881684	MCN	Spiked Blank	Reactive Silica (SiO2)	2018/12/12		96	%	80 - 120
5881684	MCN	Method Blank	Reactive Silica (SiO2)	2018/12/12	<0.50		mg/L	
5881684	MCN	RPD [IMN603-02]	Reactive Silica (SiO2)	2018/12/12	0.69		%	25
5881688	MCN	Spiked Blank	Colour	2018/12/12		103	%	80 - 120
5881688	MCN	Method Blank	Colour	2018/12/12	<5.0		TCU	
5881688	MCN	RPD [IMN603-02]	Colour	2018/12/12	1.4		%	20
5881702	MCN	Matrix Spike [IMN603-02]	Orthophosphate (P)	2018/12/12	•	88	%	80 - 120
5881702	MCN	Spiked Blank	Orthophosphate (P)	2018/12/12		96	%	80 - 120
5881702		Method Blank	Orthophosphate (P)	2018/12/12	<0.010	30	mg/L	00 120
3001/02	IVICIN	THE CHICA DIGITA	or thophosphate (1)	2010/12/12	~0.010		1116/ L	

Dillon Consulting Limited Client Project #: 17-6461 Sampler Initials: KSR

M4

QA/QC			_					
Batch	Init	QC Type	Parameter (2)	Date Analyzed	Value	Recovery	UNITS	QC Limits
5881702	MCN	RPD [IMN603-02]	Orthophosphate (P)	2018/12/12	NC	02	%	25
5881711	MCN	Matrix Spike [IMN603-02]	Nitrate + Nitrite (N)	2018/12/13		93	%	80 - 120
5881711	MCN	Spiked Blank	Nitrate + Nitrite (N)	2018/12/13	0.050	94	%	80 - 120
5881711	MCN	Method Blank	Nitrate + Nitrite (N)	2018/12/13	<0.050		mg/L	25
5881711	MCN	RPD [IMN603-02]	Nitrate + Nitrite (N)	2018/12/13	NC	00	%	25
5881724	MCN	Matrix Spike [IMN603-02]	Nitrite (N)	2018/12/12		90	%	80 - 120
5881724	MCN	Spiked Blank	Nitrite (N)	2018/12/12	0.010	105	%	80 - 120
5881724	MCN	Method Blank	Nitrite (N)	2018/12/12	<0.010		mg/L	
5881724	MCN	RPD [IMN603-02]	Nitrite (N)	2018/12/12	NC		%	20
5883620	NHU	QC Standard	pH 	2018/12/12		100	%	97 - 103
5883620	NHU	RPD	рН	2018/12/12	1.8		%	N/A
5883621	NHU	Spiked Blank	Conductivity	2018/12/12		101	%	80 - 120
5883621	NHU	Method Blank	Conductivity	2018/12/12	1.4,		uS/cm	
				2010/12/12	RDL=1.0			
5883621	NHU	RPD	Conductivity	2018/12/12	1.7		%	25
5883734	NHU	QC Standard	Turbidity	2018/12/12		97	%	80 - 120
5883734	NHU	Spiked Blank	Turbidity	2018/12/12		99	%	80 - 120
5883734	NHU	Method Blank	Turbidity	2018/12/12	<0.10		NTU	
5883734	NHU	RPD	Turbidity	2018/12/12	2.5		%	20
5883746	NHU	QC Standard	Turbidity	2018/12/12		98	%	80 - 120
5883746	NHU	Spiked Blank	Turbidity	2018/12/12		98	%	80 - 120
5883746	NHU	Method Blank	Turbidity	2018/12/12	<0.10		NTU	
5883746	NHU	RPD	Turbidity	2018/12/12	NC		%	20
5883750	NHU	QC Standard	Turbidity	2018/12/12		97	%	80 - 120
5883750	NHU	Spiked Blank	Turbidity	2018/12/12		99	%	80 - 120
5883750	NHU	Method Blank	Turbidity	2018/12/12	<0.10		NTU	
5883750	NHU	RPD	Turbidity	2018/12/12	NC		%	20
5886137	NHU	QC Standard	Turbidity	2018/12/13		95	%	80 - 120
5886137	NHU	Spiked Blank	Turbidity	2018/12/13		98	%	80 - 120
5886137	NHU	Method Blank	Turbidity	2018/12/13	<0.10		NTU	
5886137	NHU	RPD	Turbidity	2018/12/13	2.6		%	20
5886633	HM2	Matrix Spike	Total Organic Carbon (C)	2018/12/14		107	%	85 - 115
5886633	HM2	Spiked Blank	Total Organic Carbon (C)	2018/12/14		101	%	80 - 120
5886633	HM2	Method Blank	Total Organic Carbon (C)	2018/12/14	<0.50		mg/L	
5886633	HM2	RPD	Total Organic Carbon (C)	2018/12/14	0.35		%	15
5886636	HM2	Matrix Spike	Total Organic Carbon (C)	2018/12/14		109	%	85 - 115
5886636	HM2	Spiked Blank	Total Organic Carbon (C)	2018/12/14		105	%	80 - 120
5886636	HM2	Method Blank	Total Organic Carbon (C)	2018/12/14	<0.50		mg/L	
5886636	HM2	RPD	Total Organic Carbon (C)	2018/12/14	NC		%	15
5886644	HM2	Matrix Spike	Total Organic Carbon (C)	2018/12/15		106	%	85 - 115
5886644	HM2	Spiked Blank	Total Organic Carbon (C)	2018/12/15		101	%	80 - 120
5886644	HM2	Method Blank	Total Organic Carbon (C)	2018/12/15	<0.50		mg/L	
5886644	HM2	RPD	Total Organic Carbon (C)	2018/12/15	1.4		%	15
5888741	KMC	Matrix Spike	Total Organic Carbon (C)	2018/12/16		101	%	85 - 115
5888741	KMC	Spiked Blank	Total Organic Carbon (C)	2018/12/15		102	%	80 - 120
5888741	KMC	Method Blank	Total Organic Carbon (C)	2018/12/15	<0.50		mg/L	
5888741	KMC	RPD	Total Organic Carbon (C)	2018/12/15	4.0 (1)		%	15
5888773	KMC	Matrix Spike	Total Organic Carbon (C)	2018/12/16		105	%	85 - 115
5888773	KMC	Spiked Blank	Total Organic Carbon (C)	2018/12/16		101	%	80 - 120
5888773	KMC	Method Blank	Total Organic Carbon (C)	2018/12/16	<0.50		mg/L	

Dillon Consulting Limited Client Project #: 17-6461 Sampler Initials: KSR

M4

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5888773	KMC	RPD	Total Organic Carbon (C)	2018/12/16	1.4		%	15

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Elevated reporting limit due to sample matrix.

Maxxam Job #: B8W8094 Report Date: 2018/12/17 Dillon Consulting Limited Client Project #: 17-6461 Sampler Initials: KSR

M4

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Mike MacGillivray, Scientific Specialist (Inorganics)

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Appendix M5

Middle River of Pictou Water Availability – Final Report

Middle River of Pictou Water Availability

Final Report

December 17, 2015

Prepared for:

445 Urquhart Crescent Fredericton New Brunswick E3B 8K4 Canada Tel 506 455 2888 Fax 506 455 0193 www.rvanderson.com

Middle River of Pictou Water Availability

Final Report

Province of Nova Scotia

This report is protected by copyright and was prepared by R.V. Anderson Associates Limited for the account of the Province of Nova Scotia. It shall not be copied without permission. The material in it reflects our best judgment in light of the information available to R.V. Anderson Associates Limited at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. R.V. Anderson Associates Limited accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report."

RVA 153094

December 17, 2015

MIDDLE RIVER OF PICTOU WATER AVAILABILITY

TABLE OF CONTENTS

EXEC	UTIVE	SUMMARY 1	
1.0	INTR	ODUCTION	2
	1.1	Scope of Work	
	1.2	Approach	3
2.0	WATE	ERSHED DESCRIPTION4	4
	2.1	Hydrometric Data	
	2.2	Middle River Reservoir Fish Ladder	5
3.0	HYDF	ROLOGIC ANALYSIS	7
	3.1	Flow Duration Analysis	
	3.2 3.3	Low Flow Frequency Analysis	
	3.3	Reservoir Storage)
4.0	WATE	ER AVAILABILITY)
	4.1	Environmental Protection Requirements	9
	4.2	Sustainable Water Withdrawal Rate10)
5.0	HYDF	ROLOGIC CHANGES12	2
	5.1.1	Climate Projections12	2
6.0	CON	CLUSIONS 14	4
Table Table Table Table Table	2.2 – G 3.1 – Pr 3.2 – Lo 4.1 – M 4.2 – M	ows Prorated from Middle River at Rocklin to the Granton Water Intake ranton Water Intake – Monthly Demand Summary rorated Exceedance Flows (m³/s) for Middle River at Granton Water Intake ow Flow Estimates (m³/s) for the Middle River at the Granton Water Intake iddle River Monthly 85% Exceedance Probability Flows iddle River Water Availability during a Typical Year limate Change Projections for Pictou, NS	

LIST OF FIGURES

Figure 1.1 – Water withdrawal location.

LIST OF APPENDICES

Appendix A – Sustainable Withdrawal Rate Calculation Spreadsheet

Appendix B – Fish Ladder Construction Drawings

EXECUTIVE SUMMARY

R.V. Anderson Associates Limited (RVA) was retained by the Province of Nova Scotia to determine the surface water availability for the Middle River of Pictou at Granton and estimate a sustainable water withdrawal rate from the Middle River Reservoir. The scope of work for this hydrologic study included the review and summary of existing information, a description of the hydrology of the Middle River and hydrologic analyses of the Middle River stream flow and reservoir.

The sustainable water withdrawal rate for the Granton water intake was determined to be 1.10 m³/s (95,040 m³/day), which considered the anticipated effects of climate change.

R.V. Anderson Associates Limited (RVA) was retained by the Province of Nova Scotia to determine the surface water availability for the Middle River of Pictou at Granton. The intent of this hydrologic review is to determine stream flow rates throughout the year to estimate allowable and sustainable water withdrawal rates.

There is an existing water intake located at Pump House Road in Granton (N45°37'53.2", W062°44'22.3"), approximately 500 m upstream of the dam that forms the Middle River Reservoir (circled on the figure below).

Figure 1.1 – Water withdrawal location.

1.1 Scope of Work

The scope of work for this hydrologic study included the following:

- Gathering, review and summary of existing information, including previous hydrologic studies, hydrometric data, climatic data, and mapping.
- Descriptive hydrology to define stream flow rates for the Middle River.
 - o tabulation of average annual, monthly, and daily flows (flow rates and volumes) and observed extreme low flows (flow rates) for the Environment Canada Middle River hydrometric station,
 - proration of selected flows to the study location, and
 - identification of hydrometric records that are typical of average and low flow years.
- Hydrologic analyses of the Middle River stream flow.
 - annual, monthly and seasonal flow duration analyses,
 - low flow frequency analysis, and
 - plotting and analysis of mass curves to determine the probability of surface water availability.

1.2 **Approach**

The surface water availability for extraction is referred to as the "safe yield" of a watershed. It is a measure of the probability that sufficient quantities of water are available to satisfy a withdrawal demand (either from direct stream flow or reservoir storage) while maintaining an environmental flow or aquatic protection flow, for both current and future conditions. In the context of this report, the term safe yield is intended as a water withdrawal rate with a given probability of being satisfied. Even though this probability may be small, it is not zero, and there is a chance that the demand for water withdrawal may not be met.

The determination of safe yield, or the probability of sufficient surface water availability, consists of the following components:

- an evaluation of the water available directly from the Middle River as stream flow,
- a evaluation of the water available from the Middle River Reservoir storage,
- an evaluation of the Middle River stream flow required for environmental or aquatic habitat protection, and
- an evaluation of the potential for changes in the hydrologic regime (urbanization and climate change) that could affect the availability of water in the foreseeable future.

Flow estimates for Middle River at the water intake were prorated from the hydrometric records of the upstream gauged station maintained by Environment Canada at Rocklin.

2.0 WATERSHED DESCRIPTION

The Middle River, East River and West River of Pictou converge in Pictou Harbour and discharge to the Northumberland Straight. The Middle River flow regime was altered with the construction of the causeway at Abercrombie Point (1967) and the dam and spillway at Granton which impounds flow at the mouth of the Middle River.

The Middle River watershed has a drainage area of 239 km² at the water intake location in Granton. The reservoir upstream of the dam in Granton has a surface area of 5.2 km² and provides storage for water withdrawal during periods of low stream flow. The water surface area of the reservoir was delineated using Google Earth Pro imagery and confirmed using imagery from the ESRI site (showed the water surface area to be approximately 5.4 km²). As no detailed bathymetric information was available for the reservoir, the size of the reservoir water surface was checked during different times of the year (October 05, 2003, June 09, 2004, July 03, 2007, June 18, 2012 and August 16, 2013) using historic imagery from Google Earth Pro and was found to be highly invariable with little change in the location of the shoreline on the above images. This indicates relatively steep shorelines which would be consistent with flooding of valley walls (artificial reservoir) rather than the flatter shorelines of natural reservoirs.

The water surface elevation in Google Earth Pro is shown at 10 ft but does not change for the different images, indicating this elevation is associated with the latest August 2013 data (please note the elevation resolution is plus or minus 1 foot). For the purposes of this water availability study, the water surface area of the reservoir was assumed to be constant at 5.2 km² (more conservative than the 5.4 km² area measured from the ESRI data) for the range of water surface elevations analyzed.

There is a hydrometric station on the Middle River at Rocklin (01DP001, drainage area 92.2 km²), approximately 17 km upstream of the water intake at Granton. This station is expected to provide representative unit flow rates for the Middle River as development within the watershed is sparse in both the upper and lower regions.

2.1 **Hydrometric Data**

Flow data for the Middle River of Pictou hydrometric station at Rocklin was acquired from the Environment Canada HYDAT database. This data spanned from 1965 to 2012 and included a record of all daily flows, mean monthly flows, and flow extremes (maximum and minimum). This data was prorated based on drainage area from the Rocklin hydrometric station (92.2 km²) to the water intake location at Granton (239 km²).

Flows (m³/s) Extreme Daily flows (m³/s) Min Min **Average** Max Max 0.91 18.3 0.18 93.3 January 6.80 February 5.79 0.39 16.1 0.16 116.9 March 10.1 0.77 22.0 0.20 129.6 April 14.0 4.92 27.5 1.14 109.6 Mav 8.20 2.22 26.4 0.90 88.1 3.88 0.76 22.8 131.4 June 0.17 July 1.96 0.19 7.70 0.02 80.4 August 2.25 0.04 12.9 0.01 121.8 September 2.85 0.24 19.3 0.01 70.8 October 5.99 0.45 18.2 0.14 96.7 November 10.2 1.55 21.3 0.29 130.1 December 10.1 2.06 19.3 0.99 130.4 4.22 131.4 Full Year 6.87 10.0 0.01 --Winter 7.56 ----8.69 Spring --2.35 Summer Fall 8.76

Table 2.1 – Flows Prorated from Middle River at Rocklin to the Granton Water Intake

2.2 Middle River Reservoir Fish Ladder

The fish ladder at the Middle River Reservoir spillway is operated by Nova Scotia Department of Internal Services. This ladder was designed by DFO and is intended to protect and maintain fish passage between the Middle River and Pictou Harbour. An asbuilt survey of the fish ladder dated December 09, 2015 was used as the basis to calculate the minimum reservoir water level elevation and is attached in Appendix B. It should be noted that all elevations and water levels noted on the drawing as well as the tidal levels and reservoir operating levels discussed in the following paragraphs are referenced to geodetic datum. These elevations are presented in Imperial units throughout the report to be consistent with the survey drawing and fish ladder operations.

The minimum water level in the reservoir is governed by Baffle 9 in the fish ladder, which has a concrete crest elevation of 6.0 ft. This elevation is above the higher high water elevation for a large tide (2.8 ft) and is sufficient to prevent the backflow of brackish water into the reservoir.

The Middle River fish ladder was originally designed to convey 0.21 m³/s with an increase to 0.42 m³/s between April 21 and May 21 to improve downstream smolt migration. Subsequent modifications, including the installation of metal chutes, reduced the minimum flow requirement for fish passage upstream through the fish ladder to

0.14 m³/s with an increase to 0.42 m³/s between April 21 and May 21 (DFO personal correspondence).

The proper functioning of the fish ladder during periods of low flow at 0.14 m³/s would require a 1.0 ft flow depth over Baffle 9 (flow control) or a water level at the obvert of the orifice in Baffle 9, i.e. 1.25 ft flow depth (fish passage). This converts to reservoir water level elevations of 7.0 ft and 7.25 ft, respectively, with the second more conservative scenario governing the design (minimum reservoir water level elevation required to ensure fish passage is 7.25 ft geodetic datum).

3.0 HYDROLOGIC ANALYSIS

The hydrologic information presented in this section forms the basis of determining water availability from both direct stream flow and reservoir storage. The availability of water in the context of environmental flows, climate change and safe yield is presented later in Section 6.

3.1 Flow Duration Analysis

Flow duration analyses were used to determine the percent of time specified daily discharges were equaled or exceeded during a given period. If the period used for flow duration analyses represents the long-term flow of a stream, the results can be used to predict the distribution of future flows for water extraction.

Flow duration analyses were completed for the entire year, for each month and for each season.

Table 3.1 summarizes the prorated 50%, 75%, 90%, and 95% exceedance flows (i.e. the daily flows that are exceeded 50%, 75%, 90% and 95% of the time) at the water intake. The 50% exceedance flow represents the median flow for each period, while the 75%, 90%, and 95% exceedance flows are commonly used as hydrologic indices to describe low flows.

Table 3.1 – Prorated Exceedance Flows (m³/s) for Middle River at Granton Water Intake

Exceedance Probability	50%	75%	90%	95%
January	3.94	2.13	1.12	0.58
February	3.08	1.61	0.73	0.39
March	5.47	2.72	1.17	0.64
April	9.69	6.48	4.20	1.92
May	5.44	3.01	1.86	1.46
June	1.94	1.17	0.72	0.53
July	0.90	0.44	0.21	0.11
August	0.67	0.24	0.12	0.04
September	0.90	0.43	0.20	0.10
October	2.59	1.07	0.45	0.27
November	6.71	3.19	1.78	1.21
December	6.22	3.89	2.05	1.45
Full Year	3.37	1.22	0.41	0.20
Winter	4.15	2.20	1.12	0.72
Spring	6.32	3.08	1.68	1.30
Summer	0.86	0.39	0.17	0.08
Fall	4.72	1.84	0.73	0.42

3.2 Low Flow Frequency Analysis

Low flow frequency analyses detail the probability and magnitude of extreme flows (in this case droughts). Extreme flows are often specified as having a return period (or exceedance probability). For example, 1.01-year, 10-year, and 20-year return periods based on annual series low flow analyses are equivalent to probabilities of occurrence in any year of 99%, 10%, and 5%, respectively.

Lower flow events would occur less frequently and thus have a greater return period or lower probability of occurrence. Usually, for low flows, the duration of an extreme event is also specified. The duration of the event is the time the flow condition would continue, with longer durations generally resulting in greater ecological consequences. The average of low flows over a longer duration, as determined by statistical analyses, should be greater than the extreme low flow experienced during a shorter period. Where a one-year, one-day duration low flow is an indicator of an annual extreme daily low flow, flows of seven days in duration are more indicative of average flows during drought conditions.

The drought durations chosen for analysis were one-day, seven-day, and 14-day, which are commonly used in this type of low flow investigation. The low flow estimates for the Middle River water intake are presented in Table 3.2.

Table 3.2 – Low Flow Estimates (m³/s) for the Middle River at the Granton Water Intake

Low Flow Events (1965-2012)	1 Day Duration	7 Day Duration	14 Day Duration
Lowest on Record (2001)	0.004	0.005	0.006
Annual Average	0.119	0.334	0.418
Highest on Record (1977)	0.496	1.478	1.970
10 Year Return Period	0.080	0.104	0.130

3.3 Reservoir Storage

The Middle River Reservoir serves as a source of water during periods of low flows that could mitigate drought conditions. Therefore, the controlling factor affecting of water availability during low flow periods may not be the stream flow but rather the reservoir storage volume.

The Middle River Reservoir has a surface area of approximately 5.2 km². A 0.1 m drawdown in water level represents an extraction rate of 0.86 m³/s over 7 days, 0.43 m³/s over 14 days or 0.20 m³/s over 30 days during drought conditions. These values do not account for stream flow recharge to the reservoir, which was shown in 2001 to be extremely low during severe drought conditions.

4.0 WATER AVAILABILITY

4.1 **Environmental Protection Requirements**

In order to ensure that water extraction does not deplete the remaining flow in the Middle River to a level that causes damage to the aquatic habitat, environmental protection flows or maintenance flows (minimum flows that are to remain in watercourses) are typically specified by regulatory and permitting agencies. The primary agencies that regulate water withdrawal are Nova Scotia Environment (NSE, provincial) and the Department of Fisheries and Oceans (DFO, federal).

The situation at the Granton water intake is not typical of water extraction from a freeflowing watercourse. The Middle River Reservoir discharges directly to the tidal estuary upstream of the Pictou Causeway. This does not include a connecting section of natural watercourse that would have low flow concerns. As such, an environmental protection flow is not needed for the watercourse at or downstream of the Granton water intake. Fish migration between the Middle River and Pictou Harbour, therefore, becomes the primary concern in determining an aquatic protection flow.

The sustainable water withdrawal rate for the Granton intake was determined based on the following three (3) criteria:

1. Minimum fish ladder design flows are maintained at all times prior to water withdrawal.

 $0.42 \text{ m}^3/\text{s}$ a. April 21 to May 21: $0.14 \text{ m}^3/\text{s}$ b. Rest of the year:

2. Maximum allowable operational reservoir water level drawdown is to be 6.75 ft. This accounts for drawdown from a full reservoir operating level of 15.0 ft in the spring to 8.25 ft in the summer/fall.

The full reservoir water level elevation at the end of the spring freshet was selected at 15.0 ft as this is the maximum water level elevation fully contained on property owned by the Province of Nova Scotia and is the maximum normal operating water level of the reservoir.

The minimum reservoir water level elevation was selected at 8.25 ft based on a minimum reservoir water level elevation of 7.25 ft needed for proper functioning of the fish ladder (see Section 2.3) plus a 1.0 ft allowance for evaporative losses from the reservoir. This 1.0 ft allowance was deemed to be needed to correct for the higher percentage of lakes and swamps and resulting evaporative losses for the entire watershed compared to the gauged upper portion of the watershed. These drawdown calculations also include steam flow recharge as noted below.

3. Stream flow into the reservoir equals monthly flows with an 85% exceedance probability. These are the flows that historically would be exceeded on 85% of the days during each month, represent a reasonably conservative estimate of inflow into the reservoir (based on a comparison to other environmental protection flows), and are presented in Table 4.1.

Table 4.1 - Middle River Monthly 85% Exceedance Probability Flows

	% Exceedence Prob Flow (m³/s)	85 %	Exceedence Prob Flow (m ³ /s)
January	1.53	July	0.26
February	0.99	August	0.17
March	1.70	September	0.27
April	5.24	October	0.65
May	2.36	November	2.08
June	0.88	December	2.83

4.2 Sustainable Water Withdrawal Rate

A maximum sustainable withdrawal rate of 1.10 m³/s satisfies all three of the environmental requirements described in the previous paragraphs. Table 4.2 presents the monthly flow summary and estimated reservoir water levels associated with a sustainable withdrawal rate of 1.10 m³/s during a year with monthly flows that are exceeded 85% of the time.

Table 4.2 – Middle River Water Availability during a Typical Year

	Sustainable Yield (m³/s)	Fish Ladder Design Flow (m³/s)	Total Flow Requirement (m³/s)	85 % Exceed Prob Flow (%)	Reservoir Withdrawal (m³/s)	Reservoir Gauge Ht (ft)
Jan	1.10	0.14	1.24	1.53		12.9
Feb	1.10	0.14	1.24	0.99	0.25	12.5
Mar	1.10	0.14	1.24	1.70		13.3
Apr	1.10	0.42	1.52	5.24		15.0
May	1.10	0.42	1.52	2.36		15.0
Jun	1.10	0.14	1.24	0.88	0.36	14.4
Jul	1.10	0.14	1.24	0.26	0.98	12.7
Aug	1.10	0.14	1.24	0.17	1.07	10.9
Sept	1.10	0.14	1.24	0.27	0.97	9.3
Oct	1.10	0.14	1.24	0.65	0.59	8.3
Nov	1.10	0.14	1.24	2.08		9.7
Dec	1.10	0.14	1.24	2.83		12.4

The data presented in Table 4.2 indicate that withdrawal from the reservoir storage would typically be required from June until October, with water levels rebounding above 12 ft by the start of the year.

Withdrawal rates higher than the sustainable rate of 1.10 m³/s could be safely accommodated during April and May as long as the reservoir levels are maintained at gauge height of 15.0 ft. The water withdrawal rates could also be increased partway through the summer if the reservoir levels exceed those presented in Table 4.2.

5.0 HYDROLOGIC CHANGES

The low population density and low population growth within the Middle River basin indicates that increased urbanization within the developed areas is not likely to significantly increase the volume of runoff from the watershed as a whole. As such, the effects of future land-use changes on hydrology were assumed to be minimal.

Climate change is expected to have a greater impact on the Middle River hydrology. Although uncertainties as to the magnitude of the effects of climate change on low flows makes quantification of these impacts difficult, a general evaluation of the potential effects of climate change was performed and the results are presented below.

An increasing body of observations indicates changes in climate, the most noticeable observations being a gradual warming and an increase in precipitation of 0.5% to 1% per decade in the 20th century over most mid- and high latitudes of the Northern Hemisphere (IPCC, 2001a). Evidence exists that most of the warming observed over the last 50 years is attributable to human activities. Furthermore, emissions of greenhouse gases and aerosols due to human activities continue to alter the atmosphere in ways that are expected to affect the climate for many centuries (IPCC, 2001a).

Predictions of the future effects of climate change are primarily based on a number of Global or General Circulation Models (GCMs) that predict increases in the global average temperature and sea level under all scenarios modelled by the Intergovernmental Panel on Climate Change (IPCC). The globally averaged surface temperature is projected to increase between 1.4°C and 5.8°C over the period 1990 to 2100, with nearly all land areas warming more rapidly than this global average. In addition, precipitation is projected to increase during the 21st century, especially during the second half of the 21st century over northern mid- to high latitudes (IPCC, 2001a).

Climate change will affect hydrological systems, as precipitation is the main driver of variability in the water balance over both space and time (IPCC, 2001b). The frequency of low flows is affected primarily by changes in the seasonal distribution of precipitation, its year-to-year variability, and the occurrence of prolonged droughts (IPCC, 2001b). Increased temperatures, in effect, reduce the snow pack storing water during winter. Furthermore, if a smaller proportion of precipitation during winter falls as snow, there is proportionately more runoff in winter and, as there is less snow to melt, less runoff during spring.

Climate Projections 5.1.1

The Province of Nova Scotia and Environment Canada commissioned a study entitled Adapting to a Changing Climate in Nova Scotia: Vulnerability Assessment and Adaptation Options (published September 2005, DeRomilly and deRomilly Limited, Dillon Consulting Limited, Allan Bell Environmental Management Services, Cameron Consulting, and Environment Canada). This report identified key issues related to climate change, the impacts associated with changes and a recommended framework for adapting to the potential climate changes. The following points were among the key findings associated with surface water availability.

Potential for increased variability in the quality and quantity of regional water resources.

- Projected climate change likely to alter snow and rainfall patterns, resulting in less frequent, but heavier precipitation earlier than present (April rather than May).
- It is anticipated that less water is likely to be available for consumption, agriculture and recreation with more conflicts over use.
- Longer and warmer summers likely to result in more droughts.

The Climate Change Nova Scotia website (https://climatechange.novascotia.ca/climatedata) provides climate change projections for the various regions of the province. The relevant parameters for the Middle River watershed are presented in the table below.

Table 5.1 – Climate Change Projections for Pictou, NS

Parame	eter	Historical 1980s	Projected 2020s	Projected 2050s	Projected 2080s
	Annual	5.7	6.8	8.0	9.2
	Winter	-5.4	-4.3	-3.0	-1.7
Temperature (deg. C)	Spring	3.5	4.4	5.5	6.6
(deg. 0)	Summer	16.8	17.8	19.0	20.1
	Fall	8.1	9.2	10.3	11.5
Hot Days (T _{max} > 30 deg	ı. C)	3.1	6.3	11.6	18.6
	Annual	1,383	1,416	1,424	1,462
.	Winter	364	378	385	404
Precipitation (mm)	Spring	324	334	340	352
(11111)	Summer	292	297	294	295
	Fall	404	407	404	411
Days With Ra	ain	108.2	120.7	124.2	127.1
Days With Sn	ow	35.0	51.7	45.2	38.8

The above projections indicate warmer temperatures and an increase in annual precipitation. This is no increase in summer precipitation and it is likely that changing precipitation patterns could make stream flow conditions more variable in the future. Storage within the reservoir is likely to help offset changing flow patterns.

An overall increase in runoff volume should help the Middle River Reservoir to satisfy demands at the Granton water intake. The slightly increasing precipitation predictions also indicate that we can continue to rely on historic data as a predictor of runoff volume to the Middle River Reservoir.

6.0 CONCLUSIONS

Based on the information presented in the previous sections of this report, the following conclusions were drawn.

- 1. The Middle River Reservoir discharges to the tidal estuary upstream of the Pictou Causeway. There is no section of free-flowing natural watercourse downstream of the Granton water intake that would have low flow concerns. As such, the fish ladder at the reservoir outlet is the only location where an aquatic protection flow is recommended.
- 2. The fish ladder at the Middle River Reservoir has a design flow of 0.42 m³/s for the period of April 21 to May 21 and 0.14 m³/s for the rest of the year. These design flows were used in all analyses as the minimum flows to be maintained at the reservoir outlet.
- 3. The minimum water level in the Middle River Reservoir to sustain fish passage through the fish ladder is 7.25 ft, geodetic. This represents the obvert elevation of the orifice in the fifth most upstream baffle (#9).
- 4. Climate change is likely to make the Middle River stream flow patterns more variable, however runoff volumes are not expected to decrease. Storage within the reservoir is likely to offset the changing flow patterns. As such the effects of climate changes are not expected to significantly impact the ability of the Middle River Reservoir to satisfy withdrawal demands.
- 5. Withdrawal rates higher than the recommended sustainable rate could be safely accommodated during April and May as long as the reservoir levels are maintained at gauge height of 15.0 ft. Water withdrawal rates could also be increased partway through the summer if the reservoir levels exceed those presented in Table 4.2.
- 6. The maximum sustainable withdrawal rate for the Granton intake is 1.10 m³/s $(95,040 \text{ m}^3/\text{day}).$

Sustainable Withdrawal Rate Calculation Spreadsheet

Middle River Water Availability

November 10, 2015

Monthly Exceedence Prob Flows for Stn 01DP004 - Middle River at Rocklin (Drainage Area = 92.2 km2) Prorated to Middle River Reservoir (Drainage Area = 239 km2)

Table 1. Exceedance Probability Flows (m³/s)

Exc												
Prob %	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
0	41.73	43.29	54.44	62.21	43.81	32.14	16.75	27.48	27.22	50.29	54.95	53.92
5	19.44	17.89	30.85	35.51	23.49	11.28	6.12	8.22	8.48	20.06	28.77	27.48
10	13.09	11.38	22.11	26.70	16.28	7.34	3.68	4.28	5.21	13.19	20.06	20.22
15	10.37	8.55	17.16	22.01	12.86	5.68	2.72	2.64	3.34	10.06	16.64	15.97
20	8.68	6.79	14.36	18.72	10.94	4.59	2.15	1.93	2.54	7.85	13.71	12.94
25	7.41	5.70	11.92	16.49	9.33	3.91	1.77	1.53	2.06	6.38	11.79	10.99
30	6.48	4.95	10.14	14.62	8.17	3.27	1.56	1.32	1.72	5.39	10.29	9.54
35	5.70	4.41	8.66	12.86	7.23	2.83	1.36	1.09	1.38	4.59	9.25	8.45
40	5.05	3.89	7.31	11.82	6.45	2.48	1.21	0.91	1.20	3.86	8.40	7.70
45	4.41	3.50	6.25	10.58	5.86	2.21	1.05	0.77	1.03	3.16	7.49	6.97
50	3.94	3.08	5.47	9.69	5.44	1.94	0.90	0.67	0.90	2.59	6.71	6.22
55	3.60	2.72	4.85	9.02	4.90	1.74	0.79	0.58	0.79	2.14	5.96	5.73
60	3.19	2.45	4.17	8.27	4.43	1.58	0.69	0.48	0.69	1.84	5.18	5.31
65	2.85	2.20	3.76	7.65	3.86	1.45	0.60	0.39	0.62	1.55	4.54	4.87
70	2.49	1.94	3.32	7.02	3.42	1.31	0.54	0.30	0.53	1.27	3.81	4.33
75	2.13	1.61	2.72	6.48	3.01	1.17	0.44	0.24	0.43	1.07	3.19	3.89
80	1.83	1.27	2.19	5.96	2.67	1.03	0.34	0.20	0.34	0.85	2.55	3.37
85	1.53	0.99	1.70	5.24	2.36	0.88	0.26	0.17	0.27	0.65	2.08	2.83
90	1.12	0.73	1.17	4.20	1.86	0.72	0.21	0.12	0.20	0.45	1.78	2.05
95	0.58	0.39	0.64	1.92	1.46	0.53	0.11	0.04	0.10	0.27	1.21	1.45
100	0	0	0	0	0	0	0	0	0	0	0	0

	Table 2	. Subtra	act Fish	Ladder	Design	ı Flows	Ар	ril/May	0.42	m³/s	Other	0.14	m³/s	Table 3.	Subtrac	t Sustai	nable W	ithdraw/	al Flow	
	Exc													Exc Prob						
	Prob %	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	%	Jan	Feb	Mar	Apr	May	l
2	0	41.59	43.15	54.30	61.79	43.39	32.00	16.61	27.34	27.08	50.15	54.81	53.78	0	40.49	42.05	53.20	60.69	42.29	
8	5	19.30	17.75	30.71	35.09	23.07	11.14	5.98	8.08	8.34	19.92	28.63	27.34	5	18.20	16.65	29.61	33.99	21.97	
2	10	12.95	11.24	21.97	26.28	15.86	7.20	3.54	4.14	5.07	13.05	19.92	20.08	10	11.85	10.14	20.87	25.18	14.76	
7	15	10.23	8.41	17.02	21.59	12.44	5.54	2.58	2.50	3.20	9.92	16.50	15.83	15	9.13	7.31	15.92	20.49	11.34	
4	20	8.54	6.65	14.22	18.30	10.52	4.45	2.01	1.79	2.40	7.71	13.57	12.80	20	7.44	5.55	13.12	17.20	9.42	ı
9	25	7.27	5.56	11.78	16.07	8.91	3.77	1.63	1.39	1.92	6.24	11.65	10.85	25	6.17	4.46	10.68	14.97	7.81	ı
ļ	30	6.34	4.81	10.00	14.20	7.75	3.13	1.42	1.18	1.58	5.25	10.15	9.40	30	5.24	3.71	8.90	13.10	6.65	L
;]	35	5.56	4.27	8.52	12.44	6.81	2.69	1.22	0.95	1.24	4.45	9.11	8.31	35	4.46	3.17	7.42	11.34	5.71	
)	40	4.91	3.75	7.17	11.40	6.03	2.34	1.07	0.77	1.06	3.72	8.26	7.56	40	3.81	2.65	6.07	10.30	4.93	
7	45	4.27	3.36	6.11	10.16	5.44	2.07	0.91	0.63	0.89	3.02	7.35	6.83	45	3.17	2.26	5.01	9.06	4.34	
2	50	3.80	2.94	5.33	9.27	5.02	1.80	0.76	0.53	0.76	2.45	6.57	6.08	50	2.70	1.84	4.23	8.17	3.92	L
	55	3.46	2.58	4.71	8.60	4.48	1.60	0.65	0.44	0.65	2.00	5.82	5.59	55	2.36	1.48	3.61	7.50	3.38	l
	60	3.05	2.31	4.03	7.85	4.01	1.44	0.55	0.34	0.55	1.70	5.04	5.17	60	1.95	1.21	2.93	6.75	2.91	
7	65	2.71	2.06	3.62	7.23	3.44	1.31	0.46	0.25	0.48	1.41	4.40	4.73	65	1.61	0.96	2.52	6.13	2.34	
	70	2.35	1.80	3.18	6.60	3.00	1.17	0.40	0.16	0.39	1.13	3.67	4.19	70	1.25	0.70	2.08	5.50	1.90	
)	75	1.99	1.47	2.58	6.06	2.59	1.03	0.30	0.10	0.29	0.93	3.05	3.75	75	0.89	0.37	1.48	4.96	1.49	1
'	80	1.69	1.13	2.05	5.54	2.25	0.89	0.20	0.06	0.20	0.71	2.41	3.23	80	0.59	0.03	0.95	4.44	1.15	Ĺ

85 1.39 0.85 1.56 4.82 1.94 0.74 0.12 0.03 0.13 0.51 1.94

1.04 0.39 -0.03 -0.10

0

0

0.06 0.31 1.64

-0.04 0.13 1.07

0

0

1.91

1.31

0

0.59 | 1.03 | 3.78 | 1.44 | 0.58 | 0.07 | -0.02

0

i abie 3.	Suptrac	t Sustai	nabie w	itnaraw	al Flow		1.10 m3/s						
Exc Prob													
%	Jan	Feb	Mar	Apr	May	Jun	1.15	Aug	Sept	Oct	Nov	Dec	
0	40.49	42.05	53.20	60.69	42.29	30.90	15.51	26.24	25.98	49.05	53.71	52.68	
5	18.20	16.65	29.61	33.99	21.97	10.04	4.88	6.98	7.24	18.82	27.53	26.24	
10	11.85	10.14	20.87	25.18	14.76	6.10	2.44	3.04	3.97	11.95	18.82	18.98	
15	9.13	7.31	15.92	20.49	11.34	4.44	1.48	1.40	2.10	8.82	15.40	14.73	
20	7.44	5.55	13.12	17.20	9.42	3.35	0.91	0.69	1.30	6.61	12.47	11.70	
25	6.17	4.46	10.68	14.97	7.81	2.67	0.53	0.29	0.82	5.14	10.55	9.75	
30	5.24	3.71	8.90	13.10	6.65	2.03	0.32	0.08	0.48	4.15	9.05	8.30	
35	4.46	3.17	7.42	11.34	5.71	1.59	0.12	-0.15	0.14	3.35	8.01	7.21	
40	3.81	2.65	6.07	10.30	4.93	1.24	-0.03	-0.33	-0.04	2.62	7.16	6.46	
45	3.17	2.26	5.01	9.06	4.34	0.97	-0.19	-0.47	-0.21	1.92	6.25	5.73	
50	2.70	1.84	4.23	8.17	3.92	0.70	-0.34	-0.57	-0.34	1.35	5.47	4.98	
55	2.36	1.48	3.61	7.50	3.38	0.50	-0.45	-0.66	-0.45	0.90	4.72	4.49	
60	1.95	1.21	2.93	6.75	2.91	0.34	-0.55	-0.76	-0.55	0.60	3.94	4.07	
65	1.61	0.96	2.52	6.13	2.34	0.21	-0.64	-0.85	-0.62	0.31	3.30	3.63	
70	1.25	0.70	2.08	5.50	1.90	0.07	-0.70	-0.94	-0.71	0.03	2.57	3.09	
75	0.89	0.37	1.48	4.96	1.49	-0.07	-0.80	-1.00	-0.81	-0.17	1.95	2.65	
80	0.59	0.03	0.95	4.44	1.15	-0.21	-0.90	-1.04	-0.90	-0.39	1.31	2.13	
85	0.29	-0.25	0.46	3.72	0.84	-0.36	-0.98	-1.07	-0.97	-0.59	0.84	1.59	
90	-0.12	-0.51	-0.07	2.68	0.34	-0.52	-1.03	-1.12	-1.04	-0.79	0.54	0.81	
95	-0.66	-0.85	-0.60	0.40	-0.06	-0.71	-1.13	-1.20	-1.14	-0.97	-0.03	0.21	
100		0	0	0	0	0	0	0	0	0	0	0	

Table 4. Monthly Flow Volumes (1,000,000 m³)

Exc												
Prob %	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
0	108.5	102.6	142.5	157.3	113.3	80.1	41.5	70.3	67.3	131.4	139.2	141.1
5	48.8	40.6	79.3	88.1	58.8	26.0	13.1	18.7	18.8	50.4	71.4	70.3
10	31.7	24.7	55.9	65.3	39.5	15.8	6.5	8.1	10.3	32.0	48.8	50.8
15	24.5	17.9	42.6	53.1	30.4	11.5	4.0	3.8	5.5	23.6	39.9	39.4
20	19.9	13.6	35.1	44.6	25.2	8.7	2.4	1.8	3.4	17.7	32.3	31.3
25	16.5	10.9	28.6	38.8	20.9	6.9	1.4	0.8	2.1	13.8	27.4	26.1
30	14.0	9.1	23.8	34.0	17.8	5.3	0.8	0.2	1.2	11.1	23.5	22.2
35	12.0	7.7	19.9	29.4	15.3	4.1	0.3	-0.4	0.4	9.0	20.8	19.3
40	10.2	6.5	16.3	26.7	13.2	3.2	-0.1	-0.9	-0.1	7.0	18.6	17.3
45	8.5	5.5	13.4	23.5	11.6	2.5	-0.5	-1.3	-0.5	5.1	16.2	15.4
50	7.2	4.5	11.3	21.2	10.5	1.8	-0.9	-1.5	-0.9	3.6	14.2	13.3
55	6.3	3.6	9.7	19.4	9.1	1.3	-1.2	-1.8	-1.2	2.4	12.2	12.0
60	5.2	3.0	7.9	17.5	7.8	0.9	-1.5	-2.0	-1.4	1.6	10.2	10.9
65	4.3	2.4	6.7	15.9	6.3	0.5	-1.7	-2.3	-1.6	0.8	8.5	9.7
70	3.3	1.7	5.6	14.3	5.1	0.2	-1.9	-2.5	-1.8	0.1	6.7	8.3
75	2.4	0.9	4.0	12.9	4.0	-0.2	-2.2	-2.7	-2.1	-0.5	5.1	7.1
80	1.6	0.1	2.5	11.5	3.1	-0.5	-2.4	-2.8	-2.3	-1.1	3.4	5.7
85	0.8	-0.6	1.2	9.6	2.3	-0.9	-2.6	-2.9	-2.5	-1.6	2.2	4.2
90	-0.3	-1.3	-0.2	6.9	0.9	-1.4	-2.8	-3.0	-2.7	-2.1	1.4	2.2
95	-1.8	-2.1	-1.6	1.0	-0.2	-1.8	-3.0	-3.2	-2.9	-2.6	-0.1	0.6
100		0	0	0	0	0	0	0	0	0	0	0
Days	31	28.25	31	30	31	30	31	31	30	31	30	31

Table 5. Monthly Reservoir Water Level Change (m)

0.25 0.50 1.50

0

0

0

90

95

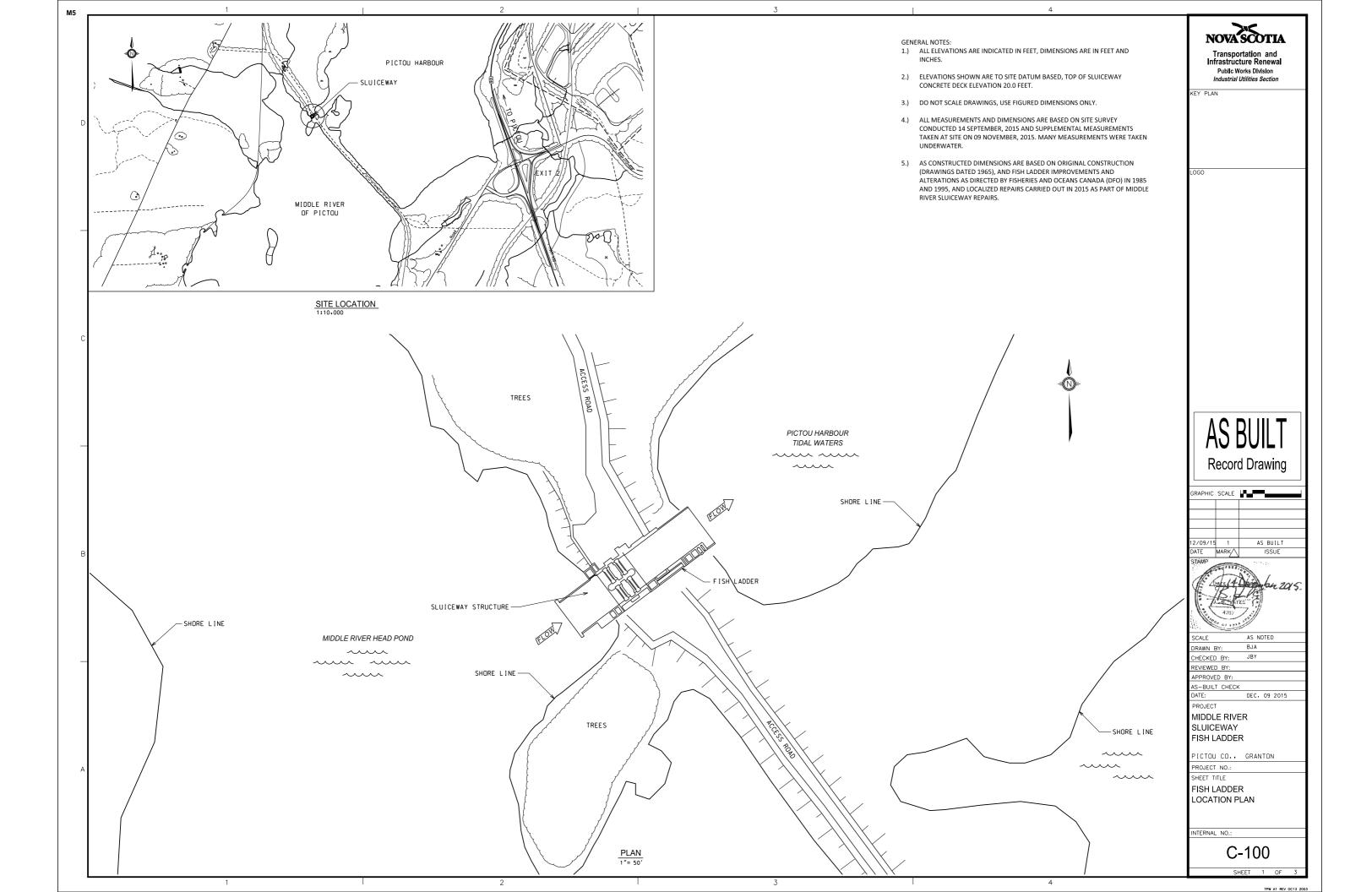
100

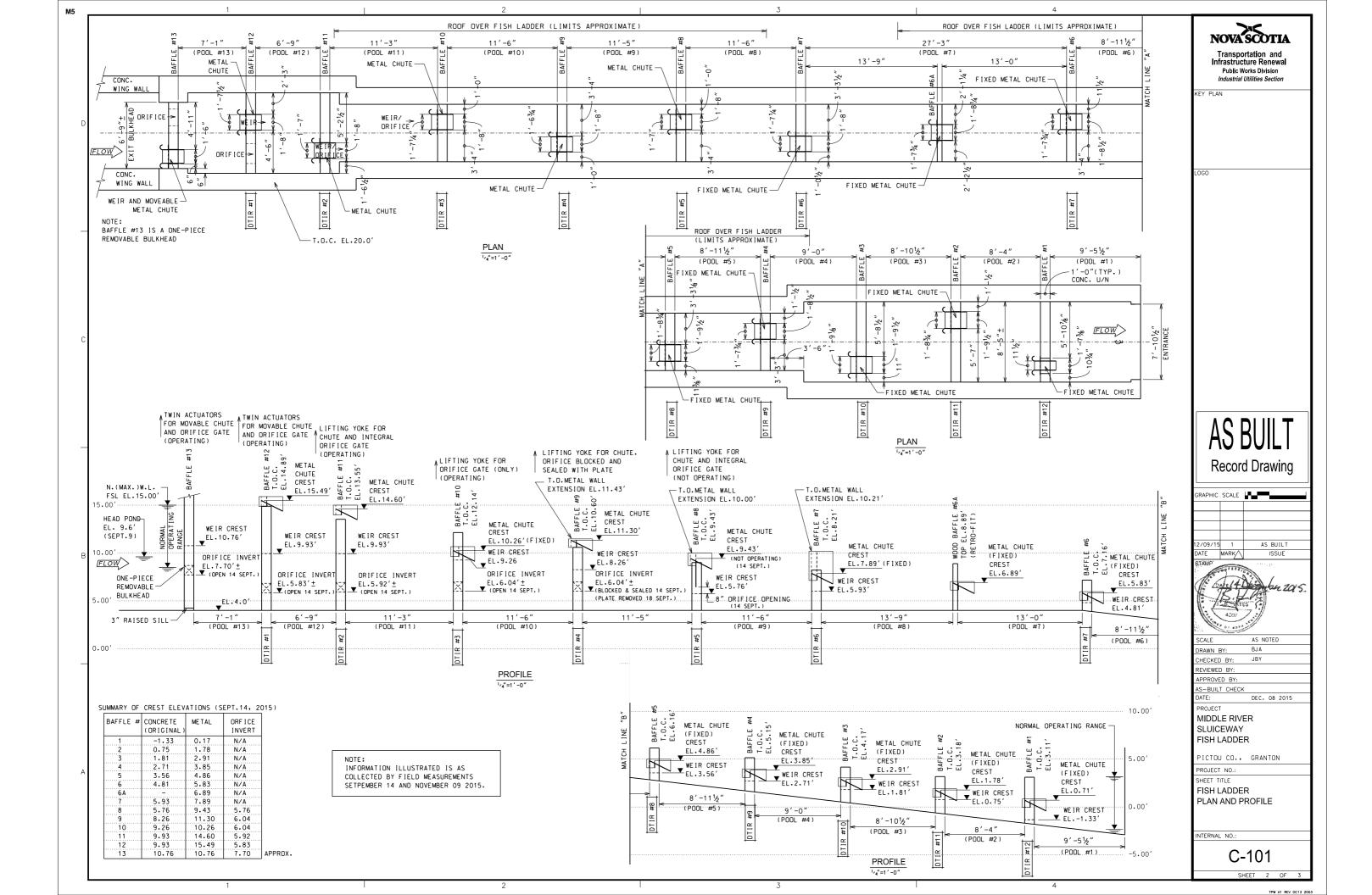
0.98

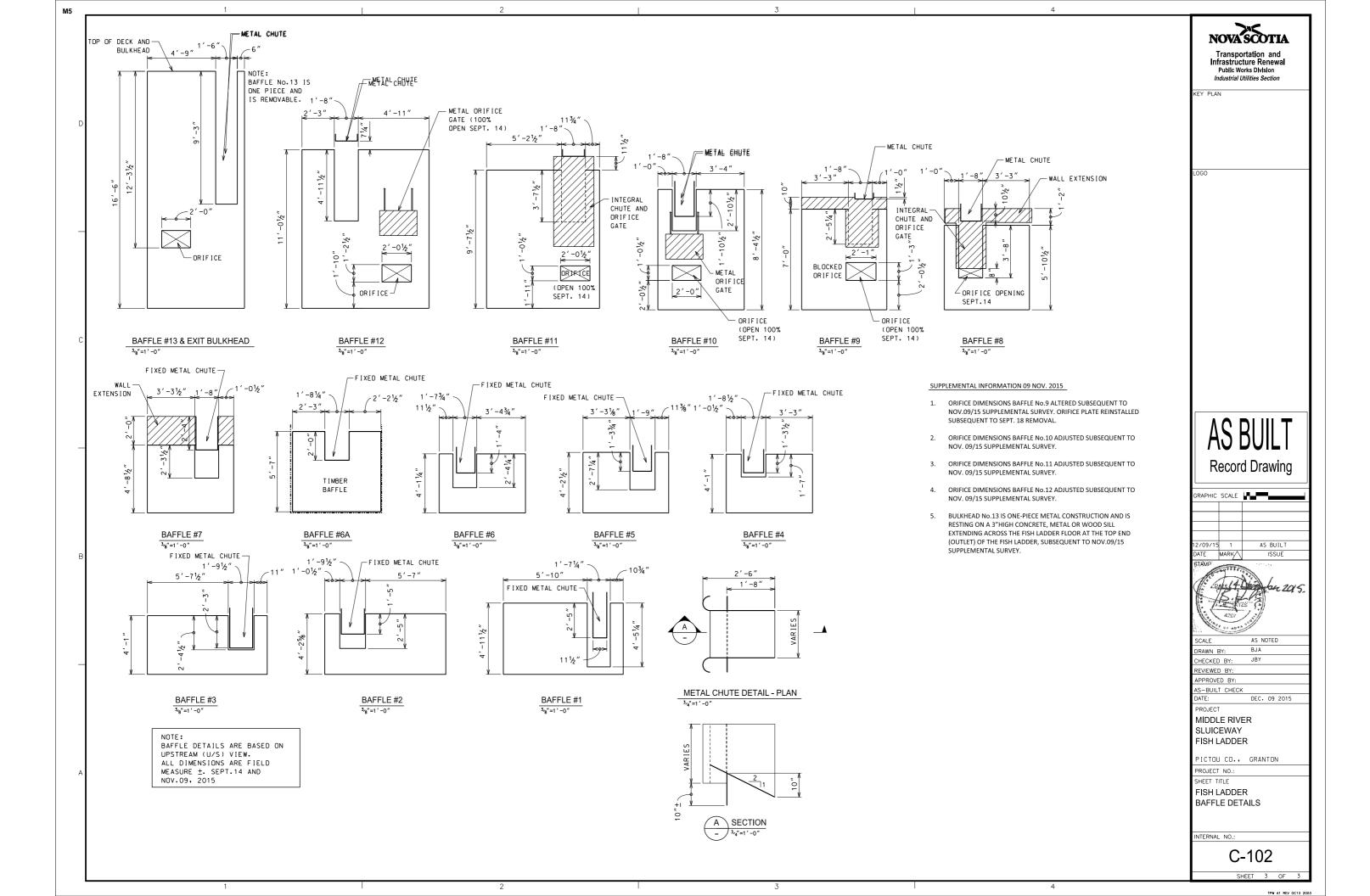
0.44

Prob %	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
0	20.86	19.74	27.40	30.25	21.78	15.40	7.99	13.51	12.95	25.26	26.77	27.13
5	9.38	7.81	15.25	16.94	11.31	5.00	2.51	3.59	3.61	9.70	13.72	13.51
10	6.10	4.76	10.75	12.55	7.60	3.04	1.26	1.56	1.98	6.16	9.38	9.78
15	4.70	3.43	8.20	10.21	5.84	2.21	0.76	0.72	1.05	4.54	7.68	7.59
20	3.83	2.61	6.76	8.57	4.85	1.67	0.47	0.35	0.65	3.41	6.22	6.02
25	3.18	2.09	5.50	7.46	4.02	1.33	0.27	0.15	0.41	2.65	5.26	5.02
30	2.70	1.74	4.58	6.53	3.42	1.01	0.16	0.04	0.24	2.14	4.51	4.27
35	2.30	1.49	3.82	5.65	2.94	0.79	0.06	-0.08	0.07	1.72	3.99	3.71
40	1.96	1.24	3.13	5.13	2.54	0.62	-0.02	-0.17	-0.02	1.35	3.57	3.33
45	1.63	1.06	2.58	4.51	2.23	0.48	-0.10	-0.24	-0.10	0.99	3.12	2.95
50	1.39	0.87	2.18	4.07	2.02	0.35	-0.17	-0.29	-0.17	0.70	2.73	2.57
55	1.22	0.70	1.86	3.74	1.74	0.25	-0.23	-0.34	-0.22	0.47	2.35	2.31
60	1.00	0.57	1.51	3.36	1.50	0.17	-0.28	-0.39	-0.27	0.31	1.97	2.10
65	0.83	0.45	1.30	3.05	1.21	0.10	-0.33	-0.44	-0.31	0.16	1.64	1.87
70	0.64	0.33	1.07	2.74	0.98	0.04	-0.36	-0.48	-0.35	0.02	1.28	1.59
75	0.46	0.18	0.76	2.47	0.77	-0.03	-0.41	-0.51	-0.40	-0.09	0.97	1.36
80	0.30	0.01	0.49	2.21	0.59	-0.10	-0.46	-0.53	-0.45	-0.20	0.65	1.10
85	0.15	-0.12	0.24	1.85	0.43	-0.18	-0.50	-0.55	-0.48	-0.31	0.42	0.82
90	-0.06	-0.24	-0.04	1.34	0.17	-0.26	-0.53	-0.58	-0.52	-0.41	0.27	0.42
95	-0.34	-0.40	-0.31	0.20	-0.03	-0.35	-0.58	-0.62	-0.57	-0.50	-0.02	0.11
100		0	0	0	0	0	0	0	0	0	0	0

Table 6. Estimated Reservoir Water Level (ft)


	Exc Prob	Start												
	%	WL	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
3	0	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00
L	5	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00
	10	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00
	15	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00
	20	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00
	25	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00
	30	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00
	35	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	14.74	14.97	15.00	15.00	15.00
	40	15.00	15.00	15.00	15.00	15.00	15.00	15.00	14.95	14.39	14.31	15.00	15.00	15.00
	45	15.00	15.00	15.00	15.00	15.00	15.00	15.00	14.68	13.88	13.53	15.00	15.00	15.00
	50	15.00	15.00	15.00	15.00	15.00	15.00	15.00	14.42	13.45	12.88	15.00	15.00	15.00
	55	15.00	15.00	15.00	15.00	15.00	15.00	15.00	14.23	13.10	12.35	13.91	15.00	15.00
	60	15.00	15.00	15.00	15.00	15.00	15.00	15.00	14.06	12.76	11.86	12.88	15.00	15.00
	65	15.00	15.00	15.00	15.00	15.00	15.00	15.00	13.89	12.44	11.40	11.94	15.00	15.00
	70	15.00	15.00	15.00	15.00	15.00	15.00	15.00	13.80	12.19	11.01	11.06	15.00	15.00
	75	15.00	15.00	15.00	15.00	15.00	15.00	14.89	13.51	11.80	10.46	10.16	13.40	15.00
	80	15.00	15.00	15.00	15.00	15.00	15.00	14.65	13.12	11.34	9.85	9.17	11.35	15.00
	85	12.39	12.89	12.49	13.27	15.00	15.00	14.40	12.73	10.89	9.29	8.26	9.67	12.39
	90	15.00	14.80	13.99	13.87	15.00	15.00	14.13	12.37	10.44	8.72	7.36	8.25	9.64
	95	15.00	13.87	12.54	11.51	12.18	12.08	10.90	8.96	6.90	5.01	3.34	3.28	3.64
	100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00


APPENDIX B


Fish Ladder As-Built Record Drawings

Nova Scotia Transportation and Infrastructure Renewal December 09, 2015

Appendix N

Priority Species

Appendix N1 – Potential Priority Animal Species Appendix N2 – Potential Priority Plant Species

DATA REPORT 6252: Pictou, NS

Prepared 15 November 2018 by J. Churchill, Data Manager

CONTENTS OF REPORT

1.0 Preface

- 1.1 Data List
- 1.2 Restrictions
- 1.3 Additional Information

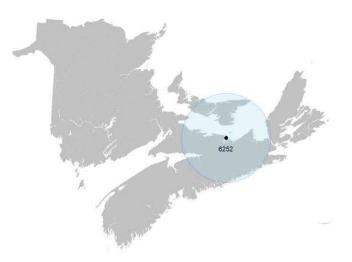
Map 1: Buffered Study Area

2.0 Rare and Endangered Species

- 2.1 Flora
- 2.2 Fauna

Map 2: Flora and Fauna

3.0 Special Areas


- 3.1 Managed Areas
- 3.2 Significant Areas
- Map 3: Special Areas

4.0 Rare Species Lists

- 4.1 Fauna
- 4.2 Flora
- 4.3 Location Sensitive Species
- 4.4 Source Bibliography

5.0 Rare Species within 100 km

5.1 Source Bibliography

Map 1. A 100 km buffer around the study area

1.0 PREFACE

The Atlantic Canada Conservation Data Centre (AC CDC; www.accdc.com) is part of a network of NatureServe data centres and heritage programs serving 50 states in the U.S.A, 10 provinces and 1 territory in Canada, plus several Central and South American countries. The NatureServe network is more than 30 years old and shares a common conservation data methodology. The AC CDC was founded in 1997, and maintains data for the jurisdictions of New Brunswick, Nova Scotia, Prince Edward Island, and Newfoundland and Labrador. Although a non-governmental agency, the AC CDC is supported by 6 federal agencies and 4 provincial governments, as well as through outside grants and data processing fees.

Upon request and for a fee, the AC CDC queries its database and produces customized reports of the rare and endangered flora and fauna known to occur in or near a specified study area. As a supplement to that data, the AC CDC includes locations of managed areas with some level of protection, and known sites of ecological interest or sensitivity.

1.1 DATA LIST

Included datasets:

meradea aatasets.	
Filename	Contents
PictouNS_6252ob.xls	All Rare and legally protected Flora and Fauna in your study area
PictouNS_6252ob100km.xls	A list of Rare and legally protected <i>Flora and Fauna</i> within 100 km of your study area
PictouNS_6252ma.xls	All Managed Areas in your study area
PictouNS_6252sa.xls	All Significant Natural Areas in your study area
PictouNS_6252wf.xls	Rare and common Waterfowl in your study area (CWS database)
PictouNS_6252bc.xls	Rare and common Colonial Birds in your study area

Data Report 6252: Pictou, NS Page 2 of 21

1.2 RESTRICTIONS

The AC CDC makes a strong effort to verify the accuracy of all the data that it manages, but it shall not be held responsible for any inaccuracies in data that it provides. By accepting AC CDC data, recipients assent to the following limits of use:

- a) Data is restricted to use by trained personnel who are sensitive to landowner interests and to potential threats to rare and/or endangered flora and fauna posed by the information provided.
- b) Data is restricted to use by the specified Data User; any third party requiring data must make its own data request.
- c) The AC CDC requires Data Users to cease using and delete data 12 months after receipt, and to make a new request for updated data if necessary at that time.
- d) AC CDC data responses are restricted to the data in our Data System at the time of the data request.
- e) Each record has an estimate of locational uncertainty, which must be referenced in order to understand the record's relevance to a particular location. Please see attached Data Dictionary for details.
- f) AC CDC data responses are not to be construed as exhaustive inventories of taxa in an area.
- g) The absence of a taxon cannot be inferred by its absence in an AC CDC data response.

1.3 ADDITIONAL INFORMATION

The accompanying Data Dictionary provides metadata for the data provided.

Please direct any additional questions about AC CDC data to the following individuals:

Plants, Lichens, Ranking Methods, All other Inquiries

Sean Blaney, Senior Scientist, Executive Director

Tel: (506) 364-2658 sean.blaney@accdc.ca

Animals (Fauna)

John Klymko, Zoologist Tel: (506) 364-2660 john.klymko@accdc.ca

Data Management, GIS

James Churchill, Data Manager Tel: (902) 679-6146

james.churchill@accdc.ca

Plant Communities

Sarah Robinson, Community Ecologist

Tel: (506) 364-2664 sarah.robinson@accdc.ca

Billing

Jean Breau

Tel: (506) 364-2657 jean.breau@accdc.ca

Questions on the biology of Federal Species at Risk can be directed to AC CDC: (506) 364-2658, with questions on Species at Risk regulations to: Samara Eaton, Canadian Wildlife Service (NB and PE): (506) 364-5060 or Julie McKnight, Canadian Wildlife Service (NS): (902) 426-4196.

For provincial information about rare taxa and protected areas, or information about game animals, deer yards, old growth forests, archeological sites, fish habitat etc., in New Brunswick, please contact Hubert Askanas, Energy and Resource Development: (506) 453-5873.

For provincial information about rare taxa and protected areas, or information about game animals, deer yards, old growth forests, archeological sites, fish habitat etc., in Nova Scotia, please contact Donna Hurlburt, NS DLF: (902) 679-6886. To determine if location-sensitive species (section 4.3) occur near your study site please contact a NS DLF Regional Biologist:

Western: Duncan Bayne

(902) 648-3536

Duncan.Bayne@novascotia.ca

Western: Sarah Spencer

(902) 634-7555

Sarah.Spencer@novascotia.ca

Central: Shavonne Meyer

(902) 893-6350

Shavonne.Meyer@novascotia.ca

Central: Kimberly George

(902) 890-1046

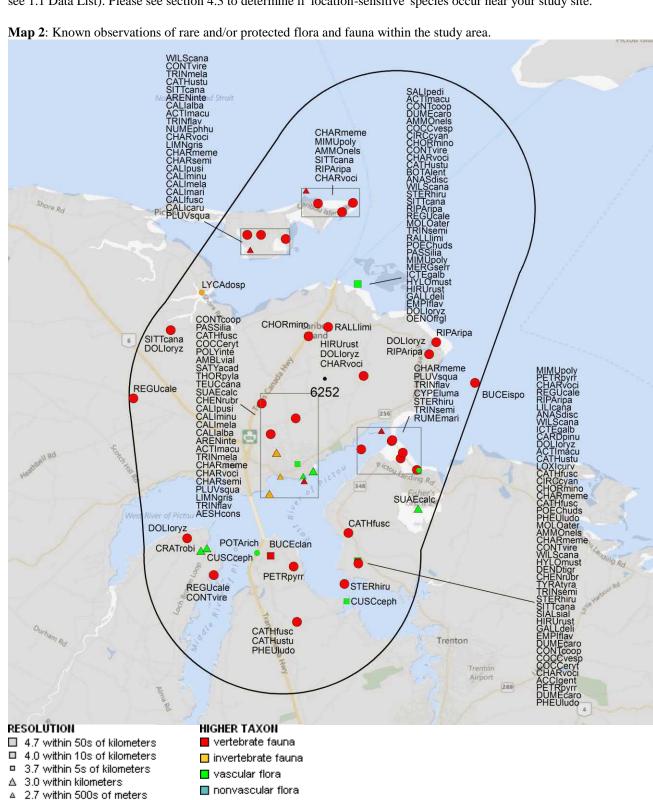
Kimberly.George@novascotia.ca

 $\underline{Lisa.Doucette@novascotia.ca} \qquad \underline{Terrance.Power@novascotia.ca}$

For provincial information about rare taxa and protected areas, or information about game animals, fish habitat etc., in Prince Edward Island, please contact Garry Gregory, PEI Dept. of Communities, Land and Environment: (902) 569-7595.

Data Report 6252: Pictou, NS Page 3 of 21

2.0 RARE AND ENDANGERED SPECIES


2.1 FLORA

The study area contains 15 records of 11 vascular, no records of nonvascular flora (Map 2 and attached: *ob.xls).

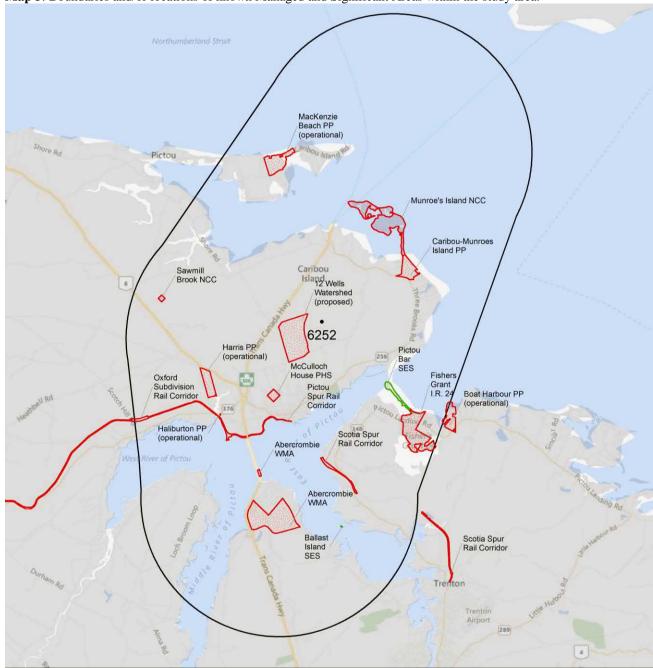
2.2 FAUNA

2.0 within 100s of meters
1.7 within 10s of meters

The study area contains 381 records of 57 vertebrate, 12 records of 6 invertebrate fauna (Map 2 and attached data files see 1.1 Data List). Please see section 4.3 to determine if 'location-sensitive' species occur near your study site.

Data Report 6252: Pictou, NS Page 4 of 21

3.0 SPECIAL AREAS


3.1 MANAGED AREAS

The GIS scan identified 14 managed areas in the vicinity of the study area (Map 3 and attached file: *ma*.xls).

3.2 SIGNIFICANT AREAS

The GIS scan identified 2 biologically significant sites in the vicinity of the study area (Map 3 and attached file: *sa*.xls).

Map 3: Boundaries and/or locations of known Managed and Significant Areas within the study area.

managed areas significant areas boundary boundary approximate approximate point location

Data Report 6252: Pictou, NS

4.0 RARE SPECIES LISTS

Rare and/or endangered taxa (excluding "location-sensitive" species, section 4.3) within the study area listed in order of concern, beginning with legally listed taxa, with the number of observations per taxon and the distance in kilometers from study area centroid to the closest observation (\pm the precision, in km, of the record). [P] = vascular plant, [N] = nonvascular plant, [A] = vertebrate animal, [I] = invertebrate animal, [C] = community. Note: records are from attached files *ob.xls/*ob.shp only.

4.1 FLORA

	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
Ρ	Cyperus lupulinus ssp. macilentus	Hop Flatsedge				S1	2 May Be At Risk	2	3.3 ± 0.0
Ρ	Crataegus robinsonii	Robinson's Hawthorn				S1?	5 Undetermined	1	7.7 ± 1.0
Ρ	Chenopodium rubrum	Red Pigweed				S2	2 May Be At Risk	2	3.6 ± 0.0
Ρ	Oenothera fruticosa ssp. glauca	Narrow-leaved Evening Primrose				S2	5 Undetermined	1	3.6 ± 7.0
Ρ	Salix pedicellaris	Bog Willow				S2	3 Sensitive	1	3.6 ± 7.0
Ρ	Lilium canadense	Canada Lily				S2	2 May Be At Risk	1	6.7 ± 7.0
Ρ	Potamogeton richardsonii	Richardson's Pondweed				S2	2 May Be At Risk	1	6.8 ± 0.0
Ρ	Cuscuta cephalanthi	Buttonbush Dodder				S2?	5 Undetermined	2	7.5 ± 1.0
Ρ	Teucrium canadense	Canada Germander				S3	3 Sensitive	1	3.2 ± 5.0
Ρ	Suaeda calceoliformis	Horned Sea-blite				S3S4	4 Secure	2	3.4 ± 4.0
Ρ	Rumex maritimus	Sea-Side Dock				S3S4		1	4.7 ± 0.0

4.2 FAUNA

	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
Α	Charadrius melodus melodus	Piping Plover melodus ssp	Endangered	Endangered	Endangered	S1B	1 At Risk	39	2.8 ± 0.0
Α	Calidris canutus rufa	Red Knot rufa ssp	Endangered		Endangered	S2M	1 At Risk	2	5.4 ± 0.0
Α	Riparia riparia	Bank Swallow	Threatened	Threatened	Endangered	S2S3B	2 May Be At Risk	5	3.6 ± 7.0
Α	Hirundo rustica	Barn Swallow	Threatened	Threatened	Endangered	S2S3B	1 At Risk	7	1.4 ± 0.0
Α	Wilsonia canadensis	Canada Warbler	Threatened	Threatened	Endangered	S3B	1 At Risk	4	3.6 ± 7.0
Α	Dolichonyx oryzivorus	Bobolink	Threatened	Threatened	Vulnerable	S3S4B	3 Sensitive	9	1.4 ± 0.0
Α	Hylocichla mustelina	Wood Thrush	Threatened	Threatened		SUB	5 Undetermined	2	3.6 ± 7.0
Α	Bucephala islandica (Eastern pop.)	Barrow's Goldeneye - Eastern pop.	Special Concern	Special Concern		S1N	1 At Risk	1	5.4 ± 0.0
Α	Chordeiles minor	Common Nighthawk	Special Concern	Threatened	Threatened	S2B	1 At Risk	4	1.6 ± 0.0
Α	Contopus cooperi	Olive-sided Flycatcher	Special Concern	Threatened	Threatened	S2B	1 At Risk	5	2.5 ± 0.0
Α	Contopus virens	Eastern Wood-Pewee	Special Concern	Special Concern	Vulnerable	S3S4B	3 Sensitive	9	3.6 ± 7.0
Α	Coccothraustes vespertinus	Evening Grosbeak	Special Concern		Vulnerable	S3S4B,S3N	4 Secure	2	3.6 ± 7.0
Α	Sterna hirundo	Common Tern	Not At Risk			S3B	3 Sensitive	17	2.9 ± 0.0
Α	Sialia sialis	Eastern Bluebird	Not At Risk			S3B	3 Sensitive	1	6.7 ± 7.0
Α	Accipiter gentilis	Northern Goshawk	Not At Risk			S3S4	4 Secure	1	6.7 ± 7.0
Α	Circus cyaneus	Northern Harrier	Not At Risk			S3S4B	4 Secure	2	3.6 ± 7.0
Α	Ammodramus nelsoni	Nelson's Sparrow	Not At Risk			S3S4B	4 Secure	3	3.6 ± 7.0
Α	Mimus polyglottos	Northern Mockingbird				S1B	4 Secure	3	3.6 ± 7.0
Α	Calidris minutilla	Least Sandpiper				S1B,S3M	4 Secure	15	3.8 ± 0.0
Α	Charadrius semipalmatus	Semipalmated Plover				S1B,S3S4M	4 Secure	23	3.8 ± 0.0
Α	Dendroica tigrina	Cape May Warbler				S2B	3 Sensitive	1	6.7 ± 7.0
Α	Molothrus ater	Brown-headed Cowbird				S2B	4 Secure	2	3.6 ± 7.0
Α	Bucephala clangula	Common Goldeneye				S2B,S5N	4 Secure	5	6.7 ± 13.0
Α	Carduelis pinus	Pine Siskin				S2S3	3 Sensitive	1	6.7 ± 7.0
Α	Rallus limicola	Virginia Rail				S2S3B	5 Undetermined	2	1.9 ± 0.0
Α	Tringa semipalmata	Willet				S2S3B	2 May Be At Risk	7	3.6 ± 7.0
Α	Petrochelidon pyrrhonota	Cliff Swallow				S2S3B	2 May Be At Risk	3	6.7 ± 7.0
Α	Pheucticus Iudovicianus	Rose-breasted Grosbeak				S2S3B	3 Sensitive	4	6.7 ± 7.0
Α	Icterus galbula	Baltimore Oriole				S2S3B	2 May Be At Risk	5	3.6 ± 7.0
Α	Numenius phaeopus hudsonicus	Hudsonian Whimbrel				S2S3M	3 Sensitive	1	5.4 ± 0.0

Data Report 6252: Pictou, NS

	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
Α	Calidris melanotos	Pectoral Sandpiper				S2S3M	4 Secure	2	3.8 ± 0.0
Α	Poecile hudsonica	Boreal Chickadee				S 3	3 Sensitive	2	3.6 ± 7.0
Α	Sitta canadensis	Red-breasted Nuthatch				S 3	4 Secure	9	3.6 ± 7.0
Α	Calidris maritima	Purple Sandpiper				S3?N	3 Sensitive	1	5.4 ± 0.0
Α	Charadrius vociferus	Killdeer				S3B	3 Sensitive	13	1.4 ± 0.0
Α	Gallinago delicata	Wilson's Snipe				S3B	3 Sensitive	4	3.6 ± 7.0
Α	Coccyzus erythropthalmus	Black-billed Cuckoo				S3B	2 May Be At Risk	2	2.8 ± 0.0
Α	Tyrannus tyrannus	Eastern Kingbird				S3B	3 Sensitive	1	6.7 ± 7.0
Α	Dumetella carolinensis	Gray Catbird				S3B	2 May Be At Risk	6	3.6 ± 7.0
Α	Tringa melanoleuca	Greater Yellowlegs				S3B,S3S4M	3 Sensitive	21	3.8 ± 0.0
Α	Pluvialis squatarola	Black-bellied Plover				S3M	4 Secure	17	2.8 ± 0.0
Α	Tringa flavipes	Lesser Yellowlegs				S3M	4 Secure	8	2.8 ± 0.0
Α	Arenaria interpres	Ruddy Turnstone				S3M	4 Secure	14	3.8 ± 0.0
Α	Calidris pusilla	Semipalmated Sandpiper				S3M	3 Sensitive	26	3.8 ± 0.0
Α	Calidris fuscicollis	White-rumped Sandpiper				S3M	4 Secure	1	5.4 ± 0.0
Α	Limnodromus griseus	Short-billed Dowitcher				S3M	4 Secure	5	3.8 ± 0.0
Α	Calidris alba	Sanderling				S3M,S2N	4 Secure	16	3.8 ± 0.0
Α	Loxia curvirostra	Red Crossbill				S3S4	4 Secure	1	6.7 ± 7.0
Α	Botaurus lentiginosus	American Bittern				S3S4B	3 Sensitive	3	3.6 ± 7.0
Α	Anas discors	Blue-winged Teal				S3S4B	2 May Be At Risk	4	3.6 ± 7.0
Α	Actitis macularius	Spotted Sandpiper				S3S4B	3 Sensitive	13	3.6 ± 7.0
Α	Empidonax flaviventris	Yellow-bellied Flycatcher				S3S4B	3 Sensitive	3	3.6 ± 7.0
Α	Regulus calendula	Ruby-crowned Kinglet				S3S4B	3 Sensitive	8	3.6 ± 7.0
Α	Catharus fuscescens	Veery				S3S4B	4 Secure	7	2.8 ± 0.0
Α	Catharus ustulatus	Swainson's Thrush				S3S4B	4 Secure	4	3.6 ± 7.0
Α	Passerella iliaca	Fox Sparrow				S3S4B	4 Secure	3	1.8 ± 0.0
Α	Mergus serrator	Red-breasted Merganser				S3S4B,S5N	4 Secure	2	3.6 ± 7.0
I	Satyrium acadica	Acadian Hairstreak				S1	5 Undetermined	5	3.2 ± 1.0
I	Lycaena dospassosi	Salt Marsh Copper				S2	1 At Risk	1	5.4 ± 0.0
1	Thorybes pylades	Northern Cloudywing				S2S3	3 Sensitive	1	3.2 ± 1.0
1	Aeshna constricta	Lance-Tipped Darner				S3	4 Secure	1	4.6 ± 1.0
I	Polygonia interrogationis	Question Mark				S3B	4 Secure	3	3.2 ± 1.0
I	Amblyscirtes vialis	Common Roadside-Skipper				S3S4	4 Secure	1	3.2 ± 1.0

4.3 LOCATION SENSITIVE SPECIES

The Department of Natural Resources in each Maritimes province considers a number of species "location sensitive". Concern about exploitation of location-sensitive species precludes inclusion of precise coordinates in this report. Those intersecting your study area are indicated below with "YES".

Nova Scotia

Scientific Name	Common Name	SARA	Prov Legal Prot	Known within the Study Site?
Fraxinus nigra	Black Ash		Threatened	YES
Emydoidea blandingii	Blanding's Turtle - Nova Scotia pop.	Endangered	Vulnerable	No
Glyptemys insculpta	Wood Turtle	Threatened	Threatened	No
Falco peregrinus pop. 1	Peregrine Falcon - anatum/tundrius pop.	Special Concern	Vulnerable	No
Bat Hibernaculum		[Endangered] ¹	[Endangered] ¹	No

¹ Myotis lucifugus (Little Brown Myotis), Myotis septentrionalis (Long-eared Myotis), and Perimyotis subflavus (Tri-colored Bat or Eastern Pipistrelle) are all Endangered under the Federal Species at Risk Act and the NS Endangered Species Act.

Data Report 6252: Pictou, NS
Page 7 of 21

4.4 SOURCE BIBLIOGRAPHY

The recipient of these data shall acknowledge the AC CDC and the data sources listed below in any documents, reports, publications or presentations, in which this dataset makes a significant contribution.

CITATION # recs 169 Morrison, Guy. 2011. Maritime Shorebird Survey (MSS) database. Canadian Wildlife Service, Ottawa, 15939 surveys. 86171 recs. Lepage, D. 2014. Maritime Breeding Bird Atlas Database, Bird Studies Canada, Sackville NB, 407,838 recs. Amirault, D.L. & Stewart, J. 2007, Piping Ployer Database 1894-2006, Canadian Wildlife Service, Sackville, 3344 recs, 1228 new. Benjamin, L.K. (compiler). 2012. Significant Habitat & Species Database. Nova Scotia Dept Natural Resources, 4965 recs. Erskine, A.J. 1992. Maritime Breeding Bird Atlas Database. NS Museum & Nimbus Publ., Halifax, 82,125 recs. Staff, DNR 2007. Restricted & Limited Use Land Database (RLUL). Wilhelm, S.I. et al. 2011. Colonial Waterbird Database. Layberry, R.A. & Hall, P.W., LaFontaine, J.D. 1998. The Butterflies of Canada. University of Toronto Press. 280 pp+plates. Hicks, Andrew. 2009. Coastal Waterfowl Surveys Database, 2000-08. Canadian Wildlife Service, Sackville, 46488 recs (11149 non-zero). Roland, A.E. & Smith, E.C. 1969. The Flora of Nova Scotia, 1st Ed. Nova Scotia Museum, Halifax, 743pp. Canadian Wildlife Service, Dartmouth. 2010. Piping Plover censuses 2007-09, 304 recs. Pronvch, G. & Wilson, A. 1993, Atlas of Rare Vascular Plants in Nova Scotia, Nova Scotia Museum, Halifax NS, I:1-168, II:169-331, 1446 recs. Amirault, D.L. & McKnight, J. 2003. Piping Plover Database 1991-2003. Canadian Wildlife Service, Sackville, unpublished data. 7 recs. Benjamin, L.K. (compiler) 2012. Significant Habitat & Species Database. NS Dept of Natural Resources. Klymko, J.J.D. 2014. Maritimes Butterfly Atlas, 2012 submissions. Atlantic Canada Conservation Data Centre, 8552 records. Munro, Marian K. Nova Scotia Provincial Museum of Natural History Herbarium Database. Nova Scotia Provincial Museum of Natural History, Halifax, Nova Scotia. 2013. Newell, R.E. 2005. E.C. Smith Digital Herbarium. E.C. Smith Herbarium, Irving Biodiversity Collection, Acadia University, Web site: http://luxor.acadiau.ca/library/Herbarium/project/. 582 recs. NSDNR website Benjamin, L.K. (compiler). 2007. Significant Habitat & Species Database. Nova Scotia Dept Natural Resources, 8439 recs. Blaney, C.S.: Mazerolle, D.M.: Oberndorfer, E. 2007, Fieldwork 2007, Atlantic Canada Conservation Data Centre, Sackville NB, 13770 recs. Blaney, C.S.; Spicer, C.D.; Rothfels, C. 2004. Fieldwork 2004. Atlantic Canada Conservation Data Centre. Sackville NB, 1343 recs. Brunelle, P.-M. (compiler). 2009. ADIP/MDDS Odonata Database: data to 2006 inclusive. Atlantic Dragonfly Inventory Program (ADIP), 24200 recs. Daury, R.W. & Bateman, M.C. 1996. The Barrow's Goldeneye (Bucephala islandica) in the Atlantic Provinces and Maine. Canadian Wildlife Service, Sackville, 47pp.

Zinck, M. & Roland, A.E. 1998. Roland's Flora of Nova Scotia. Nova Scotia Museum, 3rd ed., rev. M. Zinck; 2 Vol., 1297 pp.

5.0 RARE SPECIES WITHIN 100 KM

NCC Atlantic Canada, 2000

A 100 km buffer around the study area contains 32207 records of 138 vertebrate and 790 records of 55 invertebrate fauna; 4264 records of 270 vascular, 1318 records of 61 nonvascular flora (attached: *ob100km.xls).

Taxa within 100 km of the study site that are rare and/or endangered in the province in which the study site occurs (including "location-sensitive" species). All ranks correspond to the province in which the study site falls, even for out-of-province records. Taxa are listed in order of concern, beginning with legally listed taxa, with the number of observations per taxon and the distance in kilometers from study area centroid to the closest observation (± the precision, in km, of the record).

Taxonomic										
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Prov
Α	Myotis lucifugus	Little Brown Myotis	Endangered	Endangered	Endangered	S1	1 At Risk	65	21.8 ± 0.0	NS
Α	Myotis septentrionalis	Northern Long-eared Myotis	Endangered	Endangered	Endangered	S1	1 At Risk	97	34.9 ± 1.0	PE
Α	Perimyotis subflavus	Eastern Pipistrelle	Endangered	Endangered	Endangered	S1	1 At Risk	4	81.8 ± 5.0	NS
Α	Salmo salar pop. 1	Atlantic Salmon - Inner Bay of Fundy pop.	Endangered	Endangered		S1	2 May Be At Risk	14	39.0 ± 0.0	NS
Α	Charadrius melodus melodus	Piping Plover melodus ssp	Endangered	Endangered	Endangered	S1B	1 At Risk	2352	2.8 ± 0.0	NS
Α	Sterna dougallii	Roseate Tern	Endangered	Endangered	Endangered	S1B	1 At Risk	18	91.1 ± 0.0	NS
Α	Morone saxatilis pop. 2	Striped Bass- Bay of Fundy pop.	Endangered	ū	, and the second	S1B	2 May Be At Risk	1	97.4 ± 0.0	NS
Α	Calidris canutus rufa	Red Knot rufa ssp	Endangered		Endangered	S2M	1 At Risk	232	5.4 ± 0.0	NS
Α	Caprimulgus vociferus	Whip-Poor-Will	Threatened	Threatened	Threatened	S1?B	1 At Risk	7	51.6 ± 7.0	NS
Α	Catharus bicknelli	Bicknell's Thrush	Threatened	Special Concern	Endangered	S1S2B	1 At Risk	1	91.9 ± 7.0	NS

Data Report 6252: Pictou, NS

Taxonomic

Craum	Caiantifia Nama	Common Nome	COSEMIC	CADA	Draw Lawel Drat	Draw Davity Davit	Draw CC Bank	# "	Dietense (km)	Desir
Group	Scientific Name	Wood Turtle	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km) 13.1 ± 5.0	Prov
A	Glyptemys insculpta		Threatened	Threatened	Threatened	S2 S2	3 Sensitive	220 2		NS NS
A	Acipenser oxyrinchus	Atlantic Sturgeon	Threatened				2 May Be At Risk	2 5	84.7 ± 0.0	
A	Anguilla rostrata	American Eel	Threatened	Throotoned	Endonmorad	S2	4 Secure	5 190	76.5 ± 0.0	NS
A	Chaetura pelagica	Chimney Swift	Threatened	Threatened	Endangered	S2B,S1M	1 At Risk		11.0 ± 7.0	NS
A	Riparia riparia	Bank Swallow	Threatened	Threatened	Endangered	S2S3B	2 May Be At Risk	513	3.6 ± 7.0	NS
A	Hirundo rustica	Barn Swallow	Threatened	Threatened	Endangered	S2S3B	1 At Risk	884	1.4 ± 0.0	NS
A	Wilsonia canadensis	Canada Warbler	Threatened	Threatened	Endangered	S3B	1 At Risk	743	3.6 ± 7.0	NS
A	Dolichonyx oryzivorus	Bobolink	Threatened	Threatened	Vulnerable	S3S4B	3 Sensitive	679	1.4 ± 0.0	NS
A	Hylocichla mustelina	Wood Thrush	Threatened	Threatened		SUB	5 Undetermined	30	3.6 ± 7.0	NS
Α	Passerculus sandwichensis	Savannah Sparrow princeps	Special Concern	Special Concern		S1B	3 Sensitive	1	97.5 ± 7.0	NS
	princeps	ssp				_				
Α	Falco peregrinus pop. 1	Peregrine Falcon - anatum/tundrius	Special Concern	Special Concern	Vulnerable	S1B,SNAM	3 Sensitive	4	67.8 ± 0.0	PE
Α	Bucephala islandica (Eastern pop.)	Barrow's Goldeneye - Eastern pop.	Special Concern	Special Concern		S1N	1 At Risk	5	5.4 ± 0.0	NS
Α	Asio flammeus	Short-eared Owl	Special Concern	Special Concern		S1S2B	2 May Be At Risk	12	16.6 ± 7.0	NS
Α	Euphagus carolinus	Rusty Blackbird	Special Concern	Special Concern	Endangered	S2B	2 May Be At Risk	231	20.0 ± 7.0	NS
Α	Chordeiles minor	Common Nighthawk	Special Concern	Threatened	Threatened	S2B	1 At Risk	285	1.6 ± 0.0	NS
Α	Contopus cooperi	Olive-sided Flycatcher	Special Concern	Threatened	Threatened	S2B	1 At Risk	868	2.5 ± 0.0	NS
Α	Histrionicus histrionicus pop.	Harlequin Duck - Eastern	Special Concern	Special Concern	Endangered	S2N	1 At Risk	12	92.4 ± 2.0	NS
Α	Phalaropus lobatus	pop. Red-necked Phalarope	Special Concern			S2S3M	3 Sensitive	6	75.5 ± 0.0	NS
Α	Morone saxatilis pop. 1	Striped Bass- Southern Gulf of St Lawrence pop.	Special Concern			S2S3N	2 May Be At Risk	1	60.8 ± 1.0	NS
Α	Chelydra serpentina	Snapping Turtle	Special Concern	Special Concern	Vulnerable	S3	3 Sensitive	37	17.1 ± 0.0	NS
Α	Contopus virens	Eastern Wood-Pewee	Special Concern	Special Concern	Vulnerable	S3S4B	3 Sensitive	664	3.6 ± 7.0	NS
Α	Coccothraustes vespertinus	Evening Grosbeak	Special Concern	•	Vulnerable	S3S4B,S3N	4 Secure	385	3.6 ± 7.0	NS
Α	Phocoena phocoena (NW Atlantic pop.)	Harbour Porpoise - Northwest Atlantic pop.	Special Concern	Threatened		S4		1	70.5 ± 5.0	PE
Α	Podiceps auritus	Horned Grebe	Special Concern			S4N	4 Secure	5	96.2 ± 1.0	NB
A	Accipiter cooperii	Cooper's Hawk	Not At Risk			S1?B	5 Undetermined	2	18.3 ± 0.0	NS
A	Fulica americana	American Coot	Not At Risk			S1B	5 Undetermined	19	16.9 ± 7.0	NS
A	Sorex dispar	Long-tailed Shrew	Not At Risk	Special Concern		S2	3 Sensitive	2	84.4 ± 5.0	NS
A	Aegolius funereus	Boreal Owl	Not At Risk	Special Concern		S2?B	5 Undetermined	19	29.5 ± 0.0	NS
A	Globicephala melas	Long-finned Pilot Whale	Not At Risk			S2S3	3 Officetermined	1	82.2 ± 100.0	NS
A	Hemidactylium scutatum	Four-toed Salamander	Not At Risk			S3	4 Secure	6	43.5 ± 0.0	NS
A	Sterna hirundo	Common Tern	Not At Risk			S3B	3 Sensitive	455	2.9 ± 0.0	NS
A	Sialia sialis	Eastern Bluebird	Not At Risk			S3B	3 Sensitive	45	6.7 ± 7.0	NS
A	Buteo lagopus	Rough-legged Hawk	Not At Risk			S3N	4 Secure	3	92.7 ± 4.0	NS
A	Accipiter gentilis	Northern Goshawk	Not At Risk			S3S4	4 Secure	102	6.7 ± 7.0	NS NS
A	Lagenorhynchus acutus	Atlantic White-sided Dolphin	Not At Risk			S3S4 S3S4	7 Octule	102	83.3 ± 1.0	PE
A	Circus cyaneus	Northern Harrier	Not At Risk			S3S4B	4 Secure	450	3.6 ± 7.0	NS
A	Ammodramus nelsoni	Nelson's Sparrow	Not At Risk			S3S4B S3S4B	4 Secure	197	3.6 ± 7.0 3.6 ± 7.0	NS NS
A	Alces americanus	Moose	HOLTH INDIV		Endangered	S1	1 At Risk	60	26.6 ± 0.0	NS NS
A	Salmo salar	Atlantic Salmon			Liluariyereu	S1	2 May Be At Risk	78	18.5 ± 0.0	NS NS
А		American Three-toed					-			PE
A	Picoides dorsalis	Woodpecker				S1?	5 Undetermined	12	78.9 ± 7.0	
A	Passerina cyanea	Indigo Bunting				S1?B	5 Undetermined	16	39.7 ± 0.0	PE
A	Nycticorax nycticorax	Black-crowned Night-heron				S1B	2 May Be At Risk	1	61.3 ± 7.0	NS
A	Anas acuta	Northern Pintail				S1B	2 May Be At Risk	50	35.9 ± 14.0	PE
A	Oxyura jamaicensis	Ruddy Duck				S1B	4 Secure	6	53.0 ± 0.0	NS
Α	Gallinula chloropus	Common Moorhen				S1B	5 Undetermined	11	29.6 ± 7.0	NS
Α	Myiarchus crinitus	Great Crested Flycatcher				S1B	2 May Be At Risk	12	18.8 ± 7.0	NS
Α	Cistothorus palustris	Marsh Wren				S1B	5 Undetermined	1	96.8 ± 3.0	NB
Α	Mimus polyglottos	Northern Mockingbird				S1B	4 Secure	32	3.6 ± 7.0	NS
Α	Toxostoma rufum	Brown Thrasher				S1B	5 Undetermined	10	16.6 ± 7.0	NS
Α	Vireo gilvus	Warbling Vireo				S1B	5 Undetermined	14	29.0 ± 7.0	NS

Data Report 6252: Pictou, NS

Taxonomic

# recs 8 490 967 k 2 82 272 l 50 k 30 k 73 13 161 l 14 k 41 139 159 2 185 k 34 303 5 l 43 303 5 l 43 k 1141 kk 227 498	Distance (km) 18.8 ± 7.0 3.8 ± 0.0 3.8 ± 0.0 67.6 ± 1.0 17.7 ± 0.0 60.9 ± 0.0 36.6 ± 0.0 66.0 ± 7.0 46.2 ± 0.0 39.4 ± 7.0 6.7 ± 7.0 11.0 ± 7.0 17.5 ± 7.0 3.6 ± 7.0 6.7 ± 13.0 89.0 ± 0.0 25.0 ± 7.0 33.2 ± 0.0 6.7 ± 7.0 65.7 ± 0.0 1.9 ± 0.0	Prov NS NS NS PE NS PE NS NS PE NS NS NS NS NS NS NS NS PE NS NS PE NS
490 967 k 2 272 50 k 30 k 73 13 161 14 k 41 139 159 2 185 k 34 303 5 l 43 k 1141 k 227	3.8 ± 0.0 3.8 ± 0.0 67.6 ± 1.0 17.7 ± 0.0 60.9 ± 0.0 36.6 ± 0.0 66.0 ± 7.0 46.2 ± 0.0 39.4 ± 7.0 11.0 ± 7.0 17.5 ± 7.0 36.6 ± 0.0 67.2 ± 13.0 89.0 ± 0.0 25.0 ± 7.0 67.7 ± 7.0 65.7 ± 0.0 1.9 ± 0.0	NS PE PE NS NS PE NS NS PE NS NS PE NS NS NS NS NS NS NS NS NS NS NS NS NS
967 kk 2 82 272 50 kk 30 kk 73 13 161 14 kk 41 139 159 2 185 kk 34 303 5 1 43 kk 1141 kk 227	3.8 ± 0.0 67.6 ± 1.0 17.7 ± 0.0 60.9 ± 0.0 36.6 ± 0.0 66.0 ± 7.0 46.2 ± 0.0 39.4 ± 7.0 11.0 ± 7.0 17.5 ± 7.0 36.6 ± 7.0 6.7 ± 13.0 89.0 ± 0.0 25.0 ± 7.0 33.2 ± 0.0 6.7 ± 7.0 6.7 ± 0.0 1.9 ± 0.0	NS PE NS PE PE NS NS NS NS NS NS NS PE NS NS PE NS
k 2 82 272 50 k 30 k 73 13 161 1 14 k 41 139 159 2 185 k 34 303 5 1 43 k 1141 k 227	67.6 ± 1.0 17.7 ± 0.0 60.9 ± 0.0 36.6 ± 0.0 66.0 ± 7.0 46.2 ± 0.0 39.4 ± 7.0 11.0 ± 7.0 17.5 ± 7.0 3.6 ± 7.0 6.7 ± 13.0 89.0 ± 0.0 25.0 ± 7.0 33.2 ± 0.0 6.7 ± 7.0 6.7 ± 7.0	PE NS NS PE NS NS NS NS NS NS NS NS NS NS NS NS NS
82 272 1 50 k 30 k 73 13 161 1 14 k 41 139 159 2 185 k 34 303 5 l 43 kk 1141 kk 227	17.7 ± 0.0 60.9 ± 0.0 36.6 ± 0.0 66.0 ± 7.0 46.2 ± 0.0 39.4 ± 7.0 11.0 ± 7.0 17.5 ± 7.0 3.6 ± 7.0 6.7 ± 13.0 89.0 ± 0.0 25.0 ± 7.0 6.7 ± 7.0 33.2 ± 0.0 6.7 ± 7.0 1.9 ± 0.0	NS NS PE PS NS NS NS NS NS NS PE NS NS PE NS PE
272 50 kk 30 ck 73 13 161 14 kk 41 139 159 2 185 ck 34 303 5 1 43 kk 1141 ck 227	60.9 ± 0.0 36.6 ± 0.0 66.0 ± 7.0 46.2 ± 0.0 39.4 ± 7.0 11.0 ± 7.0 17.5 ± 7.0 3.6 ± 7.0 6.7 ± 13.0 89.0 ± 0.0 25.0 ± 7.0 65.7 ± 0.0 1.9 ± 0.0	NS PE PS NS NS NS NS NS NS NS NS NS PE NS
50 kk 30 kk 73 13 161 14 kk 41 139 2 185 kk 34 303 5 1 43 kk 1141 kk 227	36.6 ± 0.0 66.0 ± 7.0 46.2 ± 0.0 39.4 ± 7.0 6.7 ± 7.0 11.0 ± 7.0 17.5 ± 7.0 6.7 ± 13.0 89.0 ± 0.0 25.0 ± 7.0 6.7 ± 7.0 6.7 ± 0.0 6.7 ± 0.0 6.7 ± 0.0	PE PE NS NS NS NS NS NS NS NS NS PE NS PE
sk 30 sk 73 13 161 14 sk 41 139 159 2 185 sk 34 303 5 1 43 sk 1141 sk 227	66.0 ± 7.0 46.2 ± 0.0 39.4 ± 7.0 6.7 ± 7.0 11.0 ± 7.0 17.5 ± 7.0 3.6 ± 7.0 6.7 ± 13.0 89.0 ± 0.0 25.0 ± 7.0 3.2 ± 0.0 6.7 ± 7.0 6.7 ± 0.0 1.9 ± 0.0	PE NS NS NS NS NS NS NS NS NS NS PE NS PE
13 13 161 144 159 2 185 159 2 185 159 2 185 159 2 185 159 2 185 159 2 185 159 159 159 159 159 159 159 159 159 15	46.2 ± 0.0 39.4 ± 7.0 6.7 ± 7.0 11.0 ± 7.0 17.5 ± 7.0 3.6 ± 7.0 6.7 ± 13.0 89.0 ± 0.0 25.0 ± 7.0 33.2 ± 0.0 6.7 ± 7.0 65.7 ± 0.0 1.9 ± 0.0	NS NS NS NS NS NS NS NS NS NS PE NS PE
13 161 14 kk 41 139 159 2 185 kk 34 303 5 1 43 kk 1141 kk 227	39.4 ± 7.0 6.7 ± 7.0 11.0 ± 7.0 11.5 ± 7.0 3.6 ± 7.0 6.7 ± 13.0 89.0 ± 0.0 25.0 ± 7.0 33.2 ± 0.0 6.7 ± 7.0 65.7 ± 0.0 1.9 ± 0.0	NS NS NS NS NS NS NS NS PE NS NS
161 14 14 139 159 2 185 185 185 185 184 303 5 143 141 184 227	6.7 ± 7.0 11.0 ± 7.0 17.5 ± 7.0 3.6 ± 7.0 6.7 ± 13.0 89.0 ± 0.0 25.0 ± 7.0 33.2 ± 0.0 6.7 ± 7.0 65.7 ± 0.0 1.9 ± 0.0	NS NS NS NS NS NS NS PE NS NS
14 kk 41 139 159 2 185 kk 34 303 5 1 43 kk 1141 kk 227	11.0 \pm 7.0 17.5 \pm 7.0 3.6 \pm 7.0 6.7 \pm 13.0 89.0 \pm 0.0 25.0 \pm 7.0 33.2 \pm 0.0 6.7 \pm 7.0 65.7 \pm 0.0 1.9 \pm 0.0	NS NS NS NS PE NS NS PE
139 159 2 185 184 303 5 1 43 1141 18k 227	17.5 ± 7.0 3.6 ± 7.0 6.7 ± 13.0 89.0 ± 0.0 25.0 ± 7.0 33.2 ± 0.0 6.7 ± 7.0 65.7 ± 0.0 1.9 ± 0.0	NS NS NS PE NS NS PE
139 159 2 185 k 34 303 5 43 k 1141 k 227	3.6 ± 7.0 6.7 ± 13.0 89.0 ± 0.0 25.0 ± 7.0 33.2 ± 0.0 6.7 ± 7.0 65.7 ± 0.0 1.9 ± 0.0	NS NS NS PE NS NS
159 2 185 k 34 303 5 l 43 k 1141	6.7 ± 13.0 89.0 ± 0.0 25.0 ± 7.0 33.2 ± 0.0 6.7 ± 7.0 65.7 ± 0.0 1.9 ± 0.0	NS NS PE NS NS PE
2 185 k 34 303 5 l 43 k 1141 k 227	89.0 ± 0.0 25.0 ± 7.0 33.2 ± 0.0 6.7 ± 7.0 65.7 ± 0.0 1.9 ± 0.0	NS PE NS NS PE
185 k 34 303 5 43 k 1141 k 227	25.0 ± 7.0 33.2 ± 0.0 6.7 ± 7.0 65.7 ± 0.0 1.9 ± 0.0	PE NS NS PE
34 303 5 43 3k 1141 3k 227	33.2 ± 0.0 6.7 ± 7.0 65.7 ± 0.0 1.9 ± 0.0	NS NS PE
303 5 43 k 1141 k 227	6.7 ± 7.0 65.7 ± 0.0 1.9 ± 0.0	NS PE
5 43 sk 1141 sk 227	65.7 ± 0.0 1.9 ± 0.0	PE
43 k 1141 k 227	1.9 ± 0.0	
sk 1141 sk 227		NS
sk 227	3.6 ± 7.0	NS NS
	3.6 ± 7.0 6.7 ± 7.0	NS NS
		NS NS
	6.7 ± 7.0	NS NS
	3.6 ± 7.0	
K 82	11.0 ± 7.0	NS
140	5.4 ± 0.0	NS
		NB
		NS
	13.0 ± 7.0	NS
1263	3.8 ± 0.0	NS
26	92.0 ± 7.0	NS
1	49.6 ± 0.0	NS
2	92.0 ± 7.0	NS
1155	2.8 ± 0.0	NS
650	2.8 ± 0.0	NS
503	3.8 ± 0.0	NS
912	3.8 ± 0.0	NS
203	5.4 ± 0.0	NS
515	3.8 ± 0.0	NS
595	3.8 ± 0.0	NS
4	92.4 ± 0.0	NB
S	sk 82 140 115 402 704 731 17 28 1 15 2 468 558 582 sk 48 sk 102 310 sk 347 64 1263 26 1 2 1155 650 503 912 203 515 595	sk 82 11.0 ± 7.0 140 5.4 ± 0.0 115 3.8 ± 0.0 402 9.5 ± 7.0 704 3.6 ± 7.0 13 3.6 ± 7.0 17 18.5 ± 0.0 28 18.5 ± 0.0 15 5.4 ± 0.0 2 96.9 ± 0.0 468 8.2 ± 0.0 558 1.4 ± 0.0 582 3.6 ± 7.0 58 102 2.8 ± 0.0 310 6.7 ± 7.0 58 347 3.6 ± 7.0 64 13.0 ± 7.0 1263 3.8 ± 0.0 26 92.0 ± 7.0 1 49.6 ± 0.0 2 92.0 ± 7.0 1155 2.8 ± 0.0 503 3.8 ± 0.0 203 3.4 ± 0.0 515 3.8 ± 0.0 595 3.8 ± 0.0

Data Report 6252: Pictou, NS
Page 10 of 21

Taxonomic

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Prov
Α	Somateria mollissima	Common Eider				S3S4	4 Secure	269	11.5 ± 9.0	NS
Α	Picoides arcticus	Black-backed Woodpecker				S3S4	3 Sensitive	147	11.0 ± 7.0	NS
Α	Loxia curvirostra	Red Crossbill				S3S4	4 Secure	92	6.7 ± 7.0	NS
Α	Sorex palustris	American Water Shrew				S3S4	4 Secure	4	46.2 ± 0.0	PE
Α	Botaurus lentiginosus	American Bittern				S3S4B	3 Sensitive	293	3.6 ± 7.0	NS
Α	Anas discors	Blue-winged Teal				S3S4B	2 May Be At Risk	322	3.6 ± 7.0	NS
Α	Actitis macularius	Spotted Sandpiper				S3S4B	3 Sensitive	682	3.6 ± 7.0	NS
Α	Empidonax flaviventris	Yellow-bellied Flycatcher				S3S4B	3 Sensitive	558	3.6 ± 7.0	NS
Α	Regulus calendula	Ruby-crowned Kinglet				S3S4B	3 Sensitive	1454	3.6 ± 7.0	NS
Α	Catharus fuscescens	Veery				S3S4B	4 Secure	434	2.8 ± 0.0	NS
A	Catharus ustulatus	Swainson's Thrush				S3S4B	4 Secure	1221	3.6 ± 7.0	NS
A	Vermivora peregrina	Tennessee Warbler				S3S4B	3 Sensitive	288	9.5 ± 7.0	NS
A	Dendroica castanea	Bay-breasted Warbler				S3S4B	3 Sensitive	433	9.5 ± 7.0	NS
A	Dendroica striata	Blackpoll Warbler				S3S4B	3 Sensitive	84	9.5 ± 7.0	NS
A	Passerella iliaca	Fox Sparrow				S3S4B	4 Secure	56	1.8 ± 0.0	NS
A	Mergus serrator	Red-breasted Merganser				S3S4B,S5N	4 Secure	86	3.6 ± 7.0	NS
A	Bucephala albeola	Bufflehead				S3S4N	4 Secure	17	41.5 ± 9.0	NS
A	Leucophaeus atricilla	Laughing Gull				SHB	4 Secure	1	96.9 ± 0.0	NB
Ä	Progne subis	Purple Martin				SHB	2 May Be At Risk	5	88.9 ± 7.0	NS
Ä	Eremophila alpestris	Horned Lark				SHB.S4S5N	4 Secure	6	44.3 ± 7.0	PE
Ä	Morus bassanus	Northern Gannet				SHB,S5M	4 Secure	39	29.1 ± 13.0	PE
Ä	Aythya americana	Redhead				SHB,SNAM	4 Secure	1	100.0 ± 0.0	PE
1	Danaus plexippus	Monarch	Endangered	Special Concern	Endangered	S2B	3 Sensitive	29	14.4 ± 0.0	NS
	Barnea truncata		Threatened	Special Concern	Endangered	S1	1 At Risk	1	91.6 ± 1.0	NS NS
	Alasmidonta varicosa	Atlantic Mud-piddock Brook Floater	Special Concern		Threatened	S1S2	3 Sensitive	17	45.0 ± 0.0	NS NS
	Bombus terricola	Yellow-banded Bumblebee	Special Concern		Vulnerable	S3	3 Sensitive	3	45.0 ± 0.0 65.8 ± 0.0	PE
			Special Concern		Vuillelable			3 10		NS
!	Satyrium acadica Erora laeta	Acadian Hairstreak				S1 S1	5 Undetermined	10	3.2 ± 1.0 74.8 ± 0.0	PE
!		Early Hairstreak					2 May Be At Risk			
!	Neurocordulia michaeli	Broadtailed Shadowdragon				S1 S1	0 M D A4 Di-I-	26	47.5 ± 0.0	NS
!	Strophitus undulatus	Creeper					2 May Be At Risk	6	93.2 ± 1.0	NS
!	Polygonia satyrus	Satyr Comma				S1?	3 Sensitive	6	60.5 ± 0.0	PE NS
!	Nymphalis I-album	Compton Tortoiseshell				S1S2	4 Secure	6	58.6 ± 1.0	
!	Somatochlora kennedyi	Kennedy's Emerald				S1S2 S1S2	2 May Be At Risk	2	65.9 ± 1.0	PE PE
!	Coenagrion resolutum	Taiga Bluet					2 May Be At Risk	51	31.9 ± 1.0	
!	Stylurus scudderi	Zebra Clubtail				S1S2	2 May Be At Risk	2	96.5 ± 0.0	NS
!	Lycaena hyllus	Bronze Copper				S2	4 Secure	10	28.8 ± 0.0	PE
!	Lycaena dospassosi	Salt Marsh Copper				S2	1 At Risk	51	5.4 ± 0.0	NS
!	Satyrium calanus falacer	Banded Hairstreak				S2	1 At Risk	2	67.5 ± 1.0	NS
!	Boloria chariclea grandis	Purple Lesser Fritillary				S2	3 Sensitive	2	51.7 ± 1.0	NS
!	Aglais milberti milberti	Milbert's Tortoise Shell				S2	4 Secure	14	62.7 ± 0.0	NS
!	Epitheca princeps	Prince Baskettail				S2	3 Sensitive	9	64.7 ± 0.0	NS
I	Somatochlora williamsoni	Williamson's Emerald				S2	2 May Be At Risk	12	74.9 ± 0.0	PE
1	Williamsonia fletcheri	Ebony Boghaunter				S2	2 May Be At Risk	4	64.5 ± 0.0	NS
I	Enallagma signatum	Orange Bluet				S2	2 May Be At Risk	1	70.2 ± 0.0	NS
I	Margaritifera margaritifera	Eastern Pearlshell				S2	3 Sensitive	143	13.6 ± 0.0	NS
I	Pantala hymenaea	Spot-Winged Glider				S2?B	3 Sensitive	1	73.7 ± 1.0	NS
I	Thorybes pylades	Northern Cloudywing				S2S3	3 Sensitive	14	3.2 ± 1.0	NS
I	Amblyscirtes hegon	Pepper and Salt Skipper				S2S3	4 Secure	3	59.6 ± 0.0	NS
I	Satyrium liparops strigosum	Striped Hairstreak				S2S3	3 Sensitive	4	66.0 ± 1.0	NS
I	Euphydryas phaeton	Baltimore Checkerspot				S2S3	4 Secure	29	8.3 ± 1.0	NS
1	Gomphus descriptus	Harpoon Clubtail				S2S3	3 Sensitive	4	74.5 ± 1.0	NS
I	Ophiogomphus aspersus	Brook Snaketail				S2S3	2 May Be At Risk	1	91.3 ± 0.0	NS
I	Ophiogomphus mainensis	Maine Snaketail				S2S3	2 May Be At Risk	14	45.3 ± 0.0	NS
I	Ophiogomphus rupinsulensis	Rusty Snaketail				S2S3	2 May Be At Risk	38	52.8 ± 0.0	NS
1	Somatochlora forcipata	Forcipate Emerald				S2S3	2 May Be At Risk	3	60.7 ± 1.0	PE
I	Somatochlora franklini	Delicate Emerald				S2S3	3 Sensitive	6	60.5 ± 0.0	PE
I	Alasmidonta undulata	Triangle Floater				S2S3	4 Secure	15	58.0 ± 1.0	NS
		=								

Data Report 6252: Pictou, NS
Page 11 of 21

Taxonomic

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Prov
1	Callophrys henrici	Henry's Elfin		-		S3	4 Secure	3	60.7 ± 0.0	NS
1	Callophrys lanoraieensis	Bog Elfin				S3	2 May Be At Risk	4	52.7 ± 0.0	NS
i	Speyeria aphrodite	Aphrodite Fritillary				S3	4 Secure	12	19.2 ± 100.0	NS
i	Polygonia faunus	Green Comma				S3	4 Secure	15	37.7 ± 0.0	NS
i	Megisto cymela	Little Wood-satyr				S3	4 Secure	9	66.5 ± 0.0	PE
i	Oeneis jutta	Jutta Arctic				S3	2 May Be At Risk	7	32.6 ± 0.0	PE
i	Aeshna clepsydra	Mottled Darner				S3	4 Secure	3	89.4 ± 1.0	NS
<u> </u>	Aeshna constricta	Lance-Tipped Darner				S3	4 Secure	26	4.6 ± 1.0	NS
i	Boyeria grafiana	Ocellated Darner				S3	3 Sensitive	11	59.2 ± 0.0	NS
! !	Gomphaeschna furcillata	Harlequin Darner				S3	3 Sensitive	1	60.8 ± 0.0	PE
!	Somatochlora tenebrosa	Clamp-Tipped Emerald				S3	4 Secure	1	83.9 ± 1.0	PE
!	Sympetrum danae	Black Meadowhawk				S3	3 Sensitive	9	60.6 ± 1.0	PE
	, ,	Vernal Bluet				S3	5 Undetermined	3	60.5 ± 0.0	PE
	Enallagma vernale	Eastern Red Damsel				S3	4 Secure	2	43.1 ± 0.0	NS
:	Amphiagrion saucium									
:	Polygonia interrogationis	Question Mark				S3B	4 Secure	46	3.2 ± 1.0	NS
!	Erynnis juvenalis	Juvenal's Duskywing				S3S4	4 Secure	2	58.3 ± 1.0	NS
!	Amblyscirtes vialis	Common Roadside-Skipper				S3S4	4 Secure	4	3.2 ± 1.0	NS
!	Polygonia progne	Grey Comma				S3S4	4 Secure	22	7.0 ± 1.0	NS
!	Lanthus parvulus	Northern Pygmy Clubtail				S3S4	4 Secure	14	43.8 ± 1.0	NS
ı	Lampsilis radiata	Eastern Lampmussel				S3S4	3 Sensitive	56	23.2 ± 0.0	NS
N	Erioderma pedicellatum	Boreal Felt Lichen - Atlantic	Endangered	Endangered	Endangered	S1	1 At Risk	433	60.1 ± 0.0	NS
	(Atlantic pop.)	pop.	ū	· ·	-		0.44 D 4. D. 1			
N	Erioderma mollissimum	Graceful Felt Lichen	Endangered		Endangered	S1S2	2 May Be At Risk	14	80.5 ± 0.0	NS
N	Peltigera hydrothyria	Eastern Waterfan	Threatened		Threatened	S1	2 May Be At Risk	2	72.6 ± 0.0	NS
N	Pannaria lurida	Veined Shingle Lichen	Threatened		Threatened	S1S2	2 May Be At Risk	11	94.5 ± 0.0	NS
N	Anzia colpodes	Black-foam Lichen	Threatened		Threatened	S3	3 Sensitive	2	85.2 ± 0.0	NS
N	Sclerophora peronella (Nova	Frosted Glass-whiskers	Special Concern	Special Concern		S1?		11	71.4 ± 0.0	NS
	Scotia pop.)	Lichen - Nova Scotia pop.	•	•						NO
N	Degelia plumbea	BluDegelia plumbeae Felt Lichen	Special Concern	Special Concern	Vulnerable	S3	4 Secure	49	36.9 ± 0.0	NS
N	Pseudevernia cladonia	Ghost Antler Lichen	Not At Risk			S2S3	3 Sensitive	1	81.2 ± 0.0	NS
N	Cladonia brevis	Short Peg Lichen	140t / tt / tioit			S1	O CONOLIVO	1	89.5 ± 4.0	PE
N	Aloina rigida	Aloe-Like Rigid Screw Moss				S1?	2 May Be At Risk	1	67.2 ± 0.0	NS
N	Brachythecium erythrorrhizon	Taiga Ragged Moss				S1?	2 May Do At Mak	2	83.3 ± 0.0	PE
N	Campylostelium saxicola	a Moss				S1?	3 Sensitive	3	74.5 ± 0.0	PE
N	Tortula obtusifolia	a Moss				S1?	5 Undetermined	2	57.2 ± 2.0	NS
N	Parmeliella parvula	Poor-man's Shingles Lichen				S1?	2 May Be At Risk	1	98.6 ± 0.0	NS
N	Tetrodontium brownianum	Little Georgia				S1S2	3 Sensitive	1	88.2 ± 0.0	PE
N	Timmia megapolitana	Metropolitan Timmia Moss				S1S2 S1S2	3 Sensitive	1	68.0 ± 0.0	NS
N	Cyrto-hypnum minutulum	Tiny Cedar Moss				S1S2 S1S2	3 Sensitive	1	61.0 ± 0.0	NS
IN	Bryohaplocladium	Tiny-leaved Haplocladium				3132	3 Sensitive	1	01.0 ± 0.0	NS
N	microphyllum	Moss				S1S2		1	76.3 ± 5.0	INO
N	Anomodon viticulosus	a Moss				S2?	3 Sensitive	1	66.5 ± 5.0	NS
N	Atrichum angustatum	Lesser Smoothcap Moss				S2?	3 Sensitive	3	51.4 ± 2.0	NS
N	Campylium polygamum	a Moss				S2?	5 Undetermined	1	78.9 ± 0.0	PE
N	Dicranum condensatum	Condensed Broom Moss				S2?	5 Undetermined	1	87.7 ± 0.0	PE
N	Ditrichum rhynchostegium	a Moss				S2?	3 Sensitive	i	36.3 ± 0.0	PE
N	Philonotis marchica	a Moss				S2?	5 Undetermined	2	50.3 ± 0.0 50.3 ± 0.0	NS
N	Saelania glaucescens	Blue Dew Moss				S2?	3 Sensitive	1	44.1 ± 0.0	NS
	Cyrtomnium					_		•		NS
N	hymenophylloides	Short-pointed Lantern Moss				S2?	3 Sensitive	1	44.1 ± 0.0	110
N	Leptogium teretiusculum	Beaded Jellyskin Lichen				S2?	3 Sensitive	2	32.3 ± 0.0	NS
N	Peltigera collina	Tree Pelt Lichen				S2?	3 Sensitive	3	75.1 ± 5.0	NS
N	Ephemerum serratum	a Moss				S2S3	3 Sensitive	1	17.0 ± 3.0	NS
N	Eurhynchium hians	Light Beaked Moss				S2S3	3 Sensitive	1	87.0 ± 25.0	NS
N	Platydictya subtilis	Bark Willow Moss				S2S3	3 Sensitive	2	74.5 ± 0.0	PE
N	Tortula truncata	a Moss				S2S3	3 Sensitive	1	72.5 ± 300.0	NS
						= =	· · · · ·	•		-

Data Report 6252: Pictou, NS
Page 12 of 21

	mic

Value Control Contro	Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Prov
N				COSEWIC	SAKA	Prov Legal Prot					
No.											
Name											
Machiem Maries Maries Machiem Maries Machiem Maries Machiem Maries Machiem Maries Marie											
N Schein Alginises Peppere Mon Lichen \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$									-		
N	N	Ramalina thrausta	Angelhair Ramalina Lichen					3 Sensitive	1	72.1 ± 0.0	
N Leptoglum subtile Apriessed Jellyskin Lichen S3 3 Sensitive 2 74.8 ± 0.0 NS N Fiscoponariata shired Corrupted Shinghes Lichen S3 4 Secure S3 6.0 ± 0.0 NS N Methoroper single Lichen S3 4 Secure S3 7.0 ± 0.0 NS N Morelferopsis nebulosa Biung-gay Mosa Shinghe Lichen S3 4 Secure S3 3 Sensitive S3 3 Sensiti	N	Collema nigrescens	Blistered Tarpaper Lichen				S3	3 Sensitive	6	72.2 ± 0.0	NS
N	N	Sticta fuliginosa	Peppered Moon Lichen				S3	3 Sensitive	12	29.5 ± 2.0	NS
N	N	Leptogium subtile	Appressed Jellyskin Lichen				S3	3 Sensitive	2	74.8 ± 0.0	NS
N	N						S3	4 Secure	33	60.5 ± 0.0	NS
N Leptoglum conficole Bilstered Jellyšein Lichen S3 3 Sensitive 25 60.5 ± 0.0 NS Nephroma bellum Nakod (kiney Lichen S3 3 Sensitive 2 ± 45.7 ± 0.0 NS NS Moelieropsis nebulosa Bilsterium Similar Simil	N										
Nephroma bellum											
No.											
No. Collegory pignate Collegory Co		•									
N	N	Moelleropsis nebulosa					S3	4 Secure	37	70.7 ± 0.0	NO
Dicramm leioneuron A Dicramm leioneuron A Dicramm Moss S37 Sensitive 2 89.4 ± 0.0 NS	N	Calliergon giganteum	Giant Spear Moss				S3?	3 Sensitive	1	64.4 ± 2.0	PE
N	N	Helodium blandowii	Wetland-plume Moss				S3?	4 Secure	1	24.2 ± 3.0	NS
N Dicrarum leineruron a Dicrarum Moss S384 4 Secure 1 92.7 ± 1.0 PE N Encelptpa process Stender Extinguisher Moss S384 4 Secure 2 59.8 ± 0.0 NS N Myruella julacea Small Mouse-tail Moss S384 4 Secure 2 59.8 ± 0.0 NS N Schieddum agassizii Ell Bloom Moss S384 4 Secure 1 83.8 ± 3.0 NS N Schieddum agassizii Ell Bloom Moss S384 4 Secure 1 83.8 ± 3.0 NS N Hypogyrmia witata Stender Mork's Hood Lichen S384 4 Secure 1 83.8 ± 3.0 NS N Luptogium acadierase Acadian Juliyskin Lichen S384 4 Secure 1 83.8 ± 3.0 NS N Parmalepsis hyperpta Gray Starburst Lichen S384 5 Undetermined 2 21.2 ± 1.0 NS N Parmalepsis hyperpta Gray Horsehair Lichen S384 4 Secure 1 83.8 ± 3.0 NS N Anapyt-hip parhuidiat Sales Shell Lichen S384 4 Secure 1 83.8 ± 3.0 NS N Anapyt-hip parhuidiat Sales Shell Lichen S384 4 Secure 1 83.8 ± 3.0 NS N Evernia prunastri Valley Oakmoss Lichen S384 4 Secure 1 67.6 ± 0.0 NS N Evernia prunastri Valley Oakmoss Lichen S384 4 Secure 1 67.6 ± 0.0 PE Participal process Fringe Lichen S384 4 Secure 1 67.6 ± 0.0 PE Participal process Fringe Lichen S384 4 Secure 1 67.7 ± 1.0 NS N Heterodermia neglecta Fringe Lichen S384 4 Secure 1 67.7 ± 1.0 NS N Heterodermia neglecta Fringe Lichen S384 4 Secure 1 67.7 ± 1.0 NS N Heterodermia neglecta Fringe Lichen S384 4 Secure 1 67.7 ± 1.0 NS N Heterodermia neglecta Fringe Lichen S384 4 Secure 1 67.7 ± 1.0 NS N Heterodermia neglecta Fringe Lichen S384 4 Secure 1 67.7 ± 1.0 NS N Heterodermia neglecta Fringe Lichen S384 4 Secure 1 67.7 ± 1.0 NS N Heterodermia neglecta Fringe Lichen S384 4 Secure 1 57.3 ± 1.0 NS N Heterodermia neglecta Fringe Lichen S384 4 Secure 1 57.3 ± 1.0 NS N Heterodermi		0					200	0.0	_		NS
N	N	Cladina stygia						3 Sensitive	2	89.4 ± 0.0	
N Myurielia Julacea Small Mouse-fail Moss SS54 3 Sensitive 1 4.1 ± 0.0 NS N Schisdidium agassizii Eli Bloom Monk's Hood Lichen S354 4 Secure 51 79.1 ± 0.0 NS N Leptogium acediense Laptogium acediense S354 4 Secure 51 79.1 ± 0.0 NS N Pymeliopisi hyperopta Griy Starburst Lichen S354 5 Undetermined 2 21.2 ± 1.0 NS N Physocina detersa Bottlebrush Frost Lichen S354 5 Undetermined 2 21.2 ± 1.0 NS N Coccocarpia palmicola Satted Shell Lichen S354 4 Secure 520 68.5 ± 0.0 NS N Bryoria capillaris Gray Horsehari Lichen S354 4 Secure 52.0 68.5 ± 0.0 NS N Everinia prunastri Gray Horsehari Lichen Fringe Lichen S354 4 Secure 15 77.3 ± 0.0 NS N Everinia prunastri Friedrica palmiculati Fringe Lichen Threat	N	Dicranum leioneuron	a Dicranum Moss				S3S4	4 Secure	1	92.7 ± 1.0	PE
N	N	Encalypta procera	Slender Extinguisher Moss					4 Secure	2	59.8 ± 0.0	NS
N Hypogymrina vitatia Slender Monk's Hood Lichen SSS4 4 Secure 51 79.1 ± 0.0 NS N Parmeliopsis hyperopta Gray Starburst Lichen SSS4 5 Undetermined 2 21.2 ± 1.0 NS N Physoconia delerisa Bottlebrush Frists Lichen SSS4 5 Undetermined 2 21.2 ± 1.0 NS N Physoconia delerisa Bottlebrush Frists Lichen SSS4 4 Secure 52.0 68.5 ± 0.0 NS N Anaptychia palmiudia Shagay Fringed Lichen SSS4 4 Secure 14 63.3 ± 0.0 NS N Evenia punnastri Valley Oakmoss Lichen SSS4 5 Undetermined 11 67.6 ± 0.0 PE N Heterodermia neglecta Fringe Lichen Trineatend Threatened Threatened Threatened SSS4 4 Secure 15 73.4 ± 0.0 NS P Libeopsis Chinensis Eastern Libeopsis Chinensis Special Concern Special Concern Special Concern Special Concern Special Concern Special	N	Myurella julacea	Small Mouse-tail Moss				S3S4	3 Sensitive	1	44.1 ± 0.0	NS
N Hypogymrina vitatia Slender Monk's Hood Lichen SSS4 4 Secure 51 79.1 ± 0.0 NS N Parmeliopsis hyperopta Gray Starburst Lichen SSS4 5 Undetermined 2 21.2 ± 1.0 NS N Physoconia delerisa Bottlebrush Frists Lichen SSS4 5 Undetermined 2 21.2 ± 1.0 NS N Physoconia delerisa Bottlebrush Frists Lichen SSS4 4 Secure 52.0 68.5 ± 0.0 NS N Anaptychia palmiudia Shagay Fringed Lichen SSS4 4 Secure 14 63.3 ± 0.0 NS N Evenia punnastri Valley Oakmoss Lichen SSS4 5 Undetermined 11 67.6 ± 0.0 PE N Heterodermia neglecta Fringe Lichen Trineatend Threatened Threatened Threatened SSS4 4 Secure 15 73.4 ± 0.0 NS P Libeopsis Chinensis Eastern Libeopsis Chinensis Special Concern Special Concern Special Concern Special Concern Special Concern Special	N	Schistidium agassizii	Elf Bloom Moss				S3S4	4 Secure	1	83.8 ± 3.0	NS
N Leptoglum acadiense Acadian Jellyskin Lichen SSS4 5 Undetermined 2 21 ± 0.0 NS N Pamellopsis hyperopla Gray Starburst Lichen SSS4 3 Sensitive 3 48.3 ± 0.0 PE N Coccoccarpia palmicola SSS4 3 Sensitive 3 48.3 ± 0.0 PE N Anaptychia palmicola Shagy Finiged Lichen SSS4 4 Secure 14 53.4 ± 0.0 NS N Byoria capillaris Gray Horse-hari Lichen SSS4 4 Secure 14 53.4 ± 0.0 NS N Evernia prunastri Valley Oakmoss Lichen Finige Lichen SSS4 4 Secure 14 53.4 ± 0.0 NS P Particulata Bartonia particulata Branched Bartonia Threatened Threatened SSS4 3 Sensitive 3 56.2 ± 0.0 PE P Lilieoppsis chinensis Eastern Lilaeoppsis Special Concern Special Concern Special Concern Special Concern Vulnerable \$2 3 Sensitive 3 5	N		Slender Monk's Hood Lichen					4 Secure	51	79.1 ± 0.0	NS
N Pâmeliopais hyperopla Gray Slathurst Lichen S354 5 Undetermined 2 21.2±1.0 NS N Physoconia deletersa Bottlebrush Frost Lichen \$334 3 Sensitive 3 48.3±0.0 PE N Anaptychia palmidata Shadgy Fringed Lichen \$334 4 Secure 14 53.4±0.0 NS N Brona capillaris Gray Horsehärl Lichen \$3354 5 Undetermined 11 67.6±0.0 PE N Evernia prunsatri Valley Oakmos Lichen \$3354 5 Undetermined 11 67.6±0.0 PE N Heterodermia neglecta Branched Bartonia Threatened Threatened SNA 1 57.3±0.0 NS P Lilaeopsis chinensis Eastern Lilaeopsis Special Concern Special Concern Vulnerable \$2 3 Sensitive 16 84.1±0.0 NS P Hoekee prosepripacoides Prototype Quillwort Special Concern Special Concern Vulnerable \$2 3 Sensitive 16 84.1±0.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
N Physocola detersa Bottlebrush Frost Lichen S354 3 Sensitive 3 84.3 ± 0.0 PE N Coccocaping palmicola Saled Shell Lichen S354 4 Secure 520 68.5 ± 0.0 NS N Bayoria agaillaris Coccocaping palmicola Shagay Fringed Lichen S354 4 Secure 14 53.4 ± 0.0 NS N Everia prunastri Valley Oakmoss Lichen Fringe Lichen S354 3 Sensitive 3 56.2 ± 0.0 PE N Heterodernia neglecta Bartonia pariculata ssp. Branched Bartonia Threatened Threatened S354 4 Secure 15 73.4 ± 0.0 NS P Lilaeopsis Chinensis Eastern Lilaeopsis Special Concern Special Concern Vulnerable \$2 3 Sensitive 13 79.5 ± 0.0 NS P Joseph Spritory (purpulant are are marked) Flase Mermaidwed Not At Risk Eastern White Cedar Not At Risk \$2 3 Sensitive 3 53.3 ± 7.0 NS P Acer seccharinum <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5 Undetermined</td> <td></td> <td></td> <td></td>								5 Undetermined			
N Cococcarpia palmicola Napstyrbing palmicola N											
N Anaptychia palmulata Byroria capilluris Shaggy Fringed Lichen SASA 4 Secure 14 53.4 ± 0.0 PE N Byroria capilluris Gray Horsehal' Lichen S3S4 5 Undetermined 11 67.6 ± 0.0 PE N Heterodermia neglecta Finige Lichen S3S4 3 Sensitive 3 56.2 ± 0.0 PE N Heterodermia neglecta Finige Lichen S3S4 3 Sensitive 15 73.4 ± 0.0 NS Parachel Bartonia particulata Probleme Bartonia particulata Threatened Threatened SNA Image: Secondary Secondary Secondary NS P Islaeopsis crimensis Eastern Lilaeopsis Special Concern Special Concern Vulnerable S2 3 Sensitive 16 84.1 ± 0.0 NS P Islaeopsis crimensis Eastern Lilaeopsis Special Concern Special Concern Vulnerable S2 3 Sensitive 13 79.5 ± 0.0 NS P Islaed Secure NS Parachel Minerable S2 3 Sensitive 14 <td< td=""><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		,									
N Bryoria capillaris Gray Horsehair Lichen S354 5 Undetermined 11 67.6 ± 0.0 PE N Evernia prunastri Valley Oakmoss Lichen S354 3 Sensitive 33 56.2 ± 0.0 NS P Bartonia paniculata sp. paniculata sp. paniculata Branched Bartonia Threatened Threatened SNA 1 57.3 ± 0.0 NS P Lilaeopsis chinensis Eastern Lilaeopsis Special Concern Special Concern Vulnerable S2 3 Sensitive 13 79.5 ± 0.0 NS P Issoeles prototypus Frootype Quillwort Special Concern Special Concern Vulnerable S2 3 Sensitive 13 79.5 ± 0.0 NS P Risceles prototypus Frootype Quillwort Special Concern Special Concern Vulnerable S2 3 Sensitive 13 79.5 ± 0.0 NS P Risceles prototypus Frootype Quillwort Special Concern Special Concern Vulnerable S2 3 Sensitive 33 33.3 ± 7.0 NS											
N Evermia prunastri Helterodermia neglecta Bartonia paniculata Valley Oakmoss Lichen S354 3 Sensitive 3 56.2 ± 0.0 PE NS P Bartonia paniculata Bartonia paniculata Fringe Lichen Threatened SNA Ture 1 57.3 ± 10.0 NS P Lilaeopsis chinensis Eastern Lilaeopsis Special Concern Special Concern Special Concern Special Concern Vulnerable S2 3 Sensitive 16 84.1 ± 0.0 NS P Picorkea proserpinacoides Priorive proserpinacoides Priorive proteinum arietinum Principal marietinum Principal marietinum Priority Guilvort Priority Guilvort Priority Guilvort Priority Guilvort Priority											
N Heterodermia neglecta Bartonia pariculata ssp. pariculata ssp. pariculata Fringe Lichen Threatened Threatened SNA SNA 1 57.3 ± 10.0 NS PS P Lilaeopsis chinensis Eastern Lilaeopsis Special Concern Special Concern Vulnerable \$2 3 Sensitive 16 84.1 ± 0.0 NS P Lilaeopsis chinensis Eastern Lilaeopsis Special Concern Special Concern Vulnerable \$2 3 Sensitive 16 84.1 ± 0.0 NS P Clorekea proserpinacoides False Mermaidweed Special Concern Not At Risk \$2 3 Sensitive 13 79.5 ± 0.0 NS P Clorigedium arietinum Ram's-Head Lady's-Slipper Endangered \$1 1 AI Risk 8 63.3 ± 7.0 NS P Acer saccharium Slive Maple Slive Maple \$1 1 AI Risk 42 \$1.6 ± 7.0 NS P Azia aurea Golden Alexanders Slive Maple \$1 2 May Be At Risk 4 11.0 ± 7.0 NS											
P											
P	N		Fringe Lichen				\$3\$4	4 Secure	15	73.4 ± 0.0	
P	Р		Branched Bartonia	Threatened	Threatened		SNA		1	57.3 ± 10.0	NS
P	D		Factorn Lileagnaia	Special Concern	Canadal Canadra	Vulnoroblo	60	2 Consitius	16	944.00	NIC
P Floerkea proserpinacoides False Mermaidweed Not At Risk S S S S S S S S		•									
P Cypripedium arietinum Ram's-Head Lady's-Slipper Endangered S1 1 At Risk 8 64.3 ± 0.0 NS P Thuja occidentalis Eastern White Cedar Vulnerable S1 1 At Risk 42 51.6 ± 7.0 NS P Acer saccharinum Sliver Maple S1 5 Undetermined 1 91.0 ± 20.0 PE P Sanicula odorata Clustered Sanicle S1 2 May Be At Risk 4 11.0 ± 7.0 NS P Zizia aurea Golden Alexanders S1 2 May Be At Risk 4 11.0 ± 7.0 NS P Antennaria parlinii a Pussytoes S1 2 May Be At Risk 43 41.8 ± 1.0 NS P Bidens hyperborea Estuary Beggarticks S1 2 May Be At Risk 3 61.0 ± 1.0 NS P Pernanthes racemosa Glaucous Rattlesnakerot S1 2 May Be At Risk 1 24.4 ± 0.0 NS P Pernanthes racemosa Glaucous Rattlesnakerot S1 2 May Be At Risk	•				Special Concern	vumerable					
P Thuja occidentalis Eastern White Cedar Vulnerable S1 1 At Risk 42 51.6 ± 7.0 NS P Acer saccharinum Silver Maple S1 5 Undetermined 1 91.0 ± 20.0 PE P Sanicula odorata Clustered Sanicle S1 2 May Be At Risk 4 11.0 ± 7.0 NS P Zizia aurea Golden Alexanders S1 2 May Be At Risk 43 41.8 ± 1.0 NS P Antennaria parlinii a Pussytoes S1 2 May Be At Risk 43 41.8 ± 1.0 NS P Bidens hyperborea Estuary Beggarticks S1 2 May Be At Risk 1 24.4 ± 0.0 NS P Prenanthes racemosa Glaucous Rattlesnakeroot S1 2 May Be At Risk 1 91.0 ± 20.0 PE P Ageratina altissima White Snakeroot S1 2 May Be At Risk 1 91.0 ± 20.0 PE P Ageratina altissima White Snakeroot S1 2 May Be At Risk 2 60.6 ±	•			NOT AT KISK							
P Acer saccharinum Silver Maple \$1 5 Undetermined 1 91.0 ± 20.0 PE P Sanicula odorata Clustered Sanicle \$1 2 May Be At Risk 4 11.0 ± 7.0 NS P Zizia aurea Golden Alexanders \$1 2 May Be At Risk 43 41.8 ± 1.0 NS P Antennaria parlinii a Pussytoes \$1 2 May Be At Risk 1 24.4 ± 0.0 NS P Bidens hyperborea Estuary Beggarticks \$1 2 May Be At Risk 3 61.0 ± 1.0 NS P Pernanthes racemosa Glaucous Rattlesnakeroot \$1 2 May Be At Risk 3 61.0 ± 20.0 PE P Ageratina altissima White Snakeroot \$1 2 May Be At Risk 2 60.6 ± 1.0 NS P Barbarea orthoceras American Yellow Roket \$1 2 May Be At Risk 5 61.5 ± 0.0 NS P Cochlearia tridactyllites Limestone Scurvy-grass \$1 2 May Be At Risk 1 97.8 ± 0.0 <td>P</td> <td></td>	P										
P Sanicula odorata Clustered Sanicle \$1 2 May Be At Risk 4 11.0 ± 7.0 NS P Zizia aurea Golden Alexanders \$1 2 May Be At Risk 43 41.8 ± 1.0 NS P Anternaria parlinii a Pussytoes \$1 2 May Be At Risk 1 24.4 ± 0.0 NS P Bidens hyperborea Estuary Beggarticks \$1 2 May Be At Risk 3 61.0 ± 1.0 NS P Prenanthes racemosa Glaucous Rattlesnakeroot \$1 2 May Be At Risk 1 91.0 ± 20.0 PE P Ageratina altissima White Snakeroot \$1 2 May Be At Risk 2 90.0 ± 20.0 PE P Barbarea orthoceras American Yellow Rocket \$1 2 May Be At Risk 2 60.6 ± 1.0 NS P Barbarea orthoceras American Yellow Rocket \$1 2 May Be At Risk 2 60.5 ± 0.0 NS P Lobelia spicata Limestone Scurvy-grass \$1 2 May Be At Risk 1 97.8 ± 0	Р					Vulnerable					
P Zizia aurea Golden Alexanders S1 2 May Be At Risk 43 41.8 ± 1.0 NS P Antennaria parlinii a Pussytoes S1 2 May Be At Risk 1 24.4 ± 0.0 NS P Bidens hyperborea Estuary Beggarticks S1 2 May Be At Risk 1 24.4 ± 0.0 NS P Prenanthes racemosa Glaucous Rattlesnakeroot S1 2 May Be At Risk 1 91.0 ± 20.0 PE P Ageratina altissima White Snakeroot S1 2 May Be At Risk 2 60.6 ± 1.0 NS P Barbarea orthoceras American Yellow Rocket S1 2 May Be At Risk 2 60.6 ± 1.0 NS P Cochlearia tridactylites Limestone Scurvy-grass S1 2 May Be At Risk 5 61.5 ± 0.0 NS P Lobelia spicata Pale-Spiked Lobelia S1 2 May Be At Risk 1 97.8 ± 0.0 NS P Stellaria crassifolia Fleshy Stitchwort S1 2 May Be At Risk 2 78	Р								1	91.0 ± 20.0	
P Antennaria parlinii a Pussytoes S1 2 May Be At Risk 1 24.4 ± 0.0 NS P Bidens hyperborea Estuary Beggarticks S1 2 May Be At Risk 3 61.0 ± 1.0 NS P Prenanthes racemosa Glaucous Rattlesnakeroot S1 2 May Be At Risk 1 91.0 ± 20.0 PE P Ageratina altissima White Snakeroot S1 2 May Be At Risk 1 91.0 ± 20.0 PE P Ageratina altissima White Snakeroot S1 2 May Be At Risk 2 60.6 ± 1.0 NS P Barbarea orthoceras American Yellow Rocket S1 2 May Be At Risk 5 61.5 ± 0.0 NS P Cochlearia tridactylites Limestone Scurvy-grass S1 2 May Be At Risk 5 61.5 ± 0.0 NS P Cochlearia tridactylites Limestone Scurvy-grass S1 2 May Be At Risk 1 97.8 ± 0.0 NS P Stellaria crassifolia Fleshy Stitchwort S1 2 May Be At Risk 2 <td>Р</td> <td>Sanicula odorata</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2 May Be At Risk</td> <td>4</td> <td>11.0 ± 7.0</td> <td>-</td>	Р	Sanicula odorata						2 May Be At Risk	4	11.0 ± 7.0	-
P Bidens hyperborea Estuary Beggarticks S1 2 May Be At Risk 3 61.0 ± 1.0 NS P Prenanthes racemosa Glaucous Rattlesnakeroot S1 2 May Be At Risk 1 91.0 ± 20.0 PE P Ageratina altissima White Snakeroot S1 2 May Be At Risk 1 91.0 ± 20.0 NS P Barbarea orthoceras American Yellow Rocket S1 2 May Be At Risk 5 60.6 ± 1.0 NS P Cochlearia tridactylites Limestone Scurvy-grass S1 2 May Be At Risk 1 97.8 ± 0.0 NS P Lobelia spicata Pale-Spiked Lobelia S1 2 May Be At Risk 1 97.8 ± 0.0 NS P Stellaria crassifolia Fleshy Stitchwort S1 2 May Be At Risk 2 78.9 ± 5.0 NS P Suaeda maritima ssp. richii White Sea-blite S1 5 Undetermined 3 61.3 ± 7.0 NS P Hudsonia tomentosa Woolly Beach-heath S1 2 May Be At Risk 5 <td>Р</td> <td>Zizia aurea</td> <td>Golden Alexanders</td> <td></td> <td></td> <td></td> <td>S1</td> <td>2 May Be At Risk</td> <td>43</td> <td>41.8 ± 1.0</td> <td>NS</td>	Р	Zizia aurea	Golden Alexanders				S1	2 May Be At Risk	43	41.8 ± 1.0	NS
P	Р	Antennaria parlinii	a Pussytoes				S1	2 May Be At Risk	1	24.4 ± 0.0	NS
P Prenanthes racemosa Glaucous Rattlesnakeroot S1 2 May Be At Risk 1 91.0 ± 20.0 PE P Ageratina altissima White Snakeroot S1 2 May Be At Risk 2 60.6 ± 1.0 NS P Barbarea orthoceras American Yellow Rocket S1 2 May Be At Risk 5 61.5 ± 0.0 NS P Cochlearia tridactylites Limestone Scurvy-grass S1 2 May Be At Risk 5 61.5 ± 0.0 NS P Lobelia spicata Pale-Spiked Lobelia S1 2 May Be At Risk 6 60.3 ± 7.0 NS P Stellaria crassifolia Fleshy Stitchwort S1 2 May Be At Risk 6 60.3 ± 7.0 NS P Suaeda maritima ssp. richii White Sea-blite S1 5 Undetermined 3 61.3 ± 7.0 NS P Hudsonia tomentosa Woolly Beach-heath S1 2 May Be At Risk 54 13.0 ± 7.0 NS P Elatine americana American Waterwort S1 2 May Be At Risk 1 <td>Р</td> <td>Bidens hyperborea</td> <td>Estuary Beggarticks</td> <td></td> <td></td> <td></td> <td>S1</td> <td>2 May Be At Risk</td> <td>3</td> <td>61.0 ± 1.0</td> <td>NS</td>	Р	Bidens hyperborea	Estuary Beggarticks				S1	2 May Be At Risk	3	61.0 ± 1.0	NS
P Ageratina altissima White Snakeroot S1 2 May Be At Risk 2 60.6 ± 1.0 NS P Barbarea orthoceras American Yellow Rocket S1 2 May Be At Risk 5 61.5 ± 0.0 NS P Cochlearia tridactylites Limestone Scurvy-grass S1 2 May Be At Risk 1 97.8 ± 0.0 NS P Lobelia spicata Pale-Spiked Lobelia S1 2 May Be At Risk 6 60.3 ± 7.0 NS P Stellaria crassifolia Fleshy Stitchwort S1 2 May Be At Risk 2 78.9 ± 5.0 PE P Suaeda maritima ssp. richii White Sea-blite S1 2 May Be At Risk 2 78.9 ± 5.0 PE P Hudsonia tomentosa Woolly Beach-heath S1 2 May Be At Risk 54 13.0 ± 7.0 NS P Elatine americana American Waterwort S1 2 May Be At Risk 54 13.0 ± 7.0 NS P Desmodium canadense Canada Tick-trefoil S1 2 May Be At Risk 20	Р	Prenanthes racemosa					S1		1	91.0 ± 20.0	PE
P Barbarea orthoceras American Yellow Rocket S1 2 May Be At Risk 5 61.5 ± 0.0 NS P Cochlearia tridactylites Limestone Scurvy-grass S1 2 May Be At Risk 1 97.8 ± 0.0 NS P Lobelia spicata Pale-Spiked Lobelia S1 2 May Be At Risk 6 60.3 ± 7.0 NS P Stellaria crassifolia Fleshy Stitchwort S1 2 May Be At Risk 2 78.9 ± 5.0 PE P Suaeda maritima ssp. richii White Sea-blite S1 5 Undetermined 3 61.3 ± 7.0 NS P Hudsonia tomentosa Woolly Beach-heath S1 2 May Be At Risk 54 13.0 ± 7.0 NS P Elatine americana American Waterwort S1 2 May Be At Risk 1 91.3 ± 0.0 NS P Desmodium canadense Canada Tick-trefoil S1 2 May Be At Risk 1 91.3 ± 0.0 NS P Firaxinus pennsylvanica Red Ash S1 2 May Be At Risk 3	Р								2		
P Cochlearia tridactylites Limestone Scurvy-grass S1 2 May Be At Risk 1 97.8 ± 0.0 NS P Lobelia spicata Pale-Spiked Lobelia S1 2 May Be At Risk 6 60.3 ± 5.0 PS P Stellaria crassifolia Fleshy Stitchwort S1 2 May Be At Risk 2 78.9 ± 5.0 PE P Suaeda maritima ssp. richii White Sea-blite S1 5 Undetermined 3 61.3 ± 7.0 NS P Hudsonia tomentosa Woolly Beach-heath S1 2 May Be At Risk 54 13.0 ± 7.0 NS P Elatine americana American Waterwort S1 2 May Be At Risk 1 91.3 ± 0.0 NS P Desmodium canadense Canada Tick-trefoil S1 2 May Be At Risk 20 19.4 ± 0.0 NS P Ribes americanum Wild Black Current S1 5 Undetermined 2 59.3 ± 5.0 NS P Fraxinus pennsylvanica Red Ash S1 2 May Be At Risk 3 53.9	P	3					-				
P Lobelia spicata Pale-Spiked Lobella S1 2 May Be At Risk 6 60.3 ± 7.0 NS P Stellaria crassifolia Fleshy Stitchwort S1 2 May Be At Risk 2 78.9 ± 5.0 PE P Suaeda maritima ssp. richii White Sea-blite S1 5 Undetermined 3 61.3 ± 7.0 NS P Hudsonia tomentosa Woolly Beach-heath S1 2 May Be At Risk 54 13.0 ± 7.0 NS P Elatine americana American Waterwort S1 2 May Be At Risk 1 91.3 ± 0.0 NS P Desmodium canadense Canada Tick-trefoil S1 2 May Be At Risk 20 19.4 ± 0.0 NS P Ribes americanum Wild Black Currant S1 5 Undetermined 2 59.3 ± 5.0 NS P Fraxinus pennsylvanica Red Ash S1 2 May Be At Risk 3 53.9 ± 0.0 PE P Polygonum careyi Carey's Smartweed S1 5 Undetermined 1 71.8 ± 3.0	D										
P Stellaria crassifolia Fleshy Stitchwort S1 2 May Be At Risk 2 78.9 ± 5.0 PE P Suaeda maritima ssp. richii White Sea-blite S1 5 Undetermined 3 61.3 ± 7.0 NS P Hudsonia tomentosa Woolly Beach-heath S1 2 May Be At Risk 54 13.0 ± 7.0 NS P Elatine americana American Waterwort S1 2 May Be At Risk 1 91.3 ± 0.0 NS P Desmodium canadense Canada Tick-trefoil S1 2 May Be At Risk 20 19.4 ± 0.0 NS P Ribes americanum Wild Black Currant S1 5 Undetermined 2 59.3 ± 5.0 NS P Fraxinus pennsylvanica Red Ash S1 2 May Be At Risk 3 53.9 ± 0.0 PE P Polygonum careyi Carey's Smartweed S1 5 Undetermined 1 71.8 ± 3.0 NS	I D								-		
P Suaeda maritima ssp. richii White Sea-blite S1 5 Undetermined 3 61.3 ± 7.0 NS P Hudsonia tomentosa Woolly Beach-heath S1 2 May Be At Risk 54 13.0 ± 7.0 NS P Elatine americana American Waterwort S1 2 May Be At Risk 1 91.3 ± 0.0 NS P Desmodium canadense Canada Tick-trefoil S1 2 May Be At Risk 20 19.4 ± 0.0 NS P Ribes americanum Wild Black Currant S1 5 Undetermined 2 59.3 ± 5.0 NS P Fraxinus pennsylvanica Red Ash S1 2 May Be At Risk 3 53.9 ± 0.0 PE P Polygonum careyi Carey's Smartweed S1 5 Undetermined 1 71.8 ± 3.0 NS	ı D	•	•					•			
P Hudsonia tomentosa Woolly Beach-heath S1 2 May Be At Risk 54 13.0 ± 7.0 NS P Elatine americana American Waterwort S1 2 May Be At Risk 1 91.3 ± 0.0 NS P Desmodium canadense Canada Tick-trefoil S1 2 May Be At Risk 20 19.4 ± 0.0 NS P Ribes americanum Wild Black Currant S1 5 Undetermined 2 59.3 ± 5.0 NS P Fraxinus pennsylvanica Red Ash S1 2 May Be At Risk 3 53.9 ± 0.0 PE P Polygonum careyi Carey's Smartweed S1 5 Undetermined 1 71.8 ± 3.0 NS	ı D										
P Elatine americana American Waterwort S1 2 May Be At Risk 1 91.3 ± 0.0 NS P Desmodium canadense Canada Tick-trefoil S1 2 May Be At Risk 20 19.4 ± 0.0 NS P Ribes americanum Wild Black Currant S1 5 Undetermined 2 59.3 ± 5.0 NS P Fraxinus pennsylvanica Red Ash S1 2 May Be At Risk 3 53.9 ± 0.0 PE P Polygonum careyi Carey's Smartweed S1 5 Undetermined 1 71.8 ± 3.0 NS	•										
P Desmodium canadense Canada Tick-trefoil S1 2 May Be At Risk 20 19.4 ± 0.0 NS P Ribes americanum Wild Black Currant S1 5 Undetermined 2 59.3 ± 5.0 NS P Fraxinus pennsylvanica Red Ash S1 2 May Be At Risk 3 53.9 ± 0.0 PE P Polygonum careyi Carey's Smartweed S1 5 Undetermined 1 71.8 ± 3.0 NS	•										
P Ribes americanum Wild Black Currant S1 5 Undetermined 2 59.3 ± 5.0 NS P Fraxinus pennsylvanica Red Ash S1 2 May Be At Risk 3 53.9 ± 0.0 PE P Polygonum careyi Carey's Smartweed S1 5 Undetermined 1 71.8 ± 3.0 NS											
P Fraxinus pennsylvanica Red Ash S1 2 May Be At Risk 3 53.9 ± 0.0 PE P Polygonum careyi Carey's Smartweed S1 5 Undetermined 1 71.8 ± 3.0 NS	•							•			
P Polygonum careyi Carey's Smartweed S1 5 Undetermined 1 71.8 ± 3.0 NS	Р										
1 Tolygonam careys analtweed 1 This 20.0 No	Р		Red Ash					2 May Be At Risk	3	53.9 ± 0.0	
P Ranunculus pensylvanicus Pennsylvania Buttercup S1 2 May Be At Risk 25 69.9 ± 0.0 NS		Polygonum careyi	Carey's Smartweed					5 Undetermined	1	71.8 ± 3.0	
	Р	Ranunculus pensylvanicus	Pennsylvania Buttercup				S1	2 May Be At Risk	25	69.9 ± 0.0	NS

Data Report 6252: Pictou, NS Page 13 of 21

Taxonomic
Group

raxonomic										_
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Prov
P P	Salix myrtillifolia	Blueberry Willow				S1	2 May Be At Risk	1	87.1 ± 0.0	NS
•	Salix serissima Agalinis paupercula var.	Autumn Willow				S1	2 May Be At Risk	2	87.1 ± 0.0	NS NS
) -	borealis	Small-flowered Agalinis				S1		1	12.0 ± 0.0	
P	Scrophularia lanceolata	Lance-leaved Figwort				S1	5 Undetermined	1	97.9 ± 1.0	NS
	Dirca palustris	Eastern Leatherwood				S1	2 May Be At Risk	5	88.8 ± 7.0	NS
	Boehmeria cylindrica	Small-spike False-nettle				S1	2 May Be At Risk	2	98.6 ± 0.0	NS
	Pilea pumila	Dwarf Clearweed				S1	2 May Be At Risk	25	25.5 ± 6.0	NS
,	Carex alopecoidea	Foxtail Sedge				S1	2 May Be At Risk	2	71.2 ± 0.0	NS
,	Carex chordorrhiza	Creeping Sedge				S1 S1	2 May Be At Risk	1 4	78.2 ± 1.0	PE NS
	Carex garberi Carex gynocrates	Garber's Sedge Northern Bog Sedge				S1	2 May Be At Risk 2 May Be At Risk	2	42.8 ± 0.0 87.1 ± 0.0	NS NS
	Carex gynocrates Carex haydenii	Hayden's Sedge				S1	2 May Be At Risk	3	40.1 ± 0.0	NS
)	Carex pellita	Woolly Sedge				S1	2 May Be At Risk	12	19.3 ± 0.0	NS
)	Carex plantaginea	Plantain-Leaved Sedge				S1	2 May Be At Risk	3	47.0 ± 0.0	NS
,	Carex prairiea	Prairie Sedge				S1	2 May Be At Risk	1	74.8 ± 0.0	PE
)	Carex tincta	Tinged Sedge				S1	2 May Be At Risk	3	71.2 ± 1.0	NS
)	Carex grisea	Inflated Narrow-leaved				S1	2 May Be At Risk	6	61.8 ± 0.0	NS
	•	Sedge					•			NO
	Cyperus lupulinus Cyperus lupulinus ssp.	Hop Flatsedge				S1	2 May Be At Risk	5	69.7 ± 0.0	NS NS
•	macilentus	Hop Flatsedge				S1	2 May Be At Risk	10	3.3 ± 0.0	110
0	Blysmus rufus	Red Bulrush				S1	2 May Be At Risk	3	87.4 ± 5.0	PE
•	Iris prismatica	Slender Blue Flag				S1	2 May Be At Risk	2	66.1 ± 1.0	NS
	Juncus vaseyi	Vasey Rush				S1	2 May Be At Risk	3	47.5 ± 0.0	NS
•	Allium tricoccum	Wild Leek				S1	2 May Be At Risk	8	39.0 ± 0.0	NS
))	Malaxis brachypoda	White Adder's-Mouth				S1	2 May Be At Risk	2	83.8 ± 0.0	PE
,	Bromus latiglumis	Broad-Glumed Brome				S1	2 May Be At Risk	31	50.1 ± 0.0	NS
	Elymus wiegandii Elymus hystrix var.	Wiegand's Wild Rye				S1	2 May Be At Risk	21	14.8 ± 1.0	NS NS
)	bigeloviana	Spreading Wild Rye				S1	2 May Be At Risk	4	32.4 ± 1.0	
	Potamogeton nodosus	Long-leaved Pondweed				S1	2 May Be At Risk	1	95.6 ± 5.0	NS
•	Adiantum pedatum	Northern Maidenhair Fern				S1	2 May Be At Risk	1	60.4 ± 1.0	NS
	Solidago hispida	Hairy Goldenrod				S1?	2 May Be At Risk	1	57.7 ± 7.0	NS
))	Crataegus robinsonii	Robinson's Hawthorn				S1?	5 Undetermined	3	7.7 ± 1.0	NS
•	Carex pensylvanica	Pennsylvania Sedge				S1?	2 May Be At Risk	1	77.7 ± 0.0	NS
1	Carex rostrata	Narrow-leaved Beaked Sedge				S1?	2 May Be At Risk	1	79.6 ± 5.0	PE
	Schoenoplectus robustus	Sturdy Bulrush				S1?	5 Undetermined	2	60.3 ± 7.0	NS
1	Dichanthelium acuminatum var. lindheimeri	Woolly Panic Grass				S1?	5 Undetermined	1	16.4 ± 0.0	NS
)	Fraxinus nigra	Black Ash			Threatened	S1S2	1 At Risk	168	7.1 ± 0.0	NS
•	Rudbeckia laciniata	Cut-Leaved Coneflower				S1S2	2 May Be At Risk	24	39.1 ± 0.0	NS
)	Proserpinaca intermedia	Intermediate Mermaidweed				S1S2	2 May Be At Risk	1	92.0 ± 0.0	NS
•	Anemone virginiana var. alba	Virginia Anemone				S1S2	3 Sensitive	5	50.9 ± 5.0	NS
)	Hepatica nobilis var. obtusa	Round-lobed Hepatica				S1S2	2 May Be At Risk	23	26.1 ± 0.0	NS
	Parnassia palustris var. parviflora	Marsh Grass-of-Parnassus				S1S2	2 May Be At Risk	1	41.5 ± 1.0	NS
•	Gratiola neglecta	Clammy Hedge-Hyssop				S1S2	3 Sensitive	5	63.9 ± 0.0	NS
	Carex livida var. radicaulis	Livid Sedge				S1S2	2 May Be At Risk	12	67.4 ± 0.0	NS
	Juncus greenei	Greene's Rush				S1S2	2 May Be At Risk	4	69.2 ± 1.0	NS
•	Juncus alpinoarticulatus ssp. nodulosus	Richardson's Rush				S1S2	2 May Be At Risk	6	82.1 ± 3.0	PE
,	Platanthera huronensis	Fragrant Green Orchid				S1S2	5 Undetermined	3	44.4 ± 10.0	NS
,	Calamagrostis stricta ssp. stricta	Slim-stemmed Reed Grass				S1S2	3 Sensitive	1	88.4 ± 2.0	PE
P	Cinna arundinacea	Sweet Wood Reed Grass				S1S2	2 May Be At Risk	19	60.3 ± 0.0	NS

Data Report 6252: Pictou, NS
Page 14 of 21

XC		

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Prov
Р	Festuca subverticillata	Nodding Fescue				S1S2	2 May Be At Risk	3	89.3 ± 1.0	NS
Р	Cryptogramma stelleri	Steller's Rockbrake				S1S2	2 May Be At Risk	1	100.0 ± 0.0	NS
Р	Carex vacillans	Estuarine Sedge				S1S3	5 Undetermined	2	71.2 ± 0.0	NS
Р	Conioselinum chinense	Chinese Hemlock-parsley				S2	3 Sensitive	1	25.1 ± 5.0	NS
Р	Osmorhiza longistylis	Smooth Sweet Cicely				S2	2 May Be At Risk	20	17.3 ± 0.0	NS
Р	Erigeron philadelphicus	Philadelphia Fleabane				S2	3 Sensitive	4	51.6 ± 7.0	NS
Р	Lactuca hirsuta var.	•				S2	3 Sensitive	2	65.9 ± 5.0	PE
'	sanguinea	Hairy Lettuce				_				
P	Symphyotrichum ciliolatum	Fringed Blue Aster				S2	3 Sensitive	18	20.4 ± 0.0	NS
Р	Impatiens pallida	Pale Jewelweed				S2	3 Sensitive	2	61.3 ± 7.0	NS
Р	Caulophyllum thalictroides	Blue Cohosh				S2	2 May Be At Risk	48	13.6 ± 1.0	NS
Р	Arabis drummondii	Drummond's Rockcress				S2	3 Sensitive	6	48.4 ± 0.0	NS
Р	Stellaria humifusa	Saltmarsh Starwort				S2	3 Sensitive	8	65.2 ± 1.0	PE
Р	Stellaria longifolia	Long-leaved Starwort				S2	3 Sensitive	11	33.5 ± 0.0	NS
Р	Chenopodium rubrum	Red Pigweed				S2	2 May Be At Risk	7	3.6 ± 0.0	NS
Р	Hudsonia ericoides	Pinebarren Golden Heather				S2	3 Sensitive	12	82.1 ± 25.0	PE
Р	Hypericum majus	Large St John's-wort				S2	3 Sensitive	6	75.0 ± 0.0	PE
Р	Crassula aquatica	Water Pygmyweed				S2	3 Sensitive	6	74.5 ± 5.0	PE
Р	Myriophyllum farwellii	Farwell's Water Milfoil				S2	3 Sensitive	10	44.3 ± 1.0	NS
Р	Myriophyllum verticillatum	Whorled Water Milfoil				S2	3 Sensitive	1	59.7 ± 0.0	NS
_	Oenothera fruticosa ssp.	Narrow-leaved Evening								NS
Р	glauca	Primrose				S2	5 Undetermined	3	3.6 ± 7.0	
Р	Polygonum arifolium	Halberd-leaved Tearthumb				S2	3 Sensitive	16	29.3 ± 1.0	PE
Р	Rumex salicifolius var. mexicanus	Triangular-valve Dock				S2	3 Sensitive	4	74.8 ± 0.0	NS
D	Primula mistassinica	Mistassini Primrose				S2	3 Sensitive	16	50.1 ± 0.0	NS
P	Anemone canadensis	Canada Anemone				S2 S2	2 May Be At Risk	2	88.0 ± 1.0	NS
P	Anemone quinquefolia	Wood Anemone				S2 S2	3 Sensitive	17	58.7 ± 0.0	NS
P						S2 S2	3 Sensitive	21	20.8 ± 1.0	NS
Р	Anemone virginiana Anemone virginiana var.	Virginia Anemone								NS NS
Р	virginiana	Virginia Anemone				S2	3 Sensitive	1	67.5 ± 7.0	NO
Р	Caltha palustris	Yellow Marsh Marigold				S2	3 Sensitive	36	19.3 ± 0.0	NS
Р	Galium boreale	Northern Bedstraw				S2	2 May Be At Risk	2	78.6 ± 5.0	NS
Р	Galium labradoricum	Labrador Bedstraw				S2	3 Sensitive	96	58.5 ± 0.0	NS
Р	Salix pedicellaris	Bog Willow				S2	3 Sensitive	46	3.6 ± 7.0	NS
Р	Comandra umbellata	Bastard's Toadflax				S2	2 May Be At Risk	42	67.4 ± 5.0	NS
Р	Tiarella cordifolia	Heart-leaved Foamflower				S2	3 Sensitive	217	29.6 ± 7.0	NS
Р	Viola nephrophylla	Northern Bog Violet				S2	3 Sensitive	9	21.3 ± 0.0	NS
Р	Carex bebbii	Bebb's Sedge				S2	3 Sensitive	20	32.8 ± 0.0	PE
P	Carex castanea	Chestnut Sedge				S2	2 May Be At Risk	22	86.7 ± 0.0	NS
Р	Carex comosa	Bearded Sedge				S2	3 Sensitive	3	50.5 ± 0.0	PE
Р	Carex hystericina	Porcupine Sedge				S2	2 May Be At Risk	5	27.3 ± 0.0	NS
Р	Carex tenera	Tender Sedge				S2	3 Sensitive	8	24.2 ± 1.0	NS
Р	Carex tuckermanii	Tuckerman's Sedge				S2	3 Sensitive	6	15.3 ± 0.0	NS
D	Eleocharis quinqueflora	Few-flowered Spikerush				S2	3 Sensitive	1	82.9 ± 3.0	PE
D D	Vallisneria americana	Wild Celery				S2	2 May Be At Risk	2	72.9 ± 1.0	NS
P	Allium schoenoprasum	Wild Chives				S2	2 May Be At Risk	1	95.8 ± 0.0	PE
'	Allium schoenoprasum var.						2 May De At Nisk	'	33.0 ± 0.0	NS
Р	sibiricum	Wild Chives				S2	2 May Be At Risk	1	61.0 ± 7.0	NO
Р	Lilium canadense	Canada Lily				S2	2 May Be At Risk	85	6.7 ± 7.0	NS
Р	Cypripedium parviflorum var. pubescens	Yellow Lady's-slipper				S2	3 Sensitive	7	9.5 ± 7.0	NS
P	Cypripedium reginae	Showy Lady's-Slipper				S2	2 May Be At Risk	74	9.8 ± 0.0	NS
P	Goodyera pubescens	Downy Rattlesnake-Plantain				S2	3 Sensitive	1	93.9 ± 1.0	NS
	Platanthera flava var.	•				_		· ·		NS
Р	herbiola	Pale Green Orchid				S2	5 Undetermined	8	27.4 ± 0.0	
Р	Platanthera macrophylla	Large Round-Leaved Orchid				S2	3 Sensitive	12	27.3 ± 5.0	NS

Data Report 6252: Pictou, NS
Page 15 of 21

Taxono	

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Prov
D	Spiranthes lucida	Shining Ladies'-Tresses	COSEWIC	JANA	FIOV Legal FIOL	S2	2 May Be At Risk	21	18.9 ± 1.0	NS
D D	Calamagrostis stricta	Slim-stemmed Reed Grass				S2	3 Sensitive	16	60.8 ± 0.0	PE
P										
P	Dichanthelium linearifolium	Narrow-leaved Panic Grass				S2	3 Sensitive	4	16.6 ± 7.0	NS
P	Piptatherum canadense	Canada Rice Grass				S2	3 Sensitive	6	65.9 ± 1.0	NS
	Potamogeton friesii	Fries' Pondweed				S2	2 May Be At Risk	23	34.0 ± 0.0	PE
Р	Potamogeton richardsonii	Richardson's Pondweed				S2	2 May Be At Risk	5	6.8 ± 0.0	NS
Р	Dryopteris fragrans var.	Fragrant Wood Fern				S2	3 Sensitive	4	47.0 ± 7.0	NS
_	remotiuscula	· ·						_		
P	Woodsia glabella	Smooth Cliff Fern				S2	3 Sensitive	1	75.7 ± 1.0	NS
Р	Symphyotrichum boreale	Boreal Aster				S2?	3 Sensitive	24	61.0 ± 7.0	NS
Р	Cuscuta cephalanthi	Buttonbush Dodder				S2?	5 Undetermined	5	7.5 ± 1.0	NS
Р	Epilobium coloratum	Purple-veined Willowherb				S2?	3 Sensitive	3	10.6 ± 1.0	NS
P	Rumex maritimus var. persicarioides	Peach-leaved Dock				S2?	2 May Be At Risk	6	62.9 ± 5.0	PE
P	Crataegus submollis	Quebec Hawthorn				S2?	5 Undetermined	4	31.9 ± 7.0	NS
P	Carex peckii	White-Tinged Sedge				S2?	2 May Be At Risk	3	55.1 ± 0.0	NS
P	Eleocharis ovata	Ovate Spikerush				S2?	3 Sensitive	6	37.8 ± 0.0	NS
Р	Scirpus pedicellatus	Stalked Bulrush				S2?	3 Sensitive	9	60.2 ± 0.0	NS
Р	Potamogeton pulcher	Spotted Pondweed			Vulnerable	S2S3	3 Sensitive	3	67.5 ± 2.0	NS
Р	Hieracium robinsonii	Robinson's Hawkweed				S2S3	3 Sensitive	3	33.0 ± 7.0	NS
Р	Senecio pseudoarnica	Seabeach Ragwort				S2S3	3 Sensitive	2	61.0 ± 7.0	NS
P	Betula michauxii	Michaux's Dwarf Birch				S2S3	3 Sensitive	15	72.0 ± 0.0	NS
P	Sagina nodosa	Knotted Pearlwort				S2S3	4 Secure	3	80.6 ± 0.0	PE
P	Sagina nodosa ssp. borealis	Knotted Pearlwort				S2S3	4 Secure	5	81.0 ± 5.0	PE
Р	Ceratophyllum echinatum	Prickly Hornwort				S2S3	3 Sensitive	8	60.2 ± 0.0	NS
P	Hypericum dissimulatum	Disguised St John's-wort				S2S3	3 Sensitive	2	80.0 ± 1.0	NS
'	• •	Orange-fruited Tinker's								NS
P	Triosteum aurantiacum	Weed				S2S3	3 Sensitive	75	13.6 ± 1.0	
Р	Shepherdia canadensis	Soapberry				S2S3	3 Sensitive	2	97.0 ± 0.0	NS
Р	Empetrum eamesii ssp. atropurpureum	Pink Crowberry				S2S3	3 Sensitive	6	82.4 ± 5.0	PE
P	Empetrum eamesii ssp. eamesii	Pink Crowberry				S2S3	3 Sensitive	2	66.0 ± 5.0	PE
Р	Chamaesyce polygonifolia	Seaside Spurge				S2S3	3 Sensitive	14	25.9 ± 2.0	NS
Р	Halenia deflexa	Spurred Gentian				S2S3	3 Sensitive	2	82.7 ± 1.0	NS
Р	Hedeoma pulegioides	American False Pennyroyal				S2S3	3 Sensitive	6	13.3 ± 5.0	NS
Р	Polygonum buxiforme	Small's Knotweed				S2S3	5 Undetermined	3	12.1 ± 0.0	NS
P	Polygonum raii	Sharp-fruited Knotweed				S2S3	5 Undetermined	8	81.7 ± 5.0	PE
Р	Amelanchier fernaldii	Fernald's Serviceberry				S2S3	5 Undetermined	4	82.0 ± 0.0	PE
P	Potentilla canadensis	Canada Cinquefoil				S2S3	3 Sensitive	1	79.1 ± 5.0	NS
Р	Galium aparine	Common Bedstraw				S2S3	3 Sensitive	5	22.1 ± 4.0	NS
Р	Salix pellita	Satiny Willow				S2S3	3 Sensitive	5	63.8 ± 0.0	NS
P	Veronica serpyllifolia ssp. humifusa	Thyme-Leaved Speedwell				S2S3	3 Sensitive	1	55.9 ± 0.0	NS
Р	Carex adusta	Lesser Brown Sedge				S2S3	3 Sensitive	6	59.7 ± 0.0	NS
Р	Carex hirtifolia	Pubescent Sedge				S2S3	3 Sensitive	43	15.9 ± 0.0	NS
P	Carex houghtoniana	Houghton's Sedge				S2S3	3 Sensitive	4	74.6 ± 1.0	NS
Р	Eleocharis olivacea	Yellow Spikerush				S2S3	3 Sensitive	7	56.0 ± 5.0	NS
Р	Eriophorum gracile	Slender Cottongrass				S2S3	3 Sensitive	12	59.1 ± 10.0	NS
P	Coeloglossum viride var. virescens	Long-bracted Frog Orchid				S2S3	2 May Be At Risk	1	84.0 ± 0.0	NS
Р	Cypripedium parviflorum	Yellow Lady's-slipper				S2S3	3 Sensitive	20	9.9 ± 0.0	NS
Р	Stuckenia filiformis	Thread-leaved Pondweed				S2S3	3 Sensitive	4	67.1 ± 0.0	PE
	Stuckenia filiformis ssp.							-		PE
Р	alpina .	Thread-leaved Pondweed				S2S3	3 Sensitive	4	78.2 ± 1.0	
P	Botrychium lanceolatum var. angustisegmentum	Lance-Leaf Grape-Fern				S2S3	3 Sensitive	12	19.3 ± 0.0	NS

Data Report 6252: Pictou, NS
Page 16 of 21

Taxo	

P	Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Prov
P				COSEWIC	JANA	FIOV Legal FIOL					NS
P											NS
P			· · ·								PE
P	•										NS
Mage Registorina backel	•										
Packers purporcular Balsam Groundee S3 4 Secure 52 19.6 e.0.0	•										NS
P											NS
P											NS
P	•		· ·								PE
P											NS
P Vaccinium boreale	-		. ,								NS
Vaccinium posepitiosum											PE
Part	•										NS
Prosephrace palastris Marsh Mermaldweed S3 4 Secure 14 59.8 ± 0.0	P	Vaccinium caespitosum	Dwarf Bilberry					4 Secure	53	44.2 ± 0.0	NS
Proseptinaca palcistris var. crebra Comb-leaved Mermaidweed S3 4 Secure 2 51.8 ± 1.0	P	Geranium bicknellii	Bicknell's Crane's-bill				S3	4 Secure	3	64.5 ± 2.0	NS
P	P	Proserpinaca palustris	Marsh Mermaidweed				S3	4 Secure	14	59.8 ± 0.0	NS
Creams Creams Comb-leaved Mermatolweed Sa Sacure 2 51.8 ± 1.0	D	Proserpinaca palustris var.	Manala Manasaishora ad				00	4.0	4.4	50.4 . 0.0	NS
P Decodon verdicillatus Samp Loosestife	P	crebra .	Marsh Mermaldweed				53	4 Secure	14	58.4 ± 0.0	
P Decodon verdicillatus Samp Loosestife	Р	Proserpinaca pectinata	Comb-leaved Mermaidweed				S3	4 Secure	2	51.8 ± 1.0	NS
Decodon verticilitatus Swamp Loosestrife \$3	Р		Canada Germander					3 Sensitive	22	3.2 ± 5.0	NS
P Polygala sanguinea Blood Milkworth S3 3 Sensitive 30 8.9. ± 5.0 1 P Polygana squinea Blood Milkworth S3 3 Sensitive 33 13. ± ± 1.0 1 P Polygana squinea Pensylvania Smartweed S3 3 Sensitive 33 15. ± 0.0 1 P Polyganum pensylvania Smartweed S3 3 Sensitive 35 15. ± 0.0 1 P Polyganum soandens Climbing Falses Buckwheat S3 3 Sensitive 45 15. ± 0.0 1 P Polyganum soandens Climbing Falses Buckwheat S3 3 Sensitive 45 15. ± 0.0 1 P Polyganum soandens S3 4 Secure 15 67. ± 1.0 1 P Pyrola saraffolia Pink Pyrola Pyrola saraffolia Pink Pyrola S3 4 Secure 16 43.7 ± 0.0 1 P Pyrola saraffolia Pink Pyrola S3 4 Secure 16 43.7 ± 0.0 1 P Pyrola saraffolia Pink Pyrola S3 4 Secure 16 43.7 ± 0.0 1 P Pyrola saraffolia Pink Pyrola S3 4 Secure 16 43.7 ± 0.0 1 P Pyrola saraffolia Pink Pyrola S3 4 Secure 16 43.7 ± 0.0 1 P Pyrola saraffolia Pink Pyrola Pyrola saraffolia Pink Pyrola Pyrola saraffolia Pyrola saraffolia Pink Pyrola Pyrola saraffolia Pink Pyrola Pyrola saraffolia Pyrola saraffolia Pink Pyrola Pyrola saraffolia Pink Pyrola Pyrola saraffolia Pyrola	P										PE
Polygam sanguinea Poly											NS
Polygonum pensylvaniacum Pennsylvaniacum Pennsylvaniacum Pennsylvaniacum Polygonum sanadrans Polygonum sanadrans Climbing False Buckwheat S3 3 Sensitive 45 16.4 ± 0.0 Polygonum sanadrans Rugels Plantain S3 4 Secure 5 16.4 ± 0.0 Polygonum sanadrans S3 3 Sensitive 17 56.7 ± 1.0 Polygonum sanadrans S3 3 Sensitive 17 56.7 ± 1.0 Polygonum sanadrans S3 3 Sensitive 17 56.7 ± 1.0 Polygonum sanadrans S3 4 Secure 16 43.7 ± 0.0 Polygonum sanadrans S3 4 Secure 16 43.7 ± 0.0 Polygonum sanadrans S3 4 Secure 16 43.7 ± 0.0 Polygonum sanadrans S3 4 Secure 16 43.7 ± 0.0 Polygonum sanadrans S3 4 Secure 16 43.7 ± 0.0 Polygonum sanadrans S3 4 Secure 16 43.7 ± 0.0 Polygonum sanadrans S3 4 Secure 16 43.7 ± 0.0 Polygonum sanadrans S3 4 Secure 16 43.7 ± 0.0 Polygonum sanadrans S3 4 Secure 17 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure 17 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure 17 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure 17 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure 17 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure 17 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure 17 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure 17 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure 17 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure 17 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure 18 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure 19 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure 17 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure 17 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure 17 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure 17 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure 17 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure 17 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure 18 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure 19 56.7 ± 0.0 Polygonum sanadrans S3 4 Secure	•										NS
Package Pack											NS
Partition Part	•										NS
P Samolus valerandis sp. parvillorus Saside Brookweed P Prola asarifolia Pink Pyrola P Prola saside Brookweed P Prola saside Brookweed P Prola saside Brookweed P Prola minor Lesser Pyrola Sa 3 Sensitive 2 30,6 ± 0.0 P Ranunculus gmelinii Gmelin's Water Buttercup Sa 4 Secure 64 29,4 ± 5.0 P Ranunculus gmelinii Alder-leaved Buckthom Sa 4 Secure 64 29,4 ± 5.0 P Ranunculus gmelinii P Alder-leaved Buckthom Sa 4 Secure 110 19,5 ± 0.0 P Ranunculus gmelinii P Ran	-		S .								NS NS
P	Р		Rugers Plantain					4 Secure	Э	16.4 ± 0.0	
P Pyrola sarifolia Pink Pyrola S3 4 Secure 16 43.7 ± 0.0 P Pyrola minor Lesser Pyrola S3 3 Sensitive 2 30.6 ± 0.0 P Pyrola minor Lesser Pyrola S3 3 Sensitive 2 30.6 ± 0.0 P Ranunculus gmelini Alder-leaved Buckthom S3 4 Secure 64 29.4 ± 5.0 P Rhamnus alinifolia Alder-leaved Buckthom S3 4 Secure 153 48.4 ± 5.0 P Rhamnus alinifolia Alder-leaved Buckthom S3 4 Secure 110 19.5 ± 0.0 P Amelanchier stolonifera Running Serviceberry S3 4 Secure 14 12.2 ± 2.0 P Amelanchier stolonifera Running Serviceberry S3 4 Secure 5 68.7 ± 0.0 P Elimberia dubia	P		Seaside Brookweed				S3	3 Sensitive	17	56.7 ± 1.0	NS
P Pyrola minor Lesser Pyrola S3 3 Sensitive 2 30.6 ± 0.0 P Ranunculus gmelinii Gmelin's Water Buttercup S3 4 Secure 64 29.4 ± 5.0 P Rhamrus ainifolia Alder-leaved Buckthorn S3 4 Secure 153 48.4 ± 5.0 P Agrimonia gryposepala Hooked Agrimony S3 4 Secure 110 19.5 ± 0.0 P Amelanchies stolonifora Running Serviceberry S3 4 Secure 14 12.2 ± 2.0 P Geocaulon lividum Northern Comandra S3 4 Secure 5 68.7 ± 0.0 P Lindernia dubia Yellow-seeded False S3 4 Secure 24 15.4 ± 0.0 P Lindernia dubia Yellow-seeded False S3 4 Secure 24 15.4 ± 0.0 P Laportea canadensis Canada Wood Nettle S3 3 Sensitive 38 16.8 ± 0.0 P Laportea canadensis Canada Wood Nettle S3 3 Sensitive 33 4 Secure	D		Diala Danala					4.0	40	40.7 . 0.0	NO
Ranuculus gmelini	•		,								NS
P Rhamnus alnifolia	•										NS
Page	•										PE
P Amelanchier stolonitera Running Serviceberry S3 4 Secure 14 12.2 ± 2.0 P Geocaulon lividum Northern Comandra S3 4 Secure 5 68.7 ± 0.0 P Lindemia dubia Yellow-seeded False Pimperel S3 4 Secure 24 15.4 ± 0.0 P Laportea canadensis Canada Wood Nettle S3 3 Sensitive 38 16.8 ± 0.0 P Verbena hastata Blue Vervain S3 4 Secure 10 15.8 ± 0.0 P Carex cryptolepis Hidden-scaled Sedge S3 4 Secure 10 58.9 ± 10.0 P Carex churnea Bristle-leaved Sedge S3 4 Secure 10 58.9 ± 10.0 P Carex kupulina Hop Sedge S3 4 Secure 27 49.1 ± 0.0 P Carex kupulina Hop Sedge S3 4 Secure 25 51.1 ± 0.0 P Carex kupulina Hop Sedge S3 4 Secure 25 51.1 ± 0.0 P <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>PE</td></t<>											PE
P Geocaulon lividum											NS
P Limosella australis Southern Mudwort S3 4 Secure 44 34.8 ± 1.0 P Lindernia dubia Pellow-seeded False S3 3 Sensitive 38 16.8 ± 0.0 P Laportea canadensis Canada Wood Nettle S3 3 Sensitive 38 16.8 ± 0.0 P Carex cyptolepis Hidden-scaled Sedge S3 4 Secure 106 15.8 ± 0.0 P Carex cyptolepis Hidden-scaled Sedge S3 3 Sensitive 27 49.1 ± 0.0 P Carex burmea Bristle-leaved Sedge S3 3 Sensitive 27 49.1 ± 0.0 P Carex burmea Rosy Sedge S3 4 Secure 25 15.1 ± 0.0 P Carex rosea Rosy Sedge S3 4 Secure 9 26.8 ± 2.0 P Carex inbuloides Blunt Broom Sedge S3 4 Secure 9 26.8 ± 2.0 P Carex wiegandii Wiegand's Sedge S3 4 Secure 9 26.8 ± 2.0 P Carex foenea Fernald's Hay Sedge S3 4 Secure 15 35.1 ± 0.0 P Elodea canadensis Canada Waterweed S3 4 Secure 15 35.1 ± 0.0 P Elodea canadensis Canada Waterweed S3 4 Secure 6 37.8 ± 0.0 P Juncus subcaudatus var. planisepalus P Woods-Rush S3 3 Sensitive 7 11.1 ± 5.0 P Goodyera oblongifolia Menzies' Rattlesnake-plantain S3 3 Sensitive 1 84.6 ± 0.0 P Goodyera repens Lesser Rattlesnake-plantain S3 3 Sensitive 1 84.6 ± 0.0 P Hatanthera grandiffora Large Pruple Fringed Orchid S3 4 Secure 95 29.6 ± 0.0 P Platanthera grandiffora Large Pruple Fringed Orchid S3 4 Secure 95 29.6 ± 0.0 P Platanthera hookeri Hooker's Orchid S3 4 Secure 95 29.6 ± 0.0 P Platanthera hookeri Hooker's Orchid S3 4 Secure 95 29.6 ± 0.0 P Platanthera hookeri Hooker's Orchid S3 4 Secure 95 29.6 ± 0.0 P Platanthera promote											NS
P	-										NS
Pact Laportea canadensis Canada Wood Nettle Sa Secure Secure Sa Secure	P	Limosella australis					S3	4 Secure	44	34.8 ± 1.0	PE
P	D	Lindornia dubia	Yellow-seeded False				63	4 Socuro	24	15.4 ± 0.0	NS
P Verbena hastata Blue Vervain S3 4 Secure 106 15.8 ± 0.0 P P Carex cryptolepis Hidden-scaled Sedge S3 4 Secure 10 58.9 ± 10.0 P P Carex lupulina Hop Sedge S3 3 Sensitive 27 49.1 ± 0.0 P P Carex lupulina Hop Sedge S3 4 Secure 25 15.1 ± 0.0 P P Carex rosea Rosy Sedge S3 4 Secure 16 16.6 ± 0.0 P P Carex tribuloides Blunt Broom Sedge S3 4 Secure 9 26.8 ± 2.0 P P Carex foenea Fernald's Hay Sedge S3 3 Sensitive 5 34.9 ± 5.0 P P Elodea canadensis Canada Waterweed S3 4 Secure 15 35.1 ± 0.0 1 P Juncus dudleyi Dudley's Rush S3 4 Secure 39 19.4 ± 0.0 P Juncus dudleyi Dudley's Rush S3	Г	Lindernia dubia	Pimperel				33	4 Secure	24	13.4 ± 0.0	
P Carex cryptolepis Hidden-scaled Sedge \$3 4 Secure 10 58.9 ± 10.0 P Carex eburnea Bristle-leaved Sedge \$3 3 Sensitive 27 49.1 ± 0.0 P Carex lupulina Hop Sedge \$3 4 Secure 25 15.1 ± 0.0 P Carex riosea Rosy Sedge \$3 4 Secure 16 16.6 ± 0.0 P Carex tribuloides Blunt Broom Sedge \$3 4 Secure 9 26.8 ± 2.0 P Carex wiegandii Wiegand's Sedge \$3 3 Sensitive 5 34.9 ± 5.0 P Carex foenea Fernald's Hay Sedge \$3 4 Secure 15 35.1 ± 0.0 P Elodea canadensis Canada Waterweed \$3 4 Secure 15 35.1 ± 0.0 P Juncus subcaudatus var. planisepalus Woods-Rush \$3 3 Sensitive 7 11.1 ± 5.0 P Juncus dudleyi Dudley's Rush \$3 4 Secure 39 19.4 ± 0.0 P Go	P	Laportea canadensis	Canada Wood Nettle				S3	3 Sensitive	38	16.8 ± 0.0	NS
P Carex eburnea Bristle-leaved Sedge S3 3 Sensitive 27 49.1 ± 0.0 P Carex lupulina Hop Sedge S3 4 Secure 25 15.1 ± 0.0 P Carex rosea Rosy Sedge S3 4 Secure 16 16.6 ± 0.0 P Carex tribuloides Blunt Broom Sedge S3 4 Secure 9 26.8 ± 2.0 P Carex wiegandii Wiegand's Sedge S3 3 Sensitive 5 34.9 ± 5.0 P Carex foenea Fernald's Hay Sedge S3 4 Secure 15 35.1 ± 0.0 P Elodea canadensis Canada Waterweed S3 4 Secure 6 37.8 ± 0.0 P Juncus subcaudatus var. planisepalus Woods-Rush S3 3 Sensitive 7 11.1 ± 5.0 P Juncus dudleyi Dudley's Rush S3 4 Secure 39 19.4 ± 0.0 P Goodyera oblongifolia Menzies' Rattlesnake-plantain S3 3 Sensitive 1 84.6 ± 0.0 P	P	Verbena hastata	Blue Vervain				S3	4 Secure	106	15.8 ± 0.0	NS
P Carex lupulina Hop Sedge \$3 4 Secure 25 15.1 ± 0.0 P P Carex rosea Rosy Sedge \$3 4 Secure 16 16.6 ± 0.0 P P Carex tribuloides Blunt Broom Sedge \$3 4 Secure 9 26.8 ± 2.0 P P Carex wiegandii Wiegand's Sedge \$3 3 Sensitive 5 34.9 ± 5.0 P P Carex foenea Fernald's Hay Sedge \$3 4 Secure 15 35.1 ± 0.0 P 35.1 ± 0.0 P 25 15.1 ± 0.0 P 26.8 ± 2.0 P 27.8 ± 0.0 P 27.8 ± 0.0 P 27.8 ± 0.0 P 27.8 ± 0.0 P 28.8 ± 2.0 P 28.8 ±	P	Carex cryptolepis	Hidden-scaled Sedge				S3	4 Secure	10	58.9 ± 10.0	NS
P Carex lupulina Hop Sedge S3 4 Secure 25 15.1 ± 0.0 P P Carex rosea Rosy Sedge S3 4 Secure 16 16.6 ± 0.0 1 P Carex tribuloides Blunt Broom Sedge S3 4 Secure 9 26.8 ± 2.0 1 P Carex wiegandii Wiegand's Sedge S3 3 Sensitive 5 34.9 ± 5.0 1 P Carex foenea Fernald's Hay Sedge S3 4 Secure 15 35.1 ± 0.0 1 P Elodea canadensis Canada Waterweed S3 4 Secure 6 37.8 ± 0.0 1 P Juncus subcaudatus var. planisepalus Woods-Rush S3 3 Sensitive 7 11.1 ± 5.0 P Juncus dudleyi Dudley's Rush S3 4 Secure 39 19.4 ± 0.0 P Goodyera oblongifolia Menzies' Rattlesnake-plantain S3 3 Sensitive 1 84.6 ± 0.0 P Listera australis Southern Twayblade S3	P	Carex eburnea	Bristle-leaved Sedge				S3	3 Sensitive	27	49.1 ± 0.0	NS
P Carex rosea Rosy Sedge S3 4 Secure 16 16.6 ± 0.0 P P Carex tribuloides Blunt Broom Sedge S3 4 Secure 9 26.8 ± 2.0 P P Carex wiegandii Wiegand's Sedge S3 3 Sensitive 5 34.9 ± 5.0 P P Carex foenea Fernald's Hay Sedge S3 4 Secure 15 35.1 ± 0.0 P P Elodea canadensis Canada Waterweed S3 4 Secure 6 37.8 ± 0.0 P P Juncus subcaudatus var. planisepalus Woods-Rush S3 3 Sensitive 7 11.1 ± 5.0 P Juncus dudleyi Dudley's Rush S3 4 Secure 39 19.4 ± 0.0 P Goodyera oblongifolia Menzies' Rattlesnake-plantain S3 3 Sensitive 1 84.6 ± 0.0 P Goodyera repens Lesser Rattlesnake-plantain S3 3 Sensitive 19 30.0 ± 1.0 P Listera australis Southern Twayblade S3 <td>Р</td> <td>Carex lupulina</td> <td></td> <td></td> <td></td> <td></td> <td>S3</td> <td>4 Secure</td> <td>25</td> <td>15.1 ± 0.0</td> <td>NS</td>	Р	Carex lupulina					S3	4 Secure	25	15.1 ± 0.0	NS
P Carex tribuloides Blunt Broom Sedge S3 4 Secure 9 26.8 ± 2.0 P P Carex wiegandii Wiegand's Sedge S3 3 Sensitive 5 34.9 ± 5.0 P P Carex foenea Fernald's Hay Sedge S3 4 Secure 15 35.1 ± 0.0 P P Elodea canadensis Canada Waterweed S3 4 Secure 6 37.8 ± 0.0 P P Juncus subcaudatus var. planisepallus Woods-Rush S3 3 Sensitive 7 11.1 ± 5.0 P Juncus dudleyi Dudley's Rush S3 4 Secure 39 19.4 ± 0.0 P P Goodyera oblongifolia Menzies' Rattlesnake-plantain S3 3 Sensitive 1 84.6 ± 0.0 9 P Goodyera repens Lesser Rattlesnake-plantain S3 3 Sensitive 1 84.6 ± 0.0 1 84.6 ± 0.0 1 84.6 ± 0.0 1 84.6 ± 0.0 1 84.6 ± 0.0 1 84.6 ± 0.0 1 84.6 ± 0.0 1<	Р							4 Secure			NS
P Carex viegandii Wiegand's Sedge S3 3 Sensitive 5 34.9 ± 5.0 P P Carex foenea Fernald's Hay Sedge S3 4 Secure 15 35.1 ± 0.0 1 P Elodea canadensis Canada Waterweed S3 4 Secure 6 37.8 ± 0.0 1 P Juncus subcaudatus var. planisepalus Woods-Rush S3 3 Sensitive 7 11.1 ± 5.0 P Juncus dudleyi Dudley's Rush S3 4 Secure 39 19.4 ± 0.0 1 P Goodyera oblongifolia Menzies' Rattlesnake-plantain S3 3 Sensitive 1 84.6 ± 0.0 P Goodyera repens Lesser Rattlesnake-plantain S3 3 Sensitive 19 30.0 ± 1.0 1 P Listera australis Southern Twayblade S3 4 Secure 13 47.8 ± 0.0 1 P Platanthera grandiflora Large Purple Fringed Orchid S3 4 Secure 5 54.6 ± 0.0 P Platanthera hookeri	-										NS
P Carex foenea Fernald's Hay Sedge S3 4 Secure 15 35.1 ± 0.0 P P Elodea canadensis Canada Waterweed S3 4 Secure 6 37.8 ± 0.0 1 P Juncus subcaudatus var. planisepalus Woods-Rush S3 3 Sensitive 7 11.1 ± 5.0 P Juncus dudleyi Dudley's Rush S3 4 Secure 39 19.4 ± 0.0 1 P Goodyera oblongifolia plantain Menzies' Rattlesnake-plantain S3 3 Sensitive 1 84.6 ± 0.0 P Listera australis Southern Twayblade S3 3 Sensitive 19 30.0 ± 1.0 1 P Platanthera grandiflora Large Purple Fringed Orchid S3 4 Secure 95 29.6 ± 0.0 1 P Platanthera hookeri Hooker's Orchid S3 4 Secure 5 54.6 ± 0.0 1											PE
PElodea canadensisCanada WaterweedS34 Secure6 37.8 ± 0.0 PJuncus subcaudatus var. planisepalusWoods-RushS33 Sensitive7 11.1 ± 5.0 PJuncus dudleyiDudley's RushS34 Secure39 19.4 ± 0.0 PGoodyera oblongifolia PMenzies' Rattlesnake- plantainS33 Sensitive1 84.6 ± 0.0 PGoodyera repens 	-		0 0								NS
PJuncus subcaudatus var. planisepalusWoods-RushS33 Sensitive7 11.1 ± 5.0 PJuncus dudleyiDudley's RushS34 Secure39 19.4 ± 0.0 PGoodyera oblongifoliaMenzies' Rattlesnake- plantainS33 Sensitive1 84.6 ± 0.0 PGoodyera repensLesser Rattlesnake-plantainS33 Sensitive19 30.0 ± 1.0 PListera australisSouthern TwaybladeS34 Secure13 47.8 ± 0.0 PPlatanthera grandifloraLarge Purple Fringed OrchidS34 Secure95 29.6 ± 0.0 PPlatanthera hookeriHooker's OrchidS34 Secure5 54.6 ± 0.0											NS
P planisepalus Woods-Rush S3 3 Sensitive 7 11.1 ± 5.0 P Juncus dudleyi Dudley's Rush S3 4 Secure 39 19.4 ± 0.0 1 P Goodyera oblongifolia plantain Menzies' Rattlesnake-plantain S3 3 Sensitive 1 84.6 ± 0.0 P Goodyera repens Lesser Rattlesnake-plantain S3 3 Sensitive 19 30.0 ± 1.0 1 P Listera australis Southern Twayblade S3 4 Secure 13 47.8 ± 0.0 1 P Platanthera grandiflora Large Purple Fringed Orchid S3 4 Secure 95 29.6 ± 0.0 1 P Platanthera hookeri Hooker's Orchid S3 4 Secure 5 54.6 ± 0.0 1			Canada Waterweed					4 Occure		37.0 ± 0.0	NS
PJuncus dudleyiDudley's RushS34 Secure39 19.4 ± 0.0 PGoodyera oblongifoliaMenzies' Rattlesnake-plantainS33 Sensitive1 84.6 ± 0.0 PGoodyera repensLesser Rattlesnake-plantainS33 Sensitive19 30.0 ± 1.0 1PListera australisSouthern TwaybladeS34 Secure13 47.8 ± 0.0 1PPlatanthera grandifloraLarge Purple Fringed OrchidS34 Secure95 29.6 ± 0.0 1PPlatanthera hookeriHooker's OrchidS34 Secure5 54.6 ± 0.0	P		Woods-Rush				S3	3 Sensitive	7	11.1 ± 5.0	NS
P Goodyera oblongifolia plantain Menzies' Rattlesnake-plantain S3 3 Sensitive 1 84.6 ± 0.0 P Goodyera repens Lesser Rattlesnake-plantain S3 3 Sensitive 19 30.0 ± 1.0 19 P Listera australis Southern Twayblade S3 4 Secure 13 47.8 ± 0.0 19 P Platanthera grandiflora Large Purple Fringed Orchid S3 4 Secure 95 29.6 ± 0.0 19 P Platanthera hookeri Hooker's Orchid S3 4 Secure 5 54.6 ± 0.0 10	n		Dudlayla Duah				00	4 Coouro	20	10.4 . 0.0	NS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P	Juricus dualeyi					53	4 Secure	39	19.4 ± 0.0	
P Goodyera repens Lesser Rattlesnake-plantain P Listera australis Southern Twayblade P Platanthera grandiflora Large Purple Fringed Orchid P Platanthera hookeri Hooker's Orchid S3 Sensitive 19 30.0 \pm 1.0 4 Secure 13 47.8 \pm 0.0 53 4 Secure 95 29.6 \pm 0.0 P Platanthera hookeri S3 4 Secure 5 54.6 \pm 0.0	Р	Goodyera oblongifolia					S3	3 Sensitive	1	84.6 ± 0.0	PE
P Listera australis Southern Twayblade S3 4 Secure 13 47.8 \pm 0.0 P Platanthera grandiflora Large Purple Fringed Orchid S3 4 Secure 95 29.6 \pm 0.0 P Platanthera hookeri Hooker's Orchid S3 4 Secure 5 54.6 \pm 0.0	_		•								
P Platanthera grandiflora Large Purple Fringed Orchid S3 4 Secure 95 29.6 ± 0.0 P Platanthera hookeri Hooker's Orchid S3 4 Secure 5 54.6 ± 0.0	•										PE
P Platanthera hookeri Hooker's Orchid S3 4 Secure 5 54.6 ± 0.0	•										NS
	•										NS
P Platanthera orbiculata Small Round-leaved Orchid S3 4 Secure 40 19.4 ± 0.0	-										NS
·· ·· · · · · · · · · · · · · · · · ·	P	Platanthera orbiculata	Small Round-leaved Orchid				S3	4 Secure	40	19.4 ± 0.0	NS

Data Report 6252: Pictou, NS
Page 17 of 21

	mic

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Prov
Р	Spiranthes ochroleuca	Yellow Ladies'-tresses				S3	4 Secure	7	44.6 ± 0.0	NS
Р	Alopecurus aequalis	Short-awned Foxtail				S3	4 Secure	21	47.2 ± 1.0	NS
Р	Dichanthelium clandestinum	Deer-tongue Panic Grass				S3	4 Secure	83	57.5 ± 0.0	NS
Р	Potamogeton obtusifolius	Blunt-leaved Pondweed				S3	4 Secure	11	51.0 ± 0.0	NS
Р	Potamogeton praelongus	White-stemmed Pondweed				S3	3 Sensitive	40	23.5 ± 5.0	NS
Р	Potamogeton zosteriformis	Flat-stemmed Pondweed				S3	3 Sensitive	11	61.1 ± 0.0	NS
Р	Sparganium natans	Small Burreed				S3	4 Secure	16	43.0 ± 1.0	NS
P	Asplenium trichomanes-	Green Spleenwort				S3	3 Sensitive	1	80.5 ± 7.0	NS
D	ramosum Equisetum pratense	Meadow Horsetail				S3	3 Sensitive	10	50.8 ± 0.0	NS
D D	Equisetum variegatum	Variegated Horsetail				S3	4 Secure	20	19.4 ± 0.0	NS
D D	Isoetes acadiensis	Acadian Quillwort				S3	3 Sensitive	2	69.1 ± 1.0	NS
r D	Lycopodium sitchense	Sitka Clubmoss				S3	4 Secure	7	52.6 ± 5.0	NS NS
r D						S3	3 Sensitive	6	52.0 ± 5.0 51.3 ± 5.0	NS NS
r D	Huperzia appalachiana	Appalachian Fir-Clubmoss								
P	Botrychium dissectum	Cut-leaved Moonwort				S3	4 Secure	5	27.9 ± 5.0	NS
Р	Polypodium appalachianum	Appalachian Polypody				S3	5 Undetermined	10	32.7 ± 0.0	NS
Р	Asclepias incarnata ssp. pulchra	Swamp Milkweed				S3?	5 Undetermined	43	67.1 ± 0.0	NS
Р	Polygonum amphibium var. emersum	Water Smartweed				S3?	5 Undetermined	1	97.5 ± 0.0	NS
Р	Lycopodium sabinifolium	Ground-Fir				S3?	4 Secure	11	40.8 ± 1.0	NS
Р	Atriplex franktonii	Frankton's Saltbush				S3S4	4 Secure	8	33.1 ± 2.0	NS
Р	Suaeda calceoliformis	Horned Sea-blite				S3S4	4 Secure	9	3.4 ± 4.0	NS
P	Vaccinium corymbosum	Highbush Blueberry				S3S4	4 Secure	1	82.3 ± 3.0	PE
P	Myriophyllum sibiricum	Siberian Water Milfoil				S3S4	4 Secure	32	45.7 ± 0.0	PE
P	Nuphar lutea ssp. pumila	Small Yellow Pond-lily				S3S4	4 Secure	3	17.3 ± 2.0	NS
D	Sanguinaria canadensis	Bloodroot				S3S4	4 Secure	107	16.8 ± 0.0	NS
r D	Polygonum fowleri	Fowler's Knotweed				S3S4 S3S4	4 Secure	4	61.6 ± 0.0	NS
P	Rumex maritimus	Sea-Side Dock				S3S4 S3S4	4 Secure	38	4.7 ± 0.0	NS
Р	Rumex maritimus var.	Sea-Side Dock						36	4.7 ± 0.0	PE
Р	fueginus	Tierra del Fuego Dock				S3S4	4 Secure	6	66.7 ± 5.0	FE
Р	Crataegus succulenta	Fleshy Hawthorn				S3S4	5 Undetermined	5	74.3 ± 5.0	PE
Р	Fragaria vesca ssp. americana	Woodland Strawberry				S3S4	4 Secure	59	43.3 ± 1.0	NS
Р	Salix petiolaris	Meadow Willow				S3S4	4 Secure	22	26.3 ± 0.0	NS
Р	Agalinis neoscotica	Nova Scotia Agalinis				S3S4	4 Secure	2	95.9 ± 0.0	NS
Р	Viola sagittata var. ovata	Arrow-Leaved Violet				S3S4	4 Secure	3	65.6 ± 1.0	PE
Р	Carex argyrantha	Silvery-flowered Sedge				S3S4	4 Secure	1	40.2 ± 5.0	PE
P	Eriophorum russeolum	Russet Cottongrass				S3S4	4 Secure	14	33.3 ± 5.0	NS
P	Triglochin gaspensis	Gasp - Arrowgrass				S3S4	5 Undetermined	7	79.2 ± 5.0	PE
D	Juncus acuminatus	Sharp-Fruit Rush				S3S4	4 Secure	2	91.3 ± 2.0	NS
D	Luzula parviflora	Small-flowered Woodrush				S3S4	4 Secure	3	56.4 ± 0.0	NS
D D	Liparis loeselii	Loesel's Twayblade				S3S4	4 Secure	18	29.2 ± 5.0	PE
Г D	Panicum tuckermanii	Tuckerman's Panic Grass				S3S4 S3S4	4 Secure	11	68.7 ± 0.0	NS
P										
P	Trisetum spicatum	Narrow False Oats				S3S4	4 Secure	9	22.1 ± 0.0	NS
Р	Cystopteris bulbifera	Bulblet Bladder Fern				S3S4	4 Secure	123	49.1 ± 0.0	NS
Р	Equisetum hyemale var. affine	Common Scouring-rush				S3S4	4 Secure	22	50.0 ± 0.0	NS
Р	Equisetum scirpoides	Dwarf Scouring-Rush				S3S4	4 Secure	37	50.6 ± 0.0	NS
P	Lycopodium complanatum	Northern Clubmoss				S3S4	4 Secure	7	36.6 ± 0.0	PE
P	Schizaea pusilla	Little Curlygrass Fern				S3S4	4 Secure	2	81.5 ± 0.0	NS
Р	Solidago simplex var. randii	Sticky Goldenrod				SH	0.1 Extirpated	1	92.9 ± 1.0	NS
P	Viola canadensis	Canada Violet				SH	0.1 Extirpated	1	53.3 ± 7.0	NS

Data Report 6252: Pictou, NS

5.1 SOURCE BIBLIOGRAPHY (100 km)

The recipient of these data shall acknowledge the AC CDC and the data sources listed below in any documents, reports, publications or presentations, in which this dataset makes a significant contribution.

CITATION # recs 14236 Lepage, D. 2014. Maritime Breeding Bird Atlas Database, Bird Studies Canada, Sackville NB, 407.838 recs. 9752 Morrison, Guy, 2011, Maritime Shorebird Survey (MSS) database, Canadian Wildlife Service, Ottawa, 15939 surveys, 86171 recs. 4379 Erskine, A.J. 1992. Maritime Breeding Bird Atlas Database, NS Museum & Nimbus Publ., Halifax, 82,125 recs. 913 Amirault, D.L. & Stewart, J. 2007, Piping Ployer Database 1894-2006, Canadian Wildlife Service, Sackville, 3344 recs, 1228 new. 589 Neily, T.H. & Pepper, C.; Toms, B. 2018. Nova Scotia lichen database [as of 2018-03]. Mersey Tobeatic Research Institute. 501 Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2014. Atlantic Canada Conservation Data Centre Fieldwork 2014. Atlantic Canada Conservation Data Centre, # recs. 473 Blaney, C.S.; Mazerolle, D.M. 2010. Fieldwork 2010. Atlantic Canada Conservation Data Centre. Sackville NB, 15508 recs. 377 Wilhelm, S.I. et al. 2011. Colonial Waterbird Database. Canadian Wildlife Service, Sackville, 2698 sites, 9718 recs (8192 obs). 326 Blaney, C.S.; Mazerolle, D.M. 2012. Fieldwork 2012. Atlantic Canada Conservation Data Centre, 13,278 recs. 319 Hicks, Andrew, 2009. Coastal Waterfowl Surveys Database, 2000-08, Canadian Wildlife Service, Sackville, 46488 recs (11149 non-zero). 312 Benjamin, L.K. (compiler). 2007. Significant Habitat & Species Database. Nova Scotia Dept Natural Resources, 8439 recs. 294 Neily, T.H. & Pepper, C.: Toms, B. 2013, Nova Scotia lichen location database. Mersey Tobeatic Research Institute, 1301 records, 292 Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2015, Atlantic Canada Conservation Data Centre Fieldwork 2015, Atlantic Canada Conservation Data Centre, # recs. 277 Benjamin, L.K. (compiler). 2012. Significant Habitat & Species Database. Nova Scotia Dept Natural Resources, 4965 recs. 275 Blaney, C.S & Spicer, C.D.; Popma, T.M.; Basquill, S.P. 2003. Vascular Plant Surveys of Northumberland Strait Rivers & Amherst Area Peatlands. Nova Scotia Museum Research Grant, 501 recs. 228 Neily, T.H. 2017. Nova Scotia lichen records. Mersey Tobeatic Research Institute. 194 Blaney, C.S.; Mazerolle, D.M.; Hill, N.M. 2011. Nova Scotia Crown Share Land Legacy Trust Fieldwork. Atlantic Canada Conservation Data Centre, 5022 recs. 194 Newell, R.E. 2000. E.C. Smith Herbarium Database. Acadia University, Wolfville NS, 7139 recs. Catling, P.M., Erskine, D.S. & MacLaren, R.B. 1985. The Plants of Prince Edward Island with new records, nomenclatural changes & corrections, & deletions, 1st Ed. Research Branch, Agriculture Canada, Ottawa, 180 Publication 1798, 22pp. 180 Newell, R.E. 2005. E.C. Smith Digital Herbarium. E.C. Smith Herbarium, Irving Biodiversity Collection, Acadia University, Web site: http://luxor.acadiau.ca/library/Herbarium/project/. 582 recs. 172 Belliveau, A.G. 2018, Atlantic Canada Conservation Data Centre Fieldwork 2017, Atlantic Canada Conservation Data Centre. 170 Bryson, I. 2013. Nova Scotia rare plant records. CBCL Ltd., 180 records. 148 Brunelle, P.-M. (compiler). 2009. ADIP/MDDS Odonata Database: data to 2006 inclusive. Atlantic Dragonfly Inventory Program (ADIP), 24200 recs. 147 Amirault, D.L. & McKnight, J. 2003. Piping Plover Database 1991-2003. Canadian Wildlife Service, Sackville, unpublished data. 7 recs. 122 Pronych, G. & Wilson, A. 1993, Atlas of Rare Vascular Plants in Nova Scotia, Nova Scotia, Museum, Halifax NS, I:1-168, II:169-331, 1446 recs. 121 LaPaix, R.W.; Crowell, M.J.; MacDonald, M. 2011, Stantec rare plant records, 2010-11, Stantec Consulting, 334 recs. 120 Scott, F.W. 2002, Nova Scotia Herpetofauna Atlas Database, Acadia University, Wolfville NS, 8856 recs. 116 Pepper, C. 2013. 2013 rare bird and plant observations in Nova Scotia., 181 records. 111 Burns, L. 2013. Personal communication concerning bat occurrence on PEI. Winter 2013. Pers. comm. 110 Canadian Wildlife Service, Dartmouth. 2010. Piping Plover censuses 2007-09, 304 recs. 102 Klymko, J.J.D. 2014. Maritimes Butterfly Atlas, 2012 submissions. Atlantic Canada Conservation Data Centre, 8552 records. 97 Klymko, J.J.D. 2012. Insect fieldwork & submissions, 2011. Atlantic Canada Conservation Data Centre. Sackville NB, 760 recs. Blaney, C.S.; Mazerolle, D.M. 2008. Fieldwork 2008. Atlantic Canada Conservation Data Centre. Sackville NB, 13343 recs. eBird. 2014. eBird Basic Dataset. Version: EBD relNov-2014. Ithaca, New York. Nov 2014. Cornell Lab of Ornithology, 25036 recs. 85 Cameron, R.P. 2011. Lichen observations, 2011. Nova Scotia Environment & Labour, 731 recs. 78 Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2013. Atlantic Canada Conservation Data Centre Fieldwork 2013. Atlantic Canada Conservation Data Centre, 9000+ recs. 78 Cameron, R.P. 2009. Cyanolichen database. Nova Scotia Environment & Labour, 1724 recs. 75 Blaney, C.S.; Spicer, C.D. 2001. Fieldwork 2001. Atlantic Canada Conservation Data Centre. Sackville NB, 981 recs. 67 Munro, Marian K. Nova Scotia Provincial Museum of Natural History Herbarium Database. Nova Scotia Provincial Museum of Natural History, Halifax, Nova Scotia. 2013. 63 Layberry, R.A. & Hall, P.W., LaFontaine, J.D. 1998. The Butterflies of Canada. University of Toronto Press. 280 pp+plates. 62 Blaney, C.S.; Mazerolle, D.M.; Oberndorfer, E. 2007. Fieldwork 2007. Atlantic Canada Conservation Data Centre. Sackville NB, 13770 recs. 62 Manthorne, A. 2014. MaritimesSwiftwatch Project database 2013-2014. Bird Studies Canada, Sackville NB, 326 recs. Blanev, C.S. 2000, Fieldwork 2000, Atlantic Canada Conservation Data Centre, Sackville NB, 1265 recs. Ayles, P. 2006. Prince Edward Island National Park Digital Database. Parks Canada, 179 recs. 57 Blaney, C.S.; Spicer, C.D.; Popma, T.M.; Hanel, C. 2002. Fieldwork 2002. Atlantic Canada Conservation Data Centre. Sackville NB, 2252 recs. Pulsifer, M.D. 2002. NS Freshwater Mussel Fieldwork. Nova Scotia Dept Natural Resources, 369 recs. Roland, A.E. & Smith, E.C. 1969. The Flora of Nova Scotia, 1st Ed. Nova Scotia Museum, Halifax, 743pp. Cameron, R.P. 2009. Erioderma pedicellatum database, 1979-2008. Dept Environment & Labour, 103 recs. Curley, F.R. 2005. PEF&W Collection 2003-04. PEI Fish & Wildlife Div., 716 recs. Neily, T.H. & Pepper, C.; Toms, B. 2015. Nova Scotia lichen location database [as of 2015-02-15]. Mersey Tobeatic Research Institute, 1691 records. Blaney, C.S.; Mazerolle, D.M.; Klymko, J; Spicer, C.D. 2006. Fieldwork 2006. Atlantic Canada Conservation Data Centre. Sackville NB, 8399 recs.

Blaney, C.S.; Spicer, C.D.; Mazerolle, D.M. 2005. Fieldwork 2005. Atlantic Canada Conservation Data Centre. Sackville NB, 2333 recs.

Data Report 6252: Pictou, NS
Page 19 of 21

recs CITATION

- 45 Blaney, C.S.; Spicer, C.D.; Rothfels, C. 2004. Fieldwork 2004. Atlantic Canada Conservation Data Centre. Sackville NB, 1343 recs.
- 45 Hall, R.A. 2001. S.. NS Freshwater Mussel Fieldwork. Nova Scotia Dept Natural Resources, 178 recs.
- 45 Hall, R.A. 2003. NS Freshwater Mussel Fieldwork. Nova Scotia Dept Natural Resources, 189 recs.
- 44 Erskine, D. 1960. The plants of Prince Edward Island, 1st Ed. Research Branch, Agriculture Canada, Ottawa., Publication 1088. 1238 recs.
- 44 Klymko, J.J.D. 2012. Maritimes Butterfly Atlas, 2010 and 2011 records. Atlantic Canada Conservation Data Centre, 6318 recs.
- 44 Zinck, M. & Roland, A.E. 1998. Roland's Flora of Nova Scotia. Nova Scotia Museum, 3rd ed., rev. M. Zinck; 2 Vol., 1297 pp.
- 43 Benjamin, L.K. 2012. NSDNR fieldwork & consultant reports 2008-2012. Nova Scotia Dept Natural Resources, 196 recs.
- 38 Mazerolle, D.M. 2017. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre.
- 36 MacDonald, M. 2008. PEI Power Corridor Floral Surveys, 2004-08. Jacques Whitford Ltd, 2238 recs (979 rare).
- 31 Belliveau, A.G. 2016. Atlantic Canada Conservation Data Centre Fieldwork 2016. Atlantic Canada Conservation Data Centre, 10695 recs.
- 31 Popma, T.M. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre. Sackville NB, 113 recs.
- 28 Sharkie, R., MacQuarrie, K., Fraser, M. 2003. A Floral Inventory of the Western Section of Prince Edward Island National Park and adjacent Crown lands. Parks Canada Agency, v + 106 pp.
- 28 Sollows, M.C., 2008. NBM Science Collections databases: mammals. New Brunswick Museum, Saint John NB, download Jan. 2008, 4983 recs.
- Tims, J. & Craig, N. 1995. Environmentally Significant Areas in New Brunswick (NBESA). NB Dept of Environment & Nature Trust of New Brunswick Inc, 6042 recs.
- MacQuarrie, K.E., H. Schaefer, and K. Schoenrank. 1999. A Floral inventory of the Western Area, Greenwich, Prince Edward Island National Park. Parks Canada Agency, Parks Canada Technical Reports in Ecosystem Science. No 021.
- 26 Blaney, C.S. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre. Sackville NB, 1042 recs.
- 26 Neily, T.H. 2010. Erioderma Pedicellatum records 2005-09. Mersey Tobiatic Research Institute, 67 recs.
- 25 Archibald, D.R. 2003. NS Freshwater Mussel Fieldwork. Nova Scotia Dept Natural Resources, 213 recs.
- 25 Benjamin, L.K. (compiler). 2001. Significant Habitat & Species Database. Nova Scotia Dept of Natural Resources, 15 spp, 224 recs.
- 25 Tranquilla, L. 2015. Maritimes Marsh Monitoring Project 2015 data. Bird Studies Canada, Sackville NB, 5062 recs.
- 23 Pepper, Chris. 2012. Observations of breeding Canada Warbler's along the Eastern Shore, NS. Pers. comm. to S. Blaney, Jan. 20, 28 recs.
- 21 Powell, B.C. 1967. Female sexual cycles of Chrysemy spicta & Clemmys insculpta in Nova Scotia. Can. Field-Nat., 81:134-139. 26 recs.
- 19 Cameron, R.P. 2013. 2013 rare species field data. Nova Scotia Department of Environment, 71 recs.
- 19 Porter, C.J.M. 2014. Field work data 2007-2014. Nova Scotia Nature Trust, 96 recs.
- 18 Cameron, R.P. 2014. 2013-14 rare species field data. Nova Scotia Department of Environment, 35 recs.
- McMullin, R.T. 2015. Prince Edward Island's lichen biodiversity and proposed conservation status in a report prepared for the province of PEI. Biodiversity Institute of Ontario Herbarium, University of Guelph, 776 records.
- 18 Neily, T.H. 2012. 2012 Erioderma pedicellatum records in Nova Scotia.
- 16 Canadian Wildlife Service, Atlantic Region. 2010. Piping Plover censuses 2006-09., 35 recs.
- 16 Gilhen, J. 1984. Amphibians & Reptiles of Nova Scotia, 1st Ed. Nova Scotia Museum, 164pp.
- 15 Adams, J. & Herman, T.B. 1998. Thesis, Unpublished map of C. insculpta sightings. Acadia University, Wolfville NS, 88 recs.
- 15 Chaput, G. 2002. Atlantic Salmon: Maritime Provinces Overview for 2001. Dept of Fisheries & Oceans, Atlantic Region, Science Stock Status Report D3-14. 39 recs.
- 15 Plissner, J.H. & Haig, S.M. 1997. 1996 International piping plover census. US Geological Survey, Corvallis OR, 231 pp.
- 14 Belland, R.J. Maritimes moss records from various herbarium databases. 2014.
- 14 Grandtner, M.M. 1971. Ecological Study of the Interior Dunes of West Brackley Beach, Prince Edward Island National Park. Parks Canada, 1: 70. 41 recs.
- Munro, Marian K. Nova Scotia Provincial Museum of Natural History, Herbarium Database. Nova Scotia Provincial Museum of Natural History, Halifax, Nova Scotia. 2014.
- 14 NS DNR. 2017. Black Ash records from NS DNR Permanent Sample Plots (PSPs), 1965-2016. NS Dept of Natural Resources.
- 14 Robinson, S.L. 2011. 2011 ND dune survey field data. Atlantic Canada Conservation Data Centre, 2715 recs.
- 14 Spicer, C.D. 2002. Fieldwork 2002. Atlantic Canada Conservation Data Centre. Sackville NB, 211 recs.
- McNeil, J.A. 2016. Blandings Turtle (Emydoidea blandingii), Eastern Ribbonsnake (Thamnophis sauritus), Wood Turtle (Glyptemys insculpta), and Snapping Turtle (Chelydra serpentina) sightings, 2016. Mersey Tobeatic Research Institute. 774 records.
- 12 Blaney, C.S.; Mazerolle, D.M. 2011. Fieldwork 2011. Atlantic Canada Conservation Data Centre. Sackville NB.
- 12 Cameron, R.P. 2012. Rob Cameron 2012 vascular plant data. NS Department of Environment, 30 recs.
- 12 Doucet, D.A. 2009. Census of Globally Rare, Endemic Butterflies of Nova Scotia Gulf of St Lawrence Salt Marshes. Nova Scotia Dept of Natural Resources, Species at Risk, 155 recs.
- 11 Downes, C. 1998-2000. Breeding Bird Survey Data. Canadian Wildlife Service, Ottawa, 111 recs.
- Goltz, J.P. & Bishop, G. 2005. Confidential supplement to Status Report on Prototype Quillwort (Isoetes prototypus). Committee on the Status of Endangered Wildlife in Canada, 111 recs.
- 11 Harding, R.W. 2008. Harding Personal Insect Collection 1999-2007. R.W. Harding, 309 recs.
- 11 Klymko, J.J.D. 2016. 2015 field data. Atlantic Canada Conservation Data Centre.
- 10 Basquill, S.P. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre, Sackville NB, 69 recs.
- 10 Basquill, S.P. 2010. Plant data from Prince Edward Island National Park Forest Community Plots. Atlantic Canada Conservation Data Centre, 150 records.
- Belland, R.J. 2012. PEI moss records from Devonian Botanical Garden. DBG Cryptogam Database, Web site: https://secure.devonian.ualberta.ca/bryo_search.php 748 recs.
- 10 Curley, F.R. 2007. PEF&W Collection. PEI Fish & Wildlife Div., 199 recs.
- 10 Klymko, J.J.D.; Robinson, S.L. 2012. 2012 field data. Atlantic Canada Conservation Data Centre, 447 recs.
- 9 Benjamin, L.K. 2011. NSDNR fieldwork & consultant reports 1997, 2009-10. Nova Scotia Dept Natural Resources, 85 recs.
- 9 Cameron, R.P. 2005. Erioderma pedicellatum unpublished data. NS Dept of Environment, 9 recs.
- 9 Doucet, D.A. 2007. Lepidopteran Records, 1988-2006. Doucet, 700 recs.
- 9 Kelly, G. 2005. Fraxinus nigra. Dept of Agricuture, Fisheries, Aquaculture & Forestry. Pers. comm. to C.S. Blaney, Mar. 2, 11 recs.
- 9 O'Neil, S. 1998. Atlantic Salmon: Northumberland Strait Nova Scotia part of SFA 18. Dept of Fisheries & Oceans, Atlantic Region, Science. Stock Status Report D3-08. 9 recs.

Page 20 of 21 Data Report 6252: Pictou, NS

CITATION # recs

6

- Benjamin, L.K. 2009. Boreal Felt Lichen, Mountain Avens, Orchid and other recent records. Nova Scotia Dept Natural Resources, 105 recs.
- Giberson, D. 2008. UPEI Insect Collection. University of Prince Edward Island, 157 recs.
- Oldham, M.J. 2000. Oldham database records from Maritime provinces. Oldham, M.J.; ONHIC, 487 recs.
- Amirault, D.L. 1997-2000. Unpublished files. Canadian Wildlife Service, Sackville, 470 recs.
- 7 Cameron, B. 2006. Hepatica americana Survey at Scotia Mine Site in Gays River, and Discovery of Three Yellow-listed Species. Conestoga-Rovers and Associates, (a consulting firm), october 25. 7 recs.
- 7 Dibblee, R.L. 1999. PEI Cormorant Survey. Prince Edward Island Fisheries, Aquaculture & Environment, 1p. 21 recs.
- Layberry, R.A. 2012. Lepidopteran records for the Maritimes, 1974-2008. Layberry Collection, 1060 recs.
- MacArthur, M.E.L. 1976. An Ecological Study of the Greenwich Sand Dune System, M.Sc. Thesis. Department of Biology, Acadia University, Wolfville NS, 98 recs.
- MacQuarrie, K.E., H. Schaefer, and K. Schoenrank. 2001. A Floral inventory of the Central and Schooner Pond Areas of Greenwich, Prince Edward Island National Park. Parks Canada Agency, Parks Canada Technical 7 Reports in Ecosystem Science, No 030.
- Nova Scotia Nature Trust. 2013. Nova Scotia Nature Trust 2013 Species records. Nova Scotia Nature Trust, 95 recs.
- Smith, M.E.M. 2008. AgCan Collection. Agriculture Canada, Charlottetown PE, 44 recs. 7
- Basquill, S.P. 2012. 2012 rare vascular plant field data. Nova Scotia Department of Natural Resources, 37 recs. 6
- Clayden, S.R. 2007. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, download Mar. 2007, 6914 recs.
- Edsall, J. 2007. Personal Butterfly Collection: specimens collected in the Canadian Maritimes, 1961-2007. J. Edsall, unpubl. report, 137 recs.
- 6 Hall, R. 2008. Rare plant records in old fieldbook notes from Truro area. Pers. comm. to C.S. Blaney. 6 recs, 6 recs.
- Hill, N.M. 1994. Status report on the Long's bulrush Scirpus longii in Canada. Committee on the Status of Endangered Wildlife in Canada, 7 recs.
- 6 Klymko, J.J.D. 2018. 2017 field data. Atlantic Canada Conservation Data Centre.
- 6 Sabine, D.L. 2013. Dwaine Sabine butterfly records, 2009 and earlier.
- Stevens, C. 1999. Cam Stevens field data from PEI vegetation plots. Sent along with specimens to C.S. Blaney. UNB masters research project, 732 recs.
- Bredin, K.A. 2002. NS Freshwater Mussel Fieldwork. Atlantic Canada Conservation Data Centere, 30 recs. 5
- 5 Daury, R.W. & Bateman, M.C. 1996. The Barrow's Goldeneye (Bucephala islandica) in the Atlantic Provinces and Maine. Canadian Wildlife Service, Sackville, 47pp.
- MacQuarrie, K. 1991-1999. Site survey files, maps. Island Nature Trust, Charlottetown PE, 60 recs.
- Majka, C.G. 2008. Lepidoptera at St Patricks, 1993-2007. Pers. comm. to R. Curley, 8 Jan. 29 recs, 29 recs.
- 5 Olsen, R. Herbarium Specimens. Nova Scotia Agricultural College, Truro. 2003.
- Towell, C. 2014. 2014 Northern Goshawk and Common Nighthawk email reports, NS. NS Department of Natural Resources.
- Belliveau, A. 2013. Rare species records from Nova Scotia. Mersey Tobeatic Research Institute, 296 records. 296 recs.
- Blaney, C.S. 2016. Atlantic Canada Conservation Data Centre Fieldwork 2016. Atlantic Canada Conservation Data Centre, 6719 recs.
- Blaney, C.S. 2017. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre.
- Clayden, S.R. 1998. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 19759 recs.
- Erskine, A.J. 1999. Maritime Nest Records Scheme (MNRS) 1937-1999. Canadian Wildlife Service, Sackville, 313 recs.
- Gagnon, J. 2004. Specimen data from 2002 visit to Prince Edward Island., 104 recs.
- O'Neil, S. 1998. Atlantic Salmon: Eastern Shore Nova Scotia SFA 20. Dept of Fisheries & Oceans, Atlantic Region, Science. Stock Status Report D3-10. 4 recs.
- Prince Edward Island National Park. 2014. Prince Edward Island National Park Herbarium. Parks Canada Agency, PEINP, 39 recs.
- Robinson, S.L. 2014. 2013 Field Data. Atlantic Canada Conservation Data Centre.
- Sollows, M.C., 2009. NBM Science Collections databases: molluscs. New Brunswick Museum, Saint John NB, download Jan. 2009, 6951 recs (2957 in Atlantic Canada).
- Speers, L. 2001. Butterflies of Canada database. Agriculture & Agri-Food Canada, Biological Resources Program, Ottawa, 190 recs.
- Spicer, C.D. 2004. Specimens from CWS Herbarium, Mount Allison Herbarium Database. Mount Allison University, 5939 recs.
- 3 Basquill, S.P. 2012. 2012 Bryophyte specimen data. Nova Scotia Department of Natural Resources, 37 recs.
- Benjamin, L.K. 2006. Cypripedium arietinum. Pers. comm. to D. Mazerolle. 9 recs, 9 recs.
- Blaney, C.S. Miscellaneous specimens received by ACCDC (botany). Various persons. 2001-08. 3
- Boyne, A.W. & Grecian, V.D. 1999. Tern Surveys. Canadian Wildlife Service, Sackville, unpublished data. 23 recs.
- 3 Churchill, J.L.; Walker, J. 2017. Species at Risk Surveys at Correctional Services Canada Properties in Nova Scotia and New Brunswick. Atlantic Canada Conservation Data Centre.
- Kelly, Glen 2004. Botanical records from 2004 PEI Forestry fieldwork. Dept of Environment, Energy & Forestry, 71 recs.
- Bagnell, B.A. 2001. New Brunswick Bryophyte Occurrences. B&B Botanical, Sussex, 478 recs.
- 2 Belliveau, A.G. 2014. Plant Records from Southern and Central Nova Scotia. Atlantic Canada Conservation Data Centre, 919 recs.
- 2 Benedict, B. Connell Herbarium Specimens (Data). University New Brunswick, Fredericton. 2003.
- Brunelle, P.-M. (compiler). 2010. ADIP/MDDS Odonata Database: NB, NS Update 1900-09. Atlantic Dragonfly Inventory Program (ADIP), 935 recs.
- Cameron, B. 2005. C. palmicola, E. pedicellatum records from Sixth Lake. Pers. comm. to C.S. Blaney. 3 recs, 3 recs.
- Cameron, R.P. 2006. Erioderma pedicellatum 2006 field data. NS Dept of Environment, 9 recs.
- Cameron, R.P. 2009. Nova Scotia nonvascular plant observations, 1995-2007. Nova Scotia Dept Natural Resources, 27 recs.
- Curley, F.R. 2003. Glen Kelly records for Betula pumila & Asclepias syriaca on PEI., Pers. comm. to C.S. Blaney. 9 recs.
- Frittaion, C. 2012. NSNT 2012 Field Observations. Nova Scotia Nature Trust, Pers comm. to S. Blaney Feb. 7, 34 recs.
- Giroux, P. 2013. Personal communication concerning species at risk in and around PEI NP, PE. Winter 2013. Pers. comm.
- Guignion, M; Ristau, C.; Lemon, D. 1995. The distribution & abundance of the Gulf of St. Lawrence Aster, Aster laurentianus in Prince Edward Island National Park. Can. Field-Nat, 109:462-464. 10 recs.
- Hill, N. 2003. Floerkea proserpinacoides at Heatherdale, Antigonish Co. 2002., Pers. comm. to C.S. Blaney. 2 recs.
- Hinds, H.R. 1989. Greenwich, Blooming Point plant collections in Plant locations. Pers. Comm. to Robin Day (Ag. Can). 2pp, 8 recs, 8 recs.
- Klymko, J.J.D.; Robinson, S.L. 2014. 2013 field data. Atlantic Canada Conservation Data Centre.

Data Report 6252: Pictou, NS
Page 21 of 21

recs CITATION

1

- 2 Macaulay, M. Notes on newly discovered Hepatica nobilis var. obtusa population in Cumberland Co. NS. Pers. comm. to S. Blaney, 1 rec.
- Macauley, M. 2008. Email to Sean Blaney regarding rich hardwood floodplain site at Howards Pool, Wallace River, NS.
- 2 McAlpine, D.F. 1998. NBM Science Collections databases to 1998. New Brunswick Museum, Saint John NB, 241 recs.
- 2 Parks Canada. 2010. Specimens in or near National Parks in Atlantic Canada. Canadian National Museum, 3925 recs.
- Standley, L.A. 2002. Carex haydenii in Nova Scotia., Pers. comm. to C.S. Blaney. 4 recs.
- Thomas, H.H., Jones, G.S. & Diblee, R.L. 1980. Sorex palustris on Prince Edward Island. Can. Field Nat., vol 94:329-331. 2 recs.
- Webster, R.P. & Edsall, J. 2007. 2005 New Brunswick Rare Butterfly Survey. Environmental Trust Fund, unpublished report, 232 recs.
- 2 Whittam, R.M. 1999. Status Report on the Roseate Tern (update) in Canada. Committee on the Status of Endangered Wildlife in Canada, 36 recs.
- WIlliams, M. Cape Breton University Digital Herbarium. Cape Breton University Digital Herbarium. 2013.
- 1 Amirault, D.L. 2003. 2003 Peregrine Falcon Survey. Canadian Wildlife Service, Sackville, unpublished data. 7 recs.
- Amiro, Peter G. 1998. Atlantic Salmon: Inner Bay of Fundy SFA 22 & part of SFA 23. Dept of Fisheries & Oceans, Atlantic Region, Science Stock Status Report D3-12. 4 recs.
- Bateman, M.C. & Prescott, W.H. 1984. The Mammals of Prince Edward Island National Park. Canadian Wildife Service, vol 2:5. 3 recs.
- Bateman, M.C. 2001. Coastal Waterfowl Surveys Database, 1965-2001. Canadian Wildlife Service, Sackville, 667 recs.
- Belland, R.J. 2012. PEI moss records from New York Botanical Garden. NYBG Virtual Herbarium, Web site: http://sciweb.nybg.org/science2/vii2.asp 135 recs.
- Benedict, B. Connell Herbarium Specimens, Digital photos. University New Brunswick, Fredericton. 2005.
- Benjamin, L.K. 2009. NSDNR Fieldwork & Consultants Reports. Nova Scotia Dept Natural Resources, 143 recs.
 - Blaney, C.S. & Whittam, R.M. 2003. Botanical & freshwater mussel observations at Lake Killarney, Cumberland Co., NS Sept. 27, 2003. Atlantic Canada Conservation Data Centre, 3 recs.
- Bridgehouse, D. Email communication (July 3, 2014) to John Klymko regarding hairstreak butterfly observations made Nova Scotia. 2014.
- 1 Cairns, D. 1998. Atlantic Salmon: Prince Edward Island SFA 17. Dept of Fisheries & Oceans, Atlantic Region, Science. Stock Status Report D3-07. 1 rec.
- 1 Cameron, R.P. 2012. Additional rare plant records, 2009., 7 recs.
- Doucet, D.A. 2007. PEI National Park Odonata Survey. Parks Canada, PEI National Park, 1 rec.
- Doucet, D.A. ACCDC Reference Collection. Atlantic Canada Conservation Data Centre, Sackville NB. 2008.
- 1 Edsall, J. 2001. Lepidopteran records in New Brunswick, 1997-99., Pers. comm. to K.A. Bredin. 91 recs.
- Gagnon, J. 2003. Prince Edward Island plant records. Societe de la faune et des parcs Quebec, 13 recs.
- 1 Gillis, J. 2015. Rare plant records from Cape Breton gypsum sites. Pers. comm., 25 rare plant records.
- Glen, W. 1991. 1991 Prince Edward Island Forest Biomass Inventory Data. PEI Dept of Energy and Forestry, 10059 recs.
- Harling, L. & Silva, M. 2004. Abundance & species richness of shrews within forested habitats on PEI. Am. Midl. Nat., 151:399-407. 2 recs.
- Haughian, S.R. 2018. Description of Fuscopannaria leucosticta field work in 2017. New Brunswick Museum, 314 recs.
- Klymko, J.J.D. 2010. Miscellaneous observations reported to ACCDC (zoology). Pers. comm. from various persons, 3 recs.
- MacPhail, V. Bee and syrphid specimens from MSc research. Pers. comm., J. Klymko. 2006.
- 1 MacQuarrie, K. and R. Sharkie. 2004. Plant lists for selected areas at Brackley and Dalvay, Prince Edward Island National Park. Island Nature Trust, 168 recs.
- 1 Neily, P.D. Plant Specimens. Nova Scotia Dept Natural Resources, Truro. 2006.
- Neily, T.H. 2013. Email communication to Sean Blaney regarding Agalinis paupercula observations made in 2013 in Nova Scotia., 1 rec.
- 1 New York Botanical Garden. 2006. Virtual Plant Herbarium Vascular Plant Types Catalog. Sylva, S.; Kallunki, J. (ed.) International Plant Science Centre, Web site: http://sciweb.nybg.org/science2/vii2.asp. 4 recs.
- Newell, R.B.; Sam, D. 2014. 2014 Bloodroot personal communication report, Antigonish, NS. NS Department of Natural Resources.
- 1 Quigley, E.J. 2006. Plant records, Mabou & Port Hood. Pers. comm. to S.P. Basquill, Jun. 12. 4 recs, 4 recs.
- 1 Robinson, C.B. 1907. Early intervale flora of eastern Nova Scotia. Transactions of the Nova Scotia Institute of Science, 10:502-506. 1 rec.
- 1 Sabine, D.L. 2012. Bronze Copper records, 2003-06. New Brunswick Dept of Natural Resources, 5 recs.
- 1 Speers, L. 2008. Butterflies of Canada database: New Brunswick 1897-1999. Agriculture & Agri-Food Canada, Biological Resources Program, Ottawa, 2048 recs.
- 1 Spicer, C.D. & Harries, H. 2001. Mount Allison Herbarium Specimens. Mount Allison University, 128 recs.
- 1 Stewart, J.I. 2010. Peregrine Falcon Surveys in New Brunswick, 2002-09. Canadian Wildlife Service, Sackville, 58 recs.
- 1 te Raa, J. 2016. Island Naturalist. Nature PEI, 219.
- Wilson, G. 2013. 2013 Snapping Turtle email report, Wentworth, NS. Pers. comm.

DATA DICTIONARY:

I. Observation Records

The following fields of data may be included (and may or may not be populated) in occurrence records. Text fields are 255 char max. (and may truncate text).

TAXONOMY	type	definition
MCODE	TVT	9 charact

DEC

MCODE TXT 8 character 'Museum Code' (1 to 4 = genus, 5 to 8 = sp+ssp)

ELCODE TXT Unique Identifier of taxon¹
SCINAME TXT Global Scientific Name of taxon¹
COMNAME TXT English Common Name of taxon¹

NOMCOMMUN TXT French Common Name

LOCATION

PREC

SURVEYSITE General locality of occurrence (not necessarily protected) TXT **DIRECTIONS** Specific locality: e.g. bearings and distance from enduring landmark TXT **SUBNAT** Province/State: 2 character ISO code TXT County Code (2 chars for province + 4 chars for county name) COCODE TXT **MAPCODE** Map number: NTS identifier in Canada UTME20 Easting in UTM Zone 20 NUM UTMN20 Northing in UTM Zone 20 NUM

LONDEC DEC Decimal Longitude (5 decimal places, negative for west of Greenwich)
LATDEC DEC Decimal Latitude (5 decimal places)
LOCUNCM NUM Horizontal precision in metres

Precision in metres by power of 10 (e.g. 3 = 10 to the 3rd = 1000 m = 1 km)

pred	common speech	example	unit size	literal range (m)
6.0	within province	province	1000.0 km	562.3 - 1778.3
5.7	in part of province	'NW NB'	500.0 km	281.2 - 889.1
5.0	within in county	county	100.0 km	56.2 - 177.8
4.7	within 50s of kilometres		50.0 km	28.1 - 88.9
4.0	within 10s of kilometres	BBA grid	10.0 km	5.6 - 17.8
3.7	within 5s of kilometres		5.0 km	2.8 - 8.9
3.0	within kilometres	topo grid	1.0 km	0.6 - 1.8
2.7	within 500s of metres		500.0 m	281.2 - 889.1
2.0	within 100s of metres	ball field	100.0 m	56.2 - 177.8
1.7	within 50s of metres		50.0 m	28.1 - 88.9
1.0	within 10s of metres	boxcar	10.0 m	5.6 - 17.8
0.7	within 5s of metres		5.0 m	2.8 - 8.9
0.0	within metres NOT USED	pace	1.0 m	0.6 - 1.8
-1.0	within 10s of centimetres	fingernail	0.1 m	0.1 - 0.2

RARITY STATUS

NRANK TXT National Rarity Rank of taxon (in Canada)¹
NPROT TXT National Protection Status of taxon (= COSEWIC in Canada)
NPROTSAR TXT National Protection Status of taxon (= SARA in Canada)

code rank and short definition

X Extinct in Canada and elsewhere

XT Extirpated in Canada but surviving elsewhere

E Endangered in CanadaT Threatened in CanadaV Vulnerable in Canada

SC Special Concern in Canada

DD Data Deficient: data inadequate for assessment

NAR Not At Risk in Canada

SRANK** TXT Subnational (Provincial) Rarity Rank of taxon¹

code rank and short definition

SX Extinct or extirpated in province

SH Historically occurring but currently undetected in province

\$1 Extremely rare in province

S2 Rare in province

S3 Uncommon in province

\$4 Widespread, common and apparently secure in province

\$5 Widespread, abundant and demonstrably secure in province

SE Exotic in province

SA Accidental, infrequent and outside of range within province

SNA Ranking not applicable in province

SNR Not yet assessed in province

SPROT** TXT Provincial rank/status of taxon; cf provincial websites

SGSRANK IUCN	TXT TXT	Interna	cial General Status Rank ational Union of Conservation Naturalists rarity rank; cf IUCN website rank and short definition
		EX	Extinct: no individuals remaining
		EW	Extinct in the Wild: only captive or naturalised survivors
		CR	Critically Endangered: extreme risk of extinction in wild
		EN	Endangered: high risk of extinction in wild
		VU	Vulnerable: high risk of endangerment in wild
		NT	Near Threatened: likely to become endangered soon
		LC	Least Concern: lowest risk, widespread and abundant
		DD	Data Deficient: data inadequate for assessment
		NE	Not Evaluated, not yet assessed against criteria

OBSERVATION

JBSERVATIO	N	
OBSERVER	TXT	Person or persons collecting specimen, in bibliographic form
OBDATE	TXT	Date of specimen collection as YYYY MM DD
OBDATA	TXT	Concatenation of fields below, relating to specimen (OBEVID, OBCOUNT etc)
OBEVID	TXT	Type of evidence (specimen, photo etc)
OBCOUNT	TXT	Number of individuals at location
OBABUN	TXT	Relative rarity of taxon at location, e.g. 'common', 'scattered'
OBSIZE	TXT	Size of specimen
SIZE	TXT	Size of occurrence 'patch' (in m2, ha or acres)
OBDESC	TXT	Details of specimen appearance
OBPHEN	TXT	Lifestage of specimen (bud, flowering etc)
OBSEX	TXT	Male/female if relevant
OBACTIV	TXT	Activity of taxon when observed (nesting, crossing road etc)
OBASSP	TXT	Other taxa associated with specimen
NOTETAX	TXT	Identifier's note on taxonomic issues
GENDESC	TXT	Concatenation of fields below, relating to site (HABITAT, ECOL etc)
HABITAT	TXT	Habitat characterization of location
ECODIST	NUM	National Ecological Framework EcoDistrict identifier
WSCODE	TXT	Quaternary Watershed identifier
GENCOM	TXT	General Comments: concatenation of Notes (NOTE1, NOTE2, NOTE3)

COLLECTION

CITATION TXT Primary source of data

DATA MANAGEMENT

IDNUM	TXT	Field Office Number: Internal ACCDC record reference (not the EONUM)
EDITION	TXT	Last editor's initials and date as YYYY MM DD

Notes:

Methodology of NatureServe, Arlington, VA
 ** Field name followed by 2-character ISO provincial abbreviation.

II. Managed or Special Areas

The following fields of data may be included (and may or may not be populated) for Protected Areas and Ecologically Significant Areas.

IDENTITY

MACODE	TXT	Unique identifier for Managed Area ¹ with some level of protection
SACODE	TXT	Unique identifier for Ecologically Special Area ¹ with or without protection
MANAME	TXT	Name of Protected Area containing occurrence
SANAME	TXT	Name of Ecologically Special Area containing occurrence
SITECODE	TXT	External agency site identity code

JURISDICTION / OWNERSHIP

LOCALJURIS T	ΓXT	Abbreviation for mandated agency
OWNER T	ГХТ	Short name or category of title holder
OWNERCOM T	ГХТ	Short detail of multiparty arrangements
OWNERCODE T	ГХТ	Canadian Conservation Area DB owner

Canadian Conservation Area DB ownercodes (modified)

group	code	designation
Owner	GN GS	government, national (federal) government, subnational (prov., state)
	GM	government, municipal
	IN	international
	NG	non-governmental organisation
	OR	organisational
	CO	corporate
	PR	private

CLASSIFICATION

PROTSTAT	TXT	Activities permitted or restricted (when known)
LEGALACT	TXT	Short title of enabling legislation
LEGALDATE	TXT	Year of enabling legislation
ESTABDATE	TXT	Year of site designation
IBP	TXT	International Biological Program identity number (Y=unknown)
IBPSTATUS	TXT	International Biological Program status: proposed or declared
IUCN	TXT	IUCN protection level, e.g. I very restricted, VI few restrictions
LEVEL1	TXT	Canadian Conservation Area DB type
LEVEL2	TXT	Canadian Conservation Area DB subtype(s)

group	code	designation
Conservation	CEP	Conservation Easement Property
	ESA	Environmentally Sensitive Area
	NAC	Nature Conservancy
	NAT	Natural Area
	NCA	NCC Conservation Land
	PCA	Private Conservation Area
	PRA	Protected Area
	PRB	Protected Beach
	RER	
	TRA	Nature Trail
Heritage	ARS	Archaeological Site
	HEA	Heritage Area or Park
	HEC	Heritage Canal
	HEP	Heritage Park
	HER	Heritage River
	HIA	
	NHP	
	NHS	
	PEP	
	PHP	· · · · · · · · · · · · · · · · · · ·
	PHS	Provincial Heritage Site
	WHS	World Heritage Site
Parks	CMG	Campground
	CMP	Community Park
	DUP	Day Use Park
	MUP	Municipal Park
	NAP	
	NEP	
	NTP	
	PKW	
	PNS	Picnic Site
	PPR	
	PVP	
	WAP	Wayside Park

group	code	designation
Wilderness	ECR	Ecological Reserve
	NTA	
	NTR SES	
	WDA	- 3
		Wilderness Area Wilderness Reserve
Wildlife	BSR	
wildille	EHJ	Bird Sanctuary Eastern Habitat Joint Venture
	GAS	
	MBS	
	NWA	3 , ,
	PWA	
	SBS	
		Western Hemispheric Shorebird Reserve
		Wildlife Park
	WLR	Wildlife Reserve
		Wildlife Sanctuary
	WMA	Wildlife Management Area
		Wildlife Protection Area
	WRF	Wildlife Refuge
Other	AGF	
	ASI	
	DUN	
	EDA	
	FCP	
	IBP	International Biological Program
	NCC	National Capital Commission
	NSA	Natural Scenic Area
	PLS PSL	Palaeontological Site
	RAM	Public Safety Lands: watershed protection Ramsar Wetland Site
	RTA	Research and Teaching Area
NS SigHab	380	wetland habitat
l 10 Oigi iab	381	saltmarsh habitat
	382	deer/moose wintering
	383	other significant habitats
L		· ·

Potential Priority Animal Species

Potential Priority Animal Species for NPNS Proposed Replacement Effluent Treatment Facility Assessment Area based on Previous Studies; and 2018a - AC CDC data and SARA/NS ESA/COSEWIC Listings and Potential Habitat Present

Common Name	Scientific Name	SARA (or COSEWIC*) Status and Sched. and NS ESA Status, S Rank and General Status ¹	Habitat Preference and Observations in Vicinity	Timing for Investigation
INVERTEBR	ATES	Status		
Acadian Hairstreak	Satyrium acadiaca	S1 / Undetermined	Butterfly of wet meadows, fields, and stream banks with willows. AC CDC record within 3±1 km.	Late June to mid- August.
Baltimore Checkerspot	Euphydryas phaeton	S2S3/ Secure	Butterfly associated with fresh-water marshes, wet roadsides, meadows (Payzant 2012). Larval foods include turtlehead (AC CDC 2018b). AC CDC record within 8±1 km.	Flight period is mid June to early August.
Banded Hairstreak	Satyrium calanus falacer	S2/ At Risk	Butterfly associated with woodlands, where it can be abundant on milkweed and sweet clovers, common along roadsides. Not known for Pictou area (AC CDC 2018b). Nearest AC CDC record over 50 km away.	Species flies from late June into late August in Canada. It is most numerous in July (Layberry et al. 2002).
Bog Elfin	Callophrys lanoraieensis	S3/ May be at risk	Butterfly species is restricted to spruce-tamarack bogs. Even there, it is often in the most inaccessible parts of the bog, usually where there is some open water and scattered stands of stunted black spruce (Layberry et al. 2002). Not known for Pictou area (AC CDC 2018b). Nearest AC CDC record over 50 km away.	Not identified.
Bronze Copper	Lycaena hyllus	S2/ Secure	Butterfly associated with open wet habitats usually marshes not overgrown with cattails including manmade ones. Host plants include docks and knotweeds; nectaring occurs on flowers.Recorded in Maritime Butterfly Atlas (AC CDC 2018) in adjacent West River 10 km square. Nearest AC CDC record within 30 km away.	Flight periods early July to mid September.
Brook Snaketail	Ophiogomphus aspersus	S2S3/ May be at risk	Dragonfly species is usually found at clear streams and rivers in open with brushy banks and sandy, gravelly, rocky riffles (IUCN 2018). Nearest AC CDC record within 90 km away.	Late April to late August.
Common Roadside- skipper	Amblyscirtes vialis	S3S4 / Secure	Butterfly of ground on gravelly or sandy surfaces, usually in wooded areas. AC CDC record within 3.2±1 km.	late May to mid- July.
Creeper	Strophitus undulates	S1/ May be at risk	Freshwater mussel associated with a wide range of habitats, including headwaters, pools and large streams. They are probably scarcer in lower river reaches, and are generally absent from landlocked lakes (Mulcrone, 2005). Nearest AC CDC record over 90 km away.	Summer.
Early Hairstreak	Erora laeta	S2/ May be at risk	In Canada, this butterfly is associated with fairly extensive mature beech-maple forests (Layberry	Most numerous from mid-May to mid-June.

Common Name	Scientific Name	SARA (or COSEWIC*) Status and Sched. and NS ESA Status, S Rank and General Status ¹	Habitat Preference and Observations in Vicinity	Timing for Investigation
			et al. 2002). Not known for N NS. Nearest AC	
			CDC record over 70 km away.	
Eastern Lampmussel	Lampsilis radiate	S3S4/ Sensitive	Freshwater mussel species is usually found at streams and rivers that are sand bottomed (Davis 2007). Nearest AC CDC record over 70 km away.	Summer.
Ebony Boghaunter	Williamsonia fletcheri	S2/ May be at risk	Dragonfly species is found in bog type from white cedar, black spruce, larch, to other forests with bogs/ bog or fen pools (WOS 2018). Nearest AC CDC record over 60 km away.	Flight season May – June.
Forcipate Emerald	Somatochlora forcipata	S2S3/ May be at risk	Dragonfly species occurs at small spring-fed peatland streams, in or out of woodland. Larvae sprawl on bottom among detritus (IUCN 2018). Nearest AC CDC record over 50 km away.	Flight season June – September.
Grey Comma	Polygonia progne	S3S4/ Secure	Butterfly associated with open forests, roadsides along forested areas (Payzant 2012). Overwinter as adult and fly periods April to mid June and mid July to early September. Host plant is currents (AC CDC 2018b). Nearest AC CDC record within 10 km.	Flight periods April to mid June and mid July to early September.
Jutta Arctic	Oeneis jutta	S3/ May be at risk	Butterfly species is found only in black spruce-tamarack bogs and it prefers the edges of treed areas. Nearest AC CDC record over 30 km away.	Flight period mid May to early July. Host plants sedges (AC CDC 2018b).
Kennedy's Emerald	Somatochlora kennedyi	S1S2/ May be at risk	Dragonfly associated with open fens, small ponds, shaded bog ponds, shallow bogs, and slow open streams in bogs or marshes (WOS 2018). Nearest AC CDC record over 60 km away.	Flight period May to July.
Lance-tipped Darner	Aeshna constricta	S3 / Secure	Dragonfly near lakes, ponds, marshes, and slow streams. AC CDC record within 4.6±1 km.	Early June - Early October.
Monarch (Butterfly)	Danaus plexippus	COSEWIC Endangered SARA Special Concern Sched. 1 S2B/ Sensitive	Migrates through area, feeds on milkweed or similar wildflower; Canadian habitat not vulnerable. AC CDC record within 11 km.	Late summer.
Northern Cloudywing	Thorybes pylades	S2S3 / Sensitive	Butterfly of wooded places, rarely occurs in built- up areas. AC CDC record within 3.2±1 km.	Mid-May to July.
Maine Snaketail	Ophiogomphus mainensis	S2S3/ May be at risk	Dragonfly species occurs at small rapid rocky streams and rivers in forest. Larvae burrow in sandy substrates (IUCN 2018). Nearest AC CDC record over 40 km away.	Flight period July.
Orange Bluet	Enallagma signatum	S2/ May be at risk	Damselfly species is usually found at a variety of non-moving water habitats, including slow streams, small lakes, and quiet bays (WOS, 2018). Nearest AC CDC record over 70 km away.	Flight period July to Aug.
Question Mark	Polygonia interrogationis	S3B / Secure	Butterfly near woodlands. AC CDC record within 3.2+1 km.	Late May to early July and late July to early Sept.
Rusty Snaketail	Ophiogomphus rupinsulensis	S2S3/ May be at risk	Dragonfly species occurs at large streams and rivers with moderate current in forest. Larvae burrow in sandy substrates (IUCN 2018). Nearest AC CDC record over 50 km away.	Flight period June to Sep.
Salt Marsh Copper	Lycaena dospassosi	S2 / At Risk	Butterfly associated with salt marshes along the Northumberland Strait (Payzant 2012). AC CDC	Flight period mid July to mid

Common Name	Scientific Name	SARA (or COSEWIC*) Status and Sched. and NS ESA Status, S Rank and General Status	Habitat Preference and Observations in Vicinity	Timing for Investigation
			record within 5.4 km.	August.
Striped Hairstreak	Satyrium liparops strigosum	S2S3 / Sensitive	Butterfly of forest openings and thickets as well as trails and gardens. Nectaring on flowers especially milkweed. Host plant shrubs and trees in rose family (AC CDC 2018b). Nearest AC CDC record over 60 km away.	Flight period early July to late August.
Taiga Bluet	Coenagrion resolutum	S1S2/ May be at risk	Damselfly, associated with a variety of non- moving waters including marshes, ponds, bogs, and sloughs (WOS 2018). Nearest AC CDC record over 30 km away.	Flight period summer.
Williamson's Emerald	Somatochlora williamsoni	S2/ May be at risk	Species it is usually found at slow forested streams and lakes, and sometimes bog lakes. It seems to prefer shaded habitats (WOS 2018). Nearest AC CDC record over 70 km away.	Flight period June to Aug.
Yellow- banded Bumblebee	Bombus terricola	SARA Schedule 1 /COSEWIC Special Concern, NS ESA Vulnerable S3/ Sensitive	The species is a habitat generalist within open coniferous, deciduous and mixed hardwood forests, wet and dry meadows and prairie grasslands, meadows bordering riparian zones, and along roadsides, in taiga adjacent to wooded areas, urban parks, gardens and agricultural areas, sub-alpine habitats and more isolated natural areas (COSEWIC 2015). Nearest AC CDC record over 60 km away.	Summer.
Zebra Clubtail	Stylurus scudderi	S1S2/ May be at risk	Associated with forest streams with intermittent rapids, including trout streams with sandy/mucky bottoms sloughs (WOS 2018). Nearest AC CDC record over 90 km away.	Flight period Aug. to Oct.
BIRDS			record over 70 km away.	
American Bittern	Botaurus lentiginosus	S3S4B / Sensitive	Nests in freshwater marshes and occasionally salt marshes. AC CDC record within 3.6 ± 7.0 km.	Nests from mid- May to mid- August.
American Coot	Fulica americana	COSEWIC: Not at risk S1B / Undetermined	Nests near lakes and marshes, found in aquatic habitats year around. AC CDC record within 16.9 ± 7.0 km.	Nests from early May to mid- August.
American Golden-Plover	Pluvialis dominica	S1S2M / Sensitive	Migratory prefers open grass areas, less often on mudflats and beaches. AC CDC record within 17.7 ± 0.0 km.	Fall migration during August to November.
American Kestrel	Falco sparverius	S3B / Secure	Nests in cavities of trees or structures, prefers open habitats. AC CDC record within 8.2 ± 0.0 km.	Nests from mid- April to early August.
American Three-toed Woodpecker	Picoides dorsalis	S1?/ Undetermined	Conifer forests in far north and high mountains, uncommon. AC CDC record within 78.9 ± 7 km.	Nests in June and July.
Baltimore Oriole	Icterus galbula	S2S3B / May be at risk	Nest deciduous trees often suburban or water side. AC CDC record within 3.6 ± 7.0 km.	Nests from early June to mid- August.
Bank Swallow	Riparia riparia	COSEWIC/SARA : Threatened NS ESA: Endangered S2S3B / May be at risk	Nest banks, cliffs. AC CDC record within $3.6 \pm 7.0 \text{ km}$	Nests from late May to late August.
Barn Swallow	Hirundo rustica	COSEWIC/SARA : Threatened NS ESA: Endangered S2S3B / At Risk	Nest on structures. AC CDC record within 1.4 ± 0.0 km.	Nests from late May to early September.

Common Name	Scientific Name	SARA (or COSEWIC*) Status and Sched. and NS ESA Status, S Rank and General Status	Habitat Preference and Observations in Vicinity	Timing for Investigation
Barrow's	December 1	COSEWIC/SARA	Found in coastal waters and rivers. AC CDC	Overwintering
Goldeneye – Eastern pop.	Bucephala islandica	: Special Concern S1N/ At Risk	record within 5.4 km ± 0.0 km. Observed west of Site along Highway 106 (Jan. 2018).	from October to April.
Bay-breasted Warbler	Dendroica castanea	S3S4B / Sensitive	Breeds in mature coniferous forest, particularly in areas with high spruce budworm concentrations. AC CDC record within 9.5 ± 7.0 km.	Nests from late- May to early August.
Bicknell's Thrush	Catharus bicknelli	COSEWIC: Threatened SARA: Special concern NS ESA: Endangered S1S2B / At Risk	Dense conifer forests. AC CDC record within 94.4±7 km	Nests in June and July.
Black-backed Woodpecker	Picoides arcticus	S3S4 / Sensitive	Nest in cavities. AC CDC record within 11.1±7 km.	Nests from mid- May to early August.
Black-bellied Plover	Pluvialis squatarola	S3M / Secure	In winter mostly on open sand beaches, tidal flats. AC CDC record within 2.8 ± 0.0 km.	Fall migration during August to early December.
Black-billed Cuckoo	Coccyzus erythropthalmus	S3B / May be at Risk	Nests in forest edges and tall shrub thickets. AC CDC record within 2.8 ± 0.0 km.	Nests from early June to mid- September.
Black- crowned Night-heron	Nycticorax nycticorax	S1B / May be at Risk	Nests in groves of trees, in thickets, or on ground, usually on islands or above water. AC CDC record within 61.3 ± 7.0 km.	Nests from early May to early August.
Blackpoll Warbler	Dendroica striata	S3S4B / Sensitive	Nest in damp spruce forests. AC CDC record within 9.5 ± 7.0 km.	Nests in June and July.
Blue-winged Teal	Anas discors	S3S4B / May be at Risk	Nest in fertile marshes. AC CDC record within 3.6 ± 7.0 km.	Nests from mid- May to early September.
Bobolink	Dolichonyx oryzivorus	COSEWIC/SARA : Threatened NS ESA: Vulnerable S3S4B / Sensitive	Nest in lush meadows, open grasslands, hayfields. AC CDC record within 1.4 ±0.0 km.	Nests from late May to early August.
Boreal Chickadee	Poecile hudsonica	S3 / Sensitive	Nest cavities in rotted tree stumps. AC CDC record within 3.6 ± 7.0 km.	Nests from late May to late August.
Boreal Owl	Aegolius funereus	COSEWIC: Not at risk S2?B / Undetermined	Nest in Woodpecker and other tree cavities and within northern bogs. AC CDC record within 29.5 ± 0.0 km.	Nests from late March to late May.
Brown-headed Cowbird	Molothrus ater	S2B / Secure	Parasitic nester. AC CDC record within 3.6 ± 7.0 km.	Nests from mid- May to early August.
Brown Thrasher	Toxostoma rufum	S1B / Undetermined	Thickets, brush, shrubbery, thorn scrub. AC CDC record within 16.6 ± 7.0 km.	Nests in June and July.
Canada Warbler	Wilsonia Canadensis	COSEWIC/SARA : Threatened NS ESA: Endangered S3B / At Risk	Nest - mid aged mixed forest. AC CDC record within 3.6 ± 7.0 km.	Nests in June and July.
Cape May Warbler	Dendroica tigrina	S2B / Sensitive	Nests in conifers. AC CDC record within 6.7 ± 7.0 km.	Nests in June and July.
Chimney Swift	Chaetura pelagica	COSEWIC/SARA : Threatened NS ESA: Endangered	Chimneys and large hollow trees nest / roost. AC CDC record within 11 ± 7.0 km.	Nests from mid- June to mid- September.

Common Name	Scientific Name	SARA (or COSEWIC*) Status and Sched. and NS ESA Status, S Rank and General Status ¹	Habitat Preference and Observations in Vicinity	Timing for Investigation
		S2B,S1M / At risk	B 1: 11 : 1 : 1	37 . 6 1 .
Cliff Swallow	Petrochelidon pyrrhonota	S2S3B / May be at Risk	Breeds in settled areas in mud nests, nesting colonially on buildings and structures such as bridges. AC CDC record within 6.7 ± 7.0 km.	Nests from late May to late August.
Common Eider	Somateria mollissima	S3S4 / Secure	Coastal islands. AC CDC record within 11.5 ± 9.0 km.	Nests from early May to mid- August. Overwinters from August to January.
Common Goldeneye	Bucephala clangula	S2B, S5N / Secure	Nests in large trees with cavities near forested lakes/rivers. In winter found in forested lakes/rivers, salt bays and seacoasts. AC CDC record within 6.7 ± 13.0 km.	Nests from mid- April to late August. Overwinters from October to April.
Common Loon	Gavia immer	S3B, S4N / May be at risk	May nest in around adjacent lakes. No AC CDC records, but this species is likely within the vicinity.	Nests from early May to early October. Overwinters from November to April.
Common Nighthawk	Chordeiles minor	COSEWIC: Special Concern SARA: Threatened NS ESA: Threatened S2B / At Risk	Nest -sparsely vegetated or bare ground (cutover/burns, building roof). AC CDC record within 1.6 ± 0.0 km.	Nests from early June to mid- August.
Common Tern	Sterna hirundo	COSEWIC: Not at risk S3B / Sensitive	Islands and coastal areas. AC CDC record within 2.9 ±0.0 km.	Nests from mid- May to mid- August.
Cooper's Hawk	Accipiter cooperii	COSEWIC: Not at risk S1?B / Undetermined	Nests in coniferous, deciduous, and mixed woods, near forest edge. AC CDC record within 18.3 ± 0.0 km.	Nests from mid- May to mid-July.
Double- crested Cormorant	Phalacrocorax auritus	S5B / Secure	Near coast, sea-cliffs, trees, islands. No AC CDC records, but has been identified as a colonial bird in the study area.	Nest from mid- April to early September. Overwinters from September to March.
Eastern Bluebird	Sialia sialis	COSEWIC: Not at risk S3B / Sensitive	Woodpecker holes forage low vegetation with scattered trees clear-cut near forest, favour broadleaf. AC CDC record within 6.7 ± 7.0 km.	Nests from early May to mid- August.
Eastern Kingbird	Tyrannus tyrannus	S3B / Sensitive	Nest in open areas, AC CDC record within 6.7 \pm 7.0 km.	Nests from late May to late August.
Eastern Wood-pewee	Conopus virens	COSEWIC/SARA : Special Concern NS ESA: Vulnerable S3S4B / Sensitive	Nest open forest. AC CDC record within 3.6 ± 7.0 km.	Nests from early June to early September.
Evening Grosbeak	Coccothraustes vespertinus	COSEWIC: Special Concern NS ESA: Vulnerable S3S4B, S3N / Secure	Nest in southern boreal forest, high in spruce tree. AC CDC record within 3.6 ±7.0 km.	Nests from mid- June to mid- August.
Fox Sparrow	Passerella iliaca	S3S4B / Secure	Nest in dense deciduous shrubs. AC CDC record within 1.8 ± 0.0 km.	Nests in June and July.
Gadwall	Anas strepera	S2B/ May be at risk	Lakes, ponds, marshes. AC CDC record within 46.2 ± 0.0 km.	Nests from late- July to late September. Overwinters from

Common Name	Scientific Name	SARA (or COSEWIC*) Status and Sched. and NS ESA Status, S Rank and General Status ¹	Habitat Preference and Observations in Vicinity	Timing for Investigation
				November to
Golden- crowned Kinglet	Regulus satrapa	S4 / Sensitive	Nest in coniferous forest. No AC CDC records, but this species is expected within the vicinity.	April. Nests from early May to late July.
Gray Catbird	Dumetella carolinensis	S3B / May be at Risk	Nest shrubbery. AC CDC record within 3.6 ± 7.0 km.	Nests from late May to late August.
Gray Jay	Perisoreus canadensis	S3 / Sensitive	Nests in forest. AC CDC record within 9.5 ± 7.0 km.	Nests from late- March to early July.
Great Cormorant	Phalacrocorax carbo	S2S3 / Sensitive	Coastal sea-cliffs, islands. AC CDC record within 25.0 ± 7.0 km.	Nests from mid- April to late August. Overwinters from September to March.
Great Crested	Myiarchus crinitus	S1B / May be at	Nests in hollow tree.	Nests in June and
Flycatcher Greater Yellowlegs	Tringa melanoleuca	risk S3B,S3S4M / Sensitive	AC CDC record within 17.1±7 km. Nest in wooded bogs. AC CDC record within 3.8 ± 0.0 km.	July. Nests in June and July. Fall migration during August to November.
Hudsonian Godwit	Limosa haemastica	S1S2M / Sensitive	Migrants may be on marshy ponds or tidal flats. AC CDC record within 60.9 ± 0.0 km.	Fall migration during August to November.
Hudsonian Whimbrel	Numenius phaeopus hudsonicus	S2S3M / Sensitive	Migratory near mudflats, also on rocky shores, sandy beaches, salt marshes and grassy fields near coast. AC CDC record within 5.4 ± 0.0 km.	Fall migration during July to October.
Killdeer	Charadrius vociferus	S3B / Sensitive	Nest in open areas. AC CDC record within 1.4 \pm 0.0 km.	Nests from mid- April to mid- August.
Least Sandpiper	Calidris minutilla	S1B, S3M / Secure	Nest in sedge meadows and bogs, along cool coast. AC CDC record within 3.8 ± 0.0 km.	Nests from late May to early August. Fall migration during September and October.
Lesser Yellowlegs	Tringa flavipes	S3M / Secure	Migratory in coastal estuaries, marshes, edges of lakes and ponds. AC CDC record within 2.8 ± 0.0 km.	Fall migration during July to October.
Long-eared Owl	Asio otus	S2S3 / May be at risk	Nest in woodlands. AC CDC record within 33.2 ± 0.0 km.	Nests from early April to late July.
Nelson's Sparrow	Ammodramus nelsoni	COSEWIC: Not at risk S3S4B / Secure	Nests in salt marshes. AC CDC record within 3.6 \pm 7.0 km.	Nests from mid- June to early September.
Northern Goshawk	Accipiter gentilis	COSEWIC: Not at risk S3S4 / Secure	Woodland species. AC CDC record within 6.7 \pm 7.0 km.	Nests from mid- April to late July.
Northern Harrier	Circus cyaneus	COSEWIC: Not at risk S3S4B / Secure	Nest in open marshes. AC CDC record within 3.6 \pm 7.0 km.	Nests from mid- May to late August.
Northern Mockingbird	Mimus polygolottos	S1B / Secure	Nest in gardens. AC CDC record within 3.6 ± 7.0 km.	Nests from early June to early September.
Olive-sided Flycatcher	Contopus cooperi	COSEWIC: Special Concern SARA: Threatened NS ESA: Threatened	Nest open forest – conifers or mixed. AC CDC record within 2.5 ± 0.0 km.	Nests from June to late August.

Common Name	Scientific Name	SARA (or COSEWIC*) Status and Sched. and NS ESA Status, S Rank and General Status ¹	Habitat Preference and Observations in Vicinity	Timing for Investigation
	- 4:4:	S2B / At risk		
Pectoral Sandpiper	Calidris melanotos	S2S3M / Secure	Migration near muddy shores and fresh and tidal marshes. AC CDC record within 3.8 ± 0.0 km.	Fall migration from August to November.
Peregrine Falcon	Falco peregrinus pop 1	Special Concern, NS ESA Vulnerable S1B,SNAM / Sensitive	Nesting cliffs, northwestern NS. Identified by AC CDC as location sensitive species, but not known for the study area. Nearest AC CDC within 67.8 ± 0.0 km.	Nests in June and July.
Philadelphia Vireo	Vireo philadelphicus	S2?B / Undetermined	Nest in broad-leafed forest. AC CDC record within 36.6 ± 0.0 km.	Nests in June and July.
Pine Grosbeak	Pinicola	S2S3B,S5N / May	Nests in conifers. AC CDC record within 11.0 ±	Nests in May and
	enucleator	be at risk	7.0 km.	June. Nests from late
Pine Siskin	Carduelis pinus	S2S3 / Sensitive	Breeds in mature coniferous forest. AC CDC record within 6.7 ± 7.0 km.	April to early August.
Pine Warbler	Dendroica pinus	S1B / Undetermined	Breeds in open pine woods. AC CDC record within 18.8 ± 7.0 km.	Nests in May and June.
Piping Plover melodus ssp	Charadrius melodus melodus	COSEWIC/SARA : Endangered NS ESA: Endangered S1B / At Risk	Sandy beaches, tidal flats. AC CDC record within 2.8 ± 0.0 km.	Nests from early May to late July. Spring migration in April and fall migration during August and September.
Purple Sandpiper	Calidris maritima	S3?N / Sensitive	Migratory in winter rocky shores. AC CDC record within 5.4 ± 0.0 km.	Fall migration/ overwintering during October to January.
Red-breasted Merganser	Mergus serrator	S3S4B,S5N / Secure	Nests around lakes and rivers, winters found on coastal waters. AC CDC record within 3.6 ± 7.0 km.	Nests from late May to early September. Overwintering from October to April.
Red-breasted Nuthatch	Sitta canadensis	S3 / Secure	Nests in cavities from dead trees. AC CDC record within 3.6 ± 7.0 km.	Nests from late May to mid- August.
Red Crossbill	Loxia curvirostra	S3S4 / Secure	Nests in conifers. AC CDC record within $6.7 \pm 7.0 \text{ km}$.	Can nest from February to August.
Red Knot rufa ssp	Calidris canutus rufa	COSEWIC: Endangered NS ESA: Endangered S2M / At risk	In migration and winter on coastal mudflats and tidal zones, sometimes on open sandy beaches. AC CDC record within 5.4 ± 0.0 km.	Fall migration from August to November.
Rose-breasted Grosbeak	Pheucticus ludovicianus	S2S3B / Sensitive	Nests in Mixed and broad-leafed woods. AC CDC record within 6.7 + 7.0 km.	Nests in June and July.
Ruby-crowned Kinglet	Regulus calendula	S3S4B / Sensitive	Nests in conifers. AC CDC record within 3.6 ± 7.0 km.	Nests from late May to mid-July.
Ruddy Duck	Oxyura jamaicensis	S1B/ Secure	Fresh marshes, ponds, lakes. In winter on protected shallow bays and estuaries along coast. AC CDC record within 53.0 ± 0.0 km.	Spring migration during February to May.
Ruddy Turnstone	Arenaria interpres	S3M/ Secure	Migratory and winter near rocky shorelines and beaches covered with seaweed or debris. AC CDC record within 3.8 ± 0.0 km.	Fall migration during July to November.
Rusty Blackbird	Euphagus carolinus	COSEWIC/SARA : Special Concern NS ESA: Endangered S2B / May be at risk	Nests in swamps and bogs along sluggish streams. Nearest AC CDC record within 20.6 \pm 7.0 km.	Nests from mid- May to late July.
Sanderling	Calidris alba	S3M,S2N / Secure	Winter and migratory near coastal beaches, tide	Fall migration

Common Name	Scientific Name	SARA (or COSEWIC*) Status and Sched. and NS ESA Status, S Rank and General Status ¹	Habitat Preference and Observations in Vicinity	Timing for Investigation
			flats, lake shores. AC CDC record within 3.8 \pm 0.0 km.	during July to December.
Scarlet Tanager	Piranga olivacea	S2B / Undetermined	Nests in deciduous forest. AC CDC record within 11.0 ± 7.0 km.	Nests from mid- June to mid- August.
Semipalmated Plover	Charadrius semipalmatus	S1B,S3S4M / Secure	Nests on gravel beaches. AC CDC record within 3.8 ± 0.0 km.	Nests in June and July. Fall migration during August to October.
Semipalmated Sandpiper	Calidris pusilla	S3M / Sensitive	Migration along coast on mudflats, intertidal zone, shallow estuaries and beaches. AC CDC record within 3.8 ± 0.0 km.	Fall migration during July to November.
Short-billed Dowitcher	Limnodromus griseus	S3M / Secure	Migratory coastal areas incl. tidal flats, estuaries and bays, marshes, sandy beaches. AC CDC record within 3.8 ± 0.0 km.	Fall migration during July to October.
Short-eared Owl	Asio flammeus	COSEWIC/SARA : Special Concern S1S2B / May be at risk	Nests in open grassy habitats. AC CDC record within 16.6 ± 7.0 km.	Nests from mid- April to late July.
Spotted Sandpiper	Actitis macularius	S3S4B / Sensitive	Nests in open areas, particularly gravelly shores of rivers/lakes. AC CDC record within 3.6 ± 7.0 km.	Nests from mid- April to late August.
Swainson's Thrush	Catharus ustulatus	S3S4B / Secure	Nests in trees. AC CDC record within 3.6 ± 7.0 km.	Nests from late May to late July.
Tennessee Warbler	Vermivora peregrina	S3S4B Sensitive	Nests in forest, typically small broad-leaved within conifers. AC CDC record within 9.5 ± 7.0 km.	Nests in June and July.
Veery	Catharus fuscescens	S3S4B / Secure	Nests in broad-leafed forests. AC CDC record within 2.8 ± 0.0 km.	Nests from late May to early August.
Vesper Sparrow	Pooecetes gramineus	S2B / May be at risk	Meadows, fields, prairies, roadsides. AC CDC record within 17.5 ± 7.0 km.	Nests from mid- May to late July.
Virginia Rail	Rallus limicola	S2S3B / Undetermined	Nests in marshes. AC CDC record within 1.9 \pm 0.0 km.	Nests from late May to early August.
White-rumped Sandpiper	Calidris fuscicollis	S3M/ Secure	Migration, in flooded fields, shallow ponds, edges of freshwater marshes, tidal flats, and gravel beaches. AC CDC record within 5.4 ± 0.0 km.	Fall migration during July to December.
Willet	Tringa semipalmata	S2S3B / May be at risk	Nest coastal near marsh. AC CDC record within 3.6 ± 7.0 km.	Nests from late May to early August.
Wilson's Snipe	Gallinago delicata	S3B / Sensitive	Nests in wet marshy areas. AC CDC record within 3.6 ± 7.0 km.	Nests from late April to late July.
Wilson's Warbler	Wilsonia pusilla	S3B / Sensitive	Nests in riparian shrub thickets. AC CDC record within 13.0 ± 7.0 km.	Nests in June and July.
Wood Thrush	Hylocichla mustelina	COSEWIC/SARA Threatened SUB / Undetermined	Breeds in the understory of woodlands. AC CDC record within 3.6 ± 7.0 km.	Nests from late May to late July.
Yellow- bellied Flycatcher	Empidonax flaviventris	S3S4B/ Sensitive	Nests on ground in conifer moss.AC CDC record within 3.6 ± 7.0 km.	Nests from late June to late August.
FISH - Freshv	vater and Marine (An			
Atlantic salmon Gaspe-	Salmo salar	COSEWIC Special Concern S1 / May be at risk	Gravel bottomed streams, rivers. AC CDC record within 15.1 km.	Late summer/fall

Common Name	Scientific Name	SARA (or COSEWIC*) Status and Sched. and NS ESA Status, S Rank and General Status ¹	Habitat Preference and Observations in Vicinity	Timing for Investigation
Southern Gulf				
of St. Lawrence				
Atlantic Sturgeon	Acipenser oxyrinchus	COSEWIC Threatened S2 / May be at risk	Rivers, estuaries, the nearshore marine environments and the continental shelf regions along the Atlantic coast of North America. AC CDC record within 83.5 km.	Not anticipated in assessment area.
American eel	Anguilla rostrata	COSEWIC Threatened S2 / Secure	Fresh water streams for adults. Migrate to sea to spawn. AC CDC record within 77 km.	Non-winter.
Brook trout	Salvelinus fontinalis	S3/ Sensitive	Streams, brooks. AC CDC record within 15.1±0 km.	Late summer/fall.
Gaspereau (Alewife)	Alosa pseudoharengus	S3/ Sensitive	Spawn above head of tide in rivers. AC CDC record within 15.1±7 km.	Spring-summer.
Striped Bass- Southern Gulf of St. Lawrence population	Morone saxatilis pop. 1	COSEWIC Special Concern S2S3N/ May be at risk	Estuaries and coastal waters of the southern Gulf of St. Lawrence. Spawn in fresh/brackish water and require high quality habitat and abundant aquatic species for food in estuaries and coastal waters. AC CDC record within 58.8±1 km.	Spring spawning.
FISH - Marine		COCENTIC	ODIC D	T 37 1
American Plaice Maritime population	Hippoglossoides platessoides	COSEWIC Threatened	OBIS Data	Yearround.
Atlantic Bluefin	Tuna Thunnu s thynnus	COSEWIC Endangered	Catches in Northumberland Strait.	Yearround.
Atlantic Cod Laurentian South population	Gadus morhua	COSEWIC Endangered	OBIS Data.	Yearround.
Atlantic Wolffish	Anarhichas lupus	SARA/COSEWIC Special Concern Sched.1	OBIS Data, outside of assessment area.	Yearround.
Basking Shark	Cetorhinus maximus	COSEWIC Special Concern	Wandering. None in OBIS data for the Strait.	Not anticipated.
Cusk	Brosme brosme	COSEWIC Endangered	None in OBIS data for the Strait.	Not anticipated.
Lumpfish	Cyclopterus lumpus	COSEWIC Threatened	Present in OBIS Data.	Yearround.
Northern Wolffish	Anarhichas denticulatus	SARA/COSEWIC Threatened Sched.1	OBIS Data, outside of assessment area.	Yearround.
Porbeagle	Lamna nasus	COSEWIC Endangered	Wandering. OBIS Data, outside of assessment area.	Late summer, fall.
Shortfin Mako	Isurus oxyrinchus	COSEWIC Special Concern	Wandering. None in OBIS data for the Strait.	Not anticipated.
Smooth Skate Laurentian- Scotian population	Malacoraja senta	COSEWIC Special Concern	OBIS Data.	Yearround.
Spiny Dogfish	Squalus acanthias	COSEWIC Special Concern	OBIS Data.	Yearround.
Spotted Wolffish	Anarhichas minor	SARA/COSEWIC Threatened Sched.	OBIS Data, outside of assessment area.	Yearround.
Thorny Skate	Amblyraja radiata	COSEWIC Special Concern	OBIS Data, outside of assessment area.	Yearround.
White Hake Southern Gulf	Urophycis tenuis	COSEWIC Endangered	OBIS Data.	Yearround.

Common Name	Scientific Name	SARA (or COSEWIC*) Status and Sched. and NS ESA Status, S Rank and General Status ¹	Habitat Preference and Observations in Vicinity	Timing for Investigation
of St. Lawrence population				
White Shark	Carcharodon carcharias	SARA/COSEWIC Endangered Sched. 1	Wandering. None in OBIS data for the Strait.	Not anticipated.
Winter Skate Gulf of St. Lawrence population	Leucoraja ocellata	COSEWIC Endangered	OBIS Data.	Yearround.
Herptiles				
Blanding's turtle – NS population	Emydoidea blandingii	SARA Endangered, NS ESA Vulnerable	Lake shorelines and wetlands in central southwest NS. Identified by AC CDC as location sensitive species not known for the study area, no AC CDC records within 100 km.	Not anticipated for the assessment area.
Snapping turtle	Chelydra serpentina	SARA/COSEWIC Special Concern Sched. 1 NS ESA Vulnerable S3/ Sensitive	Vegetated lakes and streams, nest on sand / gravel. Expected in Pictou Harbour area, nearest AC CDC record 17.1 km.	Non-winter.
Wood turtle	Glyptemys insculpta	Threatened Sched. 1 NS ESA Threatened S2 / Sensitive	Nest on gravel bank near river, overwinter in pools, clear streams. Identified by AC CDC as location sensitive species not known for the study area, nearest location 13.1±5 km.	Late spring.
**Leatherback Sea Turtle (Atlantic Population)	Dermochelys coriacea	SARA/COSEWIC Endangered Sched.1	Coastal, shelf and offshore waters mostly within the photic zone foraging. Potentially found in Northumberland Strait during summer and fall.	Spring to fall.
Loggerhead Sea Turtle	Caretta caretta	SARA/COSEWIC Endangered Sched.1	Similar to leatherback turtle, fewer records.	Not anticipated for the assessment area.
Four-toed Salamander	Hemidactylium scutatum	S3/ Secure	Closely associated with sphagnum areas bordering streams and in sphagnum bogs during spring breeding season. During summer, adults have been found in woodland habitats (GNS 2018g).	Summer.
MAMMALS - t	errestrial			
Moose	Alces americanus	NS ESA Endangered S1 / At risk	Forest – occasionally enter urban areas. Nearest AC CDC record 26.6 km.	Year-round.
Little Brown Myotis	Myotis lucifugus	Endangered Sched. 1 NS ESA Endangered S1 / At risk	Hibernate in caves, may feed in area. Identified by AC CDC as location sensitive species with hibernacula not known for the study area, nearest location 21.8 km away.	Summer – fall.
Northern Long-eared Myotis	Myotis septentrionalis	Endangered Sched. 1 NS ESA Endangered S1 / At risk	Hibernate dense forest and caves, may feed in area. Identified by AC CDC as location sensitive species with hibernacula not known for the study area, nearest location 34.9±1 km away in PE.	Summer – fall.
Tri-coloured Bat / Eastern Pipistrelle	Pipistrellus subflavus	Endangered Sched. 1 NS ESA Endangered S1 / At risk	Hibernate in caves, may feed in area. Identified by AC CDC as location sensitive species with hibernacula not known for the study area, nearest location over 80 km away.	Summer – fall.
MAMMALS - I	Marine			
*Grey Seal	Halichoerus grypus	COSEWIC: Not at	Coastal marine waters. No nearby AC CDC record.	Yearround.

Common Name	Scientific Name	SARA (or COSEWIC*) Status and Sched. and NS ESA Status, S Rank and General Status ¹	Habitat Preference and Observations in Vicinity	Timing for Investigation
		SNR / Protected pursuant MMR.		
*Harbour Seal	Phoca vitulina concolor	SNR / Protected pursuant the MMR.	Coastal marine waters. No nearby AC CDC record.	Yearround.
Harp Seal	Pagophilus groenlandicus	SNR / Protected pursuant the MMR.	Coastal marine waters. No nearby AC CDC record.	Yearround.
Hooded Seal	Cystophora cristata	COSEWIC: Not at risk SNR / Protected pursuant the MMR.	Coastal marine waters. No nearby AC CDC record.	Yearround.
Cetaceans	T	GOGERNIG M		I G 1 C 11
Atlantic White-sided Dolphin (Gulf of St. Lawrence population)	Lagenorhynchus acutus	COSEWIC: Not at risk S4 / Protected pursuant the MMR.	Coastal marine waters including Northumberland Strait and open ocean. AC CDC record within 83.3 ± 1.0 km.	Summer and fall.
Beluga Whale (St. Lawrence Estuary population)	Delphinapterus leucas	COSEWIC/SARA : Endangered SNA / Protected pursuant the MMR.	Coastal marine waters and open ocean.	Summer and fall.
Blue Whale	Balaenoptera musculus	COSEWIC/SARA Endangered Sched.1	Coastal marine waters and open ocean. No nearby AC CDC record.	Not anticipated in assessment area.
*Common Minke Whale (North Atlantic subspecies)	Balaenoptera acutorostrata acutorostrata	COSEWIC: Not at risk S4 / Protected pursuant the MMR.	Coastal marine waters and open ocean.	Summer and fall.
*Fin Whale Atlantic Population	Balaenoptera physalus	COSEWIC/SARA : Special Concern S2S3 / Protected pursuant the MMR.	Near the coast and far offshore, follow krill populations in summer. Identified by DFO within 100 km of study area.	Spring to fall.
*Harbour Porpoise (Northwest Atlantic population)	Phocoena phocoena	COSEWIC: Special Concern SARA: Threatened S4 / Protected pursuant the MMR.	Open ocean over continental shelves and sometimes in bays and harbours.	Summer.
Humpback Whale (NW Atlantic population)	Megaptera novaeangliae	COSEWIC: Not at risk S3 / Protected pursuant the MMR.	Coastal marine waters and open ocean.	Not anticipated in assessment area.
Killer Whale (Gulf of St. Lawrence population)	Orcinus orca	SNA / Protected pursuant the MMR.	Coastal marine waters and open ocean.	Not anticipated in assessment area.
Long-finned Pilot Whale	Globicephala melas	COSEWIC: Not at risk S2S3 / Protected pursuant the MMR.	Coastal marine waters and open ocean. AC CDC record within 82.2 ± 100.0 km	Spring to fall.
North Atlantic Right Whale	Eubalaena glacialis	COSEWIC/SARA : Endangered	Coastal marine waters and open ocean.	Spring to fall.

Common Name	Scientific Name	SARA (or COSEWIC*) Status and Sched. and NS ESA Status, S Rank and General Status ¹	Habitat Preference and Observations in Vicinity	Timing for Investigation
		pursuant the MMR.		
Northern Bottlenose Whale (Gulf of St. Lawrence population)	Hyperoodon ampullatus	SNA / Protected pursuant the MMR.	Coastal marine waters and open ocean.	Not anticipated in assessment area.
Short-beaked Common Dolphin (Gulf of St. Lawrence population)	Delphinus delphis	COSEWIC: Not at risk SNA / Protected pursuant the MMR.	Coastal marine waters and open ocean.	Not anticipated in assessment area.
Sperm Whale	Physeter macrocephalus	COSEWIC: Not at risk SNA / Protected pursuant the MMR.	Coastal marine waters and open ocean.	Spring to fall.

Status notes (as of December 2018) - S1: extremely rare in province; S2: rare in province; S3: uncommon in province; S4: widespread, common and apparently secure in province; S5: widespread, abundant and demonstrably secure in province, SU: unrankable (lack of info). The use of 'S#S#' is to denote a range in rank used to indicate any uncertainty about the status of the species or community. Qualifiers: B= Breeding (breeding population), N = Nonbreeding (nonbreeding population)? = Inexact/Uncertain, H = Historic (possibly extirpated), M = Migrant and SNR = Not yet assessed in province. (ACCDC 2018a).

Resource: AC CDC data base search *Resource: OBIS https://obis.org/

Potential Priority Plant Species

Potential Priority Plant Species for NPNS Proposed Replacement Effluent Treatment Facility Study Area based on Previous Studies; and 2018 - AC CDC data; and SARA/NS ESA/COSEWIC Listings and Potential Habitat Present

Species	Name	SARA (or COSEWIC*) Status and Sched. and NS ESA Status and AC CDC Rank / General Status ¹	Habitat ² (nearby reference locations)	Flowers ²
Agalinis paupercula	Small-flowered	S1	Wet meadows and fields; wetlands.	Late summer.
var. borealis	Agalinis		AC CDC record within 12.0 ± 0.0 km.	
Amelanchier stolonifera	Running Serviceberry	S3 / Secure	Sandy soils in barrens or boggy areas. AC CDC record within 12.2 ± 2.0 km.	Early June.
Caulophyllum thalictroides	Blue Cohosh	S2 / May be at risk	Deciduous-dominated floodplains and riparian areas. AC CDC record within 13.6 ± 1.0 km.	April into early June.
Chenopodium rubrum	Red Pigweed	S2 / May be at risk	Saltmarshes and beaches. AC CDC record within 3.6 ± 0.0 km.	August to November.
Crataegus robinsonii	Robinson's Hawthorn	S1? / Undetermined	Field edges and thickets. AC CDC record within 7.7 ± 1.0 km.	June.
Cuscuta cephalanthi	Buttonbush Dodder	S2? / Undetermined	Low-lying coastal areas; parasitic. AC CDC record within 7.5 ± 1.0 km.	August and September.
Cyperus lupulinus ssp. macilentus	Hop Flatsedge	S1 / May be at risk	Sandy shorelines. AC CDC record within 3.3 ± 0.0 km.	August to October.
Cypripedium parviflorum	Yellow Lady's- slipper	S2S3 / Sensitive	Grows in calcareous soils, usually in deciduous forest. AC CDC record within 9.9 ± 0.0 km.	Early June.
Cypripedium parviflorum var. pubescens	Yellow Lady's- slipper	S2 / Sensitive	Grows in calcareous soils, usually in deciduous forest. AC CDC record within 9.5 ± 7.0 km.	Early June.
Cypripedium reginae	Showy Lady's- Slipper	S2 / May be at risk	Alkaline swamps and bogs. AC CDC record within 9.8 ± 0.0 km.	June through to August.
Elymus wiegandii	Wiegand's Wild Rye	S1 / May be at risk	Alluvial soils of riparian areas and intervales. AC CDC record within 14.8 ± 1.0 km.	July and August.
Epilobium coloratum	Purple-veined Willowherb	S2? / Sensitive	Low-lying, seepy ground; wetlands. AC CDC record within 10.6 ± 1.0 km.	July to October.
Fraxinus nigra	Black Ash	NS ESA: Threatened S1S2 / At Risk	Poorly draining soils, wet woods; wetlands. Identified by AC CDC as location sensitive species known for the study area. AC CDC record within 7.1 km.	May and June.
Hedeoma pulegioides	American False Pennyroyal	S2S3 / Sensitive	Coarse, well-drained soils in open habitats; coastal. AC CDC record within 13.3 ± 5.0 km.	August.
Hudsonia tomentosa	Woolly Beach-heath	S1 / May be at Risk	Sandy coastlines; dunes. AC CDC record within 13 ± 7.0 km.	May to July.
Juncus subcaudatus var. planisepalus	Woods-Rush	S3 / Sensitive	Wet woods, swampy ground; wetlands. AC CDC record within 11.1 ± 5.0 km.	July to October.
Lilium canadense	Canada Lily	S2 / May be at Risk	Wet meadows, floodplains and riverbanks. AC CDC record within 6.7 ± 7.0 km.	July.
Oenothera fruticosa ssp. glauca	Narrow-leaved Evening Primrose	S2 / Undetermined	Abandoned fields, roadsides, edge habitats. AC CDC record within 3.6 ± 7.0 km.	June to August.
Polygala sanguinea	Blood Milkwort	S3 / Sensitive	Poor acidic field, damp slope, open woods/bush. AC CDC record within 13.4 ± 1.0 km.	Late June into October.
Polygonum buxiforme	Small's Knotweed	S2S3 / Undetermined	Sandy soils near the coast. AC CDC record within 12.1 ± 0.0 km.	Late July to October.
Potamogeton richardsonii	Richardson's Pondweed	S2 / May Be At Risk	Lakes and streams in brackish or alkaline water. AC CDC record within 6.8 ± 0.0 km.	July to September.
Rumex maritimus (R. persicarioides var. fueginus)	Sea-side Dock	S3S4 / No rank	Open, coastal sites; saline. AC CDC record within 4.7 ± 0.0 km.	July to October.
Salix pedicellaris	Bog Willow	S2 / Sensitive	Sphagnous substrates of bogs, marshes and swamps.	May to July.

Species	Name	SARA (or COSEWIC*) Status and Sched. and NS ESA Status and AC CDC Rank / General Status	Habitat ² (nearby reference locations)	Flowers ²
			AC CDC record within 3.6 ± 7.0 km.	
Sanicula odorata	Clustered Sanicle	S1 / May be at Risk	Alluvial soils of riparian areas and intervales. AC CDC record within 11.1 ± 7.0 km.	July and August.
Suaeda calceoliformis	Horned Sea-blite	S3S4 / Secure	Sandy seashores and saltmarshes. AC CDC record within 3.4 ± 4.0 km.	August to October.
Teucrium canadense	Canada Germander	S3 / Sensitive	Gravelly substrates behind beaches. AC CDC record within 3.2 ± 5.0 km.	July to September.
Triosteum auranticum	Orange-fruited Tinker's Weed	S2S3 / Sensitive	Intervales, riparian areas and limestone slopes. AC CDC record within 13.6 ± 1.0 km.	July.

Status notes (as of December 2018) - S1: extremely rare in province; S2: rare in province; S3: uncommon in province; S4: widespread, common and apparently secure in province; S5: widespread, abundant and demonstrably secure in province, SU: unrankable (lack of info). The use of 'S#S#' is to denote a range in rank used to indicate any uncertainty about the status of the species or community. Qualifiers: B= Breeding (breeding population), N = Nonbreeding (nonbreeding population)? = Inexact/Uncertain, H = Historic (possibly extirpated), M = Migrant and SNR = Not yet assessed in province. (ACCDC 2018a).

2. Munro et al. 2014