Appendix F Surface Water Resources Supporting Documentation # Appendix F.1 **Baseline Surface Water Monitoring Memorandum** 110, 120 Western Parkway, Bedford, Nova Scotia B4B 0V2 Canada ghd.com Our ref: 12601021 15 August 2024 Mr. Roberto Margutti Director – North American Mining Operations 13500 Blue Diamond Road Las Vegas Nevada 89161 USA **Baseline Surface Water Monitoring, Antrim Gypsum Project** Dear Mr. Margutti #### 1. Introduction The Antrim Gypsum Project (the Project) is located approximately 50 km from Halifax, Nova Scotia (NS), near Gays River, along Lake Egmont Road in the community of Cooks Brook, NS. For the purpose of the Environmental Assessment, the Project Area (PA) is defined as the footprint of Project related infrastructure, and comprises of PIDs 40228389, 40228371, 40212409, 40229676, 40959983, 40959975, 40228009, 40228017, 41517319, 40767014, and 41152893. GHD is assisting CertainTeed with the completion of a provincial Environmental Assessment Registration Document (EARD). The purpose of the Baseline Surface Water Monitoring Program is to support future permitting (i.e., Industrial Approval and Fisheries Act Authorization) where Nova Scotia Environment and Climate Change (NSECC) require a year's worth of baseline data prior to construction activities commencing. The Project has documented black ash across the PA, including a concentration of trees within the northwest corner, and several individual trees within the southern portion of the PA. One tree is located within the extents of the proposed pit. This tree is proposed to be transplanted, in collaboration with the Mi'kmaq of Nova Scotia, in keeping with several other recent projects where transplantation of black ash has been allowed to support industrial and infrastructure development projects (Touquoy Gold Mine, Highway 104 and 107 upgrade projects). A comprehensive monitoring program will be established to support Project development which will act as a research project relating to the required hydrologic regime required for the remaining black ash (all but one individual tree) that will be avoided by the Project. Surface water quantity modelling data sourced from velocity measurements collected during the Baseline Surface Water Monitoring Program will inform the Black Ash Monitoring Program. The following tasks were conducted in support of the Baseline Surface Water Monitoring Program: - Site reconnaissance to identify surface water monitoring locations - Installation of five staff gauges - Quarterly water quality monitoring (grab sampling) and in-situ water quality measurements - Monthly discrete velocity (flow monitoring) - Continuous surface water elevation monitoring via installation of transducers (Solinst® Leveloggers and Baro-Loggers) Baseline surface water monitoring commenced in October 2022 with four monitoring locations. The program was later amplified to include seven locations with the submission of GHD's Baseline Surface Water Monitoring Proposal dated February 2, 2024. While the proposal listed seven monitoring locations which had been selected primarily via desktop analysis, ongoing field assessments resulted in the reduction of the program to five locations due to safety concerns. Monitoring locations are further discussed in section 2, below. # 2. Monitoring Locations Surface water monitoring stations were selected to capture outputs of runoff into watercourses surrounding the PA and to provide geographic coverage within the PA. Locations were initially selected following a desktop review of watercourses, catchment areas, flow directions, and Project discharge points. Monitoring locations were later refined following field assessments, during which select locations were deemed unsafe to conduct monitoring activities at. **Table 1** summarizes the existing surface water monitoring locations, finalized in May 2024. The locations detailed in **Table 1** are additionally displayed in **Figure 1**, following text. Table 1 Baseline Surface Water Monitoring Locations | Station | Coordinates | (UTM 20N) | Initial | Solinst® | Watercourse | Rationale | |---------|-------------|-----------|--------------------|------------------------------------|---------------------------------------|--| | | Northing | Easting | Sampling
Date | Levelogger
Installation
Date | | | | SW-1 | 473194 | 4983635 | October 5,
2022 | March 25,
2024 | Annand Brook | Represents surface water drainage that collects within the western portion of the Project Area and leaves through Annand Brook | | SW-2 | 473989 | 4984819 | October 5,
2022 | March 25,
2024 | Annand Brook | Represents surface water drainage that collects within the northern portion of the Project Area and discharges further downstream of SW-1 along Annand Brook | | SW-3 | 474874 | 4985157 | May 24, 2024 | May 24,
2024 | Gays River | Represents surface water drainage that collects within the northern portion of the Project Area and discharges to the Gays River, located downstream of the confluence with the Gays River | | SW-4 | 475910 | 4982897 | October 5,
2022 | March 25,
2024 | Unnamed drainage inlet to Lake Egmont | Reference station
upstream of the
Project Area that
drains to Lake Egmont | | Station | Coordinates | (UTM 20N) | Initial | Solinst® | Watercourse | Rationale | |---------|-------------|-----------|----------------------|------------------------------------|---|--| | | Northing | Easting | Sampling
Date | Levelogger
Installation
Date | | | | | | | | | | and eventually Gays
River | | SW-6 | 475457 | 4983389 | February 28,
2024 | March 25,
2024 | Unnamed tributary
to Gays River
immediately
downstream of
Lake Egmont | Represents surface
water monitoring
drainage from the
eastern portion of the
Project Area and
discharges to the
Gays River | # 2.1 Decommissioned Monitoring Locations The monitoring locations listed in Table 2, below, were decommissioned for a variety of reasons. This was primarily due to concerns regarding safety during flow monitoring events which requires crossing of watercourses. The Gays River historically has high degrees of fluctuation in response to seasonal changes and high precipitation events. While some locations were accessible during low flow conditions observed in mid-summer, water levels increased during the remainder of the year and following heavy precipitation events. Additionally, as the river typically has very low velocity rates, fine sediments are readily deposited from the water column to the riverbed. This results in exceedingly soft, thick substrate which is not wadable along the monitoring station transect during flow monitoring events. The soft substrate also contributes to creating an environment in which significant riverbed erosion can occur with little effort, causing deep pools to be scattered throughout the watercourse which are impassible year-round. These conditions were observed at the historic SW-3 and SW-5 monitoring locations. Decommissioned location SW-3A was located next to the Lake Egmont Road bridge, which has heavy local foot traffic during the fishing season. On arrival at SW-3A on May 24, 2024, it was found that the Solinst® Levelogger which had been installed during the March 25, 2024 monitoring event had been presumably removed by a non-Project associated person. Given that it was already not possible to collect flows at SW-3A due to the deep pool at the location, the monitoring location was decommissioned from the bridge, and a new monitoring location was installed approximately 50 m downstream where vegetation camouflaged the staff gauge and Levelogger and fishing activities were less evident. As location SW-3 (historic) had also been decommissioned during the same monitoring event, the new monitoring location was named SW-3 as to maintain naming convention patterns. Table 2 Decommissioned Baseline Surface Water Monitoring Locations | Station | Coordinates (UTM
20N) | | Initial
Sampling | Decommission
Date | Watercourse | Rationale for decommissioning | |-------------------------------------|--------------------------|---------|---------------------|----------------------|------------------------------------|---| | | Northing | Easting | Date | | | | | SW-3 (historic)
(decommissioned) | 4984831 | 475016 | April 12,
2023 | May 24, 2024 | Gays River | Soft substrate, high
seasonal water
levels | | SW-3A
(decommissioned) | 4984831 | 474916 | April 12,
2023 | May 24, 2024 | Gays River | High seasonal water levels, deep pooling, high foot traffic | | SW-5
(decommissioned) | 4983385 | 475770 | April 12,
2023 | May 24, 2024 | Gays River inlet
to Lake Egmont | Soft substrate, high
seasonal water
levels | # 3. Methodology # 3.1 Surface Water Quality Surface water samples were collected by grab sampling, which was conducted by dipping the sample container directly into the stream to collect surface water, unless the sample bottles contained preservatives. If the bottle contained preservatives, sterile unpreserved bottles were used to collect the sample. Samples were collected below the surface with the sample bottles completely submerged. This prevents floating debris from entering the sample bottles, which could result in unrepresentative analytical data. The water samples were then transferred to the appropriate preserved bottles. Field measurements of surface water pH, conductivity, dissolved oxygen, and temperature were measured
using a handheld multiparameter meter (i.e., Horiba U-52). Samples were transferred to coolers with ice immediately after they were collected and maintained in cool storage until delivery to Bureau Veritas Laboratories (BV) in Bedford, NS. The Chain-of-Custody (COC) form, which was supplied by the laboratory, was filled out with the sample, time, date, and location, and was signed by field staff before being relinquished to the receiving laboratory. The surface water samples were analysed for general chemistry, total metals, suspended solids, and fluoride analysis. QA/QC protocols included the collection of field duplicate samples (10%). The results of the QA/QC sampling were used to evaluate the reliability of the sampling and analysis methods. One surface water field duplicate was collected during each of the monitoring events. #### 3.2 Surface Water Flow Continuous and discrete water levels and discrete velocity measurements were monitored at all locations. Discrete velocity measurements were collected using either a handheld Marsh McBirney Flo-Mate 2000 or a HACH FH950 velocity meter. A transect was established at each monitoring location perpendicular to the direction of flow. The width of the stream was divided into intervals where velocity readings and water depth were measured. Velocities were measured at 60% of the depth below the water surface. A total flow was then calculated by computing the product of area and velocity using an average of the mean and mid flow calculation methods. Staff gauges were installed at each monitoring location during the February 2024 monitoring event and were used for discrete surface water level measurements. In addition, continuous water level data was collected at a 15-minute interval using Solinst® Leveloggers which were installed at each location. The loggers were downloaded during each surface water monitoring event, if possible, and compensated for barometric pressure, which was collected on-site using a Baro-Diver installed near monitoring location SW-4. Continuous surface water levels were corrected using the discrete water levels collected during the monitoring event. # 4. Results Below are the water quality and quantity results of the Baseline Surface Water Monitoring Program for the Project. # 4.1 Water Quality Analytical Results Surface water quality results were compared to the Canadian Council of Ministers of the Environment (CCME) Water Quality Guidelines protective of Fresh Water Aquatic Life (FWAL), Nova Scotia Tier 1 Environmental Quality Standards (NS Tier 1 EQS), and background maximums as established from October 2022 to July 2023. Monitoring locations SW-1, SW-2, SW-3 (historic, decommissioned) and SW-4 were sampled beginning in October 2022, with locations SW-3A and SW-5 added to the sampling program in April 2023, and location SW-6 added in February 2024. Analytical results are presented for locations SW-3 (historic, decommissioned), SW-3A (decommissioned) and SW-5 (decommissioned) prior to their decommissioning in May 2024. Water quality results for SW-3 prior to May 2024 are sourced from SW-3 (historic, decommissioned), with results from May and July 2024 collected from the replacement SW-3 location. Laboratory analytical certificates and tabulated results for baseline sampling events are provided in **Attachments 1 and 2**, respectively. #### SW-1 - Field measured pH levels were beneath the long-term CCME FWAL and NSE Tier 1 EQS range of 6.5 to 9 during all sampling events since October 2022. Lab measured pH levels were below the same guidelines during the January and April 2023 and March 2024 sampling events. - Total aluminum concentrations were above the long-term CCME FWAL and NSE Tier 1 EQS guidelines, which are variable depending on pH, during all monitoring events between October 2022 and July 2024. Analytical results did not exceed the background maximum of 490 µg/L. - Total iron concentrations were above the long-term CCME FWAL and NSE Tier 1 EQS guidelines, during the July 2023 (1300 μg/L), March 2024 (320 μg/L) and June 2024 (1300 μg/L) sampling events. Analytical results did not exceed the background maximum of 1500 μg/L. #### SW-2 - Field measured pH levels were beneath the long-term CCME FWAL and NSE Tier 1 EQS range of 6.5 to 9 during all sampling events since October 2022 with the exception of April 2023 (pH of 6.5). All lab measured pH levels fell within the guideline ranges. - Total aluminum concentrations were above the long-term CCME FWAL and NSE Tier 1 EQS guidelines, which are variable depending on pH, during all monitoring events between October 2022 and July 2024. The January 2023 concentration of 490 μg/L is considered to be the background maximum concentration for total aluminum. - Total cadmium exceeded the long-term CCME FWAL guideline during the October 2022 sampling event (0.044 μg/L). This result is considered to be the background maximum concentration for total cadmium. - Total iron concentrations were above the long-term CCME FWAL and NSE Tier 1 EQS guidelines, during the January 2023 (470 μg/L), July 2023 (1500 μg/L), and June 2024 (930 μg/L) sampling events. The July 2023 result is considered to be the background maximum concentration for total iron. #### SW-3 (historic, decommissioned) - Field measured pH levels were beneath the long-term CCME FWAL and NSE Tier 1 EQS range of 6.5 to 9 during all sampling events between October 2022 and May 2024, when the monitoring location was decommissioned. Lab measured pH levels were below the same guidelines during the February 2024 sampling event. - Total aluminum concentrations were above the long-term CCME FWAL and NSE Tier 1 EQS guidelines, which are variable depending on pH, during all monitoring events between October 2022 and May 2024, when the monitoring location was decommissioned. Analytical results did not exceed the background maximum of 490 µg/L. - Total iron concentrations were above the long-term CCME FWAL and NSE Tier 1 EQS guidelines, during the February 2024 (320 μg/L) sampling event. Analytical results did not exceed the background maximum of 1500 μg/L. #### SW-3 - Total aluminum concentrations were above the long-term CCME FWAL and NSE Tier 1 EQS guidelines, which are variable depending on pH, during the June 2024 monitoring event (130 μg/L) and in the June 2024 duplicate sample (290 μg/L). Analytical results did not exceed the background maximum of 490 μg/L. - Total iron concentrations were above the long-term CCME FWAL and NSE Tier 1 EQS guidelines, during the February 2024 (320 μg/L) sampling event. Analytical results did not exceed the background maximum of 1500 μg/L. Analytical results did not exceed the background maximum of 490 μg/L. #### SW-3A (decommissioned) - Field measured pH levels were beneath the long-term CCME FWAL and NSE Tier 1 EQS range of 6.5 to 9 during all sampling events between April 2023 and May 2024, when the monitoring location was decommissioned. - Total aluminum concentrations were above the long-term CCME FWAL and NSE Tier 1 EQS guidelines, which are variable depending on pH, during all monitoring events between April 2023 and May 2024, when the monitoring location was decommissioned. Analytical results did not exceed the background maximum of 490 μg/L. - Total iron concentrations were above the long-term CCME FWAL and NSE Tier 1 EQS guidelines, during the July 2023 (610 μg/L) sampling event. Analytical results did not exceed the background maximum of 1500 μg/L. #### SW-4 - Field measured pH levels were beneath the long-term CCME FWAL and NSE Tier 1 EQS range of 6.5 to 9 during all sampling events between October 2022 and June 2024. Lab measured pH levels were below the same guidelines during the January 2023 (6.47), January 2023 field duplicate sample (6.47), February 2024 (6.33), and February 2024 field duplicate sample (6.38). - Total aluminum concentrations were above the long-term CCME FWAL and NSE Tier 1 EQS guidelines, which are variable depending on pH, during all sampling events between October 2022 and June 2024. Analytical results did not exceed the background maximum of 490 µg/L. - Total iron concentrations were above the long-term CCME FWAL and NSE Tier 1 EQS guidelines, during sampling events from July 2023 through June 2024. Analytical results did not exceed the background maximum of 1500 μg/L. #### SW-5 (decommissioned) - Field measured pH levels were beneath the long-term CCME FWAL and NSE Tier 1 EQS range of 6.5 to 9 during all sampling events between April 2023 and May 2024, when the monitoring location was decommissioned. Lab measured pH levels were below the same guidelines during the February 2024 (6.22) sampling event. - Total aluminum concentrations were above the long-term CCME FWAL and NSE Tier 1 EQS guidelines, which are variable depending on pH, during all sampling events between April 2023 and May 2024, when the monitoring location was decommissioned. Total aluminum concentrations reported during the February 2024 sampling event (830 μg/L) exceeded the background maximum of 490 μg/L. - Total iron concentrations were above the long-term CCME FWAL and NSE Tier 1 EQS guidelines during the July 2023 (640 μg/L) and the February 2024 (390 μg/L) sampling events. Analytical results did not exceed the background maximum of 1500 μg/L. - Total manganese concentrations were above the long-term CCME FWAL and NSE Tier 1 EQS guidelines during the July 2023 (400 μg/L) sampling event. The July 2023 result is considered to be the background maximum concentration for total manganese. #### SW-6 - Field measured pH levels were beneath the long-term CCME FWAL and NSE Tier 1 EQS range of 6.5 to 9 during the February 2024 (4.79) sampling event. Lab measured pH levels were additionally below the same guidelines during the February 2024 (6.48) sampling event. - Total aluminum concentrations were above the long-term CCME FWAL and NSE Tier 1 EQS guidelines, which are variable depending on pH, during the February 2024
(310 μg/L) and June 2024 (350 μg/L) sampling events. Analytical results did not exceed the background maximum of 490 μg/L. - Total iron concentrations were above the long-term CCME FWAL and NSE Tier 1 EQS guidelines during the February 2024 (380 μg/L) and June 2024 (830 μg/L) sampling events. Analytical results did not exceed the background maximum of 1500 μg/L. # 4.2 Water Quantity Results Discrete surface water flow monitoring results are presented below in **Table 3**. Where no flow rates are presented the monitoring location was not accessible due to environmental factors (e.g., depth of flow, accessible pathway etc.) | Table 3 | Discrete Flow Mon | nitoring Results | |---------|-------------------|------------------| |---------|-------------------|------------------| | Station | Flow (m | | | | | | | | | |---------|-----------|-----------|-----------|-----------|-----------|--|--|--|--| | | 2/28/2024 | 3/25/2024 | 4/30/2024 | 5/24/2024 | 6/26/2024 | | | | | | SW1 | | 0.284 | 0.005 | 0.017 | 0.004 | | | | | | SW2 | | 0.015 | 0.001 | | 0.002 | | | | | | SW3 | | | 0.245 | | 0.164 | | | | | | SW3A | | | 0.077 | 0.265 | | | | | | | SW4 | 0.059 | 0.071 | 0.003 | 0.002 | 0.001 | | | | | | SW5 | | | | | | | | | | | SW6 | 0.026 | 0.020 | 0.001 | 0.001 | 0.001 | | | | | The results of the flow monitoring for the Project indicate seasonal fluctuation in flows as to be expected with the peak flow rates occurring during the March 25, 2024 sampling event. Flows at SW1 peak at 0.284 m³/s during the March 25, 2024 sampling event with a minimum measured flow rate of 0.004 m³/s during the June 26, 2024 sampling event. This trend is repeated for SW2 and SW4. SW6 monitoring indicated a peak flow rate of 0.026 m³/s on February 28, 2024. SW3 and SW3A were only monitored twice during the monitoring period. SW5 was inaccessible during all sampling events. In addition to discrete flow monitoring, level loggers were installed at each monitoring station (as per Section 3.2). The discrete flow monitoring completed to date does not provide sufficient information to develop a rating curve for each monitoring station to develop a continuous flow data set. Discrete flow monitoring will continue throughout 2024 to capture the seasonal variation of flows at each station and aid in the development of a rating curve for each monitoring station. # 5. Conclusions The reported surface water quality and quantity results are considered baseline or background and are representative of the sampling environment. As surface water monitoring continues through the life of the Project, results will be compared against the baseline assessment to determine if Project related impacts are occurring. Regards, Sadie Jacobs-Peters, B.Sc. Environmental Professional +1 902 334-1817 sadie.jacobs-peters@ghd.com SJP/tj/5 Encl. Chris Muirhead, P.Eng. Water Resources Engineer +1 519 340-4408 christopher.muirhead@ghd.com # Figures # Attachments # Attachment 1 **Laboratory Analytical Certificates** Your P.O. #: 735-004150 Your Project #: 12574778-03 Your C.O.C. #: 894298-01-01 **Attention: Callie Andrews** GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2 Report Date: 2022/10/25 Report #: R7356361 Version: 1 - Final #### **CERTIFICATE OF ANALYSIS** BUREAU VERITAS JOB #: C2T4381 Received: 2022/10/05, 14:57 Sample Matrix: Water # Samples Received: 4 Date Date **Analyses Quantity Extracted Analyzed Laboratory Method Analytical Method** Carbonate, Bicarbonate and Hydroxide 3 N/A 2022/10/17 N/A SM 23 4500-CO2 D Carbonate, Bicarbonate and Hydroxide 1 N/A 2022/10/19 N/A SM 23 4500-CO2 D Alkalinity 3 N/A 2022/10/17 ATL SOP 00142 SM 23 2320 B Alkalinity N/A 1 2022/10/18 ATL SOP 00142 SM 23 2320 B 4 Chloride N/A 2022/10/23 ATL SOP 00014 SM 23 4500-Cl- E m Colour 4 N/A 2022/10/24 ATL SOP 00020 SM 23 2120C m 3 Conductance - water N/A 2022/10/17 ATL SOP 00004 SM 23 2510B m Conductance - water 1 N/A 2022/10/18 ATL SOP 00004 SM 23 2510B m Hardness (calculated as CaCO3) 4 N/A 2022/10/21 ATL SOP 00048 **Auto Calc** Metals Water Total MS 4 2022/10/18 2022/10/20 ATL SOP 00058 EPA 6020B R2 m Ion Balance (% Difference) 4 N/A 2022/10/24 N/A Auto Calc. Anion and Cation Sum 4 N/A 2022/10/21 N/A Auto Calc. Nitrogen Ammonia - water 4 N/A 2022/10/17 ATL SOP 00015 EPA 350.1 R2 m 4 2022/10/24 ATL SOP 00016 USGS I-2547-11m Nitrogen - Nitrate + Nitrite N/A Nitrogen - Nitrite 4 N/A 2022/10/22 ATL SOP 00017 SM 23 4500-NO2- B m Nitrogen - Nitrate (as N) 4 N/A 2022/10/24 ATL SOP 00018 ASTM D3867-16 pH (1) 3 N/A 2022/10/17 ATL SOP 00003 SM 23 4500-H+ B m pH (1) 1 N/A 2022/10/18 ATL SOP 00003 SM 23 4500-H+ B m 4 N/A 2022/10/24 ATL SOP 00021 SM 23 4500-P E m Phosphorus - ortho Sat. pH and Langelier Index (@ 20C) 1 N/A 2022/10/21 ATL SOP 00049 Auto Calc. Sat. pH and Langelier Index (@ 20C) 3 N/A 2022/10/24 ATL SOP 00049 Auto Calc. Sat. pH and Langelier Index (@ 4C) 1 N/A Auto Calc. 2022/10/21 ATL SOP 00049 Sat. pH and Langelier Index (@ 4C) 3 N/A 2022/10/24 ATL SOP 00049 Auto Calc. Reactive Silica 4 N/A 2022/10/22 ATL SOP 00022 EPA 366.0 m 4 Sulphate N/A 2022/10/22 ATL SOP 00023 ASTM D516-16 m Total Dissolved Solids (TDS calc) 4 N/A 2022/10/24 N/A Auto Calc. Organic carbon - Total (TOC) (2) 3 N/A 2022/10/14 ATL SOP 00203 SM 23 5310B m Organic carbon - Total (TOC) (2) 1 N/A 2022/10/15 ATL SOP 00203 SM 23 5310B m **Total Suspended Solids** 4 2022/10/12 2022/10/17 ATL SOP 00007 SM 23 2540D m Turbidity 3 N/A 2022/10/19 ATL SOP 00011 EPA 180.1 R2 m Turbidity 2022/10/21 ATL SOP 00011 EPA 180.1 R2 m N/A Your P.O. #: 735-004150 Your Project #: 12574778-03 Your C.O.C. #: 894298-01-01 **Attention: Callie Andrews** GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2 Report Date: 2022/10/25 Report #: R7356361 Version: 1 - Final #### **CERTIFICATE OF ANALYSIS** BUREAU VERITAS JOB #: C2T4381 Received: 2022/10/05, 14:57 Remarks: Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA. All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard. Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent. Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory. Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. - * RPDs calculated using raw data. The rounding of final results may result in the apparent difference. - (1) The APHA Standard Method requires pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time. - (2) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC. #### **Encryption Key** Please direct all questions regarding this Certificate of Analysis to: Marie Muise, Key Account Specialist Email: Marie.MUISE@bureauveritas.com Phone# (902)420-0203 Ext:253 _____ This report has been generated and distributed using a secure automated process. Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Suzanne Rogers, General Manager responsible for Nova Scotia Environmental laboratory operations. Client Project #: 12574778-03 Your P.O. #: 735-004150 #### **RESULTS OF ANALYSES OF WATER** | Bureau Veritas ID | | TYX988 | | TYX989 | | | TYX990 | | | |-------------------------------------|-------|--------------|----------|--------------|-------|----------|--------------|-------|----------| | Sampling Date | | 2022/10/05 | | 2022/10/05 | | | 2022/10/05 | | | | Sampling Date | | 13:00 | | 11:30 | | | 10:00 | | | | COC Number | | 894298-01-01 | | 894298-01-01 | | | 894298-01-01 | | | | | UNITS | SW1 | QC Batch | SW2 | RDL | QC Batch | SW3 | RDL | QC Batch | | Calculated Parameters | | | | | | | | | | | Anion Sum | me/L | 0.780 | 8275123 | 1.23 | N/A | 8275123 | 2.52 | N/A | 8275123 | | Bicarb. Alkalinity
(calc. as CaCO3) | mg/L | <1.0 | 8275120 | 3.9 | 1.0 | 8275120 | 24 | 1.0 | 8275120 | | Calculated TDS | mg/L | 60 | 8275129 | 87 | 1.0 | 8275129 | 160 | 1.0 | 8275129 | | Carb. Alkalinity (calc. as CaCO3) | mg/L | <1.0 | 8275120 | <1.0 | 1.0 | 8275120 | <1.0 | 1.0 | 8275120 | | Cation Sum | me/L | 1.00 | 8275123 | 1.34 | N/A | 8275123 | 2.35 | N/A | 8275123 | | Hardness (CaCO3) | mg/L | 42 | 8275121 | 55 | 1.0 | 8275121 | 110 | 1.0 | 8275121 | | Ion Balance (% Difference) | % | 12.4 | 8275122 | 4.28 | N/A | 8275122 | 3.49 | N/A | 8275122 | | Langelier Index (@ 20C) | N/A | NC | 8275127 | -2.89 | | 8275127 | -1.18 | | 8275127 | | Langelier Index (@ 4C) | N/A | NC | 8275128 | -3.14 | | 8275128 | -1.43 | | 8275128 | | Nitrate (N) | mg/L | <0.050 | 8275124 | <0.050 | 0.050 | 8275124 | <0.050 | 0.050 | 8275124 | | Saturation pH (@ 20C) | N/A | NC | 8275127 | 9.50 | | 8275127 | 8.39 | | 8275127 | | Saturation pH (@ 4C) | N/A | NC | 8275128 | 9.75 | | 8275128 | 8.65 | | 8275128 | | Inorganics | | | • | | | | | | | | Total Alkalinity (Total as CaCO3) | mg/L | <2.0 | 8286598 | 3.9 | 2.0 | 8286598 | 24 | 2.0 | 8289828 | | Dissolved Chloride (Cl-) | mg/L | 5.5 | 8298338 | 7.8 | 1.0 | 8298338 | 8.6 | 1.0 | 8298338 | | Colour | TCU | 200 | 8298348 | 52 | 25 | 8298348 | 48 (1) | 10 | 8298348 | | Nitrate + Nitrite (N) | mg/L | <0.050 | 8298409 | <0.050 | 0.050 | 8298409 | <0.050 | 0.050 | 8298409 | | Nitrite (N) | mg/L | <0.010 | 8298414 | <0.010 | 0.010 | 8298414 | <0.010 | 0.010 | 8298414 | | Nitrogen (Ammonia Nitrogen) | mg/L | <0.050 | 8286822 | <0.050 | 0.050 | 8286822 | <0.050 | 0.050 | 8286822 | | Total Organic Carbon (C) | mg/L | 24 | 8283616 | 11 | 0.50 | 8282758 | 10 | 0.50 | 8282758 | | Orthophosphate (P) | mg/L | <0.010 | 8298397 | <0.010 | 0.010 | 8298397 | <0.010 | 0.010 | 8298397 | | рН | рН | 6.79 | 8286597 | 6.62 | | 8286597 | 7.22 | | 8289827 | | Reactive Silica (SiO2) | mg/L | 4.1 | 8298347 | 5.4 | 0.50 | 8298347 | 2.9 | 0.50 | 8298347 | | Total Suspended Solids | mg/L | 8.0 | 8277642 | 2.4 | 2.0 | 8277642 | <1.0 | 1.0 | 8277642 | | Dissolved Sulphate (SO4) | mg/L | 30 | 8298346 | 45 | 2.0 | 8298346 | 86 | 2.0 | 8298346 | | Turbidity | NTU | 1.8 | 8292230 | 1.9 | 0.10 | 8292230 | 0.39 | 0.10 | 8296013 | | Conductivity | uS/cm | 110 | 8286592 | 140 | 1.0 | 8286592 | 390 | 1.0 | 8289823 | RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable (1) Elevated reporting limit due to sample matrix. Client Project #: 12574778-03 Your P.O. #: 735-004150 #### **RESULTS OF ANALYSES OF WATER** | Bureau Veritas ID | | TYX991 | | | |-------------------------------------|-------|--------------|-------|----------| | | | 2022/10/05 | | | | Sampling Date | | 09:45 | | | | COC Number | | 894298-01-01 | | | | | UNITS | SW4 | RDL | QC Batch | | Calculated Parameters | | | | | | Anion Sum | me/L | 0.790 | N/A | 8275123 | | Bicarb. Alkalinity (calc. as CaCO3) | mg/L | 16 | 1.0 | 8275120 | | Calculated TDS | mg/L | 50 | 1.0 | 8275129 | | Carb. Alkalinity (calc. as CaCO3) | mg/L | <1.0 | 1.0 | 8275120 | | Cation Sum | me/L | 0.760 | N/A | 8275123 | | Hardness (CaCO3) | mg/L | 25 | 1.0 | 8275121 | | Ion Balance (% Difference) | % | 1.94 | N/A | 8275122 | | Langelier Index (@ 20C) | N/A | -2.08 | | 8275127 | | Langelier Index (@ 4C) | N/A | -2.33 | | 8275128 | | Nitrate (N) | mg/L | <0.050 | 0.050 | 8275124 | | Saturation pH (@ 20C) | N/A | 9.25 | | 8275127 | | Saturation pH (@ 4C) | N/A | 9.50 | | 8275128 | | Inorganics | l | | l | | | Total Alkalinity (Total as CaCO3) | mg/L | 16 | 2.0 | 8286598 | | Dissolved Chloride (Cl-) | mg/L | 8.2 | 1.0 | 8298338 | | Colour | TCU | 58 | 25 | 8298348 | | Nitrate + Nitrite (N) | mg/L | <0.050 | 0.050 | 8298409 | | Nitrite (N) | mg/L | <0.010 | 0.010 | 8298414 | | Nitrogen (Ammonia Nitrogen) | mg/L | <0.050 | 0.050 | 8286822 | | Total Organic Carbon (C) | mg/L | 8.3 | 0.50 | 8282758 | | Orthophosphate (P) | mg/L | <0.010 | 0.010 | 8298397 | | рН | рН | 7.17 | | 8286597 | | Reactive Silica (SiO2) | mg/L | 4.8 | 0.50 | 8298347 | | Total Suspended Solids | mg/L | 1.4 | 1.0 | 8277642 | | Dissolved Sulphate (SO4) | mg/L | 12 | 2.0 | 8298346 | | Turbidity | NTU | 1.4 | 0.10 | 8292230 | | Conductivity | uS/cm | 75 | 1.0 | 8286592 | | RDL = Reportable Detection Limit | • | | • | | | QC Batch = Quality Control Batch | | | | | | N/A = Not Applicable | | | | | Client Project #: 12574778-03 Your P.O. #: 735-004150 # **ELEMENTS BY ICP/MS (WATER)** | Bureau Veritas ID | | TYX988 | TYX989 | TYX990 | TYX991 | | | |--|-------|--------------|--------------|--------------|--------------|-------|----------| | Dureau Veritas ID | | 2022/10/05 | 2022/10/05 | 2022/10/05 | 2022/10/05 | | | | Sampling Date | | 13:00 | 11:30 | 10:00 | 09:45 | | | | COC Number | | 894298-01-01 | 894298-01-01 | 894298-01-01 | 894298-01-01 | | | | | UNITS | SW1 | SW2 | SW3 | SW4 | RDL | QC Batch | | Metals | | | | | | | | | Total Aluminum (AI) | ug/L | 350 | 190 | 69 | 140 | 5.0 | 8289817 | | Total Antimony (Sb) | ug/L | <1.0 | <1.0 | <1.0 | <1.0 | 1.0 | 8289817 | | Total Arsenic (As) | ug/L | <1.0 | <1.0 | <1.0 | <1.0 | 1.0 | 8289817 | | Total Barium (Ba) | ug/L | 12 | 30 | 16 | 15 | 1.0 | 8289817 | | Total Beryllium (Be) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | 8289817 | | Total Bismuth (Bi) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | 8289817 | | Total Boron (B) | ug/L | <50 | <50 | <50 | <50 | 50 | 8289817 | | Total Cadmium (Cd) | ug/L | 0.022 | 0.044 | <0.010 | <0.010 | 0.010 | 8289817 | | Total Calcium (Ca) | ug/L | 15000 | 18000 | 39000 | 7300 | 100 | 8289817 | | Total Chromium (Cr) | ug/L | <1.0 | <1.0 | <1.0 | <1.0 | 1.0 | 8289817 | | Total Cobalt (Co) | ug/L | <0.40 | <0.40 | <0.40 | <0.40 | 0.40 | 8289817 | | Total Copper (Cu) | ug/L | 0.74 | 0.87 | <0.50 | 0.99 | 0.50 | 8289817 | | Total Iron (Fe) | ug/L | 760 | 290 | 210 | 430 | 50 | 8289817 | | Total Lead (Pb) | ug/L | <0.50 | <0.50 | <0.50 | <0.50 | 0.50 | 8289817 | | Total Magnesium (Mg) | ug/L | 1300 | 2500 | 1800 | 1700 | 100 | 8289817 | | Total Manganese (Mn) | ug/L | 110 | 180 | 66 | 140 | 2.0 | 8289817 | | Total Molybdenum (Mo) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | 8289817 | | Total Nickel (Ni) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | 8289817 | | Total Phosphorus (P) | ug/L | <100 | <100 | <100 | <100 | 100 | 8289817 | | Total Potassium (K) | ug/L | 470 | 880 | 700 | 370 | 100 | 8289817 | | Total Selenium (Se) | ug/L | <0.50 | <0.50 | <0.50 | <0.50 | 0.50 | 8289817 | | Total Silver (Ag) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | 8289817 | | Total Sodium (Na) | ug/L | 3000 | 4900 | 4800 | 5400 | 100 | 8289817 | | Total Strontium (Sr) | ug/L | 52 | 40 | 160 | 40 | 2.0 | 8289817 | | Total Thallium (TI) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | 8289817 | | Total Tin (Sn) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | 8289817 | | Total Titanium (Ti) | ug/L | 5.0 | 4.4 | 2.3 | 3.3 | 2.0 | 8289817 | | Total Uranium (U) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | 8289817 | | Total Vanadium (V) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | 8289817 | | Total Zinc (Zn) | ug/L | 5.6 | 9.0 | <5.0 | <5.0 | 5.0 | 8289817 | | RDL = Reportable Detection
QC Batch = Quality Control B | | | | | | | | Client Project #: 12574778-03 Your P.O. #: 735-004150 #### **GENERAL COMMENTS** Each temperature is the average of up to three cooler temperatures taken at receipt | Package 1 | 13.0°C | |-----------|--------| | • | | Sample TYX988 [SW1]: Poor RCAp Ion Balance due to sample matrix. Anion sum does not include contribution from Total Organic Carbon. Results relate only to the items tested. Report Date: 2022/10/25 **GHD** Limited Client Project #: 12574778-03 Your P.O. #: 735-004150 #### **QUALITY ASSURANCE REPORT** | | | | QUALITI ASSURAI | | | | | | |---------|------|--------------|------------------------------------|--------------------------|--------|----------------|---------|-----------| | QA/QC | 114 | 00. | Demonstra | Data Analysis | Malara | D | LINUTC | 001:: | | Batch | Init | QC Type | Parameter Test Courses de d'Orlide | Date Analyzed | Value | Recovery | UNITS | QC Limits | | 8277642 | RMK | QC Standard | Total Suspended Solids | 2022/10/17 | -1.0 | 97 | %
/1 | 80 - 120 | | 8277642 | RMK | Method Blank | Total Suspended Solids | 2022/10/17
2022/10/17 | <1.0 | | mg/L | 20 | | 8277642 | RMK | RPD | Total Suspended Solids | • • | 2.6 | 0.2 | % | 20 | | 8282758 | RSL | Matrix Spike | Total Organic Carbon (C) | 2022/10/14 | | 93 | % | 85 - 115 | | 8282758 | RSL | Spiked Blank | Total Organic Carbon (C) | 2022/10/14 | 0.50 | 99 | % | 80 - 120 | | 8282758 | RSL | Method Blank | Total Organic Carbon (C) | 2022/10/14 | <0.50 | | mg/L | | | 8282758 | RSL | RPD | Total Organic Carbon (C) | 2022/10/14 | 0.48 | | % | 15 | | 8283616 | RSL | Matrix Spike | Total Organic Carbon (C) | 2022/10/15 | | 104 | % | 85 - 115 | | 8283616 | RSL | Spiked Blank | Total Organic Carbon (C) | 2022/10/14 | | 98 | % | 80 - 120 | | 8283616 | RSL | Method Blank | Total Organic Carbon (C) | 2022/10/14 | <0.50 | | mg/L | | | 8283616 | RSL | RPD | Total Organic Carbon (C) | 2022/10/15 | 12 | | % | 15 | | 8286592 | NGI | Spiked Blank | Conductivity | 2022/10/17 | | 101 | % | 80 - 120 | | 8286592 | NGI | Method Blank | Conductivity | 2022/10/17 | <1.0 | | uS/cm | | | 8286592 | NGI | RPD | Conductivity | 2022/10/17 | 4.8 | | % | 10 | | 8286597 | NGI | Spiked Blank | рН | 2022/10/17 | | 100 | % | 97 - 103 | | 8286597 | NGI | RPD | рН | 2022/10/17 | 0.58 | | % | N/A | | 8286598 | NGI | Spiked Blank | Total Alkalinity (Total as CaCO3) | 2022/10/17 | | 105 | % | 80 - 120 | | 8286598 | NGI | Method Blank | Total Alkalinity (Total as CaCO3) | 2022/10/17 | <2.0 | | mg/L | | | 8286598 | NGI | RPD | Total Alkalinity (Total as CaCO3) | 2022/10/17 | 1.9 | | % | 20 | | 8286822 | TGO | Matrix Spike | Nitrogen (Ammonia Nitrogen) | 2022/10/17 | | NC | % | 80 - 120 | | 8286822 | TGO | Spiked Blank | Nitrogen (Ammonia
Nitrogen) | 2022/10/17 | | 100 | % | 80 - 120 | | 8286822 | TGO | Method Blank | Nitrogen (Ammonia Nitrogen) | 2022/10/17 | <0.050 | | mg/L | | | 8286822 | TGO | RPD | Nitrogen (Ammonia Nitrogen) | 2022/10/17 | 0.47 | | % | 20 | | 8289817 | JHY | Matrix Spike | Total Aluminum (AI) | 2022/10/19 | | 99 | % | 80 - 120 | | | | | Total Antimony (Sb) | 2022/10/19 | | 100 | % | 80 - 120 | | | | | Total Arsenic (As) | 2022/10/19 | | 94 | % | 80 - 120 | | | | | Total Barium (Ba) | 2022/10/19 | | 96 | % | 80 - 120 | | | | | Total Beryllium (Be) | 2022/10/19 | | 96 | % | 80 - 120 | | | | | Total Bismuth (Bi) | 2022/10/19 | | 97 | % | 80 - 120 | | | | | Total Boron (B) | 2022/10/19 | | 98 | % | 80 - 120 | | | | | Total Cadmium (Cd) | 2022/10/19 | | 98 | % | 80 - 120 | | | | | Total Calcium (Ca) | 2022/10/19 | | 100 | % | 80 - 120 | | | | | Total Chromium (Cr) | 2022/10/19 | | 96 | % | 80 - 120 | | | | | Total Cobalt (Co) | 2022/10/19 | | 98 | % | 80 - 120 | | | | | Total Copper (Cu) | 2022/10/19 | | 97 | % | 80 - 120 | | | | | Total Iron (Fe) | 2022/10/19 | | 101 | % | 80 - 120 | | | | | Total Lead (Pb) | 2022/10/19 | | 97 | % | 80 - 120 | | | | | Total Magnesium (Mg) | 2022/10/19 | | 103 | % | 80 - 120 | | | | | Total Manganese (Mn) | 2022/10/19 | | 99 | % | 80 - 120 | | | | | Total Molybdenum (Mo) | 2022/10/19 | | 102 | % | 80 - 120 | | | | | Total Nickel (Ni) | 2022/10/19 | | 98 | % | 80 - 120 | | | | | Total Phosphorus (P) | 2022/10/19 | | 102 | % | 80 - 120 | | | | | | | | | | | | | | | Total Potassium (K) | 2022/10/19 | | 100
99 | % | 80 - 120 | | | | | Total Selenium (Se) | 2022/10/19 | | 9 9 | % | 80 - 120 | | | | | Total Salver (Ag) | 2022/10/19 | | | % | 80 - 120 | | | | | Total Strontium (Sr) | 2022/10/19 | | 103
NC | % | 80 - 120 | | | | | Total Strontium (Sr) | 2022/10/19 | | NC
00 | % | 80 - 120 | | | | | Total Thallium (TI) | 2022/10/19 | | 99 | % | 80 - 120 | | | | | Total Tin (Sn) | 2022/10/19 | | 99 | % | 80 - 120 | | | | | Total Titanium (Ti) | 2022/10/19 | | 97 | % | 80 - 120 | | | | | Total Uranium (U) | 2022/10/19 | | 101 | % | 80 - 120 | | | | | Total Vanadium (V) | 2022/10/19 | | 98 | % | 80 - 120 | | | | | Total Zinc (Zn) | 2022/10/19 | | 98 | % | 80 - 120 | | 8289817 | JHY | Spiked Blank | Total Aluminum (Al) | 2022/10/19 | | 100 | % | 80 - 120 | Client Project #: 12574778-03 Your P.O. #: 735-004150 | QA/QC | | | _ | | | | | | |--------|------|--------------|-----------------------|---------------|--------|----------|-------|-----------| | Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | | | | Total Antimony (Sb) | 2022/10/19 | | 97 | % | 80 - 120 | | | | | Total Arsenic (As) | 2022/10/19 | | 90 | % | 80 - 120 | | | | | Total Barium (Ba) | 2022/10/19 | | 92 | % | 80 - 120 | | | | | Total Beryllium (Be) | 2022/10/19 | | 93 | % | 80 - 120 | | | | | Total Bismuth (Bi) | 2022/10/19 | | 95 | % | 80 - 120 | | | | | Total Boron (B) | 2022/10/19 | | 97 | % | 80 - 120 | | | | | Total Cadmium (Cd) | 2022/10/19 | | 96 | % | 80 - 120 | | | | | Total Calcium (Ca) | 2022/10/19 | | 98 | % | 80 - 120 | | | | | Total Chromium (Cr) | 2022/10/19 | | 93 | % | 80 - 120 | | | | | Total Cobalt (Co) | 2022/10/19 | | 95 | % | 80 - 120 | | | | | Total Copper (Cu) | 2022/10/19 | | 95 | % | 80 - 120 | | | | | Total Iron (Fe) | 2022/10/19 | | 101 | % | 80 - 120 | | | | | Total Lead (Pb) | 2022/10/19 | | 94 | % | 80 - 120 | | | | | Total Magnesium (Mg) | 2022/10/19 | | 102 | % | 80 - 120 | | | | | Total Manganese (Mn) | 2022/10/19 | | 97 | % | 80 - 120 | | | | | Total Molybdenum (Mo) | 2022/10/19 | | 99 | % | 80 - 120 | | | | | Total Nickel (Ni) | 2022/10/19 | | 96 | % | 80 - 120 | | | | | Total Phosphorus (P) | 2022/10/19 | | 99 | % | 80 - 120 | | | | | Total Potassium (K) | 2022/10/19 | | 99 | % | 80 - 120 | | | | | Total Selenium (Se) | 2022/10/19 | | 94 | % | 80 - 120 | | | | | Total Silver (Ag) | 2022/10/19 | | 93 | % | 80 - 120 | | | | | Total Sodium (Na) | 2022/10/19 | | 102 | % | 80 - 120 | | | | | Total Strontium (Sr) | 2022/10/19 | | 91 | % | 80 - 120 | | | | | Total Thallium (TI) | 2022/10/19 | | 98 | % | 80 - 120 | | | | | Total Tin (Sn) | 2022/10/19 | | 96 | % | 80 - 120 | | | | | Total Titanium (Ti) | 2022/10/19 | | 97 | % | 80 - 120 | | | | | Total Uranium (U) | 2022/10/19 | | 97 | % | 80 - 120 | | | | | Total Vanadium (V) | 2022/10/19 | | 95 | % | 80 - 120 | | | | | Total Zinc (Zn) | 2022/10/19 | | 97 | % | 80 - 120 | | 289817 | JHY | Method Blank | Total Aluminum (Al) | 2022/10/19 | <5.0 | | ug/L | | | | | | Total Antimony (Sb) | 2022/10/19 | <1.0 | | ug/L | | | | | | Total Arsenic (As) | 2022/10/19 | <1.0 | | ug/L | | | | | | Total Barium (Ba) | 2022/10/19 | <1.0 | | ug/L | | | | | | Total Beryllium (Be) | 2022/10/19 | <0.10 | | ug/L | | | | | | Total Bismuth (Bi) | 2022/10/19 | <2.0 | | ug/L | | | | | | Total Boron (B) | 2022/10/19 | <50 | | ug/L | | | | | | Total Cadmium (Cd) | 2022/10/19 | <0.010 | | ug/L | | | | | | Total Calcium (Ca) | 2022/10/19 | <100 | | ug/L | | | | | | Total Chromium (Cr) | 2022/10/19 | <1.0 | | ug/L | | | | | | Total Cobalt (Co) | 2022/10/19 | <0.40 | | ug/L | | | | | | Total Copper (Cu) | 2022/10/19 | <0.50 | | ug/L | | | | | | Total Iron (Fe) | 2022/10/19 | <50 | | ug/L | | | | | | Total Lead (Pb) | 2022/10/19 | <0.50 | | ug/L | | | | | | Total Magnesium (Mg) | 2022/10/19 | <100 | | ug/L | | | | | | Total Manganese (Mn) | 2022/10/19 | <2.0 | | ug/L | | | | | | Total Molybdenum (Mo) | 2022/10/19 | <2.0 | | ug/L | | | | | | Total Nickel (Ni) | 2022/10/19 | <2.0 | | ug/L | | | | | | Total Phosphorus (P) | 2022/10/19 | <100 | | ug/L | | | | | | Total Potassium (K) | 2022/10/19 | <100 | | ug/L | | | | | | Total Selenium (Se) | 2022/10/19 | <0.50 | | ug/L | | | | | | Total Silver (Ag) | 2022/10/19 | <0.10 | | ug/L | | | | | | Total Sodium (Na) | 2022/10/19 | <100 | | ug/L | | | | | | Total Strontium (Sr) | 2022/10/19 | <2.0 | | ug/L | | | | | | Total Thallium (Tl) | 2022/10/19 | < 0.10 | | ug/L | | Client Project #: 12574778-03 Your P.O. #: 735-004150 | | QUALITY ASSURANCE REPORT(CONT'D) | | | | | | | | | | | |----------------|----------------------------------|---------------------|--------------------------------------|--------------------------|-------------|----------|------------------|-----------------|--|--|--| | QA/QC
Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | | | | | | | Total Tin (Sn) | 2022/10/19 | <2.0 | | ug/L | | | | | | | | | Total Titanium (Ti) | 2022/10/19 | <2.0 | | ug/L | | | | | | | | | Total Uranium (U) | 2022/10/19 | <0.10 | | ug/L | | | | | | | | | Total Vanadium (V) | 2022/10/19 | <2.0 | | ug/L | | | | | | | | | Total Zinc (Zn) | 2022/10/19 | <5.0 | | ug/L | | | | | | 8289817 | JHY | RPD | Total Aluminum (Al) | 2022/10/19 | 3.1 | | % | 20 | | | | | | | | Total Antimony (Sb) | 2022/10/19 | NC | | % | 20 | | | | | | | | Total Arsenic (As) | 2022/10/19 | NC | | % | 20 | | | | | | | | Total Barium (Ba) | 2022/10/19 | 0.68 | | % | 20 | | | | | | | | Total Beryllium (Be) | 2022/10/19 | NC | | % | 20 | | | | | | | | Total Bismuth (Bi) | 2022/10/19 | NC | | % | 20 | | | | | | | | Total Boron (B) | 2022/10/19 | NC | | % | 20 | | | | | | | | Total Cadmium (Cd) | 2022/10/19 | NC | | % | 20 | | | | | | | | Total Calcium (Ca) | 2022/10/19 | 4.9 | | % | 20 | | | | | | | | Total Chromium (Cr) | 2022/10/19 | NC | | % | 20 | | | | | | | | Total Cobalt (Co) | 2022/10/19 | NC | | % | 20 | | | | | | | | Total Copper (Cu) | 2022/10/19 | 1.5 | | % | 20 | | | | | | | | Total Iron (Fe) | 2022/10/19 | 5.1 | | % | 20 | | | | | | | | Total Lead (Pb) | 2022/10/19 | NC | | % | 20 | | | | | | | | Total Magnesium (Mg) | 2022/10/19 | 2.6 | | % | 20 | | | | | | | | Total Manganese (Mn) | 2022/10/19 | 1.7 | | % | 20 | | | | | | | | Total Molybdenum (Mo) | 2022/10/19 | NC | | % | 20 | | | | | | | | Total Nickel (Ni) | 2022/10/19 | NC | | % | 20 | | | | | | | | Total Phosphorus (P) | 2022/10/19 | NC | | % | 20 | | | | | | | | Total Potassium (K) | 2022/10/19 | 2.6 | | % | 20 | | | | | | | | Total Selenium (Se) | 2022/10/19 | NC | | % | 20 | | | | | | | | Total Silver (Ag) | 2022/10/19 | NC | | % | 20 | | | | | | | | Total Sodium (Na) | 2022/10/19 | 3.7 | | % | 20 | | | | | | | | Total Strontium (Sr) | 2022/10/19 | 3.1 | | % | 20 | | | | | | | | Total Thallium (TI) | 2022/10/19 | NC | | % | 20 | | | | | | | | Total Tin (Sn) | 2022/10/19 | NC | | % | 20 | | | | | | | | Total Titanium (Ti) | 2022/10/19 | NC | | % | 20 | | | | | | | | Total Uranium (U) | 2022/10/19 | NC | | % | 20 | | | | | | | | Total Vanadium (V) | 2022/10/19 | NC | | % | 20 | | | | | | | | Total Zinc (Zn) | 2022/10/19 | NC | | % | 20 | | | | | 8289823 | NGI | Spiked Blank | Conductivity | 2022/10/13 | IVC | 98 | % | 80 - 120 | | | | | 8289823 | NGI | Method Blank | Conductivity | 2022/10/18 | <1.0 | 38 | uS/cm | 00 - 120 | | | | | | | | • | | | | | 10 | | | | | 8289823 | NGI | RPD | Conductivity | 2022/10/18 | 0.66 | 100 | % | 10
97 - 103 | | | | | 8289827 | NGI | Spiked Blank
RPD | рН | 2022/10/18 | 0.80 | 100 | % | | | | | | 8289827 | NGI | | pH Total Alkalinity (Total as CaCO3) | 2022/10/18
2022/10/18 | 0.80 | 105 | %
% | N/A
80 - 120 | | | | | 8289828 | NGI | Spiked Blank | Total Alkalinity (Total as CaCO3) | | -2.0 | 105 | | 80 - 120 | | | | | 8289828 | NGI | Method Blank | Total Alkalinity (Total as CaCO3) | 2022/10/18 | <2.0 | | mg/L | 20 | | | | | 8289828 | NGI | RPD | Total Alkalinity (Total as CaCO3) | 2022/10/18 | 0.82 | 400 | % | 20 | | | | | 8292230 | AA0 | QC Standard | Turbidity | 2022/10/19 | | 109 | % | 80 - 120 | | | | | 8292230 | AA0 | Spiked Blank | Turbidity | 2022/10/19 | | 99 | %
 | 80 - 120 | | | | | 8292230 | AA0 | Method Blank | Turbidity | 2022/10/19 | <0.10 | | NTU | | | | | | 8292230 | AA0 | RPD | Turbidity | 2022/10/19 | 1.7 | 4.0- | % | 20 | | | | | 8296013 | AA0 | QC Standard | Turbidity | 2022/10/21 | | 108 | % | 80 - 120 | | | | | 8296013 |
AA0 | Spiked Blank | Turbidity | 2022/10/21 | | 105 | % | 80 - 120 | | | | | 8296013 | AA0 | Method Blank | Turbidity | 2022/10/21 | <0.10 | | NTU | | | | | | 8296013 | AA0 | RPD | Turbidity | 2022/10/21 | 20 | | % | 20 | | | | | 8298338 | TGO | Matrix Spike | Dissolved Chloride (CI-) | 2022/10/23 | | 54 (1) | % | 80 - 120 | | | | | 8298338 | TGO | Spiked Blank | Dissolved Chloride (Cl-) | 2022/10/23 | | 94 | % | 80 - 120 | | | | | 8298338 | TGO | Method Blank | Dissolved Chloride (Cl-) | 2022/10/23 | <1.0 | | mg/L | | | | | Client Project #: 12574778-03 Your P.O. #: 735-004150 #### QUALITY ASSURANCE REPORT(CONT'D) | QA/QC | | | | | | | | | |---------|------|--------------|--------------------------|---------------|--------|----------|-------|-----------| | Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | 8298338 | TGO | RPD | Dissolved Chloride (Cl-) | 2022/10/23 | 0.48 | | % | 20 | | 8298346 | TGO | Matrix Spike | Dissolved Sulphate (SO4) | 2022/10/22 | | NC | % | 80 - 120 | | 8298346 | TGO | Spiked Blank | Dissolved Sulphate (SO4) | 2022/10/22 | | 101 | % | 80 - 120 | | 8298346 | TGO | Method Blank | Dissolved Sulphate (SO4) | 2022/10/22 | <2.0 | | mg/L | | | 8298346 | TGO | RPD | Dissolved Sulphate (SO4) | 2022/10/22 | 3.8 | | % | 20 | | 8298347 | TGO | Matrix Spike | Reactive Silica (SiO2) | 2022/10/22 | | NC | % | 80 - 120 | | 8298347 | TGO | Spiked Blank | Reactive Silica (SiO2) | 2022/10/22 | | 94 | % | 80 - 120 | | 8298347 | TGO | Method Blank | Reactive Silica (SiO2) | 2022/10/22 | <0.50 | | mg/L | | | 8298347 | TGO | RPD | Reactive Silica (SiO2) | 2022/10/22 | 3.4 | | % | 20 | | 8298348 | TGO | Spiked Blank | Colour | 2022/10/24 | | 96 | % | 80 - 120 | | 8298348 | TGO | Method Blank | Colour | 2022/10/24 | <5.0 | | TCU | | | 8298348 | TGO | RPD | Colour | 2022/10/24 | NC | | % | 20 | | 8298397 | TGO | Matrix Spike | Orthophosphate (P) | 2022/10/24 | | 50 (1) | % | 80 - 120 | | 8298397 | TGO | Spiked Blank | Orthophosphate (P) | 2022/10/24 | | 102 | % | 80 - 120 | | 8298397 | TGO | Method Blank | Orthophosphate (P) | 2022/10/24 | <0.010 | | mg/L | | | 8298397 | TGO | RPD | Orthophosphate (P) | 2022/10/24 | NC | | % | 20 | | 8298409 | TGO | Matrix Spike | Nitrate + Nitrite (N) | 2022/10/24 | | NC | % | 80 - 120 | | 8298409 | TGO | Spiked Blank | Nitrate + Nitrite (N) | 2022/10/24 | | 106 | % | 80 - 120 | | 8298409 | TGO | Method Blank | Nitrate + Nitrite (N) | 2022/10/24 | <0.050 | | mg/L | | | 8298409 | TGO | RPD | Nitrate + Nitrite (N) | 2022/10/24 | 3.2 | | % | 20 | | 8298414 | TGO | Matrix Spike | Nitrite (N) | 2022/10/22 | | NC | % | 80 - 120 | | 8298414 | TGO | Spiked Blank | Nitrite (N) | 2022/10/22 | | 106 | % | 80 - 120 | | 8298414 | TGO | Method Blank | Nitrite (N) | 2022/10/22 | <0.010 | | mg/L | | | 8298414 | TGO | RPD | Nitrite (N) | 2022/10/22 | 0.41 | | % | 20 | N/A = Not Applicable Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement. Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference. QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy. Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy. Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination. NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration) NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL). (1) Poor spike recovery due to probable sample matrix interference. Client Project #: 12574778-03 Your P.O. #: 735-004150 #### **VALIDATION SIGNATURE PAGE** The analytical data and all QC contained in this report were reviewed and validated by: Colleen Acker, B.Sc, Scientific Service Specialist **Automated Statchk** Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations. | intact Name A | #3000 GHD Lii
Accounts payab
455 Phillip St | INVOICE TO: | | | | | Fax.(902) 42 | 0-8612 www. | bvna com | | | | | | Chain | Of Cus | tody Record | | | |--------------------|---|---|--|--------------------
--|----------|--|------------------------|----------|----------------------|------------|-----------|---------------|--------------|-----------------|--|---|--------------------------------------|---| | intact Name A | Accounts payab | mited | | | Report In | formatio | on | | | | Projec | t Informa | tion | _ | | | Labo | ratory Use | Only | | intact Name A | Accounts payab | | Company | Name #30775 C | | | | | | 1 | C2002 | | | | _ | В | reau Veritas Job | - | Bottle Order #: | | ess 4 | | A THAT SALE | Company
Contact N | 2 11 1 | | | omo | | | Quotation # | PFI | Alan | F 7857 | 12141 |) | 0 | | ~1 | (40000000000000000000000000000000000000 | | V (5 | | 1000 - 100 | Address | 120 Weste | 3111-55-110-00-00 | | | | | | 12574 | 778-03 | 103 | 201130 | | (5) | 742 | 180 | 894298 | | - | Waterloo ON N | 2L 3X2 | Address | Bedford N | ALL CONTRACTOR OF THE PROPERTY | | | | | Project # | 1,443,1131 | | | | | Chal | n Of Custody Re | cord | Project Manager | | 100 | (519) 884-0510 | Fax (519) 725-13 | 394 Phone | (902) 468- | CONTRACTOR SHIPSES | | Fax | | | Project Name | | | | | 11 | 7174.75.25 | | 2014-0 | , report manager | | | Invoicing-Canad | | Email | Callie.and | rews@ahd | .com@ | | iessica.r | omo@ah | Site #
Sampled By | mf | 11/ | | | - 1 | | C#894298-01-01 | 1111111111111 | Marie Muise | | egulatory Criteria | | | | ecial Instructions | | T | 53 | 1,7000.00 | | S REQUESTED (PL | | 100 | | | _ | | Turnaround Ti | mo (TAT) Ba | and a second | | ** Specify Matra | x: Surface/Ground/Ti | apwater/Sewage/Effluent/Seawater
ssue/Soi//SiugaeMetal | | | | rved | d
Total Metals in | spilds | | | | | | (N
S | tandard TA | indard) 1
ad if Rusi
T = 5-7 V
Standari | n TAT is not specif
Vorking days for m | ied):
ost tests
sts such as BC | ush projects Do and Dioxins/Furans are | | | ES MUST BE KEPT | COOL (< 00°C) FROM TIME OF SAMPL | ING UNTIL DELIVERY T | O BUREAU VERITAS | Matrix | Filter | Lab Filtration Required Atlantic RCAp-MS Total Water | Total Suspended Solids | | | | | | D | # of
Bottles | | Comments / F | Time Red | | | | | SW1 | 22/10/05 | 13:00 | SW | | × | x | | | | | | | 5 | | | | | | | | SW2 | 1 | 11.30 | 1 | | × | x | | | | | | | 5 | | | | | | | | SW3 | | 10:00 | | | × | X | | | | | | | 5 | | | | | | | | SW4 | 7 | 4:45 | 1 | | X | x | | | | | | | 5 | | Attem | ot to C | ool: | | | | | 1 | | | 1 1 | | | | | | | | | 1 | | Yes L | / | | | | | | | | | \Box | 1 | | | | | | | 1 | | | No | - | | | | | | | | | \Box | 1 | | | | | 1 | | \dashv | | | 244 | | | | | | | | | | \Box | | | | | 1 | 1 | | | | | | | | | | | | | | 1 | \Box | | | | | | 1 | | | | | | | 2022 OCT 5 | | 1 | | | | | | | | | | | | | | | Î | | | | | | | SHED BY (Signatur | | The state of s | me | A RECE | VED BY | : (Signature/ | Print) | 1 | Date: (YY/MM/D | O) Time | | jars used and | | | | Lab Use | Only | | | mortery | in I may | reffice 2 | 1/10/05 14 | 54 | MA | M | 11 | ٠ | | | | - ' | notsubmitted | Time Sensiti | ve Temp | erature (| C) on Receipt | Custod | Yes No | Bureau Veritas Canada (2019) Inc. Your P.O. #: 735-005520 Your Project #: 12601021 Site Location: Antrium Gypsum Project Your C.O.C. #: 914888-01-01 **Attention: Callie Andrews** GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2 Report Date: 2023/01/27 Report #: R7486921 Version: 1 - Final #### **CERTIFICATE OF ANALYSIS** BUREAU VERITAS JOB #: C318877 Received: 2023/01/19, 14:30 Sample Matrix: Water # Samples Received: 5 | | | Date | Date | | | |--------------------------------------|----------|------------|------------|--------------------------|--------------------------| | Analyses | Quantity | Extracted | Analyzed | Laboratory Method | Analytical Method | | Carbonate, Bicarbonate and Hydroxide | 5 | N/A | 2023/01/25 | N/A | SM 23 4500-CO2 D | | Alkalinity | 5 | N/A | 2023/01/25 | ATL SOP 00142 | SM 23 2320 B | | Chloride | 5 | N/A | 2023/01/24 | ATL SOP 00014 | SM 23 4500-Cl- E m | | Colour | 5 | N/A | 2023/01/25 | ATL SOP 00020 | SM 23 2120C m | | Conductance - water | 5 | N/A | 2023/01/25 | ATL SOP 00004 | SM 23 2510B m | | Hardness (calculated as CaCO3) | 5 | N/A | 2023/01/24 | ATL SOP 00048 | Auto Calc | | Metals Water Total MS | 3 | 2023/01/23 | 2023/01/23 | ATL SOP 00058 | EPA 6020B R2 m | | Metals Water Total MS | 2 | 2023/01/23 | 2023/01/24 | ATL SOP 00058 | EPA 6020B R2 m | | Ion Balance (% Difference) | 5 | N/A | 2023/01/25 | N/A | Auto Calc. | | Anion and Cation Sum | 5 | N/A | 2023/01/25 | N/A | Auto Calc. | | Nitrogen Ammonia - water | 5 | N/A | 2023/01/25 | ATL SOP 00015 | EPA 350.1 R2 m | | Nitrogen - Nitrate + Nitrite | 5 | N/A | 2023/01/24 | ATL SOP 00016 | USGS I-2547-11m | | Nitrogen - Nitrite | 5 | N/A | 2023/01/24 | ATL SOP 00017 | SM 23 4500-NO2- B m | | Nitrogen - Nitrate (as N) | 5 | N/A | 2023/01/25 | ATL SOP 00018 | ASTM D3867-16 | | pH (1) | 5 | N/A | 2023/01/25 | ATL SOP 00003 | SM 23 4500-H+ B m | | Phosphorus - ortho | 5 | N/A | 2023/01/25 | ATL SOP 00021 | SM 23 4500-P E m | | Sat. pH and Langelier Index (@ 20C) | 5 | N/A | 2023/01/25 | ATL SOP 00049 | Auto Calc. | | Sat. pH and Langelier Index (@ 4C) | 5 | N/A | 2023/01/25 | ATL SOP 00049 | Auto Calc. | | Reactive Silica | 5 | N/A | 2023/01/25 | ATL SOP 00022 | EPA 366.0 m | | Sulphate | 5 | N/A | 2023/01/24 | ATL SOP 00023 | ASTM D516-16 m | | Total Dissolved Solids (TDS calc) | 5 | N/A | 2023/01/25 | N/A | Auto Calc. | | Organic carbon - Total (TOC) (2) | 1 | N/A | 2023/01/24 | ATL SOP 00203 | SM 23 5310B m | | Organic carbon - Total (TOC) (2) | 4 | N/A | 2023/01/25 | ATL SOP 00203 | SM 23 5310B m | | Total Suspended Solids | 5 | 2023/01/24 | 2023/01/26 | ATL SOP 00007 | SM 23 2540D m | | Turbidity | 5 | N/A | 2023/01/25 | ATL SOP
00011 | EPA 180.1 R2 m | #### Remarks: Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA. All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are Your P.O. #: 735-005520 Your Project #: 12601021 Site Location: Antrium Gypsum Project Your C.O.C. #: 914888-01-01 **Attention: Callie Andrews** GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2 Report Date: 2023/01/27 Report #: R7486921 Version: 1 - Final #### **CERTIFICATE OF ANALYSIS** #### BUREAU VERITAS JOB #: C318877 Received: 2023/01/19, 14:30 reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard. Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent. Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory. Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. - * RPDs calculated using raw data. The rounding of final results may result in the apparent difference. - (1) The APHA Standard Method requires pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time. - (2) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC. #### **Encryption Key** Please direct all questions regarding this Certificate of Analysis to: Marie Muise, Key Account Specialist Email: Marie.MUISE@bureauveritas.com Phone# (902)420-0203 Ext:253 ----- This report has been generated and distributed using a secure automated process. Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Suzanne Rogers, General Manager responsible for Nova Scotia Environmental laboratory operations. Client Project #: 12601021 Site Location: Antrium Gypsum Project Your P.O. #: 735-005520 Sampler Initials: JV #### **RESULTS OF ANALYSES OF WATER** | Bureau Veritas ID | | UVW834 | | | UVW834 | | | UVW835 | | | |-------------------------------------|-------|--------------|-------|----------|----------------|-------|----------|--------------|-------|----------| | Sampling Date | | 2023/01/19 | | | 2023/01/19 | | | 2023/01/19 | | | | Sampling Date | | 13:00 | | | 13:00 | | | 10:40 | | | | COC Number | | 914888-01-01 | | | 914888-01-01 | | | 914888-01-01 | | | | | UNITS | SW1 | RDL | QC Batch | SW1
Lab-Dup | RDL | QC Batch | SW2 | RDL | QC Batch | | Calculated Parameters | | | | | | | | | | | | Anion Sum | me/L | 0.320 | N/A | 8460111 | | | | 0.380 | N/A | 8460111 | | Bicarb. Alkalinity (calc. as CaCO3) | mg/L | 3.3 | 1.0 | 8460106 | | | | 5.8 | 1.0 | 8460106 | | Calculated TDS | mg/L | 23 | 1.0 | 8460117 | | | | 27 | 1.0 | 8460117 | | Carb. Alkalinity (calc. as CaCO3) | mg/L | <1.0 | 1.0 | 8460106 | | | | <1.0 | 1.0 | 8460106 | | Cation Sum | me/L | 0.360 | N/A | 8460111 | | | | 0.470 | N/A | 8460111 | | Hardness (CaCO3) | mg/L | 13 | 1.0 | 8460109 | | | | 15 | 1.0 | 8460109 | | Ion Balance (% Difference) | % | 5.88 | N/A | 8460110 | | | | 10.6 | N/A | 8460110 | | Langelier Index (@ 20C) | N/A | -3.76 | | 8460114 | | | | -3.11 | | 8460114 | | Langelier Index (@ 4C) | N/A | -4.02 | | 8460116 | | | | -3.36 | | 8460116 | | Nitrate (N) | mg/L | <0.050 | 0.050 | 8460112 | | | | <0.050 | 0.050 | 8460112 | | Saturation pH (@ 20C) | N/A | 10.1 | | 8460114 | | | | 9.88 | | 8460114 | | Saturation pH (@ 4C) | N/A | 10.4 | | 8460116 | | | | 10.1 | | 8460116 | | Inorganics | | | | | | | | | | | | Total Alkalinity (Total as CaCO3) | mg/L | 3.3 | 2.0 | 8466399 | | | | 5.8 | 2.0 | 8466399 | | Dissolved Chloride (Cl-) | mg/L | 2.4 | 1.0 | 8465944 | | | | 4.1 | 1.0 | 8465944 | | Colour | TCU | 86 | 25 | 8465937 | | | | 45 | 5.0 | 8465937 | | Nitrate + Nitrite (N) | mg/L | <0.050 | 0.050 | 8465935 | | | | <0.050 | 0.050 | 8465935 | | Nitrite (N) | mg/L | <0.010 | 0.010 | 8465643 | | | | <0.010 | 0.010 | 8465643 | | Nitrogen (Ammonia Nitrogen) | mg/L | <0.050 | 0.050 | 8467845 | <0.050 | 0.050 | 8467845 | <0.050 | 0.050 | 8467835 | | Total Organic Carbon (C) | mg/L | 9.1 | 0.50 | 8467963 | | | | 6.5 | 0.50 | 8467963 | | Orthophosphate (P) | mg/L | <0.010 | 0.010 | 8465936 | | | | <0.010 | 0.010 | 8465936 | | рН | рН | 6.38 | | 8466391 | | | | 6.77 | | 8466391 | | Reactive Silica (SiO2) | mg/L | 2.7 | 0.50 | 8465942 | | | | 2.9 | 0.50 | 8465942 | | Total Suspended Solids | mg/L | <1.0 | 1.0 | 8466206 | | | | 2.8 | 1.0 | 8466206 | | Dissolved Sulphate (SO4) | mg/L | 8.9 | 2.0 | 8465943 | | | | 7.2 | 2.0 | 8465943 | | Turbidity | NTU | 2.6 | 0.10 | 8467865 | | | | 8.0 | 0.10 | 8467869 | | Conductivity | uS/cm | 39 | 1.0 | 8466384 | | | | 47 | 1.0 | 8466384 | RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate N/A = Not Applicable Client Project #: 12601021 Site Location: Antrium Gypsum Project Your P.O. #: 735-005520 Sampler Initials: JV #### **RESULTS OF ANALYSES OF WATER** | Bureau Veritas ID | | UVW836 | | UVW837 | | UVW838 | | | |-------------------------------------|-------|---------------------|----------|---------------------|----------|--------------|-------|----------| | Sampling Date | | 2023/01/19
10:00 | | 2023/01/19
09:30 | | 2023/01/19 | | | | COC Number | | 914888-01-01 | | 914888-01-01 | | 914888-01-01 | | | | | UNITS | SW3 | QC Batch | SW4 | QC Batch | SWDUP | RDL | QC Batch | | Calculated Parameters | | | | | | | | | | Anion Sum | me/L | 0.550 | 8460111 | 0.180 | 8460111 | 0.210 | N/A | 8460111 | | Bicarb. Alkalinity (calc. as CaCO3) | mg/L | 4.0 | 8460106 | 3.7 | 8460106 | 3.2 | 1.0 | 8460106 | | Calculated TDS | mg/L | 39 | 8460117 | 16 | 8460117 | 17 | 1.0 | 8460117 | | Carb. Alkalinity (calc. as CaCO3) | mg/L | <1.0 | 8460106 | <1.0 | 8460106 | <1.0 | 1.0 | 8460106 | | Cation Sum | me/L | 0.630 | 8460111 | 0.300 | 8460111 | 0.310 | N/A | 8460111 | | Hardness (CaCO3) | mg/L | 23 | 8460109 | 7.5 | 8460109 | 7.8 | 1.0 | 8460109 | | Ion Balance (% Difference) | % | 6.78 | 8460110 | 25.0 | 8460110 | 19.2 | N/A | 8460110 | | Langelier Index (@ 20C) | N/A | -3.17 | 8460114 | -3.92 | 8460114 | -3.97 | | 8460114 | | Langelier Index (@ 4C) | N/A | -3.42 | 8460116 | -4.17 | 8460116 | -4.23 | | 8460116 | | Nitrate (N) | mg/L | 0.055 | 8460112 | <0.050 | 8460112 | <0.050 | 0.050 | 8460112 | | Saturation pH (@ 20C) | N/A | 9.80 | 8460114 | 10.4 | 8460114 | 10.4 | | 8460114 | | Saturation pH (@ 4C) | N/A | 10.0 | 8460116 | 10.6 | 8460116 | 10.7 | | 8460116 | | Inorganics | | | | | | | | | | Total Alkalinity (Total as CaCO3) | mg/L | 4.0 | 8466399 | 3.7 | 8466399 | 3.2 | 2.0 | 8466399 | | Dissolved Chloride (Cl-) | mg/L | 4.6 | 8465920 | 3.8 | 8465920 | 3.6 | 1.0 | 8465944 | | Colour | TCU | 47 | 8465962 | 43 | 8465962 | 45 | 5.0 | 8465937 | | Nitrate + Nitrite (N) | mg/L | 0.055 | 8465964 | <0.050 | 8465964 | <0.050 | 0.050 | 8465935 | | Nitrite (N) | mg/L | <0.010 | 8465965 | <0.010 | 8465965 | 0.011 | 0.010 | 8465643 | | Nitrogen (Ammonia Nitrogen) | mg/L | <0.050 | 8467842 | <0.050 | 8467842 | 0.059 | 0.050 | 8467845 | | Total Organic Carbon (C) | mg/L | 6.6 | 8467963 | 6.2 | 8467963 | 6.2 | 0.50 | 8465605 | | Orthophosphate (P) | mg/L | <0.010 | 8465963 | <0.010 | 8465963 | <0.010 | 0.010 | 8465936 | | рН | рН | 6.62 | 8466391 | 6.47 | 8466391 | 6.47 | | 8466391 | | Reactive Silica (SiO2) | mg/L | 2.6 | 8465961 | 3.5 | 8465961 | 3.1 | 0.50 | 8465942 | | Total Suspended Solids | mg/L | <1.0 | 8466206 | <1.0 | 8466206 | <1.0 | 1.0 | 8466206 | | Dissolved Sulphate (SO4) | mg/L | 16 | 8465960 | <2.0 | 8465960 | 2.1 | 2.0 | 8465943 | | Turbidity | NTU | 4.7 | 8467869 | 2.7 | 8467865 | 3.0 | 0.10 | 8467869 | | Conductivity | uS/cm | 68 | 8466384 | 31 | 8466384 | 31 | 1.0 | 8466384 | | RDI = Reportable Detection Limit | | | | | | | | | RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable Client Project #: 12601021 Site Location: Antrium Gypsum Project Your P.O. #:
735-005520 Sampler Initials: JV ## **ELEMENTS BY ICP/MS (WATER)** | Bureau Veritas ID | | UVW834 | UVW835 | UVW836 | UVW837 | UVW838 | | | |----------------------------|-------|---------------------|---------------------|---------------------|---------------------|--------------|-------|----------| | Sampling Date | | 2023/01/19
13:00 | 2023/01/19
10:40 | 2023/01/19
10:00 | 2023/01/19
09:30 | 2023/01/19 | | | | COC Number | | 914888-01-01 | 914888-01-01 | 914888-01-01 | 914888-01-01 | 914888-01-01 | | | | | UNITS | SW1 | SW2 | SW3 | SW4 | SWDUP | RDL | QC Batch | | Metals | _ | | | | | | | | | Total Aluminum (Al) | ug/L | 220 | 490 | 280 | 310 | 310 | 5.0 | 8463731 | | Total Antimony (Sb) | ug/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | 1.0 | 8463731 | | Total Arsenic (As) | ug/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | 1.0 | 8463731 | | Total Barium (Ba) | ug/L | 4.9 | 8.4 | 8.3 | 7.6 | 7.7 | 1.0 | 8463731 | | Total Beryllium (Be) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | 8463731 | | Total Bismuth (Bi) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | 8463731 | | Total Boron (B) | ug/L | <50 | <50 | <50 | <50 | <50 | 50 | 8463731 | | Total Cadmium (Cd) | ug/L | 0.010 | 0.018 | <0.010 | 0.015 | 0.014 | 0.010 | 8463731 | | Total Calcium (Ca) | ug/L | 4200 | 4400 | 8100 | 2100 | 2100 | 100 | 8463731 | | Total Chromium (Cr) | ug/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | 1.0 | 8463731 | | Total Cobalt (Co) | ug/L | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | 0.40 | 8463731 | | Total Copper (Cu) | ug/L | <0.50 | <0.50 | 0.70 | 0.51 | 0.52 | 0.50 | 8463731 | | Total Iron (Fe) | ug/L | 230 | 470 | 230 | 190 | 190 | 50 | 8463731 | | Total Lead (Pb) | ug/L | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | 0.50 | 8463731 | | Total Magnesium (Mg) | ug/L | 520 | 900 | 740 | 580 | 590 | 100 | 8463731 | | Total Manganese (Mn) | ug/L | 17 | 28 | 6.8 | 18 | 17 | 2.0 | 8463731 | | Total Molybdenum (Mo) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | 8463731 | | Total Nickel (Ni) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | 8463731 | | Total Phosphorus (P) | ug/L | <100 | <100 | <100 | <100 | <100 | 100 | 8463731 | | Total Potassium (K) | ug/L | 220 | 370 | 310 | 150 | 160 | 100 | 8463731 | | Total Selenium (Se) | ug/L | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | 0.50 | 8463731 | | Total Silver (Ag) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | 8463731 | | Total Sodium (Na) | ug/L | 2200 | 3500 | 3600 | 3200 | 3300 | 100 | 8463731 | | Total Strontium (Sr) | ug/L | 17 | 9.3 | 30 | 8.5 | 8.7 | 2.0 | 8463731 | | Total Thallium (TI) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | 8463731 | | Total Tin (Sn) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | 8463731 | | Total Titanium (Ti) | ug/L | 7.2 | 14 | 6.1 | 6.6 | 6.0 | 2.0 | 8463731 | | Total Uranium (U) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | 8463731 | | Total Vanadium (V) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | 8463731 | | Total Zinc (Zn) | ug/L | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | 5.0 | 8463731 | | RDL = Reportable Detection | Limit | · | · | | · ——— | | | | QC Batch = Quality Control Batch Client Project #: 12601021 Site Location: Antrium Gypsum Project Your P.O. #: 735-005520 Sampler Initials: JV #### **GENERAL COMMENTS** Each temperature is the average of up to three cooler temperatures taken at receipt Package 1 3.7°C Sample UVW834 [SW1]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L. Sample UVW835 [SW2]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L. Sample UVW836 [SW3]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L. Sample UVW837 [SW4]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L. Sample UVW838 [SWDUP]: NOX < NO2: Both values fall within the method uncertainty for duplicates and are likely equivalent. RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L. Results relate only to the items tested. Client Project #: 12601021 Site Location: Antrium Gypsum Project Your P.O. #: 735-005520 Sampler Initials: JV #### **QUALITY ASSURANCE REPORT** | QA/QC | | | | | | | | | |---------|------|---------------------|-----------------------|---------------|-------|----------|----------|-----------| | Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | 8463731 | JHY | Matrix Spike | Total Aluminum (Al) | 2023/01/23 | | 106 | % | 80 - 120 | | | | | Total Antimony (Sb) | 2023/01/23 | | 103 | % | 80 - 120 | | | | | Total Arsenic (As) | 2023/01/23 | | 100 | % | 80 - 120 | | | | | Total Barium (Ba) | 2023/01/23 | | 96 | % | 80 - 120 | | | | | Total Beryllium (Be) | 2023/01/23 | | 102 | % | 80 - 120 | | | | | Total Bismuth (Bi) | 2023/01/23 | | 94 | % | 80 - 120 | | | | | Total Boron (B) | 2023/01/23 | | 106 | % | 80 - 120 | | | | | Total Cadmium (Cd) | 2023/01/23 | | 102 | % | 80 - 120 | | | | | Total Calcium (Ca) | 2023/01/23 | | NC | % | 80 - 120 | | | | | Total Chromium (Cr) | 2023/01/23 | | 97 | % | 80 - 120 | | | | | Total Cobalt (Co) | 2023/01/23 | | 98 | % | 80 - 120 | | | | | Total Copper (Cu) | 2023/01/23 | | 96 | % | 80 - 120 | | | | | Total Iron (Fe) | 2023/01/23 | | 104 | % | 80 - 120 | | | | | Total Lead (Pb) | 2023/01/23 | | 96 | % | 80 - 120 | | | | | Total Magnesium (Mg) | 2023/01/23 | | 102 | % | 80 - 120 | | | | | Total Manganese (Mn) | 2023/01/23 | | 100 | % | 80 - 120 | | | | | Total Molybdenum (Mo) | 2023/01/23 | | 112 | % | 80 - 120 | | | | | Total Nickel (Ni) | 2023/01/23 | | 98 | % | 80 - 120 | | | | | Total Phosphorus (P) | 2023/01/23 | | 107 | % | 80 - 120 | | | | | Total Potassium (K) | 2023/01/23 | | NC | % | 80 - 120 | | | | Total Selenium (Se) | 2023/01/23 | | 105 | % | 80 - 120 | | | | | | Total Silver (Ag) | 2023/01/23 | | 99 | % | 80 - 120 | | | | | Total Sodium (Na) | 2023/01/23 | | NC | % | 80 - 120 | | | | | Total Strontium (Sr) | 2023/01/23 | | NC | % | 80 - 120 | | | | | Total Thallium (Tl) | 2023/01/23 | | 100 | % | 80 - 120 | | | | | Total Tin (Sn) | 2023/01/23 | | 101 | % | 80 - 120 | | | | | Total Titanium (Ti) | 2023/01/23 | | 104 | % | 80 - 120 | | | | | Total Uranium (U) | 2023/01/23 | | 106 | % | 80 - 120 | | | | | Total Vanadium (V) | 2023/01/23 | | 101 | % | 80 - 120 | | | | | Total Zinc (Zn) | 2023/01/23 | | 100 | % | 80 - 120 | | 8463731 | JHY | Spiked Blank | Total Aluminum (Al) | 2023/01/23 | | 107 | % | 80 - 120 | | | | | Total Antimony (Sb) | 2023/01/23 | | 100 | % | 80 - 120 | | | | | Total Arsenic (As) | 2023/01/23 | | 97 | % | 80 - 120 | | | | | Total Barium (Ba) | 2023/01/23 | | 96 | % | 80 - 120 | | | | | Total Beryllium (Be) | 2023/01/23 | | 99 | % | 80 - 120 | | | | | Total Bismuth (Bi) | 2023/01/23 | | 101 | % | 80 - 120 | | | | | Total Boron (B) | 2023/01/23 | | 102 | % | 80 - 120 | | | | | Total Cadmium (Cd) | 2023/01/23 | | 100 | % | 80 - 120 | | | | | Total Calcium (Ca) | 2023/01/23 | | 104 | % | 80 - 120 | | | | | Total Chromium (Cr) | 2023/01/23 | | 100 | % | 80 - 120 | | | | | Total Cobalt (Co) | 2023/01/23 | | 101 | % | 80 - 120 | | | | | Total Copper (Cu) | 2023/01/23 | | 101 | % | 80 - 120 | | | | | Total Iron (Fe) | 2023/01/23 | | 107 | % | 80 - 120 | | | | | Total Lead (Pb) | 2023/01/23 | | 98 | % | 80 - 120 | | | | | Total Magnesium (Mg) | 2023/01/23 | | 106 | % | 80 - 120 | | | | | Total Manganese (Mn) | 2023/01/23 | | 104 | % | 80 - 120 | | | | | Total Molybdenum (Mo) | 2023/01/23 | | 106 | % | 80 - 120 | | | | | Total Nickel (Ni) | 2023/01/23 | | 102 | % | 80 - 120 | | | | | Total Phosphorus (P) | 2023/01/23 | | 106 | % | 80 - 120 | | | | | Total Potassium (K) | 2023/01/23 | | 105 | % | 80 - 120 | | | | | Total Selenium (Se) | 2023/01/23 | | 104 | % | 80 - 120 | | | | | Total Silver (Ag) | 2023/01/23 | | 101 | % | 80 - 120 | Client Project #: 12601021 Site Location: Antrium Gypsum Project Your P.O. #: 735-005520 Sampler Initials: JV | QA/QC | | | | | | | | | |---------|------|--------------|--|---------------|--------|----------|--------|-----------| | Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | | | ., | Total Sodium (Na) | 2023/01/23 | | 105 | % | 80 - 120 | | | | | Total Strontium (Sr) | 2023/01/23 | | 99 | % | 80 - 120 | | | | | Total Thallium (TI) | 2023/01/23 | | 101 | % | 80 - 120 | | | | | Total Tin (Sn) | 2023/01/23 | | 100 | % | 80 - 120 | | | | | Total Titanium (Ti) | 2023/01/23 | | 105 | % | 80 - 120 | | | | | Total Uranium (U) | 2023/01/23 | | 104 | % | 80 - 120 | | | | | Total Vanadium (V) | 2023/01/23 | | 101 | % | 80 - 120 | | | | | Total Zinc (Zn) | 2023/01/23 | | 105 | % | 80 - 120 | | 8463731 | JHY | Method Blank | Total Aluminum (AI) | 2023/01/23 | <5.0 | | ug/L | | | | | | Total Antimony (Sb) | 2023/01/23 | <1.0 | | ug/L | | | | | | Total Arsenic (As) | 2023/01/23 | <1.0 | | ug/L | | | | | | Total Barium (Ba) | 2023/01/23 | <1.0 | | ug/L | | | | | | Total Beryllium (Be) | 2023/01/23 | <0.10 | | ug/L | | | | | | Total Bismuth (Bi) | 2023/01/23 | <2.0 | | ug/L | | | | | | Total Boron (B) | 2023/01/23 | <50 | | ug/L | | | | | | Total Cadmium (Cd) | 2023/01/23 | <0.010 | | ug/L | | | | | | Total Calcium (Ca) | 2023/01/23 | <100 | | ug/L | | | | | | Total Chromium (Cr) | 2023/01/23 | <1.0 | | ug/L | | | | | | Total Cobalt (Co) | 2023/01/23 | <0.40 | | ug/L | | | | | | Total Copper (Cu) | 2023/01/23 | <0.50 | | ug/L | | | | | | Total Iron (Fe) | 2023/01/23 | <50 | | ug/L | | | | | | Total Lead (Pb) | 2023/01/23 | <0.50 | | ug/L | | | | | | Total Magnesium (Mg) | 2023/01/23 | <100 | | ug/L | | | | | | Total Manganese (Mn) | 2023/01/23 | <2.0 | | ug/L | | | | | | Total Molybdenum (Mo) | 2023/01/23 | <2.0 | | ug/L | | | | | | Total Nickel (Ni) | 2023/01/23 | <2.0 | | ug/L | | | | | | Total Phosphorus (P) | 2023/01/23 | <100 | | ug/L | | | | | | Total Potassium (K) | 2023/01/23 | <100 | | ug/L | | | | | | Total Selenium (Se) | 2023/01/23 | <0.50 | | ug/L | | | | | | Total Silver (Ag) | 2023/01/23 | <0.10 | | ug/L |
 | | | | Total Sodium (Na) | 2023/01/23 | <100 | | ug/L | | | | | | Total Strontium (Sr) | 2023/01/23 | <2.0 | | ug/L | | | | | | Total Thallium (TI) | 2023/01/23 | <0.10 | | ug/L | | | | | | Total Tin (Sn) | 2023/01/23 | <2.0 | | ug/L | | | | | | Total Titanium (Ti) | 2023/01/23 | <2.0 | | ug/L | | | | | | Total Uranium (U) | 2023/01/23 | <0.10 | | ug/L | | | | | | Total Vanadium (V) | 2023/01/23 | <2.0 | | ug/L | | | | | | Total Zinc (Zn) | 2023/01/23 | <5.0 | | ug/L | | | 3463731 | JHY | RPD | Total Aluminum (Al) | 2023/01/23 | 5.1 | | % | 20 | | | | | Total Antimony (Sb) | 2023/01/23 | NC | | % | 20 | | | | | Total Arsenic (As) | 2023/01/23 | NC | | % | 20 | | | | | Total Barium (Ba) | 2023/01/23 | 0.20 | | % | 20 | | | | | Total Beryllium (Be) | 2023/01/23 | NC | | % | 20 | | | | | Total Bismuth (Bi) | 2023/01/23 | NC | | % | 20 | | | | | Total Boron (B) | 2023/01/23 | 2.1 | | % | 20 | | | | | Total Cadmium (Cd) | 2023/01/23 | NC | | % | 20 | | | | | Total Calcium (Ca) | 2023/01/23 | 0.19 | | % | 20 | | | | | Total Carciain (ca) Total Chromium (Cr) | 2023/01/23 | NC | | % | 20 | | | | | Total Cobalt (Co) | 2023/01/23 | 0.57 | | % | 20 | | | | | Total Copper (Cu) | 2023/01/23 | 7.4 | | % | 20 | | | | | Total Iron (Fe) | 2023/01/23 | 2.0 | | %
% | 20 | | | | | iotal iioli (i e) | 2023/01/23 | ۷.0 | | /0 | 20 | Client Project #: 12601021 Site Location: Antrium Gypsum Project Your P.O. #: 735-005520 Sampler Initials: JV | QA/QC | | | | | | | | | |---------|------|--------------|--------------------------|---------------|---------|----------|-------|-----------| | Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | | | 20.760 | Total Magnesium (Mg) | 2023/01/23 | 3.0 | | % | 20 | | | | | Total Manganese (Mn) | 2023/01/23 | 1.9 | | % | 20 | | | | | Total Molybdenum (Mo) | 2023/01/23 | 2.2 | | % | 20 | | | | | Total Nickel (Ni) | 2023/01/23 | 0.82 | | % | 20 | | | | | Total Phosphorus (P) | 2023/01/23 | NC | | % | 20 | | | | | Total Potassium (K) | 2023/01/23 | 1.5 | | % | 20 | | | | | Total Selenium (Se) | 2023/01/23 | 3.9 | | % | 20 | | | | | Total Silver (Ag) | 2023/01/23 | NC | | % | 20 | | | | | Total Sodium (Na) | 2023/01/23 | 2.2 | | % | 20 | | | | | Total Strontium (Sr) | 2023/01/23 | 1.3 | | % | 20 | | | | | Total Thallium (TI) | 2023/01/23 | NC | | % | 20 | | | | | Total Tin (Sn) | 2023/01/23 | NC | | % | 20 | | | | | Total Titanium (Ti) | 2023/01/23 | 11 | | % | 20 | | | | | Total Uranium (U) | 2023/01/23 | NC | | % | 20 | | | | | Total Vanadium (V) | 2023/01/23 | NC | | % | 20 | | | | | Total Zinc (Zn) | 2023/01/23 | NC | | % | 20 | | 8465605 | SSI | Matrix Spike | Total Organic Carbon (C) | 2023/01/24 | | 100 | % | 85 - 115 | | 8465605 | SSI | Spiked Blank | Total Organic Carbon (C) | 2023/01/24 | | 99 | % | 80 - 120 | | 8465605 | SSI | Method Blank | Total Organic Carbon (C) | 2023/01/24 | <0.50 | | mg/L | | | 8465605 | SSI | RPD | Total Organic Carbon (C) | 2023/01/24 | 3.7 | | % | 15 | | 8465643 | TGO | Matrix Spike | Nitrite (N) | 2023/01/24 | | 103 | % | 80 - 120 | | 8465643 | TGO | Spiked Blank | Nitrite (N) | 2023/01/24 | | 102 | % | 80 - 120 | | 8465643 | TGO | Method Blank | Nitrite (N) | 2023/01/24 | < 0.010 | | mg/L | | | 8465643 | TGO | RPD | Nitrite (N) | 2023/01/24 | NC | | % | 20 | | 8465920 | TGO | Matrix Spike | Dissolved Chloride (Cl-) | 2023/01/24 | | NC | % | 80 - 120 | | 8465920 | TGO | Spiked Blank | Dissolved Chloride (Cl-) | 2023/01/24 | | 92 | % | 80 - 120 | | 8465920 | TGO | Method Blank | Dissolved Chloride (Cl-) | 2023/01/24 | <1.0 | | mg/L | | | 8465920 | TGO | RPD | Dissolved Chloride (Cl-) | 2023/01/24 | 0.32 | | % | 20 | | 8465935 | TGO | Matrix Spike | Nitrate + Nitrite (N) | 2023/01/24 | | 92 | % | 80 - 120 | | 8465935 | TGO | Spiked Blank | Nitrate + Nitrite (N) | 2023/01/24 | | 95 | % | 80 - 120 | | 8465935 | TGO | Method Blank | Nitrate + Nitrite (N) | 2023/01/24 | < 0.050 | | mg/L | | | 8465935 | TGO | RPD | Nitrate + Nitrite (N) | 2023/01/24 | NC | | % | 20 | | 8465936 | TGO | Matrix Spike | Orthophosphate (P) | 2023/01/25 | | 92 | % | 80 - 120 | | 8465936 | TGO | Spiked Blank | Orthophosphate (P) | 2023/01/25 | | 93 | % | 80 - 120 | | 8465936 | TGO | Method Blank | Orthophosphate (P) | 2023/01/25 | < 0.010 | | mg/L | | | 8465936 | TGO | RPD | Orthophosphate (P) | 2023/01/25 | NC | | % | 20 | | 8465937 | TGO | Spiked Blank | Colour | 2023/01/25 | | 97 | % | 80 - 120 | | 8465937 | TGO | Method Blank | Colour | 2023/01/25 | <5.0 | | TCU | | | 8465937 | TGO | RPD | Colour | 2023/01/25 | 9.8 | | % | 20 | | 8465942 | TGO | Matrix Spike | Reactive Silica (SiO2) | 2023/01/25 | | 82 | % | 80 - 120 | | 8465942 | TGO | Spiked Blank | Reactive Silica (SiO2) | 2023/01/25 | | 87 | % | 80 - 120 | | 8465942 | TGO | Method Blank | Reactive Silica (SiO2) | 2023/01/25 | <0.50 | | mg/L | | | 8465942 | TGO | RPD | Reactive Silica (SiO2) | 2023/01/25 | NC | | % | 20 | | 8465943 | TGO | Matrix Spike | Dissolved Sulphate (SO4) | 2023/01/24 | | NC | % | 80 - 120 | | 8465943 | TGO | Spiked Blank | Dissolved Sulphate (SO4) | 2023/01/24 | | 105 | % | 80 - 120 | | 8465943 | TGO | Method Blank | Dissolved Sulphate (SO4) | 2023/01/24 | <2.0 | | mg/L | | | 8465943 | TGO | RPD | Dissolved Sulphate (SO4) | 2023/01/24 | 1.4 | | % | 20 | | 8465944 | TGO | Matrix Spike | Dissolved Chloride (Cl-) | 2023/01/24 | | NC | % | 80 - 120 | | 8465944 | TGO | Spiked Blank | Dissolved Chloride (Cl-) | 2023/01/24 | | 94 | % | 80 - 120 | | 8465944 | TGO | Method Blank | Dissolved Chloride (Cl-) | 2023/01/24 | <1.0 | | mg/L | | | 8465944 | TGO | RPD | Dissolved Chloride (Cl-) | 2023/01/24 | 2.6 | | % | 20 | | 8465960 | TGO | Matrix Spike | Dissolved Sulphate (SO4) | 2023/01/24 | | NC | % | 80 - 120 | Report Date: 2023/01/27 **GHD** Limited Client Project #: 12601021 Site Location: Antrium Gypsum Project Your P.O. #: 735-005520 Sampler Initials: JV | 04/06 | | | | | | | | | |----------------|--------|-----------------------------|-----------------------------------|---------------|---------|----------------|--------|-----------| | QA/QC
Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | 8465960 | TGO | Spiked Blank | Dissolved Sulphate (SO4) | 2023/01/24 | | 99 | % | 80 - 120 | | 8465960 | TGO | Method Blank | Dissolved Sulphate (SO4) | 2023/01/24 | <2.0 | | mg/L | | | 8465960 | TGO | RPD | Dissolved Sulphate (SO4) | 2023/01/24 | 0.93 | | % | 20 | | 8465961 | TGO | Matrix Spike | Reactive Silica (SiO2) | 2023/01/25 | | 84 | % | 80 - 120 | | 8465961 | TGO | Spiked Blank | Reactive Silica (SiO2) | 2023/01/25 | | 88 | % | 80 - 120 | | 8465961 | TGO | Method Blank | Reactive Silica (SiO2) | 2023/01/25 | <0.50 | | mg/L | | | 8465961 | TGO | RPD | Reactive Silica (SiO2) | 2023/01/25 | 0.76 | | % | 20 | | 8465962 | TGO | Spiked Blank | Colour | 2023/01/25 | | 95 | % | 80 - 120 | | 8465962 | TGO | Method Blank | Colour | 2023/01/25 | <5.0 | | TCU | | | 8465962 | TGO | RPD | Colour | 2023/01/25 | NC | | % | 20 | | 8465963 | TGO | Matrix Spike | Orthophosphate (P) | 2023/01/25 | | 95 | % | 80 - 120 | | 8465963 | TGO | Spiked Blank | Orthophosphate (P) | 2023/01/25 | | 91 | % | 80 - 120 | | 8465963 | TGO | Method Blank | Orthophosphate (P) | 2023/01/25 | <0.010 | | mg/L | | | 8465963 | TGO | RPD | Orthophosphate (P) | 2023/01/25 | NC | | % | 20 | | 8465964 | TGO | Matrix Spike | Nitrate + Nitrite (N) | 2023/01/24 | | 99 | % | 80 - 120 | | 8465964 | TGO | Spiked Blank | Nitrate + Nitrite (N) | 2023/01/24 | | 92 | % | 80 - 120 | | 8465964 | TGO | Method Blank | Nitrate + Nitrite (N) | 2023/01/24 | <0.050 | | mg/L | | | 8465964 | TGO | RPD | Nitrate + Nitrite (N) | 2023/01/24 | 2.1 | | % | 20 | | 8465965 | TGO | Matrix Spike | Nitrite (N) | 2023/01/24 | | 95 | % | 80 - 120 | | 8465965 | TGO | Spiked Blank | Nitrite (N) | 2023/01/24 | | 101 | % | 80 - 120 | | 8465965 | TGO | Method Blank | Nitrite (N) | 2023/01/24 | <0.010 | | mg/L | | | 8465965 | TGO | RPD | Nitrite (N) | 2023/01/24 | NC | | % | 20 | | 8466206 | RMK | | Total Suspended Solids | 2023/01/26 | | 96 | % | 80 - 120 | | 8466206 | RMK | Method Blank | Total Suspended Solids | 2023/01/26 | <1.0 | | mg/L | | | 8466206 | RMK | RPD | Total Suspended Solids | 2023/01/26 | 1.8 | | % | 20 | | 8466384 | NGI | Spiked Blank | Conductivity | 2023/01/25 | | 104 | % | 80 - 120 | | 8466384 | NGI | Method Blank | Conductivity | 2023/01/25 | 1.2, | | uS/cm | | | | | | , | ,, | RDL=1.0 | | 5.5, 5 | | | 8466384 | NGI | RPD | Conductivity | 2023/01/25 | 1.1 | | % | 10 | | 8466391 | NGI | Spiked Blank | рН | 2023/01/25 | | 100 | % | 97 - 103 | | 8466391 | NGI | RPD | pH | 2023/01/25 | 0.60 | | % | N/A | | 8466399 | NGI | Spiked Blank | Total Alkalinity (Total as CaCO3) | 2023/01/25 | | 96 | % | 80 - 120 | | 8466399 | NGI | Method Blank | Total Alkalinity (Total as CaCO3) | 2023/01/25 | <2.0 | | mg/L | | | 8466399 | NGI | RPD | Total Alkalinity (Total as CaCO3) | 2023/01/25 | 0.68 | | % | 20 | | 8467835 | TGO | Matrix Spike | Nitrogen (Ammonia Nitrogen) | 2023/01/25 | | 94 | % | 80 - 120 | | 8467835 | TGO | Spiked Blank | Nitrogen (Ammonia Nitrogen) | 2023/01/25 | | 97 | % | 80 - 120 | | 8467835 | TGO | Method Blank | Nitrogen (Ammonia Nitrogen) | 2023/01/25 | <0.050 | | mg/L | | | 8467835 | TGO | RPD | Nitrogen (Ammonia Nitrogen) | 2023/01/25 | NC | | % | 20 | | 8467842 | TGO | Matrix Spike | Nitrogen (Ammonia Nitrogen) | 2023/01/25 | | 92 | % | 80 - 120 | | 8467842 | TGO | Spiked Blank | Nitrogen (Ammonia Nitrogen) | 2023/01/25 | | 91 | % | 80 - 120 | | 8467842 | TGO | Method Blank | Nitrogen (Ammonia Nitrogen) | 2023/01/25 | <0.050 | | mg/L | | | 8467842 | TGO | RPD | Nitrogen (Ammonia Nitrogen) | 2023/01/25 | NC | | % | 20 | | 8467845 | TGO | Matrix Spike
[UVW834-03] | Nitrogen (Ammonia Nitrogen) | 2023/01/25 | | 93 | % | 80 - 120 | | 8467845 | TGO | Spiked Blank | Nitrogen (Ammonia Nitrogen) | 2023/01/25 | | 91 | % | 80 - 120 | | 8467845 | TGO | Method Blank | Nitrogen (Ammonia
Nitrogen) | 2023/01/25 | <0.050 | - - | mg/L | | | 8467845 | TGO | RPD [UVW834-03] | Nitrogen (Ammonia Nitrogen) | 2023/01/25 | NC | | % | 20 | | 8467865 | AA0 | QC Standard | Turbidity | 2023/01/25 | | 108 | % | 80 - 120 | | 8467865 | AA0 | Spiked Blank | Turbidity | 2023/01/25 | | 101 | % | 80 - 120 | | 8467865 | AA0 | Method Blank | Turbidity | 2023/01/25 | <0.10 | | NTU | | | 8467865 | AA0 | RPD | Turbidity | 2023/01/25 | 2.2 | | % | 20 | | 8467869 | AA0 | QC Standard | Turbidity | 2023/01/25 | _ | 111 | % | 80 - 120 | | 3.07003 | ,,,,,, | ~ 5 5 turiouru | · ar brailey | 2023/01/23 | | 111 | | 00 120 | Bureau Veritas Job #: C318877 Report Date: 2023/01/27 **GHD Limited** Client Project #: 12601021 Site Location: Antrium Gypsum Project Your P.O. #: 735-005520 Sampler Initials: JV ## QUALITY ASSURANCE REPORT(CONT'D) | QA/QC | | | | | | | | | |---------|------|--------------|--------------------------|---------------|-------|----------|-------|-----------| | Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | 8467869 | AA0 | Spiked Blank | Turbidity | 2023/01/25 | | 101 | % | 80 - 120 | | 8467869 | AA0 | Method Blank | Turbidity | 2023/01/25 | <0.10 | | NTU | | | 8467869 | AA0 | RPD | Turbidity | 2023/01/25 | 2.1 | | % | 20 | | 8467963 | CPP | Matrix Spike | Total Organic Carbon (C) | 2023/01/25 | | 99 | % | 85 - 115 | | 8467963 | CPP | Spiked Blank | Total Organic Carbon (C) | 2023/01/25 | | 98 | % | 80 - 120 | | 8467963 | CPP | Method Blank | Total Organic Carbon (C) | 2023/01/25 | <0.50 | | mg/L | | | 8467963 | CPP | RPD | Total Organic Carbon (C) | 2023/01/25 | 5.0 | | % | 15 | N/A = Not Applicable Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement. Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference. QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy. Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy. Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination. NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration) NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL). Report Date: 2023/01/27 **GHD Limited** Client Project #: 12601021 Site Location: Antrium Gypsum Project Your P.O. #: 735-005520 Sampler Initials: JV #### **VALIDATION SIGNATURE PAGE** The analytical data and all QC contained in this report were reviewed and validated by: Mike MacGillivray, Scientific Specialist (Inorganics) Mike That Julle **Automated Statchk** Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for $\{2\}$ $\{3\}$ laboratory operations. | SUREAU
VERITAS | |-------------------| Page 1 of 1 | HEILUR HEILU | OH
St | 200 Bluewater Road, Bedford, | Nova Scotia Car | nada B4B 1G9 Te | (902) 420-0203 Toli | free:800-563 | -6266 F | ax (902) 420 | 7-8612 ww | w.bvna.com | | | | | | | Chain | Of Custody Recor | a . | | |--------------|--|---|-----------------|-----------------|---------------------|--------------|--------------------------|--|-----------|------------|------------|------------|-----------------|-----------|--------|----------|---|---|---|---| | | | INVOICE TO: | | | | Report Inf | ormation | | | | | | Project In | formation | | | | Lab | oratory Use (| Only | | Company Name | #16276 GHD | Limited | | Company Na | me | | | | | | Quotati | on# | C30069 | | | | | Bureau Veritas Jo | b# | Bottle Order#: | | Contact Name | Accounts Paya | | | Contact Nam | e Callie Andre | ews | | | | | P.O # | | 735-0 | 05520 |) | | | | | | | Address | 120 Western P | | | Address | | | | | | | Project | # | 12574778 | 3-03-176 | 010: | 21 | | | | 914888 | | | Bedford NS B4 | | | | | | | | | | Project | Name | ANIRIA | n BASI | GUNE | | | Chain Of Custody R | ecord | Project Manager | | Phone | (902) 468-1248 | Ley 7 | 168-2207 | Phone | | | | Fax | | | Site # | | | | | | | | | Marie Muise | | Email | AccountsPayal | bleCDN@ghd.com | | Email | callie andre | ws@ghd. | com | _ | | | Sample | d By | OVEN | viel, M. | FRASE | e e | | C#914888-01-0 | | Widito Widiso | | Regulatory C | Criteria | | | Spec | al Instructions | | | | | ANAL | YSIS REQUE | ESTED (PLE | ASE BE SPECIFI | c) / | | | | Turnaround | Γime (TAT) Red | quired: | | ** Specify N | Matrix Surface/Ground/
Botable/Monachable/F | Tapwater/Sewage/Effluent/Seawate
issue/Soil/SludgeMetal | r | | | | erved | Atlantic RCAp-MS Total Metals in Water | Solids | | | | | | | | (will be app
Standard T
Please note | Please provide adv
tandard) TAT:
flied if Rush TAT is not spec
AT = 5-7 Working days for
the Standard TAT for certain
act your Project Manager for | rified);
most tests
tests such as BOI | sh projects D and Dioxins/Furans are > 5 | | SAM | | COOL (<10°C) FROM TIME OF | SAMPLING UNT | IL DELIVERY TO | BUREAU VERITAS | 111 | Field Filtered & Present | ic RCAp-MS | Suspended | | | | | | | | Job Spec
Date Requir | fic Rush TAT (if applies t
ed | o entire submiss
Time Req | | | | le Barcode Label | Sample (Location) Identifica | | Date Sampled | Time Sampled | Matrix | Field F | Atlant | Total | | | | | | | | # of
Bottles | Comments / | Hazards / Other R | equired Analysis | | 1 | | SW1 | 19 | JAN23 | 9-113:60 | WAFT | | х | х | | | | | | | | 4 | | | | | 2 | | SW2 | | 1 | 10:40 | | | х | Х | | | | | | | | y | | | | | 3 | | SW3 | | | [0:00 | | | х | х | | | | | | | | y | | | | | 4 | | SW4 | | | 930 | | | × | X | | | | | | | | i/ | | | | | 5 | | SWDUP | | \checkmark | | 1 | | х | Х | | | | | | | | y | | | | | 6 | | | | | | V | | | | | | | | | | | -/ | | | | | 7 | | | | | | | П | | | | | | | | | | | | | | | 8 | 9 | 10 | NQUISHED BY; (Signate | ure/Print) | Date: (YY/M)/ | | | | | (Signature/F | | | Date: | (YY/MM/DD |) Time | # jars us | ed and | | | Lab U | se Only | | |) | VEMD | | 73/01/1 | 9 19:3 | O Carrely | - W | ut/ | ARROY. | ~ M | CNUTT | | | | notsub | mitted | Time Sen | sitive Tem | perature (°C) on Receipt | Custody | Seal Intact on Copler? | | | Bre | | , , | | | Œ. | | | | | | | | | | | | 34 | | Yes No | | WANTENDEL | TOR VILLYVING AT WWW | IN WRITING, WORK SUBMITTED ON
V.BVNA.COM/ENVIRONMENTAL-LAB
RELINQUISHER TO ENSURE THE A | OKATORIES/RES | OURCES/COC-TE | CMS-AND-CONDITION | 5. | | | | | | | ODY DOCUMENT IS | SACKNOWLE | DGMEN | F AND AC | CEPTANCE C | F OUR TERMS WHICH ARE | White: Bu | reau Veritas Yellow Client | | | | | | | | | | | | | | 200 TO TO | | | | | | (| (319 | 3877 | Bureau Veritas Canada (2019) Inc. Your P.O. #: 735-004150 Your Project #: 12574778-03 Your C.O.C. #: 894298-01-01 **Attention: Callie Andrews** GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2 Report Date: 2022/10/25 Report #: R7356361 Version: 1 - Final #### **CERTIFICATE OF ANALYSIS** BUREAU VERITAS JOB #: C2T4381 Received: 2022/10/05, 14:57 Sample Matrix: Water # Samples Received: 4 Date Date **Analyses Quantity Extracted Analyzed Laboratory Method Analytical Method** Carbonate, Bicarbonate and Hydroxide 3 N/A 2022/10/17 N/A SM 23 4500-CO2 D Carbonate, Bicarbonate and Hydroxide 1 N/A 2022/10/19 N/A SM 23 4500-CO2 D Alkalinity 3 N/A 2022/10/17 ATL SOP 00142 SM 23 2320 B Alkalinity N/A 1 2022/10/18 ATL SOP 00142 SM 23 2320 B 4 Chloride N/A 2022/10/23 ATL SOP 00014 SM 23 4500-Cl- E m Colour 4 N/A 2022/10/24 ATL SOP 00020 SM 23 2120C m 3 Conductance - water N/A 2022/10/17 ATL SOP 00004 SM 23 2510B m Conductance - water 1 N/A 2022/10/18 ATL SOP 00004 SM 23 2510B m Hardness (calculated as CaCO3) 4 N/A 2022/10/21 ATL SOP 00048 **Auto Calc** Metals Water Total MS 4 2022/10/18 2022/10/20 ATL SOP 00058 EPA 6020B R2 m Ion Balance (% Difference) 4 N/A 2022/10/24 N/A Auto Calc. Anion and Cation Sum 4 N/A 2022/10/21 N/A Auto Calc. Nitrogen Ammonia - water 4 N/A 2022/10/17 ATL SOP 00015 EPA 350.1 R2 m 4 2022/10/24 ATL SOP 00016 USGS I-2547-11m Nitrogen - Nitrate + Nitrite N/A Nitrogen - Nitrite 4 N/A 2022/10/22 ATL SOP 00017 SM 23 4500-NO2- B m Nitrogen - Nitrate (as N) 4 N/A 2022/10/24 ATL SOP 00018 ASTM D3867-16 pH (1) 3 N/A 2022/10/17 ATL SOP 00003 SM 23 4500-H+ B m pH (1) 1 N/A 2022/10/18 ATL SOP 00003 SM 23 4500-H+ B m 4 N/A 2022/10/24 ATL SOP 00021 SM 23 4500-P E m Phosphorus - ortho Sat. pH and Langelier Index (@ 20C) 1 N/A 2022/10/21 ATL SOP 00049 Auto Calc. Sat.
pH and Langelier Index (@ 20C) 3 N/A 2022/10/24 ATL SOP 00049 Auto Calc. Sat. pH and Langelier Index (@ 4C) 1 N/A Auto Calc. 2022/10/21 ATL SOP 00049 Sat. pH and Langelier Index (@ 4C) 3 N/A 2022/10/24 ATL SOP 00049 Auto Calc. Reactive Silica 4 N/A 2022/10/22 ATL SOP 00022 EPA 366.0 m 4 Sulphate N/A 2022/10/22 ATL SOP 00023 ASTM D516-16 m Total Dissolved Solids (TDS calc) 4 N/A 2022/10/24 N/A Auto Calc. Organic carbon - Total (TOC) (2) 3 N/A 2022/10/14 ATL SOP 00203 SM 23 5310B m Organic carbon - Total (TOC) (2) 1 N/A 2022/10/15 ATL SOP 00203 SM 23 5310B m **Total Suspended Solids** 4 2022/10/12 2022/10/17 ATL SOP 00007 SM 23 2540D m Turbidity 3 N/A 2022/10/19 ATL SOP 00011 EPA 180.1 R2 m Turbidity 2022/10/21 ATL SOP 00011 EPA 180.1 R2 m N/A Your P.O. #: 735-004150 Your Project #: 12574778-03 Your C.O.C. #: 894298-01-01 **Attention: Callie Andrews** GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2 Report Date: 2022/10/25 Report #: R7356361 Version: 1 - Final #### **CERTIFICATE OF ANALYSIS** BUREAU VERITAS JOB #: C2T4381 Received: 2022/10/05, 14:57 Remarks: Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA. All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard. Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent. Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory. Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. - * RPDs calculated using raw data. The rounding of final results may result in the apparent difference. - (1) The APHA Standard Method requires pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time. - (2) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC. #### **Encryption Key** Please direct all questions regarding this Certificate of Analysis to: Marie Muise, Key Account Specialist Email: Marie.MUISE@bureauveritas.com Phone# (902)420-0203 Ext:253 _____ This report has been generated and distributed using a secure automated process. Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Suzanne Rogers, General Manager responsible for Nova Scotia Environmental laboratory operations. Client Project #: 12574778-03 Your P.O. #: 735-004150 ## **RESULTS OF ANALYSES OF WATER** | | | _ | _ | <u>.</u> | | | <u>.</u> | | | |-------------------------------------|-------|--------------|----------|--------------|-------|----------|--------------|-------|----------| | Bureau Veritas ID | | TYX988 | | TYX989 | | | TYX990 | | | | Sampling Date | | 2022/10/05 | | 2022/10/05 | | | 2022/10/05 | | | | Sampling Date | | 13:00 | | 11:30 | | | 10:00 | | | | COC Number | | 894298-01-01 | | 894298-01-01 | | | 894298-01-01 | | | | | UNITS | SW1 | QC Batch | SW2 | RDL | QC Batch | SW3 | RDL | QC Batch | | Calculated Parameters | | | | | | | | | | | Anion Sum | me/L | 0.780 | 8275123 | 1.23 | N/A | 8275123 | 2.52 | N/A | 8275123 | | Bicarb. Alkalinity (calc. as CaCO3) | mg/L | <1.0 | 8275120 | 3.9 | 1.0 | 8275120 | 24 | 1.0 | 8275120 | | Calculated TDS | mg/L | 60 | 8275129 | 87 | 1.0 | 8275129 | 160 | 1.0 | 8275129 | | Carb. Alkalinity (calc. as CaCO3) | mg/L | <1.0 | 8275120 | <1.0 | 1.0 | 8275120 | <1.0 | 1.0 | 8275120 | | Cation Sum | me/L | 1.00 | 8275123 | 1.34 | N/A | 8275123 | 2.35 | N/A | 8275123 | | Hardness (CaCO3) | mg/L | 42 | 8275121 | 55 | 1.0 | 8275121 | 110 | 1.0 | 8275121 | | Ion Balance (% Difference) | % | 12.4 | 8275122 | 4.28 | N/A | 8275122 | 3.49 | N/A | 8275122 | | Langelier Index (@ 20C) | N/A | NC | 8275127 | -2.89 | | 8275127 | -1.18 | | 8275127 | | Langelier Index (@ 4C) | N/A | NC | 8275128 | -3.14 | | 8275128 | -1.43 | | 8275128 | | Nitrate (N) | mg/L | <0.050 | 8275124 | <0.050 | 0.050 | 8275124 | <0.050 | 0.050 | 8275124 | | Saturation pH (@ 20C) | N/A | NC | 8275127 | 9.50 | | 8275127 | 8.39 | | 8275127 | | Saturation pH (@ 4C) | N/A | NC | 8275128 | 9.75 | | 8275128 | 8.65 | | 8275128 | | Inorganics | | | | | | | | | | | Total Alkalinity (Total as CaCO3) | mg/L | <2.0 | 8286598 | 3.9 | 2.0 | 8286598 | 24 | 2.0 | 8289828 | | Dissolved Chloride (Cl-) | mg/L | 5.5 | 8298338 | 7.8 | 1.0 | 8298338 | 8.6 | 1.0 | 8298338 | | Colour | TCU | 200 | 8298348 | 52 | 25 | 8298348 | 48 (1) | 10 | 8298348 | | Nitrate + Nitrite (N) | mg/L | <0.050 | 8298409 | <0.050 | 0.050 | 8298409 | <0.050 | 0.050 | 8298409 | | Nitrite (N) | mg/L | <0.010 | 8298414 | <0.010 | 0.010 | 8298414 | <0.010 | 0.010 | 8298414 | | Nitrogen (Ammonia Nitrogen) | mg/L | <0.050 | 8286822 | <0.050 | 0.050 | 8286822 | <0.050 | 0.050 | 8286822 | | Total Organic Carbon (C) | mg/L | 24 | 8283616 | 11 | 0.50 | 8282758 | 10 | 0.50 | 8282758 | | Orthophosphate (P) | mg/L | <0.010 | 8298397 | <0.010 | 0.010 | 8298397 | <0.010 | 0.010 | 8298397 | | рН | рН | 6.79 | 8286597 | 6.62 | | 8286597 | 7.22 | | 8289827 | | Reactive Silica (SiO2) | mg/L | 4.1 | 8298347 | 5.4 | 0.50 | 8298347 | 2.9 | 0.50 | 8298347 | | Total Suspended Solids | mg/L | 8.0 | 8277642 | 2.4 | 2.0 | 8277642 | <1.0 | 1.0 | 8277642 | | Dissolved Sulphate (SO4) | mg/L | 30 | 8298346 | 45 | 2.0 | 8298346 | 86 | 2.0 | 8298346 | | Turbidity | NTU | 1.8 | 8292230 | 1.9 | 0.10 | 8292230 | 0.39 | 0.10 | 8296013 | | Conductivity | uS/cm | 110 | 8286592 | 140 | 1.0 | 8286592 | 390 | 1.0 | 8289823 | | | | | | | | | | | | RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable (1) Elevated reporting limit due to sample matrix. Client Project #: 12574778-03 Your P.O. #: 735-004150 ## **RESULTS OF ANALYSES OF WATER** | Bureau Veritas ID | | TYX991 | | | |-------------------------------------|-------|--------------|-------|----------| | | | 2022/10/05 | | | | Sampling Date | | 09:45 | | | | COC Number | | 894298-01-01 | | | | | UNITS | SW4 | RDL | QC Batch | | Calculated Parameters | | | | | | Anion Sum | me/L | 0.790 | N/A | 8275123 | | Bicarb. Alkalinity (calc. as CaCO3) | mg/L | 16 | 1.0 | 8275120 | | Calculated TDS | mg/L | 50 | 1.0 | 8275129 | | Carb. Alkalinity (calc. as CaCO3) | mg/L | <1.0 | 1.0 | 8275120 | | Cation Sum | me/L | 0.760 | N/A | 8275123 | | Hardness (CaCO3) | mg/L | 25 | 1.0 | 8275121 | | Ion Balance (% Difference) | % | 1.94 | N/A | 8275122 | | Langelier Index (@ 20C) | N/A | -2.08 | | 8275127 | | Langelier Index (@ 4C) | N/A | -2.33 | | 8275128 | | Nitrate (N) | mg/L | <0.050 | 0.050 | 8275124 | | Saturation pH (@ 20C) | N/A | 9.25 | | 8275127 | | Saturation pH (@ 4C) | N/A | 9.50 | | 8275128 | | Inorganics | l | | l | | | Total Alkalinity (Total as CaCO3) | mg/L | 16 | 2.0 | 8286598 | | Dissolved Chloride (Cl-) | mg/L | 8.2 | 1.0 | 8298338 | | Colour | TCU | 58 | 25 | 8298348 | | Nitrate + Nitrite (N) | mg/L | <0.050 | 0.050 | 8298409 | | Nitrite (N) | mg/L | <0.010 | 0.010 | 8298414 | | Nitrogen (Ammonia Nitrogen) | mg/L | <0.050 | 0.050 | 8286822 | | Total Organic Carbon (C) | mg/L | 8.3 | 0.50 | 8282758 | | Orthophosphate (P) | mg/L | <0.010 | 0.010 | 8298397 | | рН | рН | 7.17 | | 8286597 | | Reactive Silica (SiO2) | mg/L | 4.8 | 0.50 | 8298347 | | Total Suspended Solids | mg/L | 1.4 | 1.0 | 8277642 | | Dissolved Sulphate (SO4) | mg/L | 12 | 2.0 | 8298346 | | Turbidity | NTU | 1.4 | 0.10 | 8292230 | | Conductivity | uS/cm | 75 | 1.0 | 8286592 | | RDL = Reportable Detection Limit | • | | • | | | QC Batch = Quality Control Batch | | | | | | N/A = Not Applicable | | | | | Client Project #: 12574778-03 Your P.O. #: 735-004150 # **ELEMENTS BY ICP/MS (WATER)** | Bureau Veritas ID | | TYX988 | TYX989 | TYX990 | TYX991 | | | |-------------------------------|-------|--------------|--------------|--------------|--------------|-------|----------| | Campling Data | | 2022/10/05 | 2022/10/05 |
2022/10/05 | 2022/10/05 | | | | Sampling Date | | 13:00 | 11:30 | 10:00 | 09:45 | | | | COC Number | | 894298-01-01 | 894298-01-01 | 894298-01-01 | 894298-01-01 | | | | | UNITS | SW1 | SW2 | SW3 | SW4 | RDL | QC Batch | | Metals | | | | | | | | | Total Aluminum (Al) | ug/L | 350 | 190 | 69 | 140 | 5.0 | 8289817 | | Total Antimony (Sb) | ug/L | <1.0 | <1.0 | <1.0 | <1.0 | 1.0 | 8289817 | | Total Arsenic (As) | ug/L | <1.0 | <1.0 | <1.0 | <1.0 | 1.0 | 8289817 | | Total Barium (Ba) | ug/L | 12 | 30 | 16 | 15 | 1.0 | 8289817 | | Total Beryllium (Be) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | 8289817 | | Total Bismuth (Bi) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | 8289817 | | Total Boron (B) | ug/L | <50 | <50 | <50 | <50 | 50 | 8289817 | | Total Cadmium (Cd) | ug/L | 0.022 | 0.044 | <0.010 | <0.010 | 0.010 | 8289817 | | Total Calcium (Ca) | ug/L | 15000 | 18000 | 39000 | 7300 | 100 | 8289817 | | Total Chromium (Cr) | ug/L | <1.0 | <1.0 | <1.0 | <1.0 | 1.0 | 8289817 | | Total Cobalt (Co) | ug/L | <0.40 | <0.40 | <0.40 | <0.40 | 0.40 | 8289817 | | Total Copper (Cu) | ug/L | 0.74 | 0.87 | <0.50 | 0.99 | 0.50 | 8289817 | | Total Iron (Fe) | ug/L | 760 | 290 | 210 | 430 | 50 | 8289817 | | Total Lead (Pb) | ug/L | <0.50 | <0.50 | <0.50 | <0.50 | 0.50 | 8289817 | | Total Magnesium (Mg) | ug/L | 1300 | 2500 | 1800 | 1700 | 100 | 8289817 | | Total Manganese (Mn) | ug/L | 110 | 180 | 66 | 140 | 2.0 | 8289817 | | Total Molybdenum (Mo) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | 8289817 | | Total Nickel (Ni) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | 8289817 | | Total Phosphorus (P) | ug/L | <100 | <100 | <100 | <100 | 100 | 8289817 | | Total Potassium (K) | ug/L | 470 | 880 | 700 | 370 | 100 | 8289817 | | Total Selenium (Se) | ug/L | <0.50 | <0.50 | <0.50 | <0.50 | 0.50 | 8289817 | | Total Silver (Ag) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | 8289817 | | Total Sodium (Na) | ug/L | 3000 | 4900 | 4800 | 5400 | 100 | 8289817 | | Total Strontium (Sr) | ug/L | 52 | 40 | 160 | 40 | 2.0 | 8289817 | | Total Thallium (TI) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | 8289817 | | Total Tin (Sn) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | 8289817 | | Total Titanium (Ti) | ug/L | 5.0 | 4.4 | 2.3 | 3.3 | 2.0 | 8289817 | | Total Uranium (U) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | 8289817 | | Total Vanadium (V) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | 8289817 | | Total Zinc (Zn) | ug/L | 5.6 | 9.0 | <5.0 | <5.0 | 5.0 | 8289817 | | RDL = Reportable Detection L | .imit | | | | | _ | _ | | QC Batch = Quality Control Ba | atch | | | | | | | Client Project #: 12574778-03 Your P.O. #: 735-004150 ## **GENERAL COMMENTS** Each temperature is the average of up to three cooler temperatures taken at receipt | Package 1 | 13.0°C | |-----------|--------| | | 20.0 0 | Sample TYX988 [SW1]: Poor RCAp Ion Balance due to sample matrix. Anion sum does not include contribution from Total Organic Carbon. Results relate only to the items tested. Report Date: 2022/10/25 **GHD** Limited Client Project #: 12574778-03 Your P.O. #: 735-004150 ## **QUALITY ASSURANCE REPORT** | | | | QUALITI ASSURAI | | | | | | |---------|------|--------------|------------------------------------|--------------------------|--------|----------------|---------|-----------| | QA/QC | 114 | 00. | Demonstra | Data Analysis | Malara | D | LINUTC | 001:: | | Batch | Init | QC Type | Parameter Test Courses de d'Orlide | Date Analyzed | Value | Recovery | UNITS | QC Limits | | 8277642 | RMK | QC Standard | Total Suspended Solids | 2022/10/17 | -1.0 | 97 | %
/1 | 80 - 120 | | 8277642 | RMK | Method Blank | Total Suspended Solids | 2022/10/17
2022/10/17 | <1.0 | | mg/L | 20 | | 8277642 | RMK | RPD | Total Suspended Solids | • • | 2.6 | 0.2 | % | 20 | | 8282758 | RSL | Matrix Spike | Total Organic Carbon (C) | 2022/10/14 | | 93 | % | 85 - 115 | | 8282758 | RSL | Spiked Blank | Total Organic Carbon (C) | 2022/10/14 | 0.50 | 99 | % | 80 - 120 | | 8282758 | RSL | Method Blank | Total Organic Carbon (C) | 2022/10/14 | <0.50 | | mg/L | | | 8282758 | RSL | RPD | Total Organic Carbon (C) | 2022/10/14 | 0.48 | | % | 15 | | 8283616 | RSL | Matrix Spike | Total Organic Carbon (C) | 2022/10/15 | | 104 | % | 85 - 115 | | 8283616 | RSL | Spiked Blank | Total Organic Carbon (C) | 2022/10/14 | | 98 | % | 80 - 120 | | 8283616 | RSL | Method Blank | Total Organic Carbon (C) | 2022/10/14 | <0.50 | | mg/L | | | 8283616 | RSL | RPD | Total Organic Carbon (C) | 2022/10/15 | 12 | | % | 15 | | 8286592 | NGI | Spiked Blank | Conductivity | 2022/10/17 | | 101 | % | 80 - 120 | | 8286592 | NGI | Method Blank | Conductivity | 2022/10/17 | <1.0 | | uS/cm | | | 8286592 | NGI | RPD | Conductivity | 2022/10/17 | 4.8 | | % | 10 | | 8286597 | NGI | Spiked Blank | рН | 2022/10/17 | | 100 | % | 97 - 103 | | 8286597 | NGI | RPD | рН | 2022/10/17 | 0.58 | | % | N/A | | 8286598 | NGI | Spiked Blank | Total Alkalinity (Total as CaCO3) | 2022/10/17 | | 105 | % | 80 - 120 | | 8286598 | NGI | Method Blank | Total Alkalinity (Total as CaCO3) | 2022/10/17 | <2.0 | | mg/L | | | 8286598 | NGI | RPD | Total Alkalinity (Total as CaCO3) | 2022/10/17 | 1.9 | | % | 20 | | 8286822 | TGO | Matrix Spike | Nitrogen (Ammonia Nitrogen) | 2022/10/17 | | NC | % | 80 - 120 | | 8286822 | TGO | Spiked Blank | Nitrogen (Ammonia Nitrogen) | 2022/10/17 | | 100 | % | 80 - 120 | | 8286822 | TGO | Method Blank | Nitrogen (Ammonia Nitrogen) | 2022/10/17 | <0.050 | | mg/L | | | 8286822 | TGO | RPD | Nitrogen (Ammonia Nitrogen) | 2022/10/17 | 0.47 | | % | 20 | | 8289817 | JHY | Matrix Spike | Total Aluminum (AI) | 2022/10/19 | | 99 | % | 80 - 120 | | | | | Total Antimony (Sb) | 2022/10/19 | | 100 | % | 80 - 120 | | | | | Total Arsenic (As) | 2022/10/19 | | 94 | % | 80 - 120 | | | | | Total Barium (Ba) | 2022/10/19 | | 96 | % | 80 - 120 | | | | | Total Beryllium (Be) | 2022/10/19 | | 96 | % | 80 - 120 | | | | | Total Bismuth (Bi) | 2022/10/19 | | 97 | % | 80 - 120 | | | | | Total Boron (B) | 2022/10/19 | | 98 | % | 80 - 120 | | | | | Total Cadmium (Cd) | 2022/10/19 | | 98 | % | 80 - 120 | | | | | Total Calcium (Ca) | 2022/10/19 | | 100 | % | 80 - 120 | | | | | Total Chromium (Cr) | 2022/10/19 | | 96 | % | 80 - 120 | | | | | Total Cobalt (Co) | 2022/10/19 | | 98 | % | 80 - 120 | | | | | Total Copper (Cu) | 2022/10/19 | | 97 | % | 80 - 120 | | | | | Total Iron (Fe) | 2022/10/19 | | 101 | % | 80 - 120 | | | | | Total Lead (Pb) | 2022/10/19 | | 97 | % | 80 - 120 | | | | | Total Magnesium (Mg) | 2022/10/19 | | 103 | % | 80 - 120 | | | | | Total Manganese (Mn) | 2022/10/19 | | 99 | % | 80 - 120 | | | | | Total Molybdenum (Mo) | 2022/10/19 | | 102 | % | 80 - 120 | | | | | Total Nickel (Ni) | 2022/10/19 | | 98 | % | 80 - 120 | | | | | Total Phosphorus (P) | 2022/10/19 | | 102 | % | 80 - 120 | | | | | | | | | | | | | | | Total Potassium (K) | 2022/10/19 | | 100
99 | % | 80 - 120 | | | | | Total Selenium (Se) | 2022/10/19 | | 9 9 | % | 80 - 120 | | | | | Total Salver (Ag) | 2022/10/19 | | | % | 80 - 120 | | | | | Total Strontium (Sr) | 2022/10/19 | | 103
NC | % | 80 - 120 | | | | | Total Strontium (Sr) | 2022/10/19 | | NC
00 | % | 80 - 120 | | | | | Total Thallium (TI) | 2022/10/19 | | 99 | % | 80 - 120 | | | | | Total Tin (Sn) | 2022/10/19 | | 99 | % | 80 - 120 | | | | | Total Titanium (Ti) | 2022/10/19 | | 97 | % | 80 - 120 | | | | | Total Uranium (U) | 2022/10/19 | | 101 | % | 80 - 120 | | | | | Total Vanadium (V) | 2022/10/19 | | 98 | % | 80 - 120 | | | | | Total Zinc (Zn) | 2022/10/19 | | 98 | % | 80 - 120 | | 8289817 | JHY | Spiked Blank | Total Aluminum (Al) | 2022/10/19 | | 100 | % | 80 - 120 | Client Project #: 12574778-03 Your P.O. #: 735-004150 ## QUALITY ASSURANCE REPORT(CONT'D) | QA/QC | | | _ | | | | | | |--------|------|--------------|-----------------------|---------------|--------|----------|-------|-----------| | Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | | | | Total Antimony (Sb) | 2022/10/19 | | 97 | % | 80 - 120 | | | | | Total Arsenic (As) | 2022/10/19 | | 90 | % | 80 - 120 | | | | | Total Barium (Ba) | 2022/10/19 | | 92 | % | 80 - 120 | | | | | Total Beryllium (Be) | 2022/10/19 | | 93 | % | 80 - 120 | | | | | Total Bismuth (Bi) | 2022/10/19 | | 95 | % | 80 - 120 | | | | | Total Boron (B) | 2022/10/19 | | 97 | % | 80 - 120 | | | | | Total Cadmium (Cd) | 2022/10/19 | | 96 | % | 80 - 120 | | | | | Total Calcium (Ca) | 2022/10/19 | | 98 | % | 80 - 120 | | | | | Total Chromium (Cr) | 2022/10/19 | | 93 | % | 80 - 120 | | | | | Total Cobalt (Co) | 2022/10/19 | | 95 | % | 80 - 120 | | | | | Total Copper (Cu) | 2022/10/19 | | 95 | % | 80 - 120 | | | | | Total Iron (Fe) | 2022/10/19 | | 101 | % | 80 - 120 | | | | | Total Lead (Pb) | 2022/10/19 | | 94 | % | 80 - 120 | | | | | Total Magnesium (Mg) | 2022/10/19 | | 102 | % | 80 - 120 | | | | | Total Manganese (Mn) | 2022/10/19 | | 97 | % | 80 - 120 | | | | | Total Molybdenum (Mo) | 2022/10/19 | | 99 | % | 80 - 120 | | | | | Total Nickel (Ni) | 2022/10/19 | | 96 | % | 80 - 120 | | | | | Total Phosphorus (P) | 2022/10/19 | | 99 | % | 80 - 120 | | | | | Total Potassium (K) | 2022/10/19 | | 99 | % | 80 - 120 | | | | | Total Selenium (Se) | 2022/10/19 | | 94 | % | 80 - 120 | | | | | Total Silver (Ag) | 2022/10/19 | | 93 | % | 80 - 120 | | | | | Total Sodium (Na) | 2022/10/19 | | 102 | % | 80 - 120 | | | | | Total Strontium (Sr) | 2022/10/19 | | 91 | % | 80 - 120 | | | | | Total Thallium (TI) | 2022/10/19 | | 98 | % | 80 - 120 | | | | | Total Tin (Sn) | 2022/10/19 | | 96 | % | 80 - 120 | | | | | Total Titanium (Ti) | 2022/10/19 | | 97 | % | 80 - 120 | | | | | Total Uranium (U) | 2022/10/19 | | 97 | % | 80 - 120 | | | | | Total Vanadium (V) | 2022/10/19 | | 95 | % | 80 - 120 | | | | | Total Zinc (Zn) | 2022/10/19 | | 97 | % | 80 - 120 | | 289817 | JHY | Method Blank | Total Aluminum (Al) | 2022/10/19 | <5.0 | | ug/L | | | | | | Total Antimony (Sb) | 2022/10/19 | <1.0 | | ug/L | | | | | | Total Arsenic (As) | 2022/10/19 | <1.0
 | ug/L | | | | | | Total Barium (Ba) | 2022/10/19 | <1.0 | | ug/L | | | | | | Total Beryllium (Be) | 2022/10/19 | <0.10 | | ug/L | | | | | | Total Bismuth (Bi) | 2022/10/19 | <2.0 | | ug/L | | | | | | Total Boron (B) | 2022/10/19 | <50 | | ug/L | | | | | | Total Cadmium (Cd) | 2022/10/19 | <0.010 | | ug/L | | | | | | Total Calcium (Ca) | 2022/10/19 | <100 | | ug/L | | | | | | Total Chromium (Cr) | 2022/10/19 | <1.0 | | ug/L | | | | | | Total Cobalt (Co) | 2022/10/19 | <0.40 | | ug/L | | | | | | Total Copper (Cu) | 2022/10/19 | <0.50 | | ug/L | | | | | | Total Iron (Fe) | 2022/10/19 | <50 | | ug/L | | | | | | Total Lead (Pb) | 2022/10/19 | <0.50 | | ug/L | | | | | | Total Magnesium (Mg) | 2022/10/19 | <100 | | ug/L | | | | | | Total Manganese (Mn) | 2022/10/19 | <2.0 | | ug/L | | | | | | Total Molybdenum (Mo) | 2022/10/19 | <2.0 | | ug/L | | | | | | Total Nickel (Ni) | 2022/10/19 | <2.0 | | ug/L | | | | | | Total Phosphorus (P) | 2022/10/19 | <100 | | ug/L | | | | | | Total Potassium (K) | 2022/10/19 | <100 | | ug/L | | | | | | Total Selenium (Se) | 2022/10/19 | <0.50 | | ug/L | | | | | | Total Silver (Ag) | 2022/10/19 | <0.10 | | ug/L | | | | | | Total Sodium (Na) | 2022/10/19 | <100 | | ug/L | | | | | | Total Strontium (Sr) | 2022/10/19 | <2.0 | | ug/L | | | | | | Total Thallium (Tl) | 2022/10/19 | < 0.10 | | ug/L | | Client Project #: 12574778-03 Your P.O. #: 735-004150 # QUALITY ASSURANCE REPORT(CONT'D) | QA/QC | | | | | | | | | |---------|------|---------------|-----------------------------------|---------------|-------|----------|-------|-----------| | Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | | | • | Total Tin (Sn) | 2022/10/19 | <2.0 | • | ug/L | | | | | | Total Titanium (Ti) | 2022/10/19 | <2.0 | | ug/L | | | | | | Total Uranium (U) | 2022/10/19 | <0.10 | | ug/L | | | | | | Total Vanadium (V) | 2022/10/19 | <2.0 | | ug/L | | | | | | Total Zinc (Zn) | 2022/10/19 | <5.0 | | ug/L | | | 8289817 | JHY | RPD | Total Aluminum (AI) | 2022/10/19 | 3.1 | | % | 20 | | | | | Total Antimony (Sb) | 2022/10/19 | NC | | % | 20 | | | | | Total Arsenic (As) | 2022/10/19 | NC | | % | 20 | | | | | Total Barium (Ba) | 2022/10/19 | 0.68 | | % | 20 | | | | | Total Beryllium (Be) | 2022/10/19 | NC | | % | 20 | | | | | Total Bismuth (Bi) | 2022/10/19 | NC | | % | 20 | | | | | Total Boron (B) | 2022/10/19 | NC | | % | 20 | | | | | Total Cadmium (Cd) | 2022/10/19 | NC | | % | 20 | | | | | Total Calcium (Ca) | 2022/10/19 | 4.9 | | % | 20 | | | | | Total Chromium (Cr) | 2022/10/19 | NC | | % | 20 | | | | | Total Cobalt (Co) | 2022/10/19 | NC | | % | 20 | | | | | Total Copper (Cu) | 2022/10/19 | 1.5 | | % | 20 | | | | | Total Iron (Fe) | 2022/10/19 | 5.1 | | % | 20 | | | | | Total Lead (Pb) | 2022/10/19 | NC | | % | 20 | | | | | Total Magnesium (Mg) | 2022/10/19 | 2.6 | | % | 20 | | | | | Total Manganese (Mn) | 2022/10/19 | 1.7 | | % | 20 | | | | | Total Molybdenum (Mo) | 2022/10/19 | NC | | % | 20 | | | | | Total Nickel (Ni) | 2022/10/19 | NC | | % | 20 | | | | | Total Phosphorus (P) | 2022/10/19 | NC | | % | 20 | | | | | Total Potassium (K) | 2022/10/19 | 2.6 | | % | 20 | | | | | Total Selenium (Se) | 2022/10/19 | NC | | % | 20 | | | | | Total Silver (Ag) | 2022/10/19 | NC | | % | 20 | | | | | Total Sodium (Na) | 2022/10/19 | 3.7 | | % | 20 | | | | | Total Strontium (Sr) | 2022/10/19 | 3.1 | | % | 20 | | | | | Total Thallium (TI) | 2022/10/19 | NC | | % | 20 | | | | | Total Tin (Sn) | 2022/10/19 | NC | | % | 20 | | | | | Total Titanium (Ti) | 2022/10/19 | NC | | % | 20 | | | | | Total Uranium (U) | 2022/10/19 | NC | | % | 20 | | | | | Total Vanadium (V) | 2022/10/19 | NC | | % | 20 | | | | | Total Zinc (Zn) | 2022/10/19 | NC | | % | 20 | | 8289823 | NGI | Spiked Blank | Conductivity | 2022/10/18 | | 98 | % | 80 - 120 | | 8289823 | NGI | Method Blank | Conductivity | 2022/10/18 | <1.0 | | uS/cm | | | 8289823 | NGI | RPD | Conductivity | 2022/10/18 | 0.66 | | % | 10 | | 8289827 | NGI | Spiked Blank | рH | 2022/10/18 | | 100 | % | 97 - 103 | | 8289827 | NGI | RPD | pH | 2022/10/18 | 0.80 | | % | N/A | | 8289828 | NGI | Spiked Blank | Total Alkalinity (Total as CaCO3) | 2022/10/18 | | 105 | % | 80 - 120 | | 8289828 | NGI | Method Blank | Total Alkalinity (Total as CaCO3) | 2022/10/18 | <2.0 | | mg/L | | | 8289828 | NGI | RPD | Total Alkalinity (Total as CaCO3) | 2022/10/18 | 0.82 | | % | 20 | | 8292230 | AA0 | QC Standard | Turbidity | 2022/10/19 | | 109 | % | 80 - 120 | | 8292230 | AA0 | Spiked Blank | Turbidity | 2022/10/19 | | 99 | % | 80 - 120 | | 8292230 | AA0 | Method Blank | Turbidity | 2022/10/19 | <0.10 | | NTU | | | 8292230 | AA0 | RPD | Turbidity | 2022/10/19 | 1.7 | | % | 20 | | 8296013 | AA0 | QC Standard | Turbidity | 2022/10/21 | | 108 | % | 80 - 120 | | 8296013 | AA0 | Spiked Blank | Turbidity | 2022/10/21 | | 105 | % | 80 - 120 | | 8296013 | AA0 | Method Blank | Turbidity | 2022/10/21 | <0.10 | 200 | NTU | | | 8296013 | AA0 | RPD | Turbidity | 2022/10/21 | 20 | | % | 20 | | 8298338 | TGO | Matrix Spike | Dissolved Chloride (Cl-) | 2022/10/21 | | 54 (1) | % | 80 - 120 | | 8298338 | TGO | Spiked Blank | Dissolved Chloride (Cl-) | 2022/10/23 | | 94 | % | 80 - 120 | | 323333 | . 50 | opinea bialik | Dissolved Chieffac (Ci / | 2022/10/23 | <1.0 | J- | mg/L | 00 120 | Client Project #: 12574778-03 Your P.O. #: 735-004150 ## QUALITY ASSURANCE REPORT(CONT'D) | QA/QC | | | | | | | | | |---------|------|--------------|--------------------------|---------------|--------|----------|-------|-----------| | Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | 8298338 | TGO | RPD | Dissolved Chloride (CI-) | 2022/10/23 | 0.48 | | % | 20 | | 8298346 | TGO | Matrix Spike | Dissolved Sulphate (SO4) | 2022/10/22 | | NC | % | 80 - 120 | | 8298346 | TGO | Spiked Blank | Dissolved Sulphate (SO4) | 2022/10/22 | | 101 | % | 80 - 120 | | 8298346 | TGO | Method Blank | Dissolved Sulphate (SO4) | 2022/10/22 | <2.0 | | mg/L | | | 8298346 | TGO | RPD | Dissolved Sulphate (SO4) | 2022/10/22 | 3.8 | | % | 20 | | 8298347 | TGO | Matrix Spike | Reactive Silica (SiO2) | 2022/10/22 | | NC | % | 80 - 120 | | 8298347 | TGO | Spiked Blank | Reactive Silica (SiO2) | 2022/10/22 | | 94 | % | 80 - 120 | | 8298347 | TGO | Method Blank | Reactive Silica (SiO2) | 2022/10/22 | <0.50 | | mg/L | | | 8298347 | TGO | RPD | Reactive Silica (SiO2) | 2022/10/22 | 3.4 | | % | 20 | | 8298348 | TGO | Spiked Blank | Colour | 2022/10/24 | | 96 | % | 80 - 120 | | 8298348 | TGO | Method Blank | Colour | 2022/10/24 | <5.0 | | TCU | | | 8298348 | TGO | RPD | Colour | 2022/10/24 | NC | | % | 20 | | 8298397 | TGO | Matrix Spike | Orthophosphate (P) | 2022/10/24 | | 50 (1) | % | 80 - 120 | | 8298397 | TGO | Spiked Blank | Orthophosphate (P) | 2022/10/24 | | 102 | % | 80 - 120 | | 8298397 | TGO | Method Blank | Orthophosphate (P) | 2022/10/24 | <0.010 | | mg/L | | | 8298397 | TGO | RPD | Orthophosphate (P) | 2022/10/24 | NC | | % | 20 | | 8298409 | TGO | Matrix Spike | Nitrate + Nitrite (N) | 2022/10/24 | | NC | % | 80 - 120 | | 8298409 | TGO | Spiked Blank | Nitrate + Nitrite (N) | 2022/10/24 | | 106 | % | 80 - 120 | | 8298409 | TGO | Method Blank | Nitrate + Nitrite (N) | 2022/10/24 | <0.050 | | mg/L | | | 8298409 | TGO | RPD | Nitrate + Nitrite (N) | 2022/10/24 | 3.2 | | % | 20 | | 8298414 | TGO | Matrix Spike | Nitrite (N) | 2022/10/22 | | NC | % | 80 - 120 | | 8298414 | TGO | Spiked Blank | Nitrite (N) | 2022/10/22 | | 106 | % | 80 - 120 | | 8298414 | TGO | Method Blank | Nitrite (N) | 2022/10/22 | <0.010 | | mg/L | | | 8298414 | TGO | RPD | Nitrite (N) | 2022/10/22 | 0.41 | | % | 20 | N/A = Not Applicable Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement. Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference. QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy. Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy. Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination. NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration) NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL). (1) Poor spike recovery due to probable sample matrix interference. Client Project #: 12574778-03 Your P.O. #: 735-004150 #### **VALIDATION SIGNATURE PAGE** The analytical data and all QC contained in this report were reviewed and validated by: Colleen Acker, B.Sc, Scientific Service Specialist **Automated Statchk** Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations. | | | Bureau Veritas
200 Bluewater Road, Bedford, Nova | Scotia Canada 84 | B 1G9 Tel (9 | 02) 420-0203 To | II-free:800-56 | 3-6266 | Fax.(9 | 902) 420-8 | 612 www.b | vna com | | | | | | | Chain | Of Cu | stody i | Record | | | Page 1 of 1 |
---|-------------------------|---|------------------|--------------|-----------------|--|----------------------|---------------------|---------------------------------|------------------------|---------|-------------------|-------|-------------|-----------|--------|---------------|--|-------------------------------------|--------------------------------|---|-----------------------|-------------------------|------------------| | R. H. W. L. | К | INVOICE TO: | | | | Report In | formati | ion | | | | | | Project Inf | ormation | _ | | 1 | | | Labor | ratory | Use Only | | | npany Name | #3000 GHD Li | imited | Co | impany Name | #30775 G | | | | | | | | | C20026 | | | | _ | В | ureau Ve | ritas Job | - | | Bottle Order #: | | act Name | Accounts payat | | | impany Name | Callie Andr | | | tomo | | | | Quotation# | 2 | PFVI | 10 fc 7 | 25-4 | 14151 |) | 0 | | | ~ 1 | _ | CONTRACTOR NO. | | ess | 455 Phillip St | | | idress | 120 Weste | 3111, -137, 111, 210, 100 | | COMO | | | | | | 12574778 | -03 | 0 3 (4 | 01130 | | (5 | 7 | 42 | 5X 1 | | 894298 | | 103. | Waterloo ON N | 2L 3X2 | | uiess | Bedford NS | The Park Control of the State o | | | | | | Project # | | 1401.11.10 | | | | | Cha | in Of Cu | stody Red | cord | F | roject Manager | | 6 | (519) 884-0510 | Fax (519) 725-1 | 394 | ione | (902) 468- | CONTRACTOR STREET | | Fax | | | | Project Name | | | | | | | 7137.00 | 20, 30, 50, 50 | 507 BAR 12 A 18 | 10000-0 | | | | il | Invoicing-Canad | | | nail | Callie.andr | ews@ahd | com | | | essica.ro | mo@ah | Site # Sampled By | | mf/ | 1 | | | - | | | 98-01-01 | | | Marie Muise | | egulatory Cri | | | | | Instructions | | | 55 | | | | IS REQUESTED | | 1 | | | | _ | | _ | | me /TA | T) Required: | | | ** Specify Ma | ntrix: Surface/Ground/T | ippwater/Sewage/EffluenI/Seawater
ssue/Soli/Siudge/Metal | | | | | rved | 10.00 | Total Metals in | spilos | | | | | | | S | egular (Si
will be app
tandard Ti
lease note
ays - conta | tandard)
lied if Rus
AT = 5-7 | TAT:
th TAT is
Working o | not specification of the state | fied):
nost tests. | e for rush proje | oxins/Furans are | | | NES MUST BE KEPT | COOL (~70°C) FROM TIME OF SAMPI | LING UNTIL DELI | | REAU VERITAS | Matrix | Field Filtered & Pre | Lab Filtration Requ | Atlantic RCAp-MS Total
Water | Total Suspended Solids | | | | | | | D | # of
Bottles | | | .,, | Tin | obmission) The Required | Analysis | | | | SW1 | 22/10, | 105 | 13:00 | SW | | | х | х | | | | | | | 1 | 5 | | | | | | | | | | SW2 | 1 | | 11.30 | 1 | | | x | x | | | | | | | | 5 | | | | | | | | | | SW3 | | | 10:00 | | | | X | X | | | | | | | | 5 | | | | | | | | | | SW4 | 7 | | 9:45 | 4 | | | х | x | | | | | | | | 5 | | / t | temi | nt to | Cool: | es L | / | lo | | 2404 | Г | | | | | | | | | | | | | | | | 207 | 20CT 5 | | | | | | | | | Г | | | 1 | | | | | | | | | | | | | | | | | USHED BY (Signatur | | te: (YY/MM/DD) | Time | | RECE | IVED BY | Y: (Sigr | nature/Prir | nt) | 1 | Date: (YY/MI | A/DD) | Time | # jars us | | | | | | Lab Use | e Only | | | | martey | Kho Ima | MRIFIAN 2 | 2/10/05 | 14:50 | F | MF | M | 10 | t | <u> </u> | | | | | notsubr | mitted | Firme Sensiti | ve Ten | perature | (°C) on 5 | Receipt . | | Custody Seal In | No No | Bureau Veritos Canada (2019) Inc. Your P.O. #: 735-005520 Your Project #: 12601021 Site Location: ANTRIM EA Your C.O.C. #: 938147-01-01 **Attention: Callie Andrews** GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2 Report Date: 2023/08/04 Report #: R7750792 Version: 1 - Final ## **CERTIFICATE OF ANALYSIS** BUREAU VERITAS JOB #: C3K6673 Received: 2023/07/12, 16:53 Sample Matrix: Water # Samples Received: 6 | # Samples Received. 6 | | | | | | |--------------------------------------|----------------|-------------------|------------------|-------------------|---------------------| | Analyses | Quantity | Date
Extracted | Date
Analyzed | Laboratory Method | Analytical Method | | Carbonate, Bicarbonate and Hydroxide | Qualitity
6 | N/A | 2023/08/03 | . | SM 24 4500-CO2 D | | Alkalinity | 6 | N/A | | ATL SOP 00142 | SM 24 2320 B | | Chloride | 6 | N/A | | ATL SOP 00014 | SM 24 4500-Cl- E m | | Colour | 6 | N/A | | ATL SOP 00020 | SM 24 2120C m | | Conductance - water | 6 | N/A | | ATL SOP 00004 | SM 24 2510B m | | Hardness (calculated as CaCO3) | 6 | ,
N/A | | ATL SOP 00048 | Auto Calc | | Metals Water Total MS | 4 | | | ATL SOP 00058 | EPA 6020B R2 m | | Metals Water Total MS | 2 | | | ATL SOP 00058 | EPA 6020B R2 m | | Ion Balance (% Difference) | 6 | N/A | 2023/08/04 | N/A | Auto Calc. | | Anion and Cation Sum | 6 | N/A | 2023/08/03 | N/A | Auto Calc. | | Nitrogen Ammonia - water | 6 | N/A | 2023/07/26 | ATL SOP 00015 | EPA 350.1 R2 m | | Nitrogen - Nitrate + Nitrite | 6 | N/A | 2023/08/04 | ATL SOP 00016 | USGS I-2547-11m | | Nitrogen - Nitrite | 6 | N/A | 2023/08/03 | ATL SOP 00017 | SM 24 4500-NO2- B m | | Nitrogen - Nitrate (as N) | 6 | N/A | 2023/08/04 | ATL SOP 00018 | ASTM D3867-16 | | pH (1) | 6 | N/A | 2023/08/03 | ATL SOP 00003 | SM 24 4500-H+ B m | | Phosphorus - ortho | 6 | N/A | 2023/08/03 | ATL SOP 00021 | SM 24 4500-P E m | | Sat. pH and Langelier Index (@ 20C) | 6 | N/A | 2023/08/04 | ATL SOP 00049 | Auto Calc. | | Sat. pH and Langelier Index (@ 4C) | 6 | N/A | 2023/08/04 | ATL SOP 00049 | Auto Calc. | | Reactive Silica | 6 | N/A | 2023/08/03 | ATL SOP 00022 | EPA 366.0 m | | Sulphate | 6 | N/A | 2023/08/03 | ATL SOP 00023 | ASTM D516-16 m | | Total Dissolved Solids (TDS calc) | 6 | N/A |
2023/08/04 | N/A | Auto Calc. | | Organic carbon - Total (TOC) (2) | 3 | N/A | 2023/07/26 | ATL SOP 00203 | SM 24 5310B m | | Organic carbon - Total (TOC) (2) | 3 | N/A | 2023/07/27 | ATL SOP 00203 | SM 24 5310B m | | Total Suspended Solids | 6 | 2023/07/19 | 2023/07/24 | ATL SOP 00007 | SM 24 2540D m | | Turbidity | 6 | N/A | 2023/08/03 | ATL SOP 00011 | EPA 180.1 R2 m | #### Remarks: Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA. All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are Your P.O. #: 735-005520 Your Project #: 12601021 Site Location: ANTRIM EA Your C.O.C. #: 938147-01-01 **Attention: Callie Andrews** GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2 Report Date: 2023/08/04 Report #: R7750792 Version: 1 - Final #### **CERTIFICATE OF ANALYSIS** ## **BUREAU VERITAS JOB #: C3K6673** Received: 2023/07/12, 16:53 reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard. Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent. Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory. Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. - * RPDs calculated using raw data. The rounding of final results may result in the apparent difference. - (1) The APHA Standard Method requires pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time. - (2) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC. #### **Encryption Key** Please direct all questions regarding this Certificate of Analysis to: Marie Muise, Key Account Specialist Email: Marie.MUISE@bureauveritas.com Phone# (902)420-0203 Ext:253 This report has been generated and distributed using a secure automated process. Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Suzanne Rogers, General Manager responsible for Nova Scotia Environmental laboratory operations. Client Project #: 12601021 Site Location: ANTRIM EA Your P.O. #: 735-005520 Sampler Initials: RS ## **RESULTS OF ANALYSES OF WATER** | Bureau Veritas ID Sampling Date COC Number Calculated Parameters | UNITS me/L | WJG889
2023/07/12
10:39
938147-01-01
SW1 | RDL | WJG890
2023/07/12
13:20
938147-01-01 | WJG892
2023/07/12
14:13
938147-01-01 | WJG893
2023/07/12
12:07 | WJG894
2023/07/12
15:26 | | | | |--|------------|---|-------|---|---|-------------------------------|-------------------------------|-------|------|----------| | COC Number | | 10:39
938147-01-01 | RDL | 13:20
938147-01-01 | 14:13 | 12:07 | | | | | | COC Number | | 938147-01-01 | RDL | 938147-01-01 | | _ | 15:26 | | | <u> </u> | | | | | RDL | | 938147-01-01 | 00044 | | | | | | Calculated Parameters | | SW1 | RDL | | 3301.7 01 01 | 938147-01-01 | 938147-01-01 | | | | | Calculated Parameters | me/L | | | SW2 | SW3A | SW4 | SW5 | RDL | MDL | QC Batch | | carcaratea r arameters | me/L | | | | | | | | | | | Anion Sum | | 0.850 | N/A | 0.730 | 0.960 | 0.180 | 0.790 | N/A | N/A | 8786105 | | Bicarb. Alkalinity (calc. as CaCO3) | mg/L | 13 | 1.0 | 25 | 14 | 4.9 | 12 | 1.0 | 0.20 | 8786099 | | Calculated TDS | mg/L | 59 | 1.0 | 46 | 64 | 17 | 53 | 1.0 | 0.20 | 8786110 | | Carb. Alkalinity (calc. as CaCO3) | mg/L | <1.0 | 1.0 | <1.0 | <1.0 | <1.0 | <1.0 | 1.0 | 0.20 | 8786099 | | Cation Sum | me/L | 0.950 | N/A | 0.850 | 1.05 | 0.330 | 0.840 | N/A | N/A | 8786105 | | Hardness (CaCO3) | mg/L | 40 | 1.0 | 31 | 43 | 8.8 | 34 | 1.0 | 1.0 | 8786040 | | Ion Balance (% Difference) | % | 5.56 | N/A | 7.59 | 4.48 | 29.4 | 3.07 | N/A | N/A | 8786167 | | Langelier Index (@ 20C) | N/A | -2.25 | | -1.91 | -2.06 | -3.64 | -2.35 | | | 8786108 | | Langelier Index (@ 4C) | N/A | -2.50 | | -2.16 | -2.31 | -3.89 | -2.60 | | | 8786109 | | Nitrate (N) | mg/L | <0.050 | 0.050 | 0.11 | <0.050 | 0.066 | <0.050 | 0.050 | N/A | 8786169 | | Saturation pH (@ 20C) | N/A | 9.06 | | 8.92 | 8.97 | 10.2 | 9.13 | | | 8786108 | | Saturation pH (@ 4C) | N/A | 9.31 | | 9.17 | 9.22 | 10.4 | 9.38 | | | 8786109 | | Inorganics | | | | | | | | | | | | Total Alkalinity (Total as CaCO3) | mg/L | 13 | 2.0 | 25 | 14 | 4.9 | 12 | 2.0 | N/A | 8830446 | | Dissolved Chloride (Cl-) | mg/L | 2.6 | 1.0 | 3.1 | 3.7 | 2.7 | 2.9 | 1.0 | N/A | 8830471 | | Colour | TCU | 280 | 50 | 120 | 89 | 100 | 86 | 25 | N/A | 8830483 | | Nitrate + Nitrite (N) | mg/L | <0.050 | 0.050 | 0.11 | <0.050 | 0.066 | <0.050 | 0.050 | N/A | 8830486 | | Nitrite (N) | mg/L | <0.010 | 0.010 | <0.010 | <0.010 | <0.010 | <0.010 | 0.010 | N/A | 8830491 | | Nitrogen (Ammonia Nitrogen) | mg/L | 0.051 | 0.050 | <0.050 | <0.050 | <0.050 | <0.050 | 0.050 | N/A | 8810387 | | Total Organic Carbon (C) | mg/L | 25 | 0.50 | 15 | 13 | 15 | 13 | 0.50 | N/A | 8813404 | | Orthophosphate (P) | mg/L | <0.010 | 0.010 | <0.010 | <0.010 | <0.010 | <0.010 | 0.010 | N/A | 8830484 | | рН | рН | 6.81 | | 7.00 | 6.90 | 6.55 | 6.78 | | | 8830441 | | Reactive Silica (SiO2) | mg/L | 4.2 | 0.50 | 4.2 | 3.1 | 4.1 | 2.8 | 0.50 | N/A | 8830481 | | Total Suspended Solids | mg/L | 3.7 | 1.7 | 1.6 | 1.0 | 1.8 | 6.2 | 1.0 | N/A | 8797815 | | Dissolved Sulphate (SO4) | mg/L | 25 | 2.0 | 6.2 | 27 | <2.0 | 22 | 2.0 | N/A | 8830477 | | Turbidity | NTU | 3.9 | 0.10 | 5.4 | 1.3 | 3.1 | 1.4 | 0.10 | 0.10 | 8830675 | | Conductivity | uS/cm | 92 | 1.0 | 82 | 120 | 30 | 93 | 1.0 | N/A | 8830443 | RDL = Reportable Detection Limit QC Batch = Quality Control Batch Client Project #: 12601021 Site Location: ANTRIM EA Your P.O. #: 735-005520 Sampler Initials: RS #### **RESULTS OF ANALYSES OF WATER** | Bureau Veritas ID | | WJG895 | _ | | | |--|-------|--------------|-------|------|----------| | Sampling Date | | 2023/07/12 | | | | | COC Number | | 938147-01-01 | | | | | | UNITS | SWDUP | RDL | MDL | QC Batch | | Calculated Parameters | | | | | | | Anion Sum | me/L | 0.180 | N/A | N/A | 8786105 | | Bicarb. Alkalinity (calc. as CaCO3) | mg/L | 4.8 | 1.0 | 0.20 | 8786099 | | Calculated TDS | mg/L | 17 | 1.0 | 0.20 | 8786110 | | Carb. Alkalinity (calc. as CaCO3) | mg/L | <1.0 | 1.0 | 0.20 | 8786099 | | Cation Sum | me/L | 0.320 | N/A | N/A | 8786105 | | Hardness (CaCO3) | mg/L | 8.5 | 1.0 | 1.0 | 8786040 | | Ion Balance (% Difference) | % | 28.0 | N/A | N/A | 8786167 | | Langelier Index (@ 20C) | N/A | -3.70 | | | 8786108 | | Langelier Index (@ 4C) | N/A | -3.95 | | | 8786109 | | Nitrate (N) | mg/L | 0.060 | 0.050 | N/A | 8786169 | | Saturation pH (@ 20C) | N/A | 10.2 | | | 8786108 | | Saturation pH (@ 4C) | N/A | 10.5 | | | 8786109 | | Inorganics | • | | | | • | | Total Alkalinity (Total as CaCO3) | mg/L | 4.8 | 2.0 | N/A | 8830446 | | Dissolved Chloride (Cl-) | mg/L | 2.8 | 1.0 | N/A | 8830471 | | Colour | TCU | 110 | 25 | N/A | 8830483 | | Nitrate + Nitrite (N) | mg/L | 0.060 | 0.050 | N/A | 8830486 | | Nitrite (N) | mg/L | <0.010 | 0.010 | N/A | 8830491 | | Nitrogen (Ammonia Nitrogen) | mg/L | <0.050 | 0.050 | N/A | 8810387 | | Total Organic Carbon (C) | mg/L | 14 | 0.50 | N/A | 8813404 | | Orthophosphate (P) | mg/L | <0.010 | 0.010 | N/A | 8830484 | | рН | рН | 6.53 | | | 8830441 | | Reactive Silica (SiO2) | mg/L | 4.2 | 0.50 | N/A | 8830481 | | Total Suspended Solids | mg/L | 1.6 | 1.0 | N/A | 8797815 | | Dissolved Sulphate (SO4) | mg/L | <2.0 | 2.0 | N/A | 8830477 | | Turbidity | NTU | 3.2 | 0.10 | 0.10 | 8830675 | | Conductivity | uS/cm | 30 | 1.0 | N/A | 8830443 | | RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable
 | | | | | Report Date: 2023/08/04 **GHD** Limited Client Project #: 12601021 Site Location: ANTRIM EA Your P.O. #: 735-005520 Sampler Initials: RS # **ELEMENTS BY ICP/MS (WATER)** | Bureau Veritas ID | | WJG889 | WJG890 | WJG892 | WJG893 | WJG894 | WJG895 | | | | |-----------------------|-------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------|-------|-----|----------| | Sampling Date | | 2023/07/12
10:39 | 2023/07/12
13:20 | 2023/07/12
14:13 | 2023/07/12
12:07 | 2023/07/12
15:26 | 2023/07/12 | | | | | COC Number | | 938147-01-01 | 938147-01-01 | 938147-01-01 | 938147-01-01 | 938147-01-01 | 938147-01-01 | | | | | | UNITS | SW1 | SW2 | SW3A | SW4 | SW5 | SWDUP | RDL | MDL | QC Batch | | Metals | | | | | | | | | | | | Total Aluminum (Al) | ug/L | 430 | 220 | 130 | 420 | 200 | 420 | 5.0 | N/A | 8825449 | | Total Antimony (Sb) | ug/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | 1.0 | N/A | 8825449 | | Total Arsenic (As) | ug/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | 1.0 | N/A | 8825449 | | Total Barium (Ba) | ug/L | 9.6 | 13 | 12 | 9.7 | 14 | 9.4 | 1.0 | N/A | 8825449 | | Total Beryllium (Be) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | N/A | 8825449 | | Total Bismuth (Bi) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | N/A | 8825449 | | Total Boron (B) | ug/L | <50 | <50 | <50 | <50 | <50 | <50 | 50 | N/A | 8825449 | | Total Cadmium (Cd) | ug/L | 0.020 | 0.017 | <0.010 | 0.015 | 0.028 | 0.022 | 0.010 | N/A | 8825449 | | Total Calcium (Ca) | ug/L | 14000 | 9700 | 16000 | 2400 | 12000 | 2300 | 100 | N/A | 8825449 | | Total Chromium (Cr) | ug/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | 1.0 | N/A | 8825449 | | Total Cobalt (Co) | ug/L | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | 0.40 | N/A | 8825449 | | Total Copper (Cu) | ug/L | 0.66 | 0.61 | 0.55 | 0.65 | 0.65 | 0.64 | 0.50 | N/A | 8825449 | | Total Iron (Fe) | ug/L | 1300 | 1500 | 610 | 420 | 640 | 410 | 50 | N/A | 8825449 | | Total Lead (Pb) | ug/L | 0.56 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | 0.50 | N/A | 8825449 | | Total Magnesium (Mg) | ug/L | 1200 | 1800 | 1000 | 650 | 840 | 650 | 100 | N/A | 8825449 | | Total Manganese (Mn) | ug/L | 90 | 81 | 340 | 38 | 400 | 38 | 2.0 | N/A | 8825449 | | Total Molybdenum (Mo) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | N/A | 8825449 | | Total Nickel (Ni) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | N/A | 8825449 | | Total Phosphorus (P) | ug/L | <100 | <100 | <100 | <100 | <100 | <100 | 100 | N/A | 8825449 | | Total Potassium (K) | ug/L | 300 | 620 | 370 | 150 | 370 | 150 | 100 | N/A | 8825449 | | Total Selenium (Se) | ug/L | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | 0.50 | N/A | 8825449 | | Total Silver (Ag) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | N/A | 8825449 | | Total Sodium (Na) | ug/L | 2400 | 3600 | 3600 | 3000 | 3000 | 2900 | 100 | N/A | 8825449 | | Total Strontium (Sr) | ug/L | 67 | 23 | 66 | 12 | 53 | 11 | 2.0 | N/A | 8825449 | | Total Thallium (TI) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | N/A | 8825449 | | Total Tin (Sn) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | N/A | 8825449 | | Total Titanium (Ti) | ug/L | 9.0 | 6.0 | 2.6 | 8.5 | 3.6 | 6.9 | 2.0 | N/A | 8825449 | | Total Uranium (U) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | N/A | 8825449 | | Total Vanadium (V) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | N/A | 8825449 | | Total Zinc (Zn) | ug/L | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | 5.0 | N/A | 8825449 | RDL = Reportable Detection Limit QC Batch = Quality Control Batch Client Project #: 12601021 Site Location: ANTRIM EA Your P.O. #: 735-005520 Sampler Initials: RS #### **GENERAL COMMENTS** Each temperature is the average of up to three cooler temperatures taken at receipt Package 1 15.7°C Sample WJG889 [SW1]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L. Sample WJG890 [SW2]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L. Sample WJG893 [SW4]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L. Sample WJG895 [SWDUP]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L. Results relate only to the items tested. Client Project #: 12601021 Site Location: ANTRIM EA Your P.O. #: 735-005520 Sampler Initials: RS ## **QUALITY ASSURANCE REPORT** | | | | QUALITY ASSURA | | | | | | |---------|------|---------------|---|---------------|------------|-----------|-----------|-----------------------| | QA/QC | | 007 | | 5 | | | | 001: " | | Batch | Init | QC Type | Parameter Tatal Suspended Salida | Date Analyzed | Value | Recovery | UNITS | QC Limits
80 - 120 | | 8797815 | RDM | QC Standard | Total Suspended Solids | 2023/07/24 | -10 | 101 | %
ma/l | 80 - 120 | | 8797815 | RDM | Method Blank | Total Suspended Solids | 2023/07/24 | <1.0 | | mg/L | 20 | | 8797815 | RDM | RPD | Total Suspended Solids | 2023/07/24 | 15 | 00 | % | 20 | | 8810387 | TGO | Matrix Spike | Nitrogen (Ammonia Nitrogen) | 2023/07/26 | | 89 | % | 80 - 120 | | 8810387 | TGO | Spiked Blank | Nitrogen (Ammonia Nitrogen) | 2023/07/26 | | 90 | % | 80 - 120 | | 8810387 | TGO | Method Blank | Nitrogen (Ammonia Nitrogen) | 2023/07/26 | <0.050 | | mg/L | | | 8810387 | TGO | RPD | Nitrogen (Ammonia Nitrogen) | 2023/07/26 | NC | | % | 20 | | 8813404 | CPP | Matrix Spike | Total Organic Carbon (C) | 2023/07/26 | | 101 | % | 85 - 115 | | 8813404 | CPP | Spiked Blank | Total Organic Carbon (C) | 2023/07/26 | | 99 | % | 80 - 120 | | 8813404 | CPP | Method Blank | Total Organic Carbon (C) | 2023/07/26 | <0.50 | | mg/L | | | 8813404 | CPP | RPD | Total Organic Carbon (C) | 2023/07/26 | NC | | % | 15 | | 8825449 | JHY | Matrix Spike | Total Aluminum (Al) | 2023/08/02 | | 77 (1) | % | 80 - 120 | | | | | Total Antimony (Sb) | 2023/08/02 | | 95 | % | 80 - 120 | | | | | Total Arsenic (As) | 2023/08/02 | | 94 | % | 80 - 120 | | | | | Total Barium (Ba) | 2023/08/02 | | 94 | % | 80 - 120 | | | | | Total Beryllium (Be) | 2023/08/02 | | 97 | % | 80 - 120 | | | | | Total Bismuth (Bi) | 2023/08/02 | | 95 | % | 80 - 120 | | | | | Total Boron (B) | 2023/08/02 | | 97 | % | 80 - 120 | | | | | Total Cadmium (Cd) | 2023/08/02 | | 99 | % | 80 - 120 | | | | | Total Calcium (Ca) | 2023/08/02 | | 78 (1) | % | 80 - 120 | | | | | Total Chromium (Cr) | 2023/08/02 | | 96 | % | 80 - 120 | | | | | Total Cobalt (Co) | 2023/08/02 | | 97 | % | 80 - 120 | | | | | Total Copper (Cu) | 2023/08/02 | | 99 | % | 80 - 120 | | | | | Total Iron (Fe) | 2023/08/02 | | 82 | % | 80 - 120 | | | | | Total Lead (Pb) | 2023/08/02 | | 98 | % | 80 - 120 | | | | | Total Magnesium (Mg) | 2023/08/02 | | 81 | % | 80 - 120 | | | | | Total Manganese (Mn) | 2023/08/02 | | 99 | % | 80 - 120 | | | | | Total Molybdenum (Mo) | 2023/08/02 | | 99 | % | 80 - 120 | | | | | Total Nickel (Ni) | 2023/08/02 | | 99 | % | 80 - 120 | | | | | Total Phosphorus (P) | 2023/08/02 | | 81 | % | 80 - 120 | | | | | Total Potassium (K) | 2023/08/02 | | 82 | % | 80 - 120 | | | | | Total Selenium (Se) | 2023/08/02 | | 98 | % | 80 - 120 | | | | | Total Silver (Ag) | 2023/08/02 | | 96 | % | 80 - 120 | | | | | Total Sodium (Na) | 2023/08/02 | | 81 | % | 80 - 120 | | | | | Total Strontium (Sr) | 2023/08/02 | | 97 | % | 80 - 120 | | | | | Total Thallium (TI) | 2023/08/02 | | 98 | % | 80 - 120 | | | | | Total Tin (Sn) | 2023/08/02 | | 96 | % | 80 - 120 | | | | | Total Titanium (Ti) | 2023/08/02 | | 98 | % | 80 - 120 | | | | | Total Uranium (U) | 2023/08/02 | | 103 | % | 80 - 120 | | | | | Total Vanadium (V) | 2023/08/02 | | 99 | % | 80 - 120 | | | | | Total Zinc (Zn) | 2023/08/02 | | 94 | % | 80 - 120 | | 8825449 | JHY | Spiked Blank | Total Aluminum (AI) | 2023/08/02 | | 80 | % | 80 - 120 | | 0023443 | 3111 | Spikea Blatik | Total Antimony (Sb) | 2023/08/02 | | 99 | % | 80 - 120 | | | | | Total Arsenic (As) | 2023/08/02 | | 96 | % | 80 - 120 | | | | | Total Barium (Ba) | 2023/08/02 | | 97 | % | 80 - 120 | | | | | Total Baridin (Ba) Total Beryllium (Be) | 2023/08/02 | | 97 | %
% | 80 - 120 | | | | | Total Beryllum (Be) Total Bismuth (Bi) | 2023/08/02 | | 98 | %
% | 80 - 120
80 - 120 | | | | | , , | | | | | | | | | | Total Boron (B) Total Cadmium (Cd) | 2023/08/02 | | 98
101 | % | 80 - 120
80 - 120 | | | | | , , | 2023/08/02 | | | % | 80 - 120 | | | | | Total Chromium (Cr) | 2023/08/02 | | 79 (1) | % | 80 - 120 | | | | | Total Cabalt (Ca) | 2023/08/02 | | 99 | % | 80 - 120 | | | | | Total Cobalt (Co) | 2023/08/02 | | 100 | % | 80 - 120 | Client Project #: 12601021 Site Location: ANTRIM EA Your P.O. #: 735-005520 Sampler Initials: RS ## QUALITY ASSURANCE REPORT(CONT'D) | QA/QC | | | | | | | | | |----------|------|--------------|-------------------------------------|---------------|---------|----------|--------------|-----------| | Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | | | | Total Copper (Cu) | 2023/08/02 | | 101 | % | 80 - 120 | | | | | Total Iron (Fe) | 2023/08/02 | | 82 | % | 80 - 120 | | | | | Total Lead (Pb) | 2023/08/02 | | 100 | % | 80 - 120 | | | | | Total Magnesium (Mg) | 2023/08/02 | | 83 | % | 80 - 120 | | | | | Total Manganese (Mn) | 2023/08/02 | | 102 | % | 80 - 120 | | | | | Total Molybdenum (Mo) | 2023/08/02 | | 101 | % | 80 - 120 | | | | | Total Nickel (Ni) | 2023/08/02 | | 101 | % | 80 - 120 | | | | | Total Phosphorus (P) | 2023/08/02 | | 80 | % | 80 - 120 | | | | | Total Potassium (K) | 2023/08/02 | | 80 | % | 80 - 120 | | | | | Total Selenium (Se) | 2023/08/02 | | 98 | % | 80 - 120 | | | | | Total Silver (Ag) | 2023/08/02 | | 98 | % | 80 - 120 | | | | | Total Sodium (Na) | 2023/08/02 | | 81 | % | 80 - 120 | | | | | Total Strontium (Sr) | 2023/08/02 | | 99 | % | 80 - 120 | | | | | Total Thallium (TI) | 2023/08/02 | | 100 | % | 80 - 120 | | | | | Total Tin (Sn) | 2023/08/02 | | 96 | % | 80
- 120 | | | | | Total Titanium (Ti) | 2023/08/02 | | 103 | % | 80 - 120 | | | | | Total Uranium (U) | 2023/08/02 | | 106 | % | 80 - 120 | | | | | Total Vanadium (V) | 2023/08/02 | | 102 | % | 80 - 120 | | | | | Total Zinc (Zn) | 2023/08/02 | | 97 | % | 80 - 120 | | 8825449 | JHY | Method Blank | Total Aluminum (Al) | 2023/08/02 | <5.0 | | ug/L | | | | | | Total Antimony (Sb) | 2023/08/02 | <1.0 | | ug/L | | | | | | Total Arsenic (As) | 2023/08/02 | <1.0 | | ug/L | | | | | | Total Barium (Ba) | 2023/08/02 | <1.0 | | ug/L | | | | | | Total Beryllium (Be) | 2023/08/02 | <0.10 | | ug/L | | | | | | Total Bismuth (Bi) | 2023/08/02 | <2.0 | | ug/L | | | | | | Total Boron (B) | 2023/08/02 | <50 | | ug/L | | | | | | Total Cadmium (Cd) | 2023/08/02 | <0.010 | | ug/L | | | | | | Total Calcium (Ca) | 2023/08/02 | <100 | | ug/L | | | | | | Total Chromium (Cr) | 2023/08/02 | <1.0 | | ug/L | | | | | | Total Cobalt (Co) | 2023/08/02 | <0.40 | | ug/L | | | | | | Total Copper (Cu) | 2023/08/02 | <0.50 | | ug/L | | | | | | Total Iron (Fe) | 2023/08/02 | <50 | | ug/L | | | | | | Total Lead (Pb) | 2023/08/02 | <0.50 | | ug/L | | | | | | Total Magnesium (Mg) | 2023/08/02 | <100 | | ug/L | | | | | | Total Manganese (Mn) | 2023/08/02 | <2.0 | | ug/L | | | | | | Total Molybdenum (Mo) | 2023/08/02 | <2.0 | | ug/L | | | | | | Total Nickel (Ni) | 2023/08/02 | <2.0 | | ug/L | | | | | | Total Phosphorus (P) | 2023/08/02 | <100 | | ug/L | | | | | | Total Potassium (K) | 2023/08/02 | <100 | | ug/L | | | | | | Total Selenium (Se) | 2023/08/02 | <0.50 | | ug/L | | | | | | Total Silver (Ag) | 2023/08/02 | <0.10 | | ug/L | | | | | | Total Sodium (Na) | 2023/08/02 | <100 | | ug/L | | | | | | Total Strontium (Sr) | 2023/08/02 | <2.0 | | ug/L | | | | | | Total Thallium (Tl) | 2023/08/02 | <0.10 | | ug/L | | | | | | Total Tin (Sn) | 2023/08/02 | <2.0 | | ug/L | | | | | | Total Titanium (Ti) | 2023/08/02 | <2.0 | | ug/L | | | | | | Total Tranium (U) | 2023/08/02 | <0.10 | | ug/L
ug/L | | | | | | Total Vanadium (V) | 2023/08/02 | <2.0 | | ug/L | | | | | | Total Variation (V) Total Zinc (Zn) | 2023/08/02 | <5.0 | | ug/L
ug/L | | | 8825449 | JHY | RPD | Total Iron (Fe) | 2023/08/02 | 0.99 | | ug/L
% | 20 | | 00/ 1444 | JΠŢ | NF D | וטנמו ווטוו (דפ) | 2023/08/02 | 0.33 | | /0 | 20 | | 0020 | | | Total Manganese (Mn) | 2023/08/02 | 2.0 (2) | | % | 20 | Client Project #: 12601021 Site Location: ANTRIM EA Your P.O. #: 735-005520 Sampler Initials: RS ## QUALITY ASSURANCE REPORT(CONT'D) | | | | QUALITI ASSURANCE I | | | | | | |----------------|-------|--------------|-----------------------------------|---------------|--------|----------|--|----------------------| | QA/QC
Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | 8830441 | KMC | RPD | pH | 2023/08/03 | 0.18 | Recovery | % | N/A | | 8830443 | KMC | Spiked Blank | Conductivity | 2023/08/03 | 0.20 | 101 | % | 80 - 120 | | 8830443 | KMC | Method Blank | Conductivity | 2023/08/03 | <1.0 | -01 | uS/cm | 00 110 | | 8830443 | KMC | | Conductivity | 2023/08/03 | 0.38 | | % | 10 | | 8830446 | | Spiked Blank | Total Alkalinity (Total as CaCO3) | 2023/08/03 | 0.50 | 96 | % | 80 - 120 | | 8830446 | KMC | Method Blank | Total Alkalinity (Total as CaCO3) | 2023/08/03 | <2.0 | 30 | mg/L | 00 120 | | 8830446 | KMC | RPD | Total Alkalinity (Total as CaCO3) | 2023/08/03 | 4.4 | | % | 20 | | 8830471 | MCN | Matrix Spike | Dissolved Chloride (Cl-) | 2023/08/03 | 7.7 | 89 | % | 80 - 120 | | 8830471 | MCN | Spiked Blank | Dissolved Chloride (Cl-) | 2023/08/03 | | 97 | % | 80 - 120 | | 8830471 | MCN | Method Blank | Dissolved Chloride (Cl-) | 2023/08/03 | <1.0 | 37 | mg/L | 00 120 | | 8830471 | MCN | RPD | Dissolved Chloride (Cl-) | 2023/08/03 | 0.59 | | % | 20 | | 8830477 | MCN | Matrix Spike | Dissolved Sulphate (SO4) | 2023/08/03 | 0.55 | 90 | % | 80 - 120 | | 8830477 | MCN | Spiked Blank | Dissolved Sulphate (SO4) | 2023/08/03 | | 96 | % | 80 - 120 | | 8830477 | MCN | Method Blank | Dissolved Sulphate (SO4) | 2023/08/03 | <2.0 | 30 | mg/L | 00 - 120 | | 8830477 | MCN | RPD | Dissolved Sulphate (SO4) | 2023/08/03 | 14 | | % | 20 | | 8830481 | MCN | Matrix Spike | Reactive Silica (SiO2) | 2023/08/03 | 14 | 88 | % | 80 - 120 | | 8830481 | MCN | Spiked Blank | Reactive Silica (SiO2) | 2023/08/03 | | 96 | % | 80 - 120 | | 8830481 | MCN | Method Blank | Reactive Silica (SiO2) | 2023/08/03 | <0.50 | 90 | mg/L | 80 - 120 | | 8830481 | MCN | RPD | Reactive Silica (SiO2) | 2023/08/03 | 0.11 | | // // // // // // // // // // // // // | 20 | | 8830483 | HGV | Spiked Blank | Colour | 2023/08/03 | 0.11 | 104 | % | 80 - 120 | | 8830483 | HGV | Method Blank | Colour | 2023/08/03 | <5.0 | 104 | TCU | 80 - 120 | | 8830483 | HGV | RPD | Colour | 2023/08/03 | NC | | % | 20 | | 8830484 | HGV | Matrix Spike | Orthophosphate (P) | 2023/08/03 | NC | 91 | % | 80 - 120 | | 8830484 | HGV | Spiked Blank | Orthophosphate (P) | 2023/08/03 | | 95 | % | 80 - 120 | | 8830484 | HGV | Method Blank | Orthophosphate (P) | 2023/08/03 | <0.010 | 93 | mg/L | 80 - 120 | | 8830484 | HGV | RPD | Orthophosphate (P) | 2023/08/03 | NC | | 111g/L
% | 20 | | 8830486 | MCN | Matrix Spike | Nitrate + Nitrite (N) | 2023/08/04 | NC | 92 | % | 80 - 120 | | 8830486 | MCN | Spiked Blank | Nitrate + Nitrite (N) | 2023/08/04 | | 104 | % | 80 - 120 | | 8830486 | MCN | Method Blank | Nitrate + Nitrite (N) | 2023/08/04 | <0.050 | 104 | mg/L | 80 - 120 | | 8830486 | MCN | RPD | Nitrate + Nitrite (N) | 2023/08/04 | 2.6 | | 111g/L
% | 20 | | 8830480 | MCN | Matrix Spike | Nitrite (N) | 2023/08/03 | 2.0 | 97 | % | 80 - 120 | | 8830491 | MCN | Spiked Blank | Nitrite (N) | 2023/08/03 | | 106 | % | 80 - 120 | | 8830491 | MCN | Method Blank | Nitrite (N) | 2023/08/03 | <0.010 | 100 | mg/L | 80 - 120 | | 8830491 | MCN | RPD | Nitrite (N) | 2023/08/03 | V0.010 | | mg/L
% | 20 | | 8830675 | KMC | QC Standard | Turbidity | 2023/08/03 | INC | 102 | %
% | 80 - 120 | | 8830675 | KMC | | Turbidity | 2023/08/03 | | 98 | % | 80 - 120
80 - 120 | | 8830675 | KMC | Method Blank | Turbidity | 2023/08/03 | <0.10 | 30 | ™
NTU | 00 - 120 | | 8830675 | KMC | | Turbidity | 2023/08/03 | 2.3 | | W10
% | 20 | | 00300/3 | KIVIC | וולט | rurbiuity | 2023/06/03 | 2.3 | | 70 | | N/A = Not Applicable Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement. Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference. QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy. Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy. Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination. NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL). - (1) Recovery is within QC acceptance limits. < 10 % of compounds in multi-component analysis in violation. - (2) POTENTIAL EXCEEDANCE FOR PARAMETER Client Project #: 12601021 Site Location: ANTRIM EA Your P.O. #: 735-005520 Sampler Initials: RS #### **VALIDATION SIGNATURE PAGE** The analytical data and all QC contained in this report were reviewed and validated by: Colleen Acker, B.Sc, Scientific Service Specialist **Automated Statchk** Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for $\{2\}$ $\{3\}$ laboratory operations. | | Bureau Veritas 200 Bluewater Road, Bedford, Nova Scotia Canada B4B 1G9 Tel (902) 420-0203 Toll-free:800. ERITANS | | | | | | x (902) 420 | -8612 www.bvna. | | Atterr
Yes_ | ipt to C | .001; | | Chain C | Of Custody Record | | Page 1 of 1 | |----------------|--|--|------------------------------------|-----------------|--------------|--|---------------------------|-----------------|----------------|----------------|------------------|-----------------|--------------|--|--|--|-------------| | BUCKNOWN | INV | /OICE TO: | | | Report Infor | mation | | | | 4 | Project Info | ormation | | | Laboratory | Use Only | | | mpany Name | #16276 GHD Lin | nited | Company Na | | | | - | | Quotation | | C30069 | | | | Bureau Veritas Job # | | Order#: | | ntact Name | Accounts Payable | | Contact Nam | Callia Anda | ews/Jessica | Romo | 0 | | P.O.# | 1# | 735-00552 | 20 | | 10 | 1.11-17 | 11100000 | | | ress | 120 Western Park | way | Address | - | | | | | Project # | | 12601021 | | | 700 | N6612 | | 8147 | | .000 | Bedford NS B4B (| OV2 | , was ess | - | | en m | | | Project N | ama. | Antri | MEX | | | Chain Of Custody Record | | t Manager | | ne | (902) 468-1248 | Fax: (902) 468-220 | 07 Phone | | | ī | ax: | | Site # | arrio | | | | TI TI | | III . | | | ail | AccountsPayable | | Email | callie
andre | ews@ghd.co | | | o@ghd.com | Sampled | Rv | Robin | 5mpson | * J. V | - " | C#938147-01-01 | Mari | ie Muise | | Regulatory Cri | teria | | Spec | al Instructions | | Ť | | A | VALYSIS REQUES | | - | | | _ | Turnaround Time (T. | AT) Required: | | | ** Specify Ma | trix Surface/Ground/Tany | water/Sewage/Effluent/Seawater | | | | Preserved | Total Metals in | Solids | * | | | | (w
Si | rill be applie
andard TA1
ease note: | ndard) TAT:
d if Rush TAT is not specified):
T = 5-7 Working days for most tes
Standard TAT for certain tests suc
t your Project Manager for details | th as BOD and Dioxins/i | Furans are | | SAMF | Potable/Nonpotable/Tissu | DOL (< 10°C) FROM TIME OF SAMPLII Sample (Location) Identification | NG UNTIL DELIVERY TO Data Sampled | BUREAU VERITAS | Matrix | Field Fittered & Presen
Lab Filtration Required | Atlantic RCAp-MS
Water | Total Suspended | | | | | Da | # of
Bottles | and the last | submission) Time Required: / Other Required Analys | sis | | Satispie | Barcode Laber | SW1 | | a 19:39 | | | X | x | | | -11 | | | 5 | | | | | | | SVVI | 12/07/23 | 7.11 | wats | 4 | ^ | ^ | | | | | | | | | | | | | SW2 | 12/07/23 | 16 12:07 | water | -11 | × | X | | | | | | 5 | | | | | i i | | SW3 | | | | _ | _x_ | _x | | | | | | | | | | | | | SW3A | 126763 | 14:13 | Water | | х | х | | | | | | 5 | | | | | | | SW4 | 12/07/03 | 12:07 | World | | × | × | | | | | | 5 | | | | | | | SW5 | 12/07/03 | 15 126 | water | | х | x | | | | | | 5 | | | | | | | SWDUP | 12/07/03 | | Water | | х | х | | | | | | 5 | Lane of | N ACT | | | | | | | | 7 | | | | | | | | | | | tt 12 | | | | | - | | | | | | | | | | | | | | | | * RELING | UISHED BY: (Signature/F | Print) Date: | (YY/MM/DD) Tim | 1 | RECEIV | ED BY: (| Signature/P | rint) | Date: (| YY/MM/DD) | Time | # jars used and | | | Lab Use Only | | | | | mussen/Robu | | 107/12 16: | | | | 1407 | | | | Name of the last | not submitted | Time Sensiti | re Tamo | erature (°C) on Receipt | Custody Seal Intact o | on Cooler? | | av The John | 000 | 23, | 107/12 16: | | 1 (V) | T. C. | V | | | | | _ | | (0) | 16 17 | Yes I | No | Bureau Veritas Canada (2019) Inc. Your P.O. #: 735-009466 Your Project #: 12601021-15 Your C.O.C. #: C#976732-01-01 #### Attention: Jessica Romo GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2 Report Date: 2024/03/05 Report #: R8053614 Version: 1 - Final ## **CERTIFICATE OF ANALYSIS** ### BUREAU VERITAS JOB #: C460020 Received: 2024/02/28, 16:34 Sample Matrix: Surface Water # Samples Received: 7 | | | Date | Date | | | |--------------------------------------|----------|------------|------------|-------------------|---------------------| | Analyses | Quantity | Extracted | Analyzed | Laboratory Method | Analytical Method | | Carbonate, Bicarbonate and Hydroxide | 7 | N/A | 2024/03/04 | N/A | SM 24 4500-CO2 D | | Alkalinity | 7 | N/A | 2024/03/04 | ATL SOP 00142 | SM 24 2320 B | | Chloride | 7 | N/A | 2024/03/04 | ATL SOP 00014 | SM 24 4500-Cl- E m | | Colour | 7 | N/A | 2024/03/04 | ATL SOP 00020 | SM 24 2120C m | | Conductance - water | 7 | N/A | 2024/03/04 | ATL SOP 00004 | SM 24 2510B m | | Fluoride | 7 | N/A | 2024/03/04 | ATL SOP 00043 | SM 24 4500-F- C m | | Hardness (calculated as CaCO3) | 4 | N/A | 2024/03/04 | ATL SOP 00048 | Auto Calc | | Hardness (calculated as CaCO3) | 3 | N/A | 2024/03/05 | ATL SOP 00048 | Auto Calc | | Metals Water Total MS | 1 | 2024/03/01 | 2024/03/01 | ATL SOP 00058 | EPA 6020B R2 m | | Metals Water Total MS | 3 | 2024/03/01 | 2024/03/02 | ATL SOP 00058 | EPA 6020B R2 m | | Metals Water Total MS | 3 | 2024/03/01 | 2024/03/04 | ATL SOP 00058 | EPA 6020B R2 m | | Ion Balance (% Difference) | 7 | N/A | 2024/03/05 | N/A | Auto Calc. | | Anion and Cation Sum | 3 | N/A | 2024/03/04 | N/A | Auto Calc. | | Anion and Cation Sum | 4 | N/A | 2024/03/05 | N/A | Auto Calc. | | Nitrogen Ammonia - water | 3 | N/A | 2024/03/04 | ATL SOP 00015 | EPA 350.1 R2 m | | Nitrogen Ammonia - water | 4 | N/A | 2024/03/05 | ATL SOP 00015 | EPA 350.1 R2 m | | Nitrogen - Nitrate + Nitrite | 7 | N/A | 2024/03/04 | ATL SOP 00016 | USGS I-2547-11m | | Nitrogen - Nitrite | 7 | N/A | 2024/03/04 | ATL SOP 00017 | SM 24 4500-NO2- B m | | Nitrogen - Nitrate (as N) | 7 | N/A | 2024/03/05 | ATL SOP 00018 | ASTM D3867-16 | | pH (1) | 7 | N/A | 2024/03/04 | ATL SOP 00003 | SM 24 4500-H+ B m | | Phosphorus - ortho | 7 | N/A | 2024/03/04 | ATL SOP 00021 | SM 24 4500-P E m | | Sat. pH and Langelier Index (@ 20C) | 7 | N/A | 2024/03/05 | ATL SOP 00049 | Auto Calc. | | Sat. pH and Langelier Index (@ 4C) | 7 | N/A | 2024/03/05 | ATL SOP 00049 | Auto Calc. | | Reactive Silica | 7 | N/A | 2024/03/04 | ATL SOP 00022 | EPA 366.0 m | | Sulphate | 7 | N/A | 2024/03/04 | ATL SOP 00023 | ASTM D516-16 m | | Total Dissolved Solids (TDS calc) | 7 | N/A | 2024/03/05 | N/A | Auto Calc. | | Organic carbon - Total (TOC) (2) | 6 | N/A | 2024/02/29 | ATL SOP 00203 | SM 24 5310B m | | Organic carbon - Total (TOC) (2) | 1 | N/A | 2024/03/01 | ATL SOP 00203 | SM 24 5310B m | | Total Suspended Solids | 7 | 2024/02/29 | 2024/02/29 | ATL SOP 00007 | SM 24 2540D m | | Turbidity | 7 | N/A | 2024/03/01 | ATL SOP 00011 | EPA 180.1 R2 m | #### Remarks: Your P.O. #: 735-009466 Your Project #: 12601021-15 Your C.O.C. #: C#976732-01-01 **Attention: Jessica Romo** GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2 Report Date: 2024/03/05 Report #: R8053614 Version: 1 - Final #### **CERTIFICATE OF ANALYSIS** #### BUREAU VERITAS JOB #: C460020 Received: 2024/02/28, 16:34 Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment. All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard. Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent. Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory. Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. - st RPDs calculated using raw data. The rounding of final results may result in the apparent difference. - (1) The APHA Standard Method requires pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time. - (2) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC. ### **Encryption Key** Please direct all questions regarding this Certificate of Analysis to: Marie Muise, Key Account Specialist Email: Marie.MUISE@bureauveritas.com Phone# (902)420-0203 Ext:253 This report has been generated and distributed using a secure automated process. Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Suzanne Rogers, General Manager responsible for Nova Scotia Environmental laboratory operations. Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: JVS ## **RESULTS OF ANALYSES OF SURFACE WATER** | Bureau Veritas ID | | YMO976 | YMO977 | | YMO978 | | | | |-------------------------------------|-------|----------------|----------------|-------|----------------|-------|-------|----------| | Campling Data | | 2024/02/28 | 2024/02/28 | | 2024/02/28 | | | | | Sampling Date | | 13:15 | 12:10 | | 11:50 | | | | | COC Number | | C#976732-01-01 | C#976732-01-01 | | C#976732-01-01 | | | | | | UNITS | SW-2 | SW-3 | RDL | SW-3A | RDL | MDL | QC Batch | | Calculated Parameters | | | | | | | | | | Anion Sum | me/L | 0.670 | 0.820 | N/A | 1.33 | N/A | N/A | 9244602 | | Bicarb. Alkalinity (calc. as CaCO3) | mg/L | 8.5 | 6.4 | 1.0 | 8.8 | 1.0 | 0.20 | 9244598 | | Calculated TDS | mg/L | 41 | 51 | 1.0 | 84 | 1.0 | 0.20 | 9244608 | | Carb. Alkalinity (calc. as CaCO3) | mg/L | <1.0 | <1.0 | 1.0 | <1.0 | 1.0 | 0.20 | 9244598 | | Cation Sum
| me/L | 0.630 | 0.720 | N/A | 1.22 | N/A | N/A | 9244602 | | Hardness (CaCO3) | mg/L | 19 | 26 | 1.0 | 47 | 1.0 | 1.0 | 9244600 | | Ion Balance (% Difference) | % | 3.08 | 6.49 | N/A | 4.31 | N/A | N/A | 9244601 | | Langelier Index (@ 20C) | N/A | -3.11 | -3.07 | | -2.32 | | | 9244606 | | Langelier Index (@ 4C) | N/A | -3.36 | -3.33 | | -2.57 | | | 9244607 | | Nitrate (N) | mg/L | 0.070 | 0.10 | 0.050 | 0.17 | 0.050 | N/A | 9244603 | | Saturation pH (@ 20C) | N/A | 9.62 | 9.54 | | 9.16 | | | 9244606 | | Saturation pH (@ 4C) | N/A | 9.88 | 9.79 | | 9.41 | | | 9244607 | | Inorganics | | | | | | | | | | Total Alkalinity (Total as CaCO3) | mg/L | 8.5 | 6.4 | 2.0 | 8.8 | 2.0 | N/A | 9253069 | | Dissolved Chloride (Cl-) | mg/L | 12 | 8.5 | 1.0 | 13 | 1.0 | N/A | 9251103 | | Colour | TCU | 27 | 38 | 5.0 | 27 | 5.0 | N/A | 9251125 | | Dissolved Fluoride (F-) | mg/L | <0.10 | <0.10 | 0.10 | <0.10 | 0.10 | 0.050 | 9253070 | | Nitrate + Nitrite (N) | mg/L | 0.070 | 0.10 | 0.050 | 0.17 | 0.050 | N/A | 9251133 | | Nitrite (N) | mg/L | <0.010 | <0.010 | 0.010 | <0.010 | 0.010 | N/A | 9251135 | | Nitrogen (Ammonia Nitrogen) | mg/L | <0.050 | 0.075 | 0.050 | <0.050 | 0.050 | N/A | 9250894 | | Total Organic Carbon (C) | mg/L | 4.4 | 5.3 | 0.50 | 4.0 | 0.50 | N/A | 9247793 | | Orthophosphate (P) | mg/L | <0.010 | <0.010 | 0.010 | <0.010 | 0.010 | N/A | 9251131 | | рН | рН | 6.51 | 6.46 | | 6.85 | | | 9253067 | | Reactive Silica (SiO2) | mg/L | 3.2 | 2.3 | 0.50 | 3.1 | 0.50 | N/A | 9251119 | | Total Suspended Solids | mg/L | 1.4 | 1.8 | 1.0 | 2.8 | 2.0 | N/A | 9247438 | | Dissolved Sulphate (SO4) | mg/L | 7.6 | 21 | 2.0 | 37 | 2.0 | N/A | 9251117 | | Turbidity | NTU | 4.9 | 6.1 | 0.10 | 7.6 | 0.10 | 0.10 | 9249811 | | Conductivity | uS/cm | 69 | 87 | 1.0 | 140 | 1.0 | N/A | 9253068 | RDL = Reportable Detection Limit QC Batch = Quality Control Batch Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: JVS ## **RESULTS OF ANALYSES OF SURFACE WATER** | Bureau Veritas ID | | YMO978 | | | | YMO980 | | VM/0001 | | | | |-------------------------------------|-------|---------------------|-----|-----|----------|---------------------|-------|---------------------|-------|-------|----------| | Dureau Veritas ID | | | | | | | | YMO981 | | | | | Sampling Date | | 2024/02/28
11:50 | | | | 2024/02/28
09:28 | | 2024/02/28
10:10 | | | | | COC Number | | C#976732-01-01 | | | | C#976732-01-01 | | C#976732-01-01 | | | | | | | SW-3A | | | | | | | | | | | | UNITS | Lab-Dup | RDL | MDL | QC Batch | SW-4 | RDL | SW-5 | RDL | MDL | QC Batch | | Calculated Parameters | | | | | | | | | | | | | Anion Sum | me/L | | | | | 0.490 | N/A | 0.480 | N/A | N/A | 9244602 | | Bicarb. Alkalinity (calc. as CaCO3) | mg/L | | | | | 4.3 | 1.0 | 4.6 | 1.0 | 0.20 | 9244598 | | Calculated TDS | mg/L | | | | | 32 | 1.0 | 32 | 1.0 | 0.20 | 9244608 | | Carb. Alkalinity (calc. as CaCO3) | mg/L | | | | | <1.0 | 1.0 | <1.0 | 1.0 | 0.20 | 9244598 | | Cation Sum | me/L | | | | | 0.500 | N/A | 0.440 | N/A | N/A | 9244602 | | Hardness (CaCO3) | mg/L | | | | | 9.7 | 1.0 | 15 | 1.0 | 1.0 | 9244600 | | Ion Balance (% Difference) | % | | | | | 1.01 | N/A | 4.35 | N/A | N/A | 9244601 | | Langelier Index (@ 20C) | N/A | | | | | -3.90 | | -3.73 | | | 9244606 | | Langelier Index (@ 4C) | N/A | | | | | -4.15 | | -3.98 | | | 9244607 | | Nitrate (N) | mg/L | | | | | <0.050 | 0.050 | <0.050 | 0.050 | N/A | 9244603 | | Saturation pH (@ 20C) | N/A | | | | | 10.2 | | 9.95 | | | 9244606 | | Saturation pH (@ 4C) | N/A | | | | | 10.5 | | 10.2 | | | 9244607 | | Inorganics | | | | | | | | | • | | | | Total Alkalinity (Total as CaCO3) | mg/L | | | | | 4.3 | 2.0 | 4.6 | 2.0 | N/A | 9253069 | | Dissolved Chloride (Cl-) | mg/L | | | | | 10 | 1.0 | 5.8 | 1.0 | N/A | 9251103 | | Colour | TCU | | | | | 37 | 5.0 | 72 | 25 | N/A | 9251125 | | Dissolved Fluoride (F-) | mg/L | | | | | <0.10 | 0.10 | <0.10 | 0.10 | 0.050 | 9253070 | | Nitrate + Nitrite (N) | mg/L | | | | | <0.050 | 0.050 | <0.050 | 0.050 | N/A | 9251133 | | Nitrite (N) | mg/L | | | | | <0.010 | 0.010 | <0.010 | 0.010 | N/A | 9251135 | | Nitrogen (Ammonia Nitrogen) | mg/L | | | | | <0.050 | 0.050 | <0.050 | 0.050 | N/A | 9253756 | | Total Organic Carbon (C) | mg/L | | | | | 4.8 | 0.50 | 7.2 | 0.50 | N/A | 9247793 | | Orthophosphate (P) | mg/L | | | | | <0.010 | 0.010 | <0.010 | 0.010 | N/A | 9251131 | | рН | рН | | | | | 6.33 | | 6.22 | | | 9253067 | | Reactive Silica (SiO2) | mg/L | | | | | 2.9 | 0.50 | 3.6 | 0.50 | N/A | 9251119 | | Total Suspended Solids | mg/L | 3.6 | 2.0 | N/A | 9247438 | 7.6 | 1.0 | 1.8 | 1.0 | N/A | 9247438 | | Dissolved Sulphate (SO4) | mg/L | | | | | 5.9 | 2.0 | 11 | 2.0 | N/A | 9251117 | | Turbidity | NTU | | | | | 6.8 | 0.10 | 6.7 | 0.10 | 0.10 | 9249811 | | Conductivity | uS/cm | | | | | 45 | 1.0 | 48 | 1.0 | N/A | 9253068 | RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: JVS ## **RESULTS OF ANALYSES OF SURFACE WATER** | Bureau Veritas ID | | YMO982 | | | | YMO982 | | | | |-------------------------------------|-------|----------------|-------|-------|----------|-----------------|-------|-----|----------| | Dareau Ferras is | | 2024/02/28 | | | | 2024/02/28 | | | | | Sampling Date | | 11:10 | | | | 11:10 | | | | | COC Number | | C#976732-01-01 | | | | C#976732-01-01 | | | | | | UNITS | SW-6 | RDL | MDL | QC Batch | SW-6
Lab-Dup | RDL | MDL | QC Batch | | Calculated Parameters | | | | | | | | | | | Anion Sum | me/L | 0.790 | N/A | N/A | 9244602 | | | | | | Bicarb. Alkalinity (calc. as CaCO3) | mg/L | 6.1 | 1.0 | 0.20 | 9244598 | | | | | | Calculated TDS | mg/L | 52 | 1.0 | 0.20 | 9244608 | | | | | | Carb. Alkalinity (calc. as CaCO3) | mg/L | <1.0 | 1.0 | 0.20 | 9244598 | | | | | | Cation Sum | me/L | 0.770 | N/A | N/A | 9244602 | | | | | | Hardness (CaCO3) | mg/L | 28 | 1.0 | 1.0 | 9244600 | | | | | | Ion Balance (% Difference) | % | 1.28 | N/A | N/A | 9244601 | | | | | | Langelier Index (@ 20C) | N/A | -3.04 | | | 9244606 | | | | | | Langelier Index (@ 4C) | N/A | -3.29 | | | 9244607 | | | | | | Nitrate (N) | mg/L | 0.095 | 0.050 | N/A | 9244603 | | | | | | Saturation pH (@ 20C) | N/A | 9.52 | | | 9244606 | | | | | | Saturation pH (@ 4C) | N/A | 9.77 | | | 9244607 | | | | | | Inorganics | | | | | | | • | | | | Total Alkalinity (Total as CaCO3) | mg/L | 6.1 | 2.0 | N/A | 9253069 | | | | | | Dissolved Chloride (Cl-) | mg/L | 8.3 | 1.0 | N/A | 9251136 | 8.5 | 1.0 | N/A | 9251136 | | Colour | TCU | 40 | 5.0 | N/A | 9251144 | 38 | 5.0 | N/A | 9251144 | | Dissolved Fluoride (F-) | mg/L | <0.10 | 0.10 | 0.050 | 9253070 | | | | | | Nitrate + Nitrite (N) | mg/L | 0.095 | 0.050 | N/A | 9251189 | 0.097 | 0.050 | N/A | 9251189 | | Nitrite (N) | mg/L | <0.010 | 0.010 | N/A | 9251211 | <0.010 | 0.010 | N/A | 9251211 | | Nitrogen (Ammonia Nitrogen) | mg/L | <0.050 | 0.050 | N/A | 9253756 | | | | | | Total Organic Carbon (C) | mg/L | 5.1 | 0.50 | N/A | 9247793 | | | | | | Orthophosphate (P) | mg/L | <0.010 | 0.010 | N/A | 9251172 | <0.010 | 0.010 | N/A | 9251172 | | рН | рН | 6.48 | | | 9253067 | | | | | | Reactive Silica (SiO2) | mg/L | 2.5 | 0.50 | N/A | 9251141 | 2.9 | 0.50 | N/A | 9251141 | | Total Suspended Solids | mg/L | 2.0 | 1.0 | N/A | 9247438 | | | | | | Dissolved Sulphate (SO4) | mg/L | 21 | 2.0 | N/A | 9251140 | 21 | 2.0 | N/A | 9251140 | | Turbidity | NTU | 6.8 | 0.10 | 0.10 | 9249811 | | | | | | Conductivity | uS/cm | 88 | 1.0 | N/A | 9253068 | | | | | | | | | | _ | | | | | | RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: JVS ## **RESULTS OF ANALYSES OF SURFACE WATER** | Bureau Veritas ID | | YMO983 | | | | YMO983 | | | | |-------------------------------------|-------|----------------|-------|-------|----------|------------------|-------|-------|----------| | Sampling Date | | 2024/02/28 | | | | 2024/02/28 | | | | | COC Number | | C#976732-01-01 | | | | C#976732-01-01 | | | | | | UNITS | SWDUP | RDL | MDL | QC Batch | SWDUP
Lab-Dup | RDL | MDL | QC Batch | | Calculated Parameters | | | | | | | | | | | Anion Sum | me/L | 0.440 | N/A | N/A | 9244602 | | | | | | Bicarb. Alkalinity (calc. as CaCO3) | mg/L | 3.1 | 1.0 | 0.20 | 9244598 | | | | | | Calculated TDS | mg/L | 30 | 1.0 | 0.20 | 9244608 | | | | | | Carb. Alkalinity (calc. as CaCO3) | mg/L | <1.0 | 1.0 | 0.20 | 9244598 | | | | | | Cation Sum | me/L | 0.520 | N/A | N/A | 9244602 | | | | | | Hardness (CaCO3) | mg/L | 9.9 | 1.0 | 1.0 | 9244600 | | | | | | Ion Balance (% Difference) | % | 8.33 | N/A | N/A | 9244601 | | | | | | Langelier Index (@ 20C) | N/A | -3.98 | | | 9244606 | | | | | | Langelier Index (@ 4C) | N/A | -4.23 | | | 9244607 | | | | | | Nitrate (N) | mg/L | <0.050 | 0.050 | N/A | 9244603 | | | | | | Saturation pH (@ 20C) | N/A | 10.4 | | | 9244606 | | | | | | Saturation pH (@ 4C) | N/A | 10.6 | | | 9244607 | | | | | | Inorganics | | | • | | | | • | • | | | Total Alkalinity (Total as CaCO3) | mg/L | 3.1 | 2.0 | N/A | 9253069 | 3.1 | 2.0 | N/A | 9253069 | | Dissolved Chloride (Cl-) | mg/L | 10 | 1.0 | N/A | 9251103 | | | | | | Colour | TCU | 38 | 5.0 | N/A | 9251125 | | | | | | Dissolved Fluoride (F-) | mg/L | <0.10 | 0.10 | 0.050 | 9253070 | <0.10 | 0.10 | 0.050 | 9253070 | | Nitrate + Nitrite (N) | mg/L | <0.050 | 0.050 | N/A | 9251133 | | | | | | Nitrite (N) | mg/L | <0.010 | 0.010 | N/A | 9251135 | | | | | | Nitrogen (Ammonia Nitrogen) | mg/L | <0.050 | 0.050 | N/A | 9253756 | <0.050 | 0.050 | N/A | 9253756 | | Total Organic Carbon (C) | mg/L | 4.7 | 0.50 | N/A | 9250718 | | | | | | Orthophosphate (P) | mg/L | <0.010 | 0.010 | N/A | 9251131 | | | | | | рН | рН | 6.38 | | | 9253067 | 6.37 | | | 9253067 | | Reactive Silica (SiO2) | mg/L | 2.9 | 0.50 | N/A | 9251119 | | | | | | Total Suspended Solids | mg/L | 6.2 | 1.0 | N/A | 9247438 | | | | | | Dissolved Sulphate
(SO4) | mg/L | 3.9 | 2.0 | N/A | 9251117 | | | | | | Turbidity | NTU | 5.9 | 0.10 | 0.10 | 9249811 | | | | | | Conductivity | uS/cm | 44 | 1.0 | N/A | 9253068 | 44 | 1.0 | N/A | 9253068 | RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: JVS # **ELEMENTS BY ICP/MS (SURFACE WATER)** | Bureau Veritas ID | | YMO976 | YMO977 | YMO978 | YMO980 | YMO981 | | | | |-----------------------|-------|----------------|----------------|----------------|----------------|----------------|-------|-----|----------| | Sampling Date | | 2024/02/28 | 2024/02/28 | 2024/02/28 | 2024/02/28 | 2024/02/28 | | | | | Sampling Date | | 13:15 | 12:10 | 11:50 | 09:28 | 10:10 | | | | | COC Number | | C#976732-01-01 | C#976732-01-01 | C#976732-01-01 | C#976732-01-01 | C#976732-01-01 | | | | | | UNITS | SW-2 | SW-3 | SW-3A | SW-4 | SW-5 | RDL | MDL | QC Batch | | Metals | | | | | | | | | | | Total Aluminum (AI) | ug/L | 300 | 280 | 290 | 430 | 830 | 5.0 | N/A | 9249823 | | Total Antimony (Sb) | ug/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | 1.0 | N/A | 9249823 | | Total Arsenic (As) | ug/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | 1.0 | N/A | 9249823 | | Total Barium (Ba) | ug/L | 12 | 9.6 | 11 | 9.4 | 7.0 | 1.0 | N/A | 9249823 | | Total Beryllium (Be) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | N/A | 9249823 | | Total Bismuth (Bi) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | N/A | 9249823 | | Total Boron (B) | ug/L | <50 | <50 | <50 | <50 | <50 | 50 | N/A | 9249823 | | Total Cadmium (Cd) | ug/L | 0.012 | 0.011 | 0.014 | 0.012 | 0.015 | 0.010 | N/A | 9249823 | | Total Calcium (Ca) | ug/L | 5600 | 9300 | 17000 | 2700 | 4900 | 100 | N/A | 9249823 | | Total Chromium (Cr) | ug/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | 1.0 | N/A | 9249823 | | Total Cobalt (Co) | ug/L | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | 0.40 | N/A | 9249823 | | Total Copper (Cu) | ug/L | <0.50 | 0.50 | 0.61 | <0.50 | <0.50 | 0.50 | N/A | 9249823 | | Total Iron (Fe) | ug/L | 280 | 320 | 290 | 330 | 390 | 50 | N/A | 9249823 | | Total Lead (Pb) | ug/L | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | 0.50 | N/A | 9249823 | | Total Magnesium (Mg) | ug/L | 1300 | 750 | 1200 | 720 | 680 | 100 | N/A | 9249823 | | Total Manganese (Mn) | ug/L | 26 | 99 | 79 | 40 | 32 | 2.0 | N/A | 9249823 | | Total Molybdenum (Mo) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | N/A | 9249823 | | Total Nickel (Ni) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | N/A | 9249823 | | Total Phosphorus (P) | ug/L | <100 | <100 | <100 | <100 | <100 | 100 | N/A | 9249823 | | Total Potassium (K) | ug/L | 570 | 400 | 410 | 330 | 390 | 100 | N/A | 9249823 | | Total Selenium (Se) | ug/L | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | 0.50 | N/A | 9249823 | | Total Silver (Ag) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | N/A | 9249823 | | Total Sodium (Na) | ug/L | 5200 | 3900 | 6000 | 6600 | 2600 | 100 | N/A | 9249823 | | Total Strontium (Sr) | ug/L | 13 | 37 | 65 | 9.8 | 18 | 2.0 | N/A | 9249823 | | Total Thallium (TI) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | N/A | 9249823 | | Total Tin (Sn) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | N/A | 9249823 | | Total Titanium (Ti) | ug/L | 6.6 | 7.1 | 5.8 | 7.1 | 6.0 | 2.0 | N/A | 9249823 | | Total Uranium (U) | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | 0.10 | N/A | 9249823 | | Total Vanadium (V) | ug/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | N/A | 9249823 | | Total Zinc (Zn) | ug/L | 7.8 | <5.0 | <5.0 | <5.0 | <5.0 | 5.0 | N/A | 9249823 | | | | | | | | | | | | RDL = Reportable Detection Limit QC Batch = Quality Control Batch Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: JVS # **ELEMENTS BY ICP/MS (SURFACE WATER)** | Bureau Veritas ID | | YMO982 | YMO983 | | | | | | | |----------------------------------|--------------|---------------------|----------------|-------|-----|----------|--|--|--| | Sampling Date | | 2024/02/28
11:10 | 2024/02/28 | | | | | | | | COC Number | | C#976732-01-01 | C#976732-01-01 | | | | | | | | | UNITS | SW-6 | SWDUP | RDL | MDL | QC Batch | | | | | Metals | - | | • | • | • | • | | | | | Total Aluminum (Al) | ug/L | 310 | 440 | 5.0 | N/A | 9249823 | | | | | Total Antimony (Sb) | ug/L | <1.0 | <1.0 | 1.0 | N/A | 9249823 | | | | | Total Arsenic (As) | ug/L | <1.0 | <1.0 | 1.0 | N/A | 9249823 | | | | | Total Barium (Ba) | ug/L | 9.2 | 9.5 | 1.0 | N/A | 9249823 | | | | | Total Beryllium (Be) | ug/L | <0.10 | <0.10 | 0.10 | N/A | 9249823 | | | | | Total Bismuth (Bi) | ug/L | <2.0 | <2.0 | 2.0 | N/A | 9249823 | | | | | Total Boron (B) | ug/L | <50 | <50 | 50 | N/A | 9249823 | | | | | Total Cadmium (Cd) | ug/L | 0.012 | 0.012 | 0.010 | N/A | 9249823 | | | | | Total Calcium (Ca) | ug/L | 10000 | 2700 | 100 | N/A | 9249823 | | | | | Total Chromium (Cr) | ug/L | <1.0 | <1.0 | 1.0 | N/A | 9249823 | | | | | Total Cobalt (Co) | ug/L | <0.40 | <0.40 | 0.40 | N/A | 9249823 | | | | | Total Copper (Cu) | ug/L | 0.62 | <0.50 | 0.50 | N/A | 9249823 | | | | | Total Iron (Fe) | ug/L | 380 | 340 | 50 | N/A | 9249823 | | | | | Total Lead (Pb) | ug/L | <0.50 | <0.50 | 0.50 | N/A | 9249823 | | | | | Total Magnesium (Mg) | ug/L | 800 | 750 | 100 | N/A | 9249823 | | | | | Total Manganese (Mn) | ug/L | 130 | 41 | 2.0 | N/A | 9249823 | | | | | Total Molybdenum (Mo) | ug/L | <2.0 | <2.0 | 2.0 | N/A | 9249823 | | | | | Total Nickel (Ni) | ug/L | <2.0 | <2.0 | 2.0 | N/A | 9249823 | | | | | Total Phosphorus (P) | ug/L | <100 | <100 | 100 | N/A | 9249823 | | | | | Total Potassium (K) | ug/L | 390 | 370 | 100 | N/A | 9249823 | | | | | Total Selenium (Se) | ug/L | <0.50 | <0.50 | 0.50 | N/A | 9249823 | | | | | Total Silver (Ag) | ug/L | <0.10 | <0.10 | 0.10 | N/A | 9249823 | | | | | Total Sodium (Na) | ug/L | 4200 | 6900 | 100 | N/A | 9249823 | | | | | Total Strontium (Sr) | ug/L | 40 | 9.9 | 2.0 | N/A | 9249823 | | | | | Total Thallium (TI) | ug/L | <0.10 | <0.10 | 0.10 | N/A | 9249823 | | | | | Total Tin (Sn) | ug/L | <2.0 | <2.0 | 2.0 | N/A | 9249823 | | | | | Total Titanium (Ti) | ug/L | 4.3 | 12 | 2.0 | N/A | 9249823 | | | | | Total Uranium (U) | ug/L | <0.10 | <0.10 | 0.10 | N/A | 9249823 | | | | | Total Vanadium (V) | ug/L | <2.0 | <2.0 | 2.0 | N/A | 9249823 | | | | | Total Zinc (Zn) | ug/L | <5.0 | <5.0 | 5.0 | N/A | 9249823 | | | | | PDI - Papartable Detection Limit | | | | | | | | | | RDL = Reportable Detection Limit QC Batch = Quality Control Batch Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: JVS ## **GENERAL COMMENTS** Each temperature is the average of up to three cooler temperatures taken at receipt Package 1 3.7°C Sample YMO977 [SW-3]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L. Sample YMO983 [SWDUP]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L. Results relate only to the items tested. Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: JVS # **QUALITY ASSURANCE REPORT** | QA/QC
Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | |----------------|----------------------|---------------------|---------------------------------------|---------------|-------|----------|----------|-----------| | 9247438 | ACK | QC Standard | Total Suspended Solids | 2024/02/29 | | 99 | % | 80 - 120 | | 9247438 | ACK | Method Blank | Total Suspended Solids | 2024/02/29 | <1.0 | | mg/L | | | 9247438 | ACK | RPD [YMO978-01] | Total Suspended Solids | 2024/02/29 | NC | | % | 20 | | 9247793 | CPP | Matrix Spike | Total Organic Carbon (C) | 2024/02/29 | | 101 | % | 85 - 115 | | 9247793 | CPP | Spiked Blank | Total Organic Carbon (C) | 2024/02/29 | | 100 | % | 80 - 120 | | 9247793 | CPP | Method Blank | Total Organic Carbon (C) | 2024/02/29 | <0.50 | | mg/L | | | 9247793 | CPP | RPD | Total Organic Carbon (C) | 2024/02/29 | NC | | % | 15 | | 9249811 | LJV | QC Standard | Turbidity | 2024/03/01 | | 115 | % | 80 - 120 | | 9249811 | LJV | Spiked Blank | Turbidity | 2024/03/01 | | 108 | % | 80 - 120 | | 9249811 | LJV | Method Blank | Turbidity | 2024/03/01 | <0.10 | | NTU | | | 9249811 | LJV | RPD | Turbidity | 2024/03/01 | 9.5 | | % | 20 | | 9249823 | MTZ | Matrix Spike | Total Aluminum (AI) | 2024/03/01 | | 98 | % | 80 - 120 | | | • | Total Antimony (Sb) | 2024/03/01 | | 101 | % | 80 - 120 | | | | Total Arsenic (As) | 2024/03/01 | | 101 | % | 80 - 120 | | | | | | | Total Barium (Ba) | 2024/03/01 | | NC | % | 80 - 120 | | | | | Total Beryllium (Be) | 2024/03/01 | | 98 | % | 80 - 120 | | | | | Total Bismuth (Bi) | 2024/03/01 | | 96 | % | 80 - 120 | | | | | Total Boron (B) | 2024/03/01 | | 98 | % | 80 - 120 | | | | | Total Cadmium (Cd) | 2024/03/01 | | 99 | % | 80 - 120 | | | | | Total Calcium (Ca) | 2024/03/01 | | NC | % | 80 - 120 | | | | | Total Chromium (Cr) | 2024/03/01 | | 103 | % | 80 - 120 | | | | Total Cobalt (Co) | 2024/03/01 | | 94 | % | 80 - 120 | | | | | Total Copper (Cu) | 2024/03/01 | | 93 | % | 80 - 120 | | | | Total Iron (Fe) | 2024/03/01 | | 103 | % | 80 - 120 | | | | | Total Lead (Pb) | 2024/03/01 | | 95 | % | 80 - 120 | | | | | Total Magnesium (Mg) | 2024/03/01 | | NC | % | 80 - 120 | | | | | | | Total Manganese (Mn) | 2024/03/01 | | 99 | % | 80 - 120 | | | | | Total Molybdenum (Mo) | 2024/03/01 | | 107 | % | 80 - 120 | | | | | Total Nickel (Ni) | 2024/03/01 | | 98 | % | 80 - 120 | | | | | Total Phosphorus (P) | 2024/03/01 | | 105 | % | 80 - 120 | | | | | Total Potassium (K) | 2024/03/01 | | 97 | % | 80 - 120 | | | | Total Selenium (Se) | 2024/03/01 | | 98 | % | 80 - 120 | | | | Total Silver (Ag) | 2024/03/01 | | 100 | % | 80 - 120 | | | | | Total Sodium (Na) | 2024/03/01 | | 102 | % | 80 - 120 | | | | | Total Strontium (Sr) | 2024/03/01 | | NC | % | 80 - 120 | | | | | Total Thallium (TI) | 2024/03/01 | | 99 | % | 80 - 120 | | | | | Total Tin (Sn) | 2024/03/01 | | 104 | % | 80 - 120 | | | | | Total Titanium (Ti) | 2024/03/01 | | 99 | % | 80 - 120 |
| | | | | | Total Uranium (U) | 2024/03/01 | | 104 | % | 80 - 120 | | | | | Total Vanadium (V) | 2024/03/01 | | 103 | % | 80 - 120 | | | | | Total Zinc (Zn) | 2024/03/01 | | 98 | % | 80 - 120 | | 9249823 | MTZ | Spiked Blank | Total Aluminum (AI) | 2024/03/01 | | 101 | % | 80 - 120 | | | | | Total Antimony (Sb) | 2024/03/01 | | 99 | % | 80 - 120 | | | | Total Arsenic (As) | 2024/03/01 | | 100 | % | 80 - 120 | | | | | Total Barium (Ba) | 2024/03/01 | | 94 | % | 80 - 120 | | | | | | Total Beryllium (Be) | 2024/03/01 | | 96 | % | 80 - 120 | | | | | Total Bismuth (Bi) | 2024/03/01 | | 99 | % | 80 - 120 | | | | | Total Boron (B) | 2024/03/01 | | 100 | % | 80 - 120 | | | | | Total Cadmium (Cd) | 2024/03/01 | | 98 | % | 80 - 120 | | | | | Total Calcium (Ca) | 2024/03/01 | | 99 | % | 80 - 120 | | | | | Total Chromium (Cr) | 2024/03/01 | | 103 | % | 80 - 120 | | | | | Total Cobalt (Co) | 2024/03/01 | | 97 | % | 80 - 120 | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: JVS | QA/QC | | | | <u> </u> | | | | | |----------|-------|---------------|---|--------------------------|-------------|----------|--------------|-----------| | Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | Duttil | | QC 17PC | Total Iron (Fe) | 2024/03/01 | Value | 105 | % | 80 - 120 | | | | | Total Lead (Pb) | 2024/03/01 | | 96 | % | 80 - 120 | | | | | Total Magnesium (Mg) | 2024/03/01 | | 105 | % | 80 - 120 | | | | | Total Manganese (Mn) | 2024/03/01 | | 101 | % | 80 - 120 | | | | | Total Molybdenum (Mo) | 2024/03/01 | | 103 | % | 80 - 120 | | | | | Total Nickel (Ni) | 2024/03/01 | | 102 | % | 80 - 120 | | | | | Total Phosphorus (P) | 2024/03/01 | | 105 | % | 80 - 120 | | | | | Total Potassium (K) | 2024/03/01 | | 101 | % | 80 - 120 | | | | | Total Selenium (Se) | 2024/03/01 | | 96 | % | 80 - 120 | | | | | Total Silver (Ag) | 2024/03/01 | | 95 | % | 80 - 120 | | | | | Total Sodium (Na) | 2024/03/01 | | 108 | % | 80 - 120 | | | | | Total Strontium (Sr) | 2024/03/01 | | 100 | % | 80 - 120 | | | | | Total Thallium (TI) | 2024/03/01 | | 99 | % | 80 - 120 | | | | | Total Tin (Sn) | 2024/03/01 | | 96 | % | 80 - 120 | | | | | Total Titanium (Ti) | 2024/03/01 | | 101 | % | 80 - 120 | | | | | Total Uranium (U) | 2024/03/01 | | 104 | % | 80 - 120 | | | | | Total Vanadium (V) | 2024/03/01 | | 105 | % | 80 - 120 | | | | | Total Zinc (Zn) | 2024/03/01 | | 101 | % | 80 - 120 | | 9249823 | MTZ | Method Blank | Total Aluminum (Al) | 2024/03/01 | <5.0 | 101 | ug/L | 00 120 | | 32 13023 | | Wiction Blank | Total Antimony (Sb) | 2024/03/01 | <1.0 | | ug/L | | | | | | Total Arsenic (As) | 2024/03/01 | <1.0 | | ug/L | | | | | | Total Barium (Ba) | 2024/03/01 | <1.0 | | ug/L | | | | | | Total Beryllium (Be) | 2024/03/01 | <0.10 | | ug/L | | | | | | Total Bismuth (Bi) | 2024/03/01 | <2.0 | | ug/L | | | | | | Total Boron (B) | 2024/03/01 | <50 | | ug/L | | | | | | Total Cadmium (Cd) | 2024/03/01 | <0.010 | | ug/L | | | | | | Total Calcium (Ca) | 2024/03/01 | <100 | | ug/L | | | | | | Total Chromium (Cr) | 2024/03/01 | <1.0 | | ug/L | | | | | | Total Cobalt (Co) | 2024/03/01 | <0.40 | | ug/L | | | | | | Total Copper (Cu) | 2024/03/01 | <0.50 | | ug/L | | | | | | Total Iron (Fe) | 2024/03/01 | <50 | | ug/L | | | | | | Total Lead (Pb) | 2024/03/01 | <0.50 | | ug/L | | | | | | Total Magnesium (Mg) | 2024/03/01 | <100 | | ug/L | | | | | | Total Manganese (Mn) | 2024/03/01 | <2.0 | | ug/L | | | | | | Total Molybdenum (Mo) | 2024/03/01 | <2.0 | | ug/L | | | | | | Total Nickel (Ni) | 2024/03/01 | <2.0 | | ug/L | | | | | | Total Phosphorus (P) | 2024/03/01 | <100 | | ug/L | | | | | | Total Potassium (K) | 2024/03/01 | <100 | | ug/L | | | | | | Total Selenium (Se) | 2024/03/01 | <0.50 | | ug/L | | | | | | Total Silver (Ag) | 2024/03/01 | <0.10 | | ug/L | | | | | | Total Solium (Na) | 2024/03/01 | <100 | | ug/L | | | | | | Total Strontium (Sr) | 2024/03/01 | <2.0 | | ug/L | | | | | | Total Thallium (TI) | 2024/03/01 | <0.10 | | ug/L | | | | | | Total Tinalidit (11) | 2024/03/01 | <2.0 | | ug/L | | | | | | Total Till (311) Total Titanium (Ti) | 2024/03/01 | <2.0 | | ug/L
ug/L | | | | | | Total Tranium (11) Total Uranium (U) | 2024/03/01 | <0.10 | | ug/L
ug/L | | | | | | Total Vanadium (V) | 2024/03/01 | <2.0 | | ug/L
ug/L | | | | | | Total Variadium (V) Total Zinc (Zn) | 2024/03/01 | <5.0 | | | | | 9249823 | MTZ | RDD | Total Zinc (Zn) Total Aluminum (Al) | 2024/03/01 | <5.0
5.2 | | ug/L
% | 20 | | J2430Z3 | IVIIZ | ILL | Total Boron (B) | 2024/03/01 | 5.2
5.0 | | %
% | 20
20 | | | | | | | | | %
% | | | | | | Total Iron (Fo) | 2024/03/01
2024/03/01 | 4.4
NC | | | 20 | | | | | Total Iron (Fe)
Total Phosphorus (P) | 2024/03/01 | NC
11 | | %
% | 20
20 | | | | | i otal Filospilolus (F) | 2024/03/01 | 11 | | /0 | | Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: JVS | QA/QC | | | | | | | | | |---------|------|-----------------------------|-----------------------------|---------------|---------|----------|-------|-----------| | Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | | | 20.760 | Total Zinc (Zn) | 2024/03/01 | 4.1 | , | % | 20 | | 9250718 | CPP | Matrix Spike | Total Organic Carbon (C) | 2024/03/01 | | 98 | % | 85 - 115 | | 9250718 | CPP | Spiked Blank | Total Organic Carbon (C) | 2024/03/01 | | 97 | % | 80 - 120 | | 9250718 | CPP | Method Blank | Total Organic Carbon (C) | 2024/03/01 | <0.50 | | mg/L | | | 9250718 | CPP | RPD | Total Organic Carbon (C) | 2024/03/01 | 4.5 | | % | 15 | | 9250894 | EMT | Matrix Spike | Nitrogen (Ammonia Nitrogen) | 2024/03/04 | | 96 | % | 80 - 120 | | 9250894 | EMT | Spiked Blank | Nitrogen (Ammonia Nitrogen) | 2024/03/04 | | 95 | % | 80 - 120 | | 9250894 | EMT | Method Blank | Nitrogen (Ammonia Nitrogen) | 2024/03/04 | <0.050 | | mg/L | | | 9250894 | EMT | RPD | Nitrogen (Ammonia Nitrogen) | 2024/03/04 | 7.5 | | % | 20 | | 9251103 | EMT | Matrix Spike | Dissolved Chloride (Cl-) | 2024/03/04 | | 109 | % | 80 - 120 | | 9251103 | EMT | Spiked Blank | Dissolved Chloride (Cl-) | 2024/03/04 | | 96 | % | 80 - 120 | | 9251103 | EMT | Method Blank | Dissolved Chloride (Cl-) | 2024/03/04 | <1.0 | | mg/L | | | 9251103 | EMT | RPD | Dissolved Chloride (Cl-) | 2024/03/04 | 7.9 | | % | 20 | | 9251117 | EMT | Matrix Spike | Dissolved Sulphate (SO4) | 2024/03/04 | | NC | % | 80 - 120 | | 9251117 | EMT | Spiked Blank | Dissolved Sulphate (SO4) | 2024/03/04 | | 98 | % | 80 - 120 | | 9251117 | EMT | Method Blank | Dissolved Sulphate (SO4) | 2024/03/04 | <2.0 | | mg/L | | | 9251117 | EMT | RPD | Dissolved Sulphate (SO4) | 2024/03/04 | 0.63 | | % | 20 | | 9251119 | EMT | Matrix Spike | Reactive Silica (SiO2) | 2024/03/04 | | 96 | % | 80 - 120 | | 9251119 | EMT | Spiked Blank | Reactive Silica (SiO2) | 2024/03/04 | | 101 | % | 80 - 120 | | 9251119 | EMT | Method Blank | Reactive Silica (SiO2) | 2024/03/04 | < 0.50 | | mg/L | | | 9251119 | EMT | RPD | Reactive Silica (SiO2) | 2024/03/04 | 7.8 | | % | 20 | | 9251125 | MCN | Spiked Blank | Colour | 2024/03/04 | | 118 | % | 80 - 120 | | 9251125 | MCN | Method Blank | Colour | 2024/03/04 | <5.0 | | TCU | | | 9251125 | MCN | RPD | Colour | 2024/03/04 | 6.6 | | % | 20 | | 9251131 | MCN | Matrix Spike | Orthophosphate (P) | 2024/03/04 | | 90 | % | 80 - 120 | | 9251131 | MCN | Spiked Blank | Orthophosphate (P) | 2024/03/04 | | 97 | % | 80 - 120 | | 9251131 | MCN | Method Blank | Orthophosphate (P) | 2024/03/04 | < 0.010 | | mg/L | | | 9251131 | MCN | RPD | Orthophosphate (P) | 2024/03/04 | NC | | % | 20 | | 9251133 | MCN | Matrix Spike | Nitrate + Nitrite (N) | 2024/03/04 | | 97 | % | 80 - 120 | | 9251133 | MCN | Spiked Blank | Nitrate + Nitrite (N) | 2024/03/04 | | 100 | % | 80 - 120 | | 9251133 | MCN | Method Blank | Nitrate + Nitrite (N) | 2024/03/04 | < 0.050 | | mg/L | | | 9251133 | MCN | RPD | Nitrate + Nitrite (N) | 2024/03/04 | NC | | % | 20 | | 9251135 | EMT | Matrix Spike | Nitrite (N) | 2024/03/04 | | 101 | % | 80 - 120 | | 9251135 | EMT | Spiked Blank | Nitrite (N) | 2024/03/04 | | 103 | % | 80 - 120 | | 9251135 | EMT | Method Blank | Nitrite (N) | 2024/03/04 | < 0.010 | | mg/L | | | 9251135 | EMT | RPD | Nitrite (N) | 2024/03/04 | NC | | % | 20 | | 9251136 | EMT | Matrix Spike
[YMO982-02] | Dissolved Chloride (Cl-) | 2024/03/04 | | 113 | % | 80 - 120 | | 9251136 | EMT | Spiked Blank | Dissolved Chloride (Cl-) | 2024/03/04 | | 99 | % | 80 - 120 | | 9251136 | EMT | Method Blank | Dissolved Chloride (Cl-) | 2024/03/04 | <1.0 | | mg/L | | | 9251136 | EMT | RPD [YMO982-02] | Dissolved Chloride (Cl-) | 2024/03/04 | 2.7 | | % | 20 | | 9251140 | EMT | Matrix Spike
[YMO982-02] | Dissolved Sulphate (SO4) | 2024/03/04 | | 105 | % | 80 - 120 | | 9251140 | EMT | Spiked Blank | Dissolved Sulphate (SO4) | 2024/03/04 | | 102 | % | 80 - 120 | | 9251140 | EMT | Method Blank | Dissolved Sulphate (SO4) | 2024/03/04 | <2.0 | | mg/L | | | 9251140 | EMT | RPD [YMO982-02] | Dissolved Sulphate (SO4) | 2024/03/04 | 2.8 | | % | 20 | | 9251141 | EMT | Matrix Spike
[YMO982-02] | Reactive Silica (SiO2) | 2024/03/04 | | 94 | % | 80 - 120 | | 9251141 | EMT | Spiked Blank | Reactive Silica (SiO2) | 2024/03/04 | | 101 | % | 80 - 120 | | 9251141 | EMT | Method Blank | Reactive Silica (SiO2) | 2024/03/04 | <0.50 | | mg/L | | | 9251141 | EMT | RPD [YMO982-02] | Reactive Silica (SiO2) | 2024/03/04 | 13 | | % | 20 | | 9251144 | MCN | Spiked Blank | Colour | 2024/03/04 | | 120 | % | 80 - 120 | | 9251144 | MCN | Method Blank | Colour | 2024/03/04 | <5.0 | | TCU | | Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: JVS ## QUALITY ASSURANCE REPORT(CONT'D) | QA/QC | lua i di | OC Turns | Davasatas | Data Analysiad | Value | D | LINUTC | OC Lineita | |------------------|-------------|-----------------------------|-----------------------------------
--------------------------|--------------|----------|------------|-----------------| | Batch
9251144 | Init
MCN | QC Type
RPD [YMO982-02] | Parameter
Colour | Date Analyzed 2024/03/04 | Value
2.9 | Recovery | UNITS
% | QC Limits
20 | | 9251144 | MCN | Matrix Spike | | 2024/03/04 | 2.9 | 93 | % | 80 - 120 | | 92511/2 | IVICIN | [YMO982-02] | Orthophosphate (P) | 2024/03/04 | | 93 | % | 80 - 120 | | 9251172 | MCN | Spiked Blank | Orthophosphate (P) | 2024/03/04 | | 98 | % | 80 - 120 | | 9251172 | MCN | Method Blank | Orthophosphate (P) | 2024/03/04 | <0.010 | | mg/L | | | 9251172 | MCN | RPD [YMO982-02] | Orthophosphate (P) | 2024/03/04 | NC | | % | 20 | | 9251189 | MCN | Matrix Spike
[YMO982-02] | Nitrate + Nitrite (N) | 2024/03/04 | | 98 | % | 80 - 120 | | 9251189 | MCN | Spiked Blank | Nitrate + Nitrite (N) | 2024/03/04 | | 103 | % | 80 - 120 | | 9251189 | MCN | Method Blank | Nitrate + Nitrite (N) | 2024/03/04 | <0.050 | | mg/L | | | 9251189 | MCN | RPD [YMO982-02] | Nitrate + Nitrite (N) | 2024/03/04 | 1.6 | | % | 20 | | 9251211 | EMT | Matrix Spike
[YMO982-02] | Nitrite (N) | 2024/03/04 | | 96 | % | 80 - 120 | | 9251211 | EMT | Spiked Blank | Nitrite (N) | 2024/03/04 | | 103 | % | 80 - 120 | | 9251211 | EMT | Method Blank | Nitrite (N) | 2024/03/04 | < 0.010 | | mg/L | | | 9251211 | EMT | RPD [YMO982-02] | Nitrite (N) | 2024/03/04 | NC | | % | 20 | | 9253067 | KMC | Spiked Blank | рН | 2024/03/04 | | 100 | % | 97 - 103 | | 9253067 | KMC | RPD [YMO983-02] | рН | 2024/03/04 | 0.23 | | % | N/A | | 9253068 | KMC | Spiked Blank | Conductivity | 2024/03/04 | | 101 | % | 80 - 120 | | 9253068 | KMC | Method Blank | Conductivity | 2024/03/04 | <1.0 | | uS/cm | | | 9253068 | KMC | RPD [YMO983-02] | Conductivity | 2024/03/04 | 0.23 | | % | 10 | | 9253069 | KMC | Spiked Blank | Total Alkalinity (Total as CaCO3) | 2024/03/04 | | 99 | % | 80 - 120 | | 9253069 | KMC | Method Blank | Total Alkalinity (Total as CaCO3) | 2024/03/04 | <2.0 | | mg/L | | | 9253069 | KMC | RPD [YMO983-02] | Total Alkalinity (Total as CaCO3) | 2024/03/04 | 0.86 | | % | 20 | | 9253070 | KMC | Matrix Spike | Dissolved Fluoride (F-) | 2024/03/04 | | 87 | % | 80 - 120 | | 9253070 | KMC | Spiked Blank | Dissolved Fluoride (F-) | 2024/03/04 | | 96 | % | 80 - 120 | | 9253070 | KMC | Method Blank | Dissolved Fluoride (F-) | 2024/03/04 | <0.10 | | mg/L | | | 9253070 | KMC | RPD [YMO983-02] | Dissolved Fluoride (F-) | 2024/03/04 | NC | | % | 20 | | 9253756 | EMT | Matrix Spike
[YMO983-05] | Nitrogen (Ammonia Nitrogen) | 2024/03/05 | | 94 | % | 80 - 120 | | 9253756 | EMT | Spiked Blank | Nitrogen (Ammonia Nitrogen) | 2024/03/05 | | 94 | % | 80 - 120 | | 9253756 | EMT | Method Blank | Nitrogen (Ammonia Nitrogen) | 2024/03/05 | <0.050 | | mg/L | | | 9253756 | EMT | RPD [YMO983-05] | Nitrogen (Ammonia Nitrogen) | 2024/03/05 | NC | | % | 20 | N/A = Not Applicable Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement. Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference. QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy. Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy. Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination. NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration) NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL). eau Veritas Job #: C460020 GHD Limited Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: JVS #### **VALIDATION SIGNATURE PAGE** The analytical data and all QC contained in this report were reviewed and validated by: **Automated Statchk** Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Suzanne Rogers, General Manager responsible for Nova Scotia Environmental laboratory operations. | WE READ | | Bureau Ventes
200 Blueviater Road Bedford | Nova Scotta Cartad | a B48 1G5 Ta | I (902) 420-0203 Ta | III-free 800-563 | 6266 F | ax (902) 420 | 8612 www | byna com | | | | | | 1 | | BEDF-2024-0 | 02-1910 | Page I of 1 | |----------------|--|--|--------------------|---------------------------|---------------------|------------------|-------------------------|---------------------------|----------|-----------------|------------|---------------|-------------|----------|----------------------------------|----------|---|--|---------------|------------------------| | | | INVOICE TO: | | | | Report Info | ormation | | | | | | Projec | t Inform | nation | 7 | 3 | ALPS: | | | | mpany Name | #16276 GHD | Limited | | Campono Ma | unio. | | | | | | O colore | | C4023 | 8 | | - 1 | 217 | (T)((T) | | Bottle Order# | | ntact Name | Accounts Paya | ble | | Company Na
Contact Nan | Innaise Di | omo | | | | | Quotalii | on # | 735 | | 9466 | | | | | Campanagana | | iress | 120 Western P | | | Address | | 7775 | | | | | P.O # | | 126010 | | | - | - 1 | | 1 | 976732 | | are sa | Bedford NS B4 | | | Mudreps | | | _ | | | | Project | | 120010 | - | | | | Chain Of Custody Record | | Project Manager | | one | (902) 468-1248 | | 68-2207 | Phone | | | | 2.0 | | | Project | Name | | 10- | | | | | ren l | r roject maraiger | | nail | | bleCDN@ahd.com | 00 2207 | Email | Jessica Ri | omo@ghd.d | | Fax | _ | _ | Site# | | TV | 14 | 900 | | | | III | Mane Muise | | | | 0,00011(6,5010) | - | | | Jillow grid. | NUI I | _ | | 80.0 | Sample | | | - | 201 | | _ | C#976732-01-01 | | - | | Regulatory Cri | iteria | | | Spec | ial Instructions | | | - | _ | ANAL | YSIS REQUE | STED (PLE | ASE BE SPEC | IFIC) | | | | Turnaround Time (T | AT) Require | di. | | ** Specify Ma | atrix: Surface/Ground/ | Tapwater/Sewage/Effluen//Seawater | | | | | Preserved | Total Metals in | | Solids | | | | | | | (will be app
Standard T.
Please note | tandard) TAT:
lied if Rush TAT is not specified).
AT = 5-7 Working days for most les
a: Standard TAT for certain lests su
act your Project Manager for details | ch as BOD and | d Dioxins/Furans are a | | SAMP | 20 To 1 20 To 1 | .cool (< 10°C) FROM TIME OF S | | DELIVERY TO | | | Field Filtered & Presen | Atlantic RCAp-MS
Water | Fluoride | Total Suspended | | | | | | | Job Speci
Date Requir
of
Bollles | ific Rush TAT (if applies to entire
red:
Comments / Hazards | Time Required | | | - | LICENTE LICENTE | | | 57 | Time Sampled | Matrix | ш - | 4S | II. | 12 | - | \rightarrow | | + | | | | | | | | | D#654407 | SW-1 | -24 | 02280 | | | | X | × | X | - | - | | + | | | | | | | | | D#654408 | SW-2 | 21 | 10228 | 1315 | SW | | x | х | х | | | | | | | 5 | | | | | | I (II | SW-3 | 20 | 10228 | 1210 | SW | | х | Х | х | | 111 | | | | | S | 5 | | | | | D#G54410 | SW-3A | 2 | 10228 | 1150 | SW | | x | х | × | | | | 1 | | | S | | | | | | D#654411 | SW-4 | 24 | 0228 | 0928 | Sw | | X | X | X | | | | | | | S | | | | | | D#654412 | SW-5 | 2 | 40228 | 1010 | Sw | | х | х | Х | | | | | | | S | | | | | | D#654413 | SW-6 | 24 | 0228 | 1110 | 8W) | | × | X | X | | | | | | | S | | | | | | D#654414 | SWDUP | 24 | 0228 | | Sw | | x | × | х | | | =1 | | | | 5 | POCK / | ADIE | HALORS - PETERS | 240.228 |) Time | | | | Signature/P | rint) | | Date: | (YY/MM/DD |) Time | ė | # jars used and
not submitted | Time Sep | Silive Ten | Lab Use Only | Custody Sea | I Intect on Cooler? | | 1 | / | HALORS - PETERS | | | - | | | | | | | | | | | | len | 3,4,4 | Custody Sea | No | ICE: YES 2024FEB 28 16/34 Bureau Veritas Canada (2019) Inc. Your P.O. #: 735-009466 Your Project #: 12601021 Site Location: ANTRIM Your C.O.C. #: N/A **Attention: Jessica Romo** GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2 Report Date: 2024/04/03 Report #: R8091377 Version: 1 - Final #### **CERTIFICATE OF ANALYSIS** BUREAU VERITAS JOB #: C489618 Received: 2024/03/26, 12:27 Sample Matrix: Surface Water # Samples Received: 1 | " Sumples Necelved. 1 | | Date | Date | | | |--------------------------------------|----------|------------|------------|-------------------|---------------------| | Analyses | Quantity | Extracted | Analyzed | Laboratory Method | Analytical Method | | Carbonate, Bicarbonate and Hydroxide | 1 | N/A | 2024/04/03 | N/A | SM 24 4500-CO2 D | | Alkalinity | 1 | N/A | 2024/04/02 | ATL SOP 00142 | SM 24 2320 B | | Chloride | 1 | N/A | 2024/04/02 | ATL SOP 00014 | SM 24 4500-Cl- E m | | Colour | 1 | N/A | 2024/04/02 | ATL SOP 00020 | SM 24 2120C m | | Conductance - water | 1 | N/A | 2024/04/02 | ATL SOP 00004 | SM 24 2510B m | | Fluoride | 1 | N/A | 2024/04/02 | ATL SOP 00043 | SM 24
4500-F- C m | | Hardness (calculated as CaCO3) | 1 | N/A | 2024/04/01 | ATL SOP 00048 | Auto Calc | | Metals Water Total MS | 1 | 2024/03/28 | 2024/04/01 | ATL SOP 00058 | EPA 6020B R2 m | | on Balance (% Difference) | 1 | N/A | 2024/04/03 | N/A | Auto Calc. | | Anion and Cation Sum | 1 | N/A | 2024/04/03 | N/A | Auto Calc. | | Nitrogen Ammonia - water | 1 | N/A | 2024/04/01 | ATL SOP 00015 | EPA 350.1 R2 m | | litrogen - Nitrate + Nitrite | 1 | N/A | 2024/04/02 | ATL SOP 00016 | USGS I-2547-11m | | Nitrogen - Nitrite | 1 | N/A | 2024/04/02 | ATL SOP 00017 | SM 24 4500-NO2- B m | | Nitrogen - Nitrate (as N) | 1 | N/A | 2024/04/03 | ATL SOP 00018 | ASTM D3867-16 | | pH (1) | 1 | N/A | 2024/04/02 | ATL SOP 00003 | SM 24 4500-H+ B m | | Phosphorus - ortho | 1 | N/A | 2024/04/03 | ATL SOP 00021 | SM 24 4500-P E m | | Sat. pH and Langelier Index (@ 20C) | 1 | N/A | 2024/04/03 | ATL SOP 00049 | Auto Calc. | | Sat. pH and Langelier Index (@ 4C) | 1 | N/A | 2024/04/03 | ATL SOP 00049 | Auto Calc. | | Reactive Silica | 1 | N/A | 2024/04/02 | ATL SOP 00022 | EPA 366.0 m | | Sulphate | 1 | N/A | 2024/04/02 | ATL SOP 00023 | ASTM D516-16 m | | otal Dissolved Solids (TDS calc) | 1 | N/A | 2024/04/03 | N/A | Auto Calc. | | Organic carbon - Total (TOC) (2) | 1 | N/A | 2024/04/01 | ATL SOP 00203 | SM 24 5310B m | | Total Suspended Solids | 1 | 2024/03/28 | 2024/04/02 | ATL SOP 00007 | SM 24 2540D m | | Turbidity | 1 | N/A | 2024/04/01 | ATL SOP 00011 | EPA 180.1 R2 m | #### Remarks: Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment. All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Your P.O. #: 735-009466 Your Project #: 12601021 Site Location: ANTRIM Your C.O.C. #: N/A **Attention: Jessica Romo** GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2 Report Date: 2024/04/03 Report #: R8091377 Version: 1 - Final #### **CERTIFICATE OF ANALYSIS** #### BUREAU VERITAS JOB #: C489618 Received: 2024/03/26, 12:27 Uncertainty has not been accounted for when stating conformity to the referenced standard. Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent. Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory. Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. - * RPDs calculated using raw data. The rounding of final results may result in the apparent difference. - (1) The APHA Standard Method requires pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time. - (2) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC. #### **Encryption Key** Please direct all questions regarding this Certificate of Analysis to: Marie Muise, Key Account Specialist Email: Marie.MUISE@bureauveritas.com Phone# (902)420-0203 Ext:253 FIIOTIE# (302)420-0203 LXL233 _____ This report has been generated and distributed using a secure automated process. Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Suzanne Rogers, General Manager responsible for Nova Scotia Environmental laboratory operations. Client Project #: 12601021 Site Location: ANTRIM Your P.O. #: 735-009466 Sampler Initials: JV # RESULTS OF ANALYSES OF SURFACE WATER | Bureau Veritas ID | | YSQ876 | | | | |-------------------------------------|-------|---------------------|-------|-------|----------| | Sampling Date | | 2024/03/25
10:00 | | | | | COC Number | | N/A | | | | | | UNITS | SW-1 | RDL | MDL | QC Batch | | Calculated Parameters | | | | | | | Anion Sum | me/L | 0.260 | N/A | N/A | 9296708 | | Bicarb. Alkalinity (calc. as CaCO3) | mg/L | <1.0 | 1.0 | 0.20 | 9296703 | | Calculated TDS | mg/L | 21 | 1.0 | 0.20 | 9296716 | | Carb. Alkalinity (calc. as CaCO3) | mg/L | <1.0 | 1.0 | 0.20 | 9296703 | | Cation Sum | me/L | 0.350 | N/A | N/A | 9296708 | | Hardness (CaCO3) | mg/L | 11 | 1.0 | 1.0 | 9296704 | | Ion Balance (% Difference) | % | 14.8 | N/A | N/A | 9296707 | | Langelier Index (@ 20C) | N/A | NC | | | 9296714 | | Langelier Index (@ 4C) | N/A | NC | | | 9296715 | | Nitrate (N) | mg/L | <0.050 | 0.050 | N/A | 9296711 | | Saturation pH (@ 20C) | N/A | NC | | | 9296714 | | Saturation pH (@ 4C) | N/A | NC | | | 9296715 | | Inorganics | | | | | | | Total Alkalinity (Total as CaCO3) | mg/L | <2.0 | 2.0 | N/A | 9308243 | | Dissolved Chloride (Cl-) | mg/L | 3.6 | 1.0 | N/A | 9307197 | | Colour | TCU | 52 | 25 | N/A | 9307206 | | Dissolved Fluoride (F-) | mg/L | <0.10 | 0.10 | 0.050 | 9308244 | | Nitrate + Nitrite (N) | mg/L | <0.050 | 0.050 | N/A | 9307215 | | Nitrite (N) | mg/L | <0.010 | 0.010 | N/A | 9307217 | | Nitrogen (Ammonia Nitrogen) | mg/L | 0.061 | 0.050 | N/A | 9306384 | | Total Organic Carbon (C) | mg/L | 6.2 | 0.50 | N/A | 9306341 | | Orthophosphate (P) | mg/L | <0.010 | 0.010 | N/A | 9307207 | | рН | рН | 6.04 | | | 9308238 | | Reactive Silica (SiO2) | mg/L | 2.0 | 0.50 | N/A | 9307203 | | Total Suspended Solids | mg/L | 2.0 | 1.0 | N/A | 9302691 | | Dissolved Sulphate (SO4) | mg/L | 7.8 | 2.0 | N/A | 9307201 | | Turbidity | NTU | 6.2 | 0.10 | 0.10 | 9306579 | | • | | | | N/A | 9308240 | QC Batch = Quality Control Batch Client Project #: 12601021 Site Location: ANTRIM Your P.O. #: 735-009466 Sampler Initials: JV # **ELEMENTS BY ICP/MS (SURFACE WATER)** | Bureau Veritas ID | | YSQ876 | | | | |---|-------|---------------------|-------|-----|----------| | Sampling Date | | 2024/03/25
10:00 | | | | | COC Number | | N/A | | | | | | UNITS | SW-1 | RDL | MDL | QC Batch | | Metals | | | | | | | Total Aluminum (Al) | ug/L | 310 | 5.0 | N/A | 9302183 | | Total Antimony (Sb) | ug/L | <1.0 | 1.0 | N/A | 9302183 | | Total Arsenic (As) | ug/L | <1.0 | 1.0 | N/A | 9302183 | | Total Barium (Ba) | ug/L | 6.3 | 1.0 | N/A | 9302183 | | Total Beryllium (Be) | ug/L | <0.10 | 0.10 | N/A | 9302183 | | Total Bismuth (Bi) | ug/L | <2.0 | 2.0 | N/A | 9302183 | | Total Boron (B) | ug/L | <50 | 50 | N/A | 9302183 | | Total Cadmium (Cd) | ug/L | 0.011 | 0.010 | N/A | 9302183 | | Total Calcium (Ca) | ug/L | 3200 | 100 | N/A | 9302183 | | Total Chromium (Cr) | ug/L | <1.0 | 1.0 | N/A | 9302183 | | Total Cobalt (Co) | ug/L | <0.40 | 0.40 | N/A | 9302183 | | Total Copper (Cu) | ug/L | <0.50 | 0.50 | N/A | 9302183 | | Total Iron (Fe) | ug/L | 320 | 50 | N/A | 9302183 | | Total Lead (Pb) | ug/L | <0.50 | 0.50 | N/A | 9302183 | | Total Magnesium (Mg) | ug/L | 590 | 100 | N/A | 9302183 | | Total Manganese (Mn) | ug/L | 19 | 2.0 | N/A | 9302183 | | Total Molybdenum (Mo) | ug/L | <2.0 | 2.0 | N/A | 9302183 | | Total Nickel (Ni) | ug/L | <2.0 | 2.0 | N/A | 9302183 | | Total Phosphorus (P) | ug/L | <100 | 100 | N/A | 9302183 | | Total Potassium (K) | ug/L | 400 | 100 | N/A | 9302183 | | Total Selenium (Se) | ug/L | <0.50 | 0.50 | N/A | 9302183 | | Total Silver (Ag) | ug/L | <0.10 | 0.10 | N/A | 9302183 | | Total Sodium (Na) | ug/L | 2500 | 100 | N/A | 9302183 | | Total Strontium (Sr) | ug/L | 12 | 2.0 | N/A | 9302183 | | Total Thallium (TI) | ug/L | <0.10 | 0.10 | N/A | 9302183 | | Total Tin (Sn) | ug/L | <2.0 | 2.0 | N/A | 9302183 | | Total Titanium (Ti) | ug/L | 6.9 | 2.0 | N/A | 9302183 | | Total Uranium (U) | ug/L | <0.10 | 0.10 | N/A | 9302183 | | Total Vanadium (V) | ug/L | <2.0 | 2.0 | N/A | 9302183 | | Total Zinc (Zn) | ug/L | <5.0 | 5.0 | N/A | 9302183 | | RDL = Reportable Detection L
QC Batch = Quality Control Ba | | | | | | Client Project #: 12601021 Site Location: ANTRIM Your P.O. #: 735-009466 Sampler Initials: JV #### **GENERAL COMMENTS** Each temperature is the average of up to three cooler temperatures taken at receipt Package 1 4.0°C Sample YSQ876 [SW-1]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L. Results relate only to the items
tested. Client Project #: 12601021 Site Location: ANTRIM Your P.O. #: 735-009466 Sampler Initials: JV ## **QUALITY ASSURANCE REPORT** | 2.122 | | | QUALITY ASSUR | | | | | | |----------------|-------|---------------|--------------------------------------|---------------|-------|-----------|-------|-----------| | QA/QC
Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | 9302183 | MTZ | Matrix Spike | Total Aluminum (Al) | 2024/03/28 | | 99 | % | 80 - 120 | | | | | Total Antimony (Sb) | 2024/03/28 | | 104 | % | 80 - 120 | | | | | Total Arsenic (As) | 2024/03/28 | | 103 | % | 80 - 120 | | | | | Total Barium (Ba) | 2024/03/28 | | 99 | % | 80 - 120 | | | | | Total Beryllium (Be) | 2024/03/28 | | 99 | % | 80 - 120 | | | | | Total Bismuth (Bi) | 2024/03/28 | | 101 | % | 80 - 120 | | | | | Total Boron (B) | 2024/03/28 | | 98 | % | 80 - 120 | | | | | Total Cadmium (Cd) | 2024/03/28 | | 103 | % | 80 - 120 | | | | | Total Calcium (Ca) | 2024/03/28 | | 100 | % | 80 - 120 | | | | | Total Chromium (Cr) | 2024/03/28 | | 101 | % | 80 - 120 | | | | | Total Cobalt (Co) | 2024/03/28 | | 102 | % | 80 - 120 | | | | | Total Copper (Cu) | 2024/03/28 | | 101 | % | 80 - 120 | | | | | Total Iron (Fe) | 2024/03/28 | | 101 | % | 80 - 120 | | | | | Total Lead (Pb) | 2024/03/28 | | 103 | % | 80 - 120 | | | | | Total Magnesium (Mg) | 2024/03/28 | | 104 | % | 80 - 120 | | | | | Total Manganese (Mn) | 2024/03/28 | | 103 | % | 80 - 120 | | | | | Total Molybdenum (Mo) | 2024/03/28 | | 104 | % | 80 - 120 | | | | | Total Nickel (Ni) | 2024/03/28 | | 100 | % | 80 - 120 | | | | | Total Phosphorus (P) | 2024/03/28 | | 104 | % | 80 - 120 | | | | | Total Potassium (K) | 2024/03/28 | | 105 | % | 80 - 120 | | | | | Total Selenium (Se) | 2024/03/28 | | 101 | % | 80 - 120 | | | | | Total Silver (Ag) | 2024/03/28 | | 100 | % | 80 - 120 | | | | | Total Sodium (Na) | 2024/03/28 | | NC | % | 80 - 120 | | | | | Total Strontium (Sr) | 2024/03/28 | | 103 | % | 80 - 120 | | | | | Total Thallium (TI) | 2024/03/28 | | 102 | % | 80 - 120 | | | | | Total Tin (Sn) | 2024/03/28 | | 104 | % | 80 - 120 | | | | | Total Titanium (Ti) | 2024/03/28 | | 104 | % | 80 - 120 | | | | | Total Uranium (U) | 2024/03/28 | | 112 | % | 80 - 120 | | | | | Total Vanadium (V) | 2024/03/28 | | 102 | % | 80 - 120 | | | | | Total Zinc (Zn) | 2024/03/28 | | 99 | % | 80 - 120 | | 9302183 | NATZ | Spiked Blank | Total Aluminum (Al) | 2024/03/28 | | 99 | % | 80 - 120 | | 3302103 | IVIIZ | Spikeu bialik | Total Antimony (Sb) | 2024/03/28 | | 105 | % | 80 - 120 | | | | | • • • | 2024/03/28 | | 103 | | | | | | | Total Arsenic (As) Total Barium (Ba) | 2024/03/28 | | | % | 80 - 120 | | | | | ` , | | | 100
99 | % | 80 - 120 | | | | | Total Bianuth (Bi) | 2024/03/28 | | | % | 80 - 120 | | | | | Total Barray (B) | 2024/03/28 | | 104 | % | 80 - 120 | | | | | Total Boron (B) | 2024/03/28 | | 99 | % | 80 - 120 | | | | | Total Cadmium (Cd) | 2024/03/28 | | 104 | % | 80 - 120 | | | | | Total Calcium (Ca) | 2024/03/28 | | 104 | % | 80 - 120 | | | | | Total Chromium (Cr) | 2024/03/28 | | 103 | % | 80 - 120 | | | | | Total Cobalt (Co) | 2024/03/28 | | 103 | % | 80 - 120 | | | | | Total Copper (Cu) | 2024/03/28 | | 102 | % | 80 - 120 | | | | | Total Iron (Fe) | 2024/03/28 | | 102 | % | 80 - 120 | | | | | Total Lead (Pb) | 2024/03/28 | | 105 | % | 80 - 120 | | | | | Total Magnesium (Mg) | 2024/03/28 | | 105 | % | 80 - 120 | | | | | Total Manganese (Mn) | 2024/03/28 | | 105 | % | 80 - 120 | | | | | Total Molybdenum (Mo) | 2024/03/28 | | 105 | % | 80 - 120 | | | | | Total Nickel (Ni) | 2024/03/28 | | 104 | % | 80 - 120 | | | | | Total Phosphorus (P) | 2024/03/28 | | 105 | % | 80 - 120 | | | | | Total Potassium (K) | 2024/03/28 | | 107 | % | 80 - 120 | | | | | Total Selenium (Se) | 2024/03/28 | | 104 | % | 80 - 120 | | | | | Total Silver (Ag) | 2024/03/28 | | 102 | % | 80 - 120 | Client Project #: 12601021 Site Location: ANTRIM Your P.O. #: 735-009466 Sampler Initials: JV | nit QC Type | Parameter Total Sodium (Na) Total Strontium (Sr) Total Thallium (TI) Total Tin (Sn) Total Titanium (Ti) Total Uranium (U) Total Vanadium (V) Total Zinc (Zn) Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) Total Cadmium (Cd) | Date Analyzed 2024/03/28 2024/03/28 2024/03/28 2024/03/28 2024/03/28 2024/03/28 2024/03/28 2024/03/28 2024/03/28 2024/03/28 2024/03/28 2024/03/28 2024/03/28 2024/03/28 | <5.0
<1.0
<1.0
<1.0
<0.10
<2.0 | Recovery 103 105 104 105 109 111 103 102 | WNITS % % % % % % ug/L ug/L ug/L | QC Limits 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 | |------------------|--|--|--|---|--|--| | ITZ Method Blank | Total Strontium (Sr) Total Thallium (TI) Total Tin (Sn) Total Titanium (Ti) Total Uranium (U) Total Vanadium (V) Total Zinc (Zn) Total Aluminum (AI) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) Total Cadmium (Cd) | 2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28 | <1.0
<1.0
<1.0
<0.10 | 105
104
105
109
111
103 | %
%
%
%
%
ug/L
ug/L | 80 - 120
80 - 120
80 - 120
80 - 120
80 - 120
80 - 120 | | ITZ Method Blank | Total Thallium (TI) Total Tin (Sn) Total Titanium (Ti) Total Uranium (U) Total Vanadium (V) Total Zinc (Zn) Total Aluminum (AI) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) Total Cadmium (Cd) | 2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28 |
<1.0
<1.0
<1.0
<0.10 | 104
105
109
111
103 | %
%
%
%
ug/L
ug/L | 80 - 120
80 - 120
80 - 120
80 - 120
80 - 120 | | ITZ Method Blank | Total Tin (Sn) Total Titanium (Ti) Total Uranium (U) Total Vanadium (V) Total Zinc (Zn) Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) Total Cadmium (Cd) | 2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28 | <1.0
<1.0
<1.0
<0.10 | 105
109
111
103 | %
%
%
ug/L
ug/L
ug/L | 80 - 120
80 - 120
80 - 120
80 - 120 | | ITZ Method Blank | Total Titanium (Ti) Total Uranium (U) Total Vanadium (V) Total Zinc (Zn) Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) Total Cadmium (Cd) | 2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28 | <1.0
<1.0
<1.0
<0.10 | 109
111
103 | %
%
%
ug/L
ug/L
ug/L | 80 - 120
80 - 120
80 - 120 | | ITZ Method Blank | Total Uranium (U) Total Vanadium (V) Total Zinc (Zn) Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) Total Cadmium (Cd) | 2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28 | <1.0
<1.0
<1.0
<0.10 | 111
103 | %
%
ug/L
ug/L
ug/L | 80 - 120
80 - 120 | | ITZ Method Blank | Total Vanadium (V) Total Zinc (Zn) Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) Total Cadmium (Cd) | 2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28 | <1.0
<1.0
<1.0
<0.10 | 103 | %
wg/L
ug/L
ug/L | 80 - 120 | | ITZ Method Blank | Total Zinc (Zn) Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) Total Cadmium (Cd) | 2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28 | <1.0
<1.0
<1.0
<0.10 | | %
ug/L
ug/L
ug/L | | | ITZ Method Blank | Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) Total Cadmium (Cd) | 2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28 | <1.0
<1.0
<1.0
<0.10 | 102 | ug/L
ug/L
ug/L | 80 - 120 | | ITZ Method Blank | Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) Total Cadmium (Cd) | 2024/03/28
2024/03/28
2024/03/28
2024/03/28
2024/03/28 | <1.0
<1.0
<1.0
<0.10 | | ug/L
ug/L | | | | Total Arsenic (As) Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) Total Cadmium (Cd) | 2024/03/28
2024/03/28
2024/03/28
2024/03/28 | <1.0
<1.0
<0.10 | | ug/L | | | | Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) Total Cadmium (Cd) | 2024/03/28
2024/03/28
2024/03/28 | <1.0
<0.10 | | | | | | Total Beryllium (Be)
Total Bismuth (Bi)
Total Boron (B)
Total Cadmium (Cd) | 2024/03/28
2024/03/28 | <0.10 | | ug/l | | | | Total Bismuth (Bi) Total Boron (B) Total Cadmium (Cd) | 2024/03/28 | | | ~B/ = | | | | Total Boron (B) Total Cadmium (Cd) | | <2 N | | ug/L | | | | Total Cadmium (Cd) | 2224/22/22 | \2.0 | | ug/L | | | | • • | 2024/03/28 | <50 | | ug/L | | | | | 2024/03/28 | < 0.010 | | ug/L | | | | Total Calcium (Ca) | 2024/03/28 | <100 | | ug/L | | | | Total Chromium (Cr) | 2024/03/28 | <1.0 | | ug/L | | | | Total Cobalt (Co) | 2024/03/28 | <0.40 | | ug/L | | | | Total Copper (Cu) | 2024/03/28 | <0.50 | | ug/L | | | | Total Iron (Fe) | 2024/03/28 | <50 | | ug/L | | | | Total Lead (Pb) | 2024/03/28 | <0.50 | | ug/L | | | | Total Magnesium (Mg) | 2024/03/28 | <100 | | ug/L | | | | Total Manganese (Mn) | 2024/03/28 | <2.0 | | ug/L | | | | Total Molybdenum (Mo) | 2024/03/28 | <2.0 | | ug/L | | | | Total Nickel (Ni) | 2024/03/28 | <2.0 | | ug/L | | | | Total Phosphorus (P) | 2024/03/28 | <100 | | ug/L | | | | Total Potassium (K) | 2024/03/28 | <100 | | ug/L | | | | Total Selenium (Se) | 2024/03/28 | <0.50 | | ug/L | | | | Total Silver (Ag) | 2024/03/28 | <0.10 | | | | | | Total Sodium (Na) | 2024/03/28 | <100 | | ug/L | | | | Total Strontium (Sr) | 2024/03/28 | <2.0 | | ug/L | | | | Total Thallium (TI) | 2024/03/28 | <0.10 | | | | | | Total Tin (Sn) | 2024/03/28 | <2.0 | | | | | | Total Titanium (Ti) | 2024/03/28 | | | | | | | Total Uranium (U) | 2024/03/28 | <0.10 | | | | | | Total Vanadium (V) | 2024/03/28 | <2.0 | | | | | | Total Zinc (Zn) | 2024/03/28 | | | | | | ITZ RPD | Total Aluminum (AI) | | | | | 20 | | | Total Antimony (Sb) | | | | | 20 | | | | | | | | 20 | | | · · | | | | | 20 | | | ` , | | | | | 20 | | | | | | | | 20 | | | | | | | | 20 | | | ` , | | | | | 20 | | | . , | | | | | 20 | | | | | | | | 20 | | | | | | | | 20 | | | ` ' | | | | | 20 | | | | • • | | | | 20 | | | | | | | | 20 | | lī — | TZ RPD | Total Lead (Pb) Total Magnesium (Mg) Total Manganese (Mn) Total Molybdenum (Mo) Total Nickel (Ni) Total Phosphorus (P) Total Potassium (K) Total Selenium (Se) Total Silver (Ag) Total Sodium (Na) Total Strontium (Sr) Total Thallium (TI) Total Titanium (Ti) Total Uranium (U) Total Vanadium (V) Total Zinc (Zn) | Total Lead (Pb) 2024/03/28 Total Magnesium (Mg) 2024/03/28 Total Magnesium (Mg) 2024/03/28 Total Manganese (Mn) 2024/03/28 Total Molybdenum (Mo) 2024/03/28 Total Nickel (Ni) 2024/03/28 Total Potassium (K) 2024/03/28 Total Potassium (K) 2024/03/28 Total Selenium (Se) 2024/03/28 Total Silver (Ag) 2024/03/28 Total Sodium (Na) 2024/03/28 Total Strontium (Sr) 2024/03/28 Total Thallium (TI) 2024/03/28 Total Titanium (Ti) 2024/03/28 Total Titanium (U) 2024/03/28 Total Vanadium (V) 2024/03/28 Total Arimony (Sb) 2024/03/28 Total Arimony (Sb) 2024/03/28 Total Arimony (Sb) 2024/03/28 Total Barium (Ba) 2024/03/28 Total Cadmium (Cd) 2024/03/28 Total Copper (Cu) 2024/03/28 Total Magnesium (Mg) 2024/03/28 Total Magnesium (Mg) 2024/03/28 Total Manganese (Mn) 2024/03/28 Total Potassium (K) 2024/03/28 | Total Lead (Pb) 2024/03/28 <0.50 Total Magnesium (Mg) 2024/03/28 <100 Total Manganese (Mn) 2024/03/28 <2.0 Total Molybdenum (Mo) 2024/03/28 <2.0 Total Nolvbdenum (Mo) 2024/03/28 <2.0 Total Nickel (Ni) 2024/03/28 <2.0 Total Phosphorus (P) 2024/03/28 <100 Total Potassium (K) 2024/03/28 <100 Total Selenium (Se) 2024/03/28 <0.50 Total Silver (Ag) 2024/03/28 <0.10 Total Sodium (Na) 2024/03/28 <0.10 Total Strontium (Sr) 2024/03/28 <0.10 Total Strontium (Ti) 2024/03/28 <2.0 Total Thallium (Ti) 2024/03/28 <2.0 Total Tin (Sn) 2024/03/28 <2.0 Total Titanium (Ti) 2024/03/28 <2.0 Total Vanadium (V) 2024/03/28 <2.0 Total Zinc (Zn) 2024/03/28 <2.0 Total Zinc (Zn) 2024/03/28 <2.0 Total Antimony (Sb) 2024/03/28 <2.0 Total Arsenic (As) 2024/03/28 NC Total Barium (Ba) 2024/03/28 NC Total Barium (Ba) 2024/03/28 NC Total Cadmium (Cd) 2024/03/28 NC Total Cadmium (Cd) 2024/03/28 NC Total Cadmium (Ca) 2024/03/28 NC Total Cadmium (Ca) 2024/03/28 NC Total Candmium (Ca) 2024/03/28 NC Total Candmium (Ca) 2024/03/28 NC Total Capper (Cu) 2024/03/28 NC Total Lead (Pb) 2024/03/28 NC Total Magnesium (Mg) 2024/03/28 NC Total Magnesium (Mg) 2024/03/28 NC Total Magnesium (Mg) 2024/03/28 NC Total Magnese (Mn) 2024/03/28 NC Total Manganese (Mn) 2024/03/28 NC | Total Lead (Pb) 2024/03/28 <0.50 Total Magnesium (Mg) 2024/03/28 <100 Total Magnesium (Mg) 2024/03/28 <2.0 Total Molybdenum (Mo) 2024/03/28 <2.0 Total Molybdenum (Mo) 2024/03/28 <2.0 Total Noikel (Ni) 2024/03/28 <2.0 Total Phosphorus (P) 2024/03/28 <100 Total Potassium (K) 2024/03/28 <100 Total Selenium (Se) 2024/03/28 <0.10 Total Silver (Ag) 2024/03/28 <0.10 Total Silver (Ag) 2024/03/28 <0.10 Total Sodium (Na) 2024/03/28 <0.10 Total Total Strontium (Sr) 2024/03/28 <0.10 Total Total Tin (Sn) 2024/03/28 <0.10 Total Tin (Sn) 2024/03/28 <2.0 Total Titanium (Ti) 2024/03/28 <2.0 Total Titanium (Ti) 2024/03/28 <2.0 Total Vanadium (U) 2024/03/28 <2.0 Total Zinc (Zn) 2024/03/28 <0.10 Total Auminum (Al) 2024/03/28 <0.10 Total Alminomy (Sb) 2024/03/28 <5.0 Total Antimony (Sb) 2024/03/28 NC Total Arsenic (As) 2024/03/28 NC Total Barium (Ba) 2024/03/28 NC Total Barium (Ba) 2024/03/28 NC Total Cadmium (Cd) 2024/03/28 NC Total Copper (Cu) 2024/03/28 NC Total Copper (Cu) 2024/03/28 NC Total Magnesium (Mg) 2024/03/28 NC Total Magnesium (Mg) 2024/03/28 NC Total Magnese (Mn) 2024/03/28 NC Total Potassium (Mg) 2024/03/28 NC Total Potassium (Mg) 2024/03/28 NC | Total Lead (Pb) 2024/03/28 <0.50 ug/L | Client Project #: 12601021 Site Location: ANTRIM Your P.O. #: 735-009466 Sampler Initials: JV | | | | QUALITY ASSURANCE | REPORT(CONT D) | | | | | |--------------------|------|---------------------|-----------------------------|----------------|-------------|----------|-----------|-----------------| | QA/QC | | 007 | | 5 | | | | 001: " | | Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | | | | Total Selenium (Se) | 2024/03/28 | 8.9 | | % | 20 | | | | | Total Streeting (Sr) | 2024/03/28 | 0.15 | | % | 20 | | | | | Total Usaniana (U) | 2024/03/28 | 0.11 | | % | 20 | | | | | Total Tranium (U) | 2024/03/28 | 2.7 | | % | 20 | | 0202604 | DNAF | 000 | Total Sugar and a Calida | 2024/03/28 | NC | 07 | % | 20 | | 9302691 | DME | QC Standard | Total Suspended Solids | 2024/04/02 | -1.0 | 97 | % | 80 - 120 | | 9302691 | DME | Method Blank | Total Suspended Solids | 2024/04/02 | <1.0 | | mg/L | 20 | | 9302691 | DME | RPD | Total Suspended Solids | 2024/04/02 | 0.74 | 00 | % | 20 | | 9306341 | SSI | Matrix
Spike | Total Organic Carbon (C) | 2024/04/01 | | 98 | % | 85 - 115 | | 9306341 | SSI | Spiked Blank | Total Organic Carbon (C) | 2024/04/01 | 0.50 | 102 | % | 80 - 120 | | 9306341 | SSI | Method Blank | Total Organic Carbon (C) | 2024/04/01 | <0.50 | | mg/L | | | 9306341 | SSI | RPD | Total Organic Carbon (C) | 2024/04/01 | 1.8 | | % | 15 | | 9306384 | MCN | Matrix Spike | Nitrogen (Ammonia Nitrogen) | 2024/04/01 | | NC | % | 80 - 120 | | 9306384 | MCN | Spiked Blank | Nitrogen (Ammonia Nitrogen) | 2024/04/01 | | 103 | % | 80 - 120 | | 9306384 | MCN | Method Blank | Nitrogen (Ammonia Nitrogen) | 2024/04/01 | <0.050 | | mg/L | | | 9306384 | MCN | RPD | Nitrogen (Ammonia Nitrogen) | 2024/04/01 | 1.3 | | % | 20 | | 9306579 | LJV | QC Standard | Turbidity | 2024/04/01 | | 97 | % | 80 - 120 | | 9306579 | IJV | Spiked Blank | Turbidity | 2024/04/01 | | 110 | % | 80 - 120 | | 9306579 | LJV | Method Blank | Turbidity | 2024/04/01 | <0.10 | | NTU | | | 9306579 | LJV | RPD | Turbidity | 2024/04/01 | 7.3 | | % | 20 | | 9307197 | EMT | Matrix Spike | Dissolved Chloride (Cl-) | 2024/04/02 | | 98 | % | 80 - 120 | | 9307197 | EMT | Spiked Blank | Dissolved Chloride (Cl-) | 2024/04/02 | | 102 | % | 80 - 120 | | 9307197 | EMT | Method Blank | Dissolved Chloride (Cl-) | 2024/04/02 | <1.0 | | mg/L | | | 9307197 | EMT | RPD | Dissolved Chloride (Cl-) | 2024/04/02 | 0.68 | | % | 20 | | 9307201 | EMT | Matrix Spike | Dissolved Sulphate (SO4) | 2024/04/02 | | 99 | % | 80 - 120 | | 9307201 | EMT | Spiked Blank | Dissolved Sulphate (SO4) | 2024/04/02 | | 104 | % | 80 - 120 | | 9307201 | EMT | Method Blank | Dissolved Sulphate (SO4) | 2024/04/02 | <2.0 | | mg/L | | | 9307201 | EMT | RPD | Dissolved Sulphate (SO4) | 2024/04/02 | 20 | | % | 20 | | 9307203 | EMT | Matrix Spike | Reactive Silica (SiO2) | 2024/04/02 | | 89 | % | 80 - 120 | | 9307203 | EMT | Spiked Blank | Reactive Silica (SiO2) | 2024/04/02 | | 95 | % | 80 - 120 | | 9307203 | EMT | Method Blank | Reactive Silica (SiO2) | 2024/04/02 | <0.50 | | mg/L | | | 9307203 | EMT | RPD | Reactive Silica (SiO2) | 2024/04/02 | 4.7 | | % | 20 | | 9307206 | EMT | Spiked Blank | Colour | 2024/04/02 | | 109 | % | 80 - 120 | | 9307206 | EMT | Method Blank | Colour | 2024/04/02 | <5.0 | | TCU | | | 9307206 | EMT | RPD | Colour | 2024/04/02 | NC | | % | 20 | | 9307207 | EMT | Matrix Spike | Orthophosphate (P) | 2024/04/03 | | 80 (1) | % | 80 - 120 | | 9307207 | EMT | Spiked Blank | Orthophosphate (P) | 2024/04/03 | | 84 | % | 80 - 120 | | 9307207 | EMT | Method Blank | Orthophosphate (P) | 2024/04/03 | <0.010 | | mg/L | | | 9307207 | EMT | RPD | Orthophosphate (P) | 2024/04/03 | 3.7 | | % | 20 | | 9307215 | MCN | Matrix Spike | Nitrate + Nitrite (N) | 2024/04/02 | | 96 | % | 80 - 120 | | 9307215 | MCN | Spiked Blank | Nitrate + Nitrite (N) | 2024/04/02 | | 98 | % | 80 - 120 | | 9307215 | MCN | Method Blank | Nitrate + Nitrite (N) | 2024/04/02 | <0.050 | 30 | mg/L | 00 120 | | 9307215 | MCN | RPD | Nitrate + Nitrite (N) | 2024/04/02 | NC | | % | 20 | | 9307217 | EMT | Matrix Spike | Nitrite (N) | 2024/04/02 | 140 | 102 | % | 80 - 120 | | 9307217 | EMT | Spiked Blank | Nitrite (N) | 2024/04/02 | | 100 | % | 80 - 120 | | 9307217 | EMT | Method Blank | Nitrite (N) | 2024/04/02 | <0.010 | 100 | mg/L | 00 - 120 | | 9307217 | EMT | RPD | Nitrite (N) | 2024/04/02 | NC | | mg/L
% | 20 | | 9308238 | LJV | | | 2024/04/02 | IVC | 101 | %
% | 97 - 103 | | | LJV | Spiked Blank
RPD | pH | 2024/04/02 | O 21 | 101 | | | | 9308238
9308240 | | | pH
Conductivity | 2024/04/02 | 0.31 | 101 | %
% | N/A
80 - 120 | | | LJV | Spiked Blank | Conductivity | 2024/04/02 | ~1 0 | 101 | | ou - 120 | | 9308240 | LJV | Method Blank | Conductivity | | <1.0 | | uS/cm | 10 | | 9308240 | LJV | RPD | Conductivity | 2024/04/02 | 0.85 | | % | 10 | Client Project #: 12601021 Site Location: ANTRIM Your P.O. #: 735-009466 Sampler Initials: JV #### QUALITY ASSURANCE REPORT(CONT'D) | QA/QC | | | | | | | | | |---------|------|--------------|-----------------------------------|---------------|-------|----------|-------|-----------| | Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | 9308243 | LJV | Spiked Blank | Total Alkalinity (Total as CaCO3) | 2024/04/02 | | 100 | % | 80 - 120 | | 9308243 | LJV | Method Blank | Total Alkalinity (Total as CaCO3) | 2024/04/02 | <2.0 | | mg/L | | | 9308243 | LJV | RPD | Total Alkalinity (Total as CaCO3) | 2024/04/02 | 1.2 | | % | 20 | | 9308244 | LJV | Matrix Spike | Dissolved Fluoride (F-) | 2024/04/02 | | 84 | % | 80 - 120 | | 9308244 | LJV | Spiked Blank | Dissolved Fluoride (F-) | 2024/04/02 | | 92 | % | 80 - 120 | | 9308244 | LJV | Method Blank | Dissolved Fluoride (F-) | 2024/04/02 | <0.10 | | mg/L | | | 9308244 | LJV | RPD | Dissolved Fluoride (F-) | 2024/04/02 | NC | | % | 20 | N/A = Not Applicable Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement. Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference. QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy. Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy. Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination. NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration) NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL). (1) Poor spike recovery due to probable sample matrix interference. Client Project #: 12601021 Site Location: ANTRIM Your P.O. #: 735-009466 Sampler Initials: JV #### **VALIDATION SIGNATURE PAGE** The analytical data and all QC contained in this report were reviewed and validated by: Colleen Acker, B.Sc, Scientific Service Specialist **Automated Statchk** Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Suzanne Rogers, General Manager responsible for Nova Scotia Environmental laboratory operations. www.BVNA.com 105-200 Bluewater Road, Bedford, NS B48 1G9 49-55 Elizabeth Avenue, St John's, Nt A1A 1W9 465 George Street , Unit G, Sydney, NS B1P 1K5 Tel: 902-420-0203 Fax: 902-420-8612 Toll Free: 1-800-565-7227 Tel: 709-754-0203 Fax: 709-754-8612 Toll Free: 1-888-492-7227 Tel: 902-567-1255 Fax: 902-539-6504 Toll Free: 1-888-535-7770 #### CHAIN OF CUSTODY RECORD ENV COC - 00016v3 | | | | | | | | | | | | | | | | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | - | | 98 | | - | |--------------------------|--
--|--------------------|------------|--------------------|----------|---------|---------------------------------|----------------|-----------------|-------------------------|------------------------|-----------------|-------------------|----------|--------|-----------|------------------|---------------|-------|---------|---------------|--------|--------|------------------------|-------------|---------------|-----------|-------------------------|---------------| | voice Infor | mation invoice to (requires | report) | - | | Report I | nformat | | liffers from invo | ice) | | | - | | | 1 | | Project I | nforma | tion | | | _ | _ (| | | | | -17 | | 1 | | impany : | #126276 GHD | Ltd. | Company | | | * 0 | G | HD Ltd | | | | - | Quotat | ion #: | | | | - | | | | | | | | | | | | 4 | | ontact
ame: | Accounts Pay | able | Contact
Name: | | | | Jess | sica Romo | | | | F | P.O. #/ | AFE#: | | | | 735 | -0094 | 65 | | | | | | LAB | USE ONLY - PI | ACE STIC | CKER HERE | | | reet
ddress: | 120 Western Pa | rkway | Street
Address: | | | 17 | 20 We | stern Parkw | y | | | | Project | #: | | | | 12 | 60102 | 1 | | | | | | | | | | | | ty: | Bedford Prov: NS | Postal B4B0 | | Bed | dford | | Prov: | NS | Posta
Code: | | 8480 |)V2 | Site #: | | | | | | | | | | | 4 | | | | | | | | none; | 902-468-12 | 20041 | Phone: | | | | 902 | -468-1248 | | | | 1 | Site La | rations | | | | A | ntrim | | | | | | | | Rush Conf | irmation | ø: | | | nail: | accountspayableCDN | l@ghd.com | Email: | | | jes | sica.re | omo@ghd.co | m | | | | Site La | | | | | | NS | | | | | | | | | | | | | ples: | | | Coples: | | | | | | | | | _ | Sample | _ | The s | | | | S. Jaco | | | | | | | | | | | | | | | Regulatory C | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 7 | В | 9 | 10 11 | 12 | 13 | 14 | 15 1 | 16 17 | 7 18 | 19 | 20 2 | 1 2 | Reg | ular Turn | around Ti | me (TAT) | | | matrix for each regulation: surface | Re | gulation | | - | | **Matr | ix | 11 | | | ater | | M | 1 1 | | | | | - 1 | | W | | | 1 | Ψ. | 2 5 ta 7 | Day | | 10 Day | | water/se | r (SW)/groundwater (GW)/tap
swage/effluent/seawater/potable | | | | - | - | | | | | | Metals in Water | | | | | | | | | | | | | | | Ru | | round Tim
arges appl | | | | water/non-potable
ter/tissue/soll/sludge/metal | | | - | - | | _ | | | | 9 | fetals | | | | | | | | | | | | | TE | | ☐ Same | - | - | 1 Day | | ,,,, | | es en esta de esta de la constanta const | ANAROUS COM | III DELL | TOV TO | OLIDON. | LUTOUT | ve. | | | CUIRE | otal N | | Solids | | | | | | | | | | | IRM | ALVZE | □ 2 Day | | | 3 Day | | | SAMPLES MUST BE KEPT COOL (<10 | C) FROM TIME OF | SAMPLING UN | IIC DELIVI | ERV TO | BUKEAL | VERITA | | | Q3/ | N REC | MST | | ed So | | | | | | | | | | | FBC | NOT AMALYZE | | | land. | s truy | | | | | D | ate Samp | led | Time | (24hr) | | TEREL | ESER | RATIO | #CAp | | prend | | | | | | | | | | | Mata | ON ON | Date | | YY | MM DD | | | Sample Identification | | YY | MM | DD | нн | мм | Matrix | HELD FILTERED | FIELD PRESERVED | LAB FILTRATION RECLURED | Atlantic RCAp-M5 Total | uride | Total Suspended | | | | | | | | | | | DE CONTAINED SUBMITTED | OU DION | Required: | | | 1 1 1 2 | | | | | | 1 | | | | | FIE | 8 | 5 | Ath | 198 | Tal | | | - | - | | - | - | - | | | | | 3 | Co | omments | | | | SW-1 | | 24 | 03 | 25 | 10 | 00 | Water - Surface | | | | x | x | x | | | | | | | _ | | | | 6 | 7 | | | | | | | | | | | | | 111 | - | | | | | | | | | | | | | | | | | | 1 | | | - 1 | | | | | | | | | | | | | | - | + | - | | | | - | | | | \vdash | - | + | | + | + | | - | + | + | + | | + | + | - | | _ | | | | | | | - | | | | | - | | _ | | - | - | - | | 4 | + | \vdash | - | - | + | + | - | + | + | + | - | | -7 | - | | 1 | +- | - | | | | | - | | _ | \vdash | - | + | | | + | | | - | - | | 1 | + | + | 1 | | _ | | | | | | | - | - | | | | | | | | | - | - | | _ | + | | - | + | + | - | 1 | + | + | - | | | | | 9 | 4 | | | | | | | | | | 0 | | | | | | | | | | ii r | | | | | | | - | | | | | | | | | | | | -5-0 | | | 1 | - | 12 | | | | | 1 | | 2112 | MAR 2E | | - | | | | 1 | - | - | | | | | H | | \vdash | + | + | | | | 1 | | - | | + | | + | + | 1 | | | | | 2 | | | | | | | 100 | | | | | -00 | | OCT COL | | | ***** | - | | AT TO | 246 | V20.7 | | | 10000 | 100 | (cocourate) | -0.4 | n Library | and the same | | UNLESS C | OTHERWISE AGREED TO IN WRITING, W | ORK SUBMITTED O | N THIS CHAIN C | VAILABLE | DY IS SU
FOR VI | BIECT T | O BURE | AU VERITAS STA
W.BVNA.COM/TI | NDAR
RMS | D TERN
AND C | AS AN
ONDI | D CO | NDITIO
OR BY | NS. SIG
CALLIN | IN THE L | THIS (| TORY LIS | E CUST
STED A | ODY DU | OBT | AIN A C | ACKNO!
OPY | WLEDGI | MENT A | ND ACC | EP/JA | NCL OF OUR TI | IRMS AN | D CONDUI | ONS WHICH ARE | | -0. | USE ONLY Yes No | | | | | SE ONL | | | No | | | | | | T | | | | B USE C | | | - 1 | | 17. | | | | | | Temperature | | eal presen | The state of s | ·c 4 | 53 | Seal p | resent | | - | | | ١. | c | | | | | | Seal pro | | | | - | | Yes | No | , | ·c | | | | reading by: | | eal preser
eal intact | | 7 | 2 | Seal li | ntact | | | | | | 7 | | | | | | Seal int | act | 2000 | | | | | | | | | | | | | | dia present V | 1 | Date 3 | | ng medi | a preser | nt | | Dec | mbered | hur te | 1 | ture/ P | Z
rint | 3 | | | | present
Da | te | | | | Tin | | T | 11 | Special i | 3
instruction | 5 | | | Relinquished by: (Signature/ Print) | YY | MM | DD | HH | | MM | 111 | | | | 100 | | | 1 | | | YY | - | MM | - | DD | | НН | MM | 1 | | | | | | 1 | J VENIOL | 202 | 036 | 26 | 12 | 12 | 0 | 1 2.0 | | dil | ch | Jh | - 1 | 2ks | 4 | | | | | | | | | | | | | | | 0 | | | 200 | | | | | 1 | | 2 | SEMES | | - | 4/1/ | | | _ | | - | _ | ,- | | | | | | | | | | | | | _ | | | | | | | | | | Your P.O. #: 735-009466 Your Project #: 12601021-15 Your C.O.C. #: C#993792-01-01 ## Attention: Jessica Romo GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2 Report Date: 2024/07/05 Report #: R8222278 Version: 1 - Final # **CERTIFICATE OF ANALYSIS** ### BUREAU VERITAS JOB #: C4J5336 Received: 2024/06/26, 16:06 Sample Matrix: Surface Water # Samples Received: 6 | # Jumples Necelved. 0 | | Date | Date | | | |--------------------------------------|----------|------------|------------|-------------------|---------------------| | Analyses | Quantity | Extracted | Analyzed | Laboratory Method | Analytical Method | | Carbonate, Bicarbonate and Hydroxide | 1 | N/A | 2024/07/03 | N/A | SM 24 4500-CO2 D | | Carbonate, Bicarbonate and Hydroxide | 5 | N/A | 2024/07/04 | N/A | SM 24 4500-CO2 D | | Alkalinity | 1 | N/A | 2024/07/02 | ATL SOP 00142 | SM 24 2320 B | | Alkalinity | 5 | N/A | 2024/07/03 | ATL SOP 00142 | SM 24 2320 B | | Chloride | 6 | N/A | 2024/07/03 | ATL SOP 00014 | SM 24 4500-Cl- E m | | Colour | 6 | N/A | 2024/07/03 | ATL SOP 00020 | SM 24 2120C m | | Conductance - water | 1 | N/A | 2024/07/02 | ATL SOP 00004 | SM 24 2510B m | | Conductance - water | 5 | N/A | 2024/07/03 | ATL SOP 00004 | SM 24 2510B m | | Fluoride | 1 | N/A | 2024/07/02 | ATL SOP 00043 | SM 24 4500-F- C m | | Fluoride | 5 | N/A | 2024/07/03 | ATL SOP 00043 | SM 24 4500-F- C m | | Hardness (calculated as CaCO3) | 3 | N/A | 2024/07/04 | ATL SOP 00048 | Auto Calc | | Hardness (calculated as CaCO3) | 3 | N/A | 2024/07/05 | ATL SOP 00048 | Auto Calc | | Metals Water Total MS | 5 | 2024/07/03 | 2024/07/04 | ATL SOP 00058 | EPA 6020B R2 m | | Metals Water Total MS | 1 | 2024/07/03 | 2024/07/05 | ATL SOP 00058 | EPA 6020B R2 m | | Ion Balance (% Difference) | 3 | N/A | 2024/07/04 | N/A | Auto Calc. | | Ion Balance (% Difference) | 3 | N/A |
2024/07/05 | N/A | Auto Calc. | | Anion and Cation Sum | 3 | N/A | 2024/07/04 | N/A | Auto Calc. | | Anion and Cation Sum | 3 | N/A | 2024/07/05 | N/A | Auto Calc. | | Nitrogen Ammonia - water | 4 | N/A | 2024/07/02 | ATL SOP 00015 | EPA 350.1 R2 m | | Nitrogen Ammonia - water | 2 | N/A | 2024/07/03 | ATL SOP 00015 | EPA 350.1 R2 m | | Nitrogen - Nitrate + Nitrite | 6 | N/A | 2024/07/03 | ATL SOP 00016 | USGS I-2547-11m | | Nitrogen - Nitrite | 6 | N/A | 2024/07/03 | ATL SOP 00017 | SM 24 4500-NO2- B m | | Nitrogen - Nitrate (as N) | 6 | N/A | 2024/07/04 | ATL SOP 00018 | ASTM D3867-16 | | pH (1) | 1 | N/A | 2024/07/02 | ATL SOP 00003 | SM 24 4500-H+ B m | | pH (1) | 5 | N/A | 2024/07/03 | ATL SOP 00003 | SM 24 4500-H+ B m | | Phosphorus - ortho | 6 | N/A | 2024/07/03 | ATL SOP 00021 | SM 24 4500-P E m | | Sat. pH and Langelier Index (@ 20C) | 3 | N/A | 2024/07/04 | ATL SOP 00049 | Auto Calc. | | Sat. pH and Langelier Index (@ 20C) | 3 | N/A | 2024/07/05 | ATL SOP 00049 | Auto Calc. | | Sat. pH and Langelier Index (@ 4C) | 3 | N/A | 2024/07/04 | ATL SOP 00049 | Auto Calc. | | Sat. pH and Langelier Index (@ 4C) | 3 | N/A | 2024/07/05 | ATL SOP 00049 | Auto Calc. | | Reactive Silica | 6 | N/A | 2024/07/03 | ATL SOP 00022 | EPA 366.0 m | | Sulphate | 6 | N/A | 2024/07/03 | ATL SOP 00023 | ASTM D516-16 m | | | | | | | | Your P.O. #: 735-009466 Your Project #: 12601021-15 Your C.O.C. #: C#993792-01-01 **Attention: Jessica Romo** GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2 Report Date: 2024/07/05 Report #: R8222278 Version: 1 - Final #### **CERTIFICATE OF ANALYSIS** BUREAU VERITAS JOB #: C4J5336 Received: 2024/06/26, 16:06 Sample Matrix: Surface Water # Samples Received: 6 | | | Date | Date | | | |-----------------------------------|----------|------------|------------|--------------------------|--------------------------| | Analyses | Quantity | Extracted | Analyzed | Laboratory Method | Analytical Method | | Total Dissolved Solids (TDS calc) | 3 | N/A | 2024/07/04 | N/A | Auto Calc. | | Total Dissolved Solids (TDS calc) | 3 | N/A | 2024/07/05 | N/A | Auto Calc. | | Organic carbon - Total (TOC) (2) | 6 | N/A | 2024/06/28 | ATL SOP 00203 | SM 24 5310B m | | Total Suspended Solids | 6 | 2024/06/28 | 2024/07/02 | ATL SOP 00007 | SM 24 2540D m | | Turbidity | 1 | N/A | 2024/07/03 | ATL SOP 00011 | EPA 180.1 R2 m | | Turbidity | 5 | N/A | 2024/07/04 | ATL SOP 00011 | EPA 180.1 R2 m | #### Remarks: Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment. All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard. Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent. Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory. Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. - * RPDs calculated using raw data. The rounding of final results may result in the apparent difference. - (1) The APHA Standard Method requires pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time. - (2) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC. Your P.O. #: 735-009466 Your Project #: 12601021-15 Your C.O.C. #: C#993792-01-01 **Attention: Jessica Romo** GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2 Report Date: 2024/07/05 Report #: R8222278 Version: 1 - Final ## **CERTIFICATE OF ANALYSIS** BUREAU VERITAS JOB #: C4J5336 Received: 2024/06/26, 16:06 **Encryption Key** Please direct all questions regarding this Certificate of Analysis to: Marie Muise, Key Account Specialist Email: Marie.MUISE@bureauveritas.com Phone# (902)420-0203 Ext:253 This report has been generated and distributed using a secure automated process. Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Suzanne Rogers, General Manager responsible for Nova Scotia Environmental laboratory operations. Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: SJP ## **RESULTS OF ANALYSES OF SURFACE WATER** | Bureau Veritas ID | | ZON059 | | ZON060 | | | | |-------------------------------------|--------|----------------|----------|----------------|-------|-------|----------| | Sampling Date | | 2024/06/24 | | 2024/06/24 | | | | | COC Number | | 10:05 | | 12:45 | | | | | COC Number | LINUTC | C#993792-01-01 | OC Datab | C#993792-01-01 | DDI | MADI | OC Datab | | | UNITS | SW1 | QC Batch | SW2 | RDL | MDL | QC Batch | | Calculated Parameters | | | 1 | | 1 | | | | Anion Sum | me/L | 1.31 | 9481614 | 1.15 | N/A | N/A | 9481614 | | Bicarb. Alkalinity (calc. as CaCO3) | mg/L | 16 | 9481609 | 21 | 1.0 | 0.20 | 9481609 | | Calculated TDS | mg/L | 88 | 9481622 | 75 | 1.0 | 0.20 | 9481622 | | Carb. Alkalinity (calc. as CaCO3) | mg/L | <1.0 | 9481609 | <1.0 | 1.0 | 0.20 | 9481609 | | Cation Sum | me/L | 1.43 | 9481614 | 1.26 | N/A | N/A | 9481614 | | Hardness (CaCO3) | mg/L | 62 | 9481611 | 50 | 1.0 | 1.0 | 9481611 | | Ion Balance (% Difference) | % | 4.38 | 9481612 | 4.56 | N/A | N/A | 9481612 | | Langelier Index (@ 20C) | N/A | -1.71 | 9481619 | -1.85 | | | 9481619 | | Langelier Index (@ 4C) | N/A | -1.97 | 9481621 | -2.10 | | | 9481621 | | Nitrate (N) | mg/L | 0.075 | 9481616 | 0.14 | 0.050 | N/A | 9481616 | | Saturation pH (@ 20C) | N/A | 8.76 | 9481619 | 8.77 | | | 9481619 | | Saturation pH (@ 4C) | N/A | 9.02 | 9481621 | 9.03 | | | 9481621 | | Inorganics | • | | • | | | | | | Total Alkalinity (Total as CaCO3) | mg/L | 16 | 9491114 | 21 | 2.0 | N/A | 9491114 | | Dissolved Chloride (Cl-) | mg/L | 3.0 | 9491072 | 3.6 | 1.0 | N/A | 9491072 | | Colour | TCU | 170 | 9491075 | 70 | 25 | N/A | 9491075 | | Dissolved Fluoride (F-) | mg/L | <0.10 | 9491115 | <0.10 | 0.10 | 0.050 | 9491115 | | Nitrate + Nitrite (N) | mg/L | 0.075 | 9491077 | 0.14 | 0.050 | N/A | 9491077 | | Nitrite (N) | mg/L | <0.010 | 9491078 | <0.010 | 0.010 | N/A | 9491078 | | Nitrogen (Ammonia Nitrogen) | mg/L | 0.095 | 9489421 | 0.062 | 0.050 | N/A | 9491485 | | Total Organic Carbon (C) | mg/L | 18 | 9484744 | 11 | 0.50 | N/A | 9484744 | | Orthophosphate (P) | mg/L | 0.010 | 9491076 | <0.010 | 0.010 | N/A | 9491076 | | рН | рН | 7.05 | 9491110 | 6.92 | | | 9491110 | | Reactive Silica (SiO2) | mg/L | 3.0 | 9491074 | 3.2 | 0.50 | N/A | 9491074 | | Total Suspended Solids | mg/L | 1.6 | 9485418 | 2.0 | 1.0 | N/A | 9485418 | | Dissolved Sulphate (SO4) | mg/L | 43 | 9491073 | 29 | 2.0 | N/A | 9491073 | | Turbidity | NTU | 3.6 | 9493829 | 6.5 | 0.10 | 0.10 | 9493829 | | Conductivity | uS/cm | 71 | 9491113 | 62 | 1.0 | N/A | 9491113 | | DDI - Departable Detection Limit | • | | • | | | | | RDL = Reportable Detection Limit QC Batch = Quality Control Batch Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: SJP ## **RESULTS OF ANALYSES OF SURFACE WATER** | Dunasu Varitas ID | | 7011000 | | | 1 | 70N0C1 | | | | |-------------------------------------|-------|---------------------|-------|-----|----------|---------------------|-------|-------|----------| | Bureau Veritas ID | | ZON060 | | | | ZON061 | | | | | Sampling Date | | 2024/06/24
12:45 | | | | 2024/06/24
11:35 | | | | | COC Number | | C#993792-01-01 | | | | C#993792-01-01 | | | | | | UNITS | SW2
Lab-Dup | RDL | MDL | QC Batch | SW3 | RDL | MDL | QC Batch | | Calculated Parameters | | | | | | | | | | | Anion Sum | me/L | | | | | 4.89 | N/A | N/A | 9481614 | | Bicarb. Alkalinity (calc. as CaCO3) | mg/L | | | | | 40 | 1.0 | 0.20 | 9481609 | | Calculated TDS | mg/L | | | | | 320 | 1.0 | 0.20 | 9481622 | | Carb. Alkalinity (calc. as CaCO3) | mg/L | | | | | <1.0 | 1.0 | 0.20 | 9481609 | | Cation Sum | me/L | | | | | 5.15 | N/A | N/A | 9481614 | | Hardness
(CaCO3) | mg/L | | | | | 190 | 1.0 | 1.0 | 9481611 | | Ion Balance (% Difference) | % | | | | | 2.59 | N/A | N/A | 9481612 | | Langelier Index (@ 20C) | N/A | | | | | -0.490 | | | 9481619 | | Langelier Index (@ 4C) | N/A | | | | | -0.739 | | | 9481621 | | Nitrate (N) | mg/L | | | | | 0.098 | 0.050 | N/A | 9481616 | | Saturation pH (@ 20C) | N/A | | | | | 8.03 | | | 9481619 | | Saturation pH (@ 4C) | N/A | | | | | 8.28 | | | 9481621 | | Inorganics | | | | | | | | | | | Total Alkalinity (Total as CaCO3) | mg/L | | | | | 40 | 2.0 | N/A | 9488695 | | Dissolved Chloride (Cl-) | mg/L | | | | | 11 | 1.0 | N/A | 9491087 | | Colour | TCU | | | | | 29 | 5.0 | N/A | 9491091 | | Dissolved Fluoride (F-) | mg/L | | | | | <0.10 | 0.10 | 0.050 | 9488697 | | Nitrate + Nitrite (N) | mg/L | | | | | 0.098 | 0.050 | N/A | 9491093 | | Nitrite (N) | mg/L | | | | | <0.010 | 0.010 | N/A | 9491094 | | Nitrogen (Ammonia Nitrogen) | mg/L | 0.082 | 0.050 | N/A | 9491485 | <0.050 | 0.050 | N/A | 9489421 | | Total Organic Carbon (C) | mg/L | | | | | 5.4 | 0.50 | N/A | 9484738 | | Orthophosphate (P) | mg/L | | | | | <0.010 | 0.010 | N/A | 9491092 | | рН | рН | | | | _ | 7.54 | | | 9488693 | | Reactive Silica (SiO2) | mg/L | | | | | 2.5 | 0.50 | N/A | 9491089 | | Total Suspended Solids | mg/L | | | | | <1.0 | 1.0 | N/A | 9485418 | | Dissolved Sulphate (SO4) | mg/L | | | | | 180 | 10 | N/A | 9491088 | | Turbidity | NTU | | | | | 0.93 | 0.10 | 0.10 | 9491202 | | Conductivity | uS/cm | | | | _ | 530 | 1.0 | N/A | 9488694 | | | | | | | | - | | | | RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: SJP ## **RESULTS OF ANALYSES OF SURFACE WATER** | Bureau Veritas ID | | ZON061 | | | | ZON062 | | | | |-------------------------------------|-------|---------------------|-------|-----|----------|---------------------|-------|-------|----------| | Sampling Date | | 2024/06/24
11:35 | | | | 2024/06/24
13:40 | | | | | COC Number | | C#993792-01-01 | | | | C#993792-01-01 | | | | | | UNITS | SW3
Lab-Dup | RDL | MDL | QC Batch | SW6 | RDL | MDL | QC Batch | | Calculated Parameters | | | | | | | | | | | Anion Sum | me/L | | | | | 2.49 | N/A | N/A | 9481614 | | Bicarb. Alkalinity (calc. as CaCO3) | mg/L | | | | | 26 | 1.0 | 0.20 | 9481609 | | Calculated TDS | mg/L | | | | | 170 | 1.0 | 0.20 | 9481622 | | Carb. Alkalinity (calc. as CaCO3) | mg/L | | | | | <1.0 | 1.0 | 0.20 | 9481609 | | Cation Sum | me/L | | | | | 2.60 | N/A | N/A | 9481614 | | Hardness (CaCO3) | mg/L | | | | | 120 | 1.0 | 1.0 | 9481611 | | lon Balance (% Difference) | % | | | | | 2.16 | N/A | N/A | 9481612 | | Langelier Index (@ 20C) | N/A | | | | | -1.07 | | | 9481619 | | Langelier Index (@ 4C) | N/A | | | | | -1.32 | | | 9481621 | | Nitrate (N) | mg/L | | | | | 0.078 | 0.050 | N/A | 9481616 | | Saturation pH (@ 20C) | N/A | | | | | 8.31 | | | 9481619 | | Saturation pH (@ 4C) | N/A | | | | | 8.56 | | | 9481621 | | Inorganics | • | | | | • | | | | | | Total Alkalinity (Total as CaCO3) | mg/L | | | | | 26 | 2.0 | N/A | 9491114 | | Dissolved Chloride (Cl-) | mg/L | 11 | 1.0 | N/A | 9491087 | 3.5 | 1.0 | N/A | 9491072 | | Colour | TCU | 28 | 5.0 | N/A | 9491091 | 100 | 25 | N/A | 9491075 | | Dissolved Fluoride (F-) | mg/L | | | | | <0.10 | 0.10 | 0.050 | 9491115 | | Nitrate + Nitrite (N) | mg/L | 0.094 | 0.050 | N/A | 9491093 | 0.078 | 0.050 | N/A | 9491077 | | Nitrite (N) | mg/L | <0.010 | 0.010 | N/A | 9491094 | <0.010 | 0.010 | N/A | 9491078 | | Nitrogen (Ammonia Nitrogen) | mg/L | | | | | 0.063 | 0.050 | N/A | 9491485 | | Total Organic Carbon (C) | mg/L | 5.3 | 0.50 | N/A | 9484738 | 15 | 0.50 | N/A | 9484744 | | Orthophosphate (P) | mg/L | <0.010 | 0.010 | N/A | 9491092 | 0.011 | 0.010 | N/A | 9491076 | | рН | рН | | | | | 7.24 | | | 9491110 | | Reactive Silica (SiO2) | mg/L | 2.4 | 0.50 | N/A | 9491089 | 4.6 | 0.50 | N/A | 9491074 | | Total Suspended Solids | mg/L | | | | | 3.8 | 1.0 | N/A | 9485418 | | Dissolved Sulphate (SO4) | mg/L | 180 | 10 | N/A | 9491088 | 89 | 2.0 | N/A | 9491073 | | Turbidity | NTU | | | | | 6.5 | 0.10 | 0.10 | 9493829 | | Conductivity | uS/cm | | | | | 130 | 1.0 | N/A | 9491113 | RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: SJP ## **RESULTS OF ANALYSES OF SURFACE WATER** | Bureau Veritas ID | | ZON063 | | ZON064 | | | | |-------------------------------------|-------|---------------------|-------|----------------|-------|-------|----------| | Sampling Date | | 2024/06/24
14:00 | | 2024/06/24 | | | | | COC Number | | C#993792-01-01 | | C#993792-01-01 | | | | | | UNITS | SW4 | RDL | SWDUP | RDL | MDL | QC Batch | | Calculated Parameters | | | | | | | | | Anion Sum | me/L | 0.640 | N/A | 4.88 | N/A | N/A | 9481614 | | Bicarb. Alkalinity (calc. as CaCO3) | mg/L | 17 | 1.0 | 39 | 1.0 | 0.20 | 9481609 | | Calculated TDS | mg/L | 42 | 1.0 | 320 | 1.0 | 0.20 | 9481622 | | Carb. Alkalinity (calc. as CaCO3) | mg/L | <1.0 | 1.0 | <1.0 | 1.0 | 0.20 | 9481609 | | Cation Sum | me/L | 0.720 | N/A | 5.00 | N/A | N/A | 9481614 | | Hardness (CaCO3) | mg/L | 22 | 1.0 | 230 | 1.0 | 1.0 | 9481611 | | Ion Balance (% Difference) | % | 5.88 | N/A | 1.21 | N/A | N/A | 9481612 | | Langelier Index (@ 20C) | N/A | -2.05 | | -0.356 | | | 9481619 | | Langelier Index (@ 4C) | N/A | -2.31 | | -0.605 | | | 9481621 | | Nitrate (N) | mg/L | 0.084 | 0.050 | 0.094 | 0.050 | N/A | 9481616 | | Saturation pH (@ 20C) | N/A | 9.27 | | 7.90 | | | 9481619 | | Saturation pH (@ 4C) | N/A | 9.52 | | 8.15 | | | 9481621 | | Inorganics | | | | | | | | | Total Alkalinity (Total as CaCO3) | mg/L | 17 | 2.0 | 39 | 2.0 | N/A | 9491114 | | Dissolved Chloride (Cl-) | mg/L | 6.2 | 1.0 | 11 | 1.0 | N/A | 9491072 | | Colour | TCU | 76 | 25 | 32 | 5.0 | N/A | 9491075 | | Dissolved Fluoride (F-) | mg/L | <0.10 | 0.10 | <0.10 | 0.10 | 0.050 | 9491115 | | Nitrate + Nitrite (N) | mg/L | 0.084 | 0.050 | 0.094 | 0.050 | N/A | 9491077 | | Nitrite (N) | mg/L | <0.010 | 0.010 | <0.010 | 0.010 | N/A | 9491078 | | Nitrogen (Ammonia Nitrogen) | mg/L | <0.050 | 0.050 | 0.063 | 0.050 | N/A | 9489421 | | Total Organic Carbon (C) | mg/L | 11 | 0.50 | 5.4 | 0.50 | N/A | 9484744 | | Orthophosphate (P) | mg/L | <0.010 | 0.010 | <0.010 | 0.010 | N/A | 9491076 | | рН | рН | 7.22 | | 7.55 | | | 9491110 | | Reactive Silica (SiO2) | mg/L | 4.3 | 0.50 | 2.3 | 0.50 | N/A | 9491074 | | Total Suspended Solids | mg/L | 3.6 | 1.0 | <1.0 | 1.0 | N/A | 9485418 | | Dissolved Sulphate (SO4) | mg/L | 6.1 | 2.0 | 180 | 10 | N/A | 9491073 | | Turbidity | NTU | 3.9 | 0.10 | 0.90 | 0.10 | 0.10 | 9493829 | | Conductivity | uS/cm | 36 | 1.0 | 390 | 1.0 | N/A | 9491113 | | DDI - Deportable Detection Limit | | | | | | | | RDL = Reportable Detection Limit QC Batch = Quality Control Batch Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: SJP # **ELEMENTS BY ICP/MS (SURFACE WATER)** | Metals Total Aluminum (Al) Total Arsenic (As) Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) | ug/L
ug/L
ug/L
ug/L
ug/L | 2024/06/24
10:05
C#993792-01-01
SW1
190
<1.0
<1.0 | QC Batch 9492245 9492245 | 2024/06/24
12:45
C#993792-01-01
SW2
350 | QC Batch | 2024/06/24
11:35
C#993792-01-01
SW3 | RDL | MDL | QC Batch | |---|--------------------------------------|---|--------------------------|--|----------|--|-------|-----|-----------| | Metals Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) | ug/L
ug/L
ug/L
ug/L
ug/L | C#993792-01-01 SW1 190 <1.0 <1.0 | 9492245 | C#993792-01-01
SW2 | QC Batch | C#993792-01-01 | RDL | MDL | OC Ratch | | Metals Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) | ug/L
ug/L
ug/L
ug/L
ug/L | 190
<1.0
<1.0 | 9492245 | SW2 | QC Batch | | RDL | MDL | OC Ratch | | Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) | ug/L
ug/L
ug/L
ug/L
ug/L | 190
<1.0
<1.0 | 9492245 | | QC Batch | SW3 | RDL | MDL | OC Ratch | | Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) | ug/L
ug/L
ug/L
ug/L | <1.0
<1.0 | | 350 | | | | | QC Datcii | | Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) | ug/L
ug/L
ug/L
ug/L | <1.0
<1.0 | | 350 | | | | | | | Total Arsenic (As) Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) | ug/L
ug/L
ug/L | <1.0 | 9492245 | | 9492224 | 23 | 5.0 | N/A | 9492245 | | Total Barium (Ba) Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) | ug/L
ug/L | | | <1.0 | 9492224 | <1.0 | 1.0 | N/A | 9492245 | | Total Beryllium (Be) Total Bismuth (Bi) Total Boron (B) | ug/L | 11 | 9492245 | <1.0 | 9492224 | 14 | 1.0 | N/A | 9492245 | | Total Bismuth (Bi) Total Boron (B) | | 1 | 9492245 | 18 | 9492224 | 25 | 1.0 | N/A | 9492245 | | Total Boron (B) | ,. | <0.10 | 9492245 | <0.10 | 9492224 | <0.10 | 0.10 | N/A | 9492245 | | | ug/L | <2.0 | 9492245 | <2.0 | 9492224 | <2.0 | 2.0 | N/A | 9492245 | | - · · · · · · · · · · · · · · · · · · · | ug/L | <50 | 9492245 | <50 | 9492224 | <50 | 50 | N/A | 9492245 | | Total Cadmium (Cd) | ug/L | 0.016 | 9492245 | 0.028 | 9492224 | <0.010 | 0.010 | N/A | 9492245 | |
Total Calcium (Ca) | ug/L | 23000 | 9492245 | 17000 | 9492224 | 63000 | 100 | N/A | 9492245 | | Total Chromium (Cr) | ug/L | <1.0 | 9492245 | <1.0 | 9492224 | <1.0 | 1.0 | N/A | 9492245 | | Total Cobalt (Co) | ug/L | <0.40 | 9492245 | <0.40 | 9492224 | 1.6 | 0.40 | N/A | 9492245 | | Total Copper (Cu) | ug/L | <0.50 | 9492245 | 0.82 | 9492224 | <0.50 | 0.50 | N/A | 9492245 | | Total Iron (Fe) | ug/L | 1300 | 9492245 | 930 | 9492224 | 310 | 50 | N/A | 9492245 | | Total Lead (Pb) | ug/L | <0.50 | 9492245 | <0.50 | 9492224 | <0.50 | 0.50 | N/A | 9492245 | | Total Magnesium (Mg) | ug/L | 1300 | 9492245 | 2100 | 9492224 | 8000 | 100 | N/A | 9492245 | | Total Manganese (Mn) | ug/L | 130 | 9492245 | 120 | 9492224 | 150 | 2.0 | N/A | 9492245 | | Total Molybdenum (Mo) | ug/L | <2.0 | 9492245 | <2.0 | 9492224 | <2.0 | 2.0 | N/A | 9492245 | | Total Nickel (Ni) | ug/L | <2.0 | 9492245 | <2.0 | 9492224 | <2.0 | 2.0 | N/A | 9492245 | | Total Phosphorus (P) | ug/L | <100 | 9492245 | <100 | 9492224 | <100 | 100 | N/A | 9492245 | | Total Potassium (K) | ug/L | 490 | 9492245 | 690 | 9492224 | 3900 | 100 | N/A | 9492245 | | Total Selenium (Se) | ug/L | <0.50 | 9492245 | <0.50 | 9492224 | <0.50 | 0.50 | N/A | 9492245 | | Total Silver (Ag) | ug/L | <0.10 | 9492245 | <0.10 | 9492224 | <0.10 | 0.10 | N/A | 9492245 | | Total Sodium (Na) | ug/L | 2700 | 9492245 | 4500 | 9492224 | 28000 | 100 | N/A | 9492245 | | Total Strontium (Sr) | ug/L | 83 | 9492245 | 38 | 9492224 | 190 | 2.0 | N/A | 9492245 | | Total Thallium (TI) | ug/L | <0.10 | 9492245 | <0.10 | 9492224 | <0.10 | 0.10 | N/A | 9492245 | | Total Tin (Sn) | ug/L | <2.0 | 9492245 | <2.0 | 9492224 | <2.0 | 2.0 | N/A | 9492245 | | Total Titanium (Ti) | ug/L | 4.6 | 9492245 | 9.9 | 9492224 | <2.0 | 2.0 | N/A | 9492245 | | Total Uranium (U) | ug/L | <0.10 | 9492245 | <0.10 | 9492224 | <0.10 | 0.10 | N/A | 9492245 | | Total Vanadium (V) | ug/L | <2.0 | 9492245 | <2.0 | 9492224 | <2.0 | 2.0 | N/A | 9492245 | | Total Zinc (Zn) | ug/L | <5.0 | 9492245 | <5.0 | 9492224 | <5.0 | 5.0 | N/A | 9492245 | RDL = Reportable Detection Limit QC Batch = Quality Control Batch Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: SJP # **ELEMENTS BY ICP/MS (SURFACE WATER)** | <u></u> | | | <u> </u> | | | | | | |-----------------------|-------|---------------------|---------------------|----------|----------------|-------|-----|----------| | Bureau Veritas ID | | ZON062 | ZON063 | | ZON064 | | | | | Sampling Date | | 2024/06/24
13:40 | 2024/06/24
14:00 | | 2024/06/24 | | | | | COC Number | | C#993792-01-01 | C#993792-01-01 | | C#993792-01-01 | | | | | | UNITS | SW6 | SW4 | QC Batch | SWDUP | RDL | MDL | QC Batch | | Metals | - | | | • | | • | | | | Total Aluminum (AI) | ug/L | 350 | 230 | 9492224 | 28 | 5.0 | N/A | 9492245 | | Total Antimony (Sb) | ug/L | <1.0 | <1.0 | 9492224 | <1.0 | 1.0 | N/A | 9492245 | | Total Arsenic (As) | ug/L | <1.0 | <1.0 | 9492224 | <1.0 | 1.0 | N/A | 9492245 | | Total Barium (Ba) | ug/L | 12 | 11 | 9492224 | 20 | 1.0 | N/A | 9492245 | | Total Beryllium (Be) | ug/L | <0.10 | <0.10 | 9492224 | <0.10 | 0.10 | N/A | 9492245 | | Total Bismuth (Bi) | ug/L | <2.0 | <2.0 | 9492224 | <2.0 | 2.0 | N/A | 9492245 | | Total Boron (B) | ug/L | <50 | <50 | 9492224 | <50 | 50 | N/A | 9492245 | | Total Cadmium (Cd) | ug/L | 0.014 | 0.016 | 9492224 | <0.010 | 0.010 | N/A | 9492245 | | Total Calcium (Ca) | ug/L | 45000 | 6400 | 9492224 | 86000 | 100 | N/A | 9492245 | | Total Chromium (Cr) | ug/L | <1.0 | <1.0 | 9492224 | <1.0 | 1.0 | N/A | 9492245 | | Total Cobalt (Co) | ug/L | <0.40 | <0.40 | 9492224 | <0.40 | 0.40 | N/A | 9492245 | | Total Copper (Cu) | ug/L | 0.59 | <0.50 | 9492224 | <0.50 | 0.50 | N/A | 9492245 | | Total Iron (Fe) | ug/L | 830 | 780 | 9492224 | 180 | 50 | N/A | 9492245 | | Total Lead (Pb) | ug/L | <0.50 | <0.50 | 9492224 | <0.50 | 0.50 | N/A | 9492245 | | Total Magnesium (Mg) | ug/L | 2000 | 1400 | 9492224 | 3800 | 100 | N/A | 9492245 | | Total Manganese (Mn) | ug/L | 82 | 110 | 9492224 | 250 | 2.0 | N/A | 9492245 | | Total Molybdenum (Mo) | ug/L | <2.0 | <2.0 | 9492224 | <2.0 | 2.0 | N/A | 9492245 | | Total Nickel (Ni) | ug/L | <2.0 | <2.0 | 9492224 | <2.0 | 2.0 | N/A | 9492245 | | Total Phosphorus (P) | ug/L | <100 | <100 | 9492224 | <100 | 100 | N/A | 9492245 | | Total Potassium (K) | ug/L | 600 | 530 | 9492224 | 400 | 100 | N/A | 9492245 | | Total Selenium (Se) | ug/L | <0.50 | <0.50 | 9492224 | <0.50 | 0.50 | N/A | 9492245 | | Total Silver (Ag) | ug/L | <0.10 | <0.10 | 9492224 | <0.10 | 0.10 | N/A | 9492245 | | Total Sodium (Na) | ug/L | 3600 | 5600 | 9492224 | 8700 | 100 | N/A | 9492245 | | Total Strontium (Sr) | ug/L | 180 | 39 | 9492224 | 380 | 2.0 | N/A | 9492245 | | Total Thallium (TI) | ug/L | <0.10 | <0.10 | 9492224 | <0.10 | 0.10 | N/A | 9492245 | | Total Tin (Sn) | ug/L | <2.0 | <2.0 | 9492224 | <2.0 | 2.0 | N/A | 9492245 | | Total Titanium (Ti) | ug/L | 8.9 | 6.8 | 9492224 | <2.0 | 2.0 | N/A | 9492245 | | Total Uranium (U) | ug/L | <0.10 | <0.10 | 9492224 | 0.13 | 0.10 | N/A | 9492245 | | Total Vanadium (V) | ug/L | <2.0 | <2.0 | 9492224 | <2.0 | 2.0 | N/A | 9492245 | | Total Zinc (Zn) | ug/L | <5.0 | <5.0 | 9492224 | <5.0 | 5.0 | N/A | 9492245 | | | | | | | | | | | RDL = Reportable Detection Limit QC Batch = Quality Control Batch Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: SJP #### **GENERAL COMMENTS** Each temperature is the average of up to three cooler temperatures taken at receipt Package 1 8.3°C Sample ZON059 [SW1] : ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent. Sample ZON062 [SW6] : ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent. Sample ZON063 [SW4]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L. Results relate only to the items tested. Bureau Veritas Job #: C4J5336 GHD Li Report Date: 2024/07/05 Client I GHD Limited Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: SJP ## **QUALITY ASSURANCE REPORT** | 04/00 | | | ······································ | | | | | | |----------------|------|--------------------------|---|--------------------------|---------|----------|---|----------------------| | QA/QC
Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | 9484738 | MKY | Matrix Spike [ZON061-05] | Total Organic Carbon (C) | 2024/06/28 | Value | 105 | % | 85 - 115 | | 9484738 | MKY | Spiked Blank | Total Organic Carbon (C) | 2024/06/28 | | 98 | % | 80 - 120 | | 9484738 | MKY | Method Blank | Total Organic Carbon (C) | 2024/06/28 | <0.50 | 30 | mg/L | 00 110 | | 9484738 | MKY | RPD [ZON061-05] | Total Organic Carbon (C) | 2024/06/28 | 1.0 | | % | 15 | | 9484744 | MKY | Matrix Spike | Total Organic Carbon (C) | 2024/06/28 | 2.0 | 104 | % | 85 - 115 | | 9484744 | MKY | Spiked Blank | Total Organic Carbon (C) | 2024/06/28 | | 99 | % | 80 - 120 | | 9484744 | MKY | Method Blank | Total Organic Carbon (C) | 2024/06/28 | <0.50 | 33 | mg/L | 00 120 | | 9484744 | MKY | RPD | Total Organic Carbon (C) | 2024/06/28 | 0.10 | | % | 15 | | 9485418 | DME | QC Standard | Total Suspended Solids | 2024/07/02 | 0.10 | 96 | % | 80 - 120 | | 9485418 | DME | Method Blank | Total Suspended Solids | 2024/07/02 | <1.0 | 30 | mg/L | 00 110 | | 9485418 | DME | RPD | Total Suspended Solids | 2024/07/02 | 5.4 | | % | 20 | | 9488693 | LJV | Spiked Blank | рН | 2024/07/02 | 3. 1 | 99 | % | 97 - 103 | | 9488693 | LJV | RPD | pH | 2024/07/02 | 0.19 | 33 | % | N/A | | 9488694 | LJV | Spiked Blank | Conductivity | 2024/07/02 | 0.13 | 101 | % | 80 - 120 | | 9488694 | LJV | Method Blank | Conductivity | 2024/07/02 | <1.0 | 101 | uS/cm | 00 120 | | 9488694 | LJV | RPD | Conductivity | 2024/07/02 | 0.57 | | %
% | 10 | | 9488695 | LJV | Spiked Blank | Total Alkalinity (Total as CaCO3) | 2024/07/02 | 0.57 | 97 | % | 80 - 120 | | 9488695 | LJV | Method Blank | Total Alkalinity (Total as CaCO3) | 2024/07/02 | <2.0 | 37 | mg/L | 00 - 120 | | 9488695 | LJV | RPD | Total Alkalinity (Total as CaCO3) | 2024/07/02 | 5.5 | | /// // // // // // // // // // // // // | 20 | | 9488697 | LJV | Matrix Spike | Dissolved Fluoride (F-) | 2024/07/02 | 5.5 | 80 (1) | % | 80 - 120 | | 9488697 | LJV | Spiked Blank | Dissolved Fluoride (F-) | 2024/07/02 | | 90 | % | 80 - 120 | | 9488697 | LJV | Method Blank | Dissolved Fluoride (F-) | 2024/07/02 | <0.10 | 30 | mg/L | 00 - 120 | | 9488697 | LJV | RPD | Dissolved Fluoride (F-) | 2024/07/02 | NC | | 111g/ L
% | 20 | | 9489421 | MCN | Matrix Spike | Nitrogen (Ammonia Nitrogen) | 2024/07/02 | INC | 92 | %
% | 80 - 120 | | 9489421 | MCN | Spiked Blank | Nitrogen (Ammonia Nitrogen) | 2024/07/02 | | 98 | % | 80 - 120 | | 9489421 | MCN | Method Blank | Nitrogen (Ammonia Nitrogen) | 2024/07/02 | <0.050 | 96 | ∕₀
mg/L | 80 - 120 | | 9489421 | MCN | RPD | Nitrogen (Ammonia Nitrogen) | 2024/07/02 | 20 | | mg/L
% | 20 | | 9491072 | EMT | Matrix Spike | Dissolved Chloride (Cl-) | 2024/07/02 | 20 | NC | %
% | 80 - 120 | | 9491072 | EMT | Spiked Blank | Dissolved Chloride (CI-) | 2024/07/03 | | 93 | %
% | 80 - 120 | | 9491072 | EMT | Method Blank | Dissolved Chloride (CI-) | 2024/07/03 | <1.0 | 93 | | 80 - 120 | | 9491072 | EMT | RPD | Dissolved Chloride (CI-) | 2024/07/03 | 1.3 | | mg/L
% | 20 | | 9491072 | EMT | Matrix Spike | Dissolved Sulphate (SO4) | 2024/07/03 | 1.5 | NC | %
% | 80 - 120 | | 9491073 | EMT | Spiked Blank | Dissolved Sulphate (SO4) | 2024/07/03 | | 94 | %
% | 80 - 120 | | 9491073 | EMT | Method Blank | Dissolved Sulphate (SO4) | 2024/07/03 | <2.0 | 94 | | 80 - 120 | | 9491073 | EMT | RPD | Dissolved Sulphate (SO4) | 2024/07/03 | 0.53 | | mg/L
% | 20 | | 9491073 | EMT | Matrix Spike | . , , | 2024/07/03 | 0.55 | NC | %
% | 80 - 120 | | 9491074 | EMT | Spiked Blank |
Reactive Silica (SiO2) Reactive Silica (SiO2) | 2024/07/03 | | NC
97 | %
% | 80 - 120
80 - 120 | | 9491074 | | • | ` , | | <0.F0 | 97 | | 80 - 120 | | | | Method Blank | Reactive Silica (SiO2) | 2024/07/03 | <0.50 | | mg/L | 20 | | 9491074 | EMT | RPD | Reactive Silica (SiO2) | 2024/07/03
2024/07/03 | 0.31 | 02 | % | 20 | | 9491075 | EMT | Spiked Blank | Colour | • | 4F 0 | 92 | %
TCU | 80 - 120 | | 9491075 | EMT | Method Blank | Colour | 2024/07/03 | <5.0 | | TCU | 20 | | 9491075 | EMT | RPD | Colour | 2024/07/03 | 16 | 62 (2) | % | 20 | | 9491076 | EMT | Matrix Spike | Orthophosphate (P) | 2024/07/03 | | 63 (2) | % | 80 - 120 | | 9491076 | EMT | Spiked Blank | Orthophosphate (P) | 2024/07/03 | <0.010 | 99 | %
ma/l | 80 - 120 | | 9491076 | EMT | Method Blank | Orthophosphate (P) | 2024/07/03 | <0.010 | | mg/L | 20 | | 9491076 | EMT | RPD | Orthophosphate (P) | 2024/07/03 | NC | 07 | % | 20 | | 9491077 | EMT | Matrix Spike | Nitrate + Nitrite (N) | 2024/07/03 | | 87 | % | 80 - 120 | | 9491077 | EMT | Spiked Blank | Nitrate + Nitrite (N) | 2024/07/03 | 40 OF 0 | 103 | %
/1 | 80 - 120 | | 9491077 | EMT | Method Blank | Nitrate + Nitrite (N) | 2024/07/03 | <0.050 | | mg/L | | | 9491077 | EMT | RPD | Nitrate + Nitrite (N) | 2024/07/03 | NC | | % | 20 | | 9491078 | EMT | Matrix Spike | Nitrite (N) | 2024/07/03 | | 44 (2) | % | 80 - 120 | | 9491078 | EMT | Spiked Blank | Nitrite (N) | 2024/07/03 | | 102 | % | 80 - 120 | | 9491078 | EMT | Method Blank | Nitrite (N) | 2024/07/03 | <0.010 | | mg/L | | Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: SJP | | | | QUALITY ASSURANCE I | , , | | | | | |--------------------|------------|---------------------------------------|---|--------------------------|-------------|----------|------------|----------------------| | QA/QC | 1 | OC Tura | Davanatas | Data Analysis | Value | D | LINUTC | OC Limita | | Batch | Init | QC Type
RPD | Parameter | Date Analyzed 2024/07/03 | Value | Recovery | UNITS
% | QC Limits
20 | | 9491078 | EMT | | Nitrite (N) | 2024/07/03 | NC | 01 | %
% | | | 9491087
9491087 | EMT
EMT | Matrix Spike [ZON061-02] Spiked Blank | Dissolved Chloride (CI-) Dissolved Chloride (CI-) | 2024/07/03 | | 91
91 | %
% | 80 - 120
80 - 120 | | | EMT | • | , , | 2024/07/03 | ~1.0 | 91 | | 80 - 120 | | 9491087 | | Method Blank | Dissolved Chloride (Cl-) | • • | <1.0 | | mg/L | 20 | | 9491087 | EMT | RPD [ZON061-02] | Dissolved Chloride (Cl-) | 2024/07/03 | 0.53 | NC | % | 20 | | 9491088 | EMT | Matrix Spike [ZON061-02] | Dissolved Sulphate (SO4) | 2024/07/03 | | NC | % | 80 - 120 | | 9491088 | EMT | Spiked Blank | Dissolved Sulphate (SO4) | 2024/07/03 | -2.0 | 95 | %
ma/l | 80 - 120 | | 9491088 | EMT | Method Blank | Dissolved Sulphate (SO4) | 2024/07/03 | <2.0 | | mg/L | 20 | | 9491088 | EMT | RPD [ZON061-02] | Dissolved Sulphate (SO4) | 2024/07/03 | 0.39 | 0.5 | % | 20 | | 9491089 | EMT | Matrix Spike [ZON061-02] | Reactive Silica (SiO2) | 2024/07/03 | | 95 | % | 80 - 120 | | 9491089 | EMT | Spiked Blank | Reactive Silica (SiO2) | 2024/07/03 | -0.50 | 99 | % | 80 - 120 | | 9491089 | EMT | Method Blank | Reactive Silica (SiO2) | 2024/07/03 | <0.50 | | mg/L | 20 | | 9491089 | EMT | RPD [ZON061-02] | Reactive Silica (SiO2) | 2024/07/03 | 2.9 | 400 | % | 20 | | 9491091 | EMT | Spiked Blank | Colour | 2024/07/03 | -5.0 | 103 | %
Tau | 80 - 120 | | 9491091 | EMT | Method Blank | Colour | 2024/07/03 | <5.0 | | TCU | 20 | | 9491091 | EMT | RPD [ZON061-02] | Colour | 2024/07/03 | 3.0 | | % | 20 | | 9491092 | EMT | Matrix Spike [ZON061-02] | Orthophosphate (P) | 2024/07/03 | | 96 | % | 80 - 120 | | 9491092 | EMT | Spiked Blank | Orthophosphate (P) | 2024/07/03 | | 101 | % | 80 - 120 | | 9491092 | EMT | Method Blank | Orthophosphate (P) | 2024/07/03 | <0.010 | | mg/L | 20 | | 9491092 | EMT | RPD [ZON061-02] | Orthophosphate (P) | 2024/07/03 | NC | 00 | % | 20 | | 9491093 | EMT | Matrix Spike [ZON061-02] | Nitrate + Nitrite (N) | 2024/07/03 | | 99 | % | 80 - 120 | | 9491093 | EMT | Spiked Blank | Nitrate + Nitrite (N) | 2024/07/03 | | 108 | % | 80 - 120 | | 9491093 | EMT | Method Blank | Nitrate + Nitrite (N) | 2024/07/03 | <0.050 | | mg/L | | | 9491093 | EMT | RPD [ZON061-02] | Nitrate + Nitrite (N) | 2024/07/03 | 3.8 | | % | 20 | | 9491094 | EMT | Matrix Spike [ZON061-02] | Nitrite (N) | 2024/07/03 | | 99 | % | 80 - 120 | | 9491094 | EMT | Spiked Blank | Nitrite (N) | 2024/07/03 | | 102 | % | 80 - 120 | | 9491094 | EMT | Method Blank | Nitrite (N) | 2024/07/03 | <0.010 | | mg/L | 20 | | 9491094 | EMT | RPD [ZON061-02] | Nitrite (N) | 2024/07/03 | NC | 00 | % | 20 | | 9491110 | LJV | Spiked Blank | рН | 2024/07/03 | 0.0046 | 99 | % | 97 - 103 | | 9491110 | LJV | RPD | pH | 2024/07/03 | 0.0016 | | % | N/A | | 9491113 | LJV | Spiked Blank | Conductivity | 2024/07/03 | | 103 | % | 80 - 120 | | 9491113 | LJV | Method Blank | Conductivity | 2024/07/03 | <1.0 | | uS/cm | | | 9491113 | LJV | RPD | Conductivity | 2024/07/03 | 0.15 | | % | 10 | | 9491114 | LJV | Spiked Blank | Total Alkalinity (Total as CaCO3) | 2024/07/03 | | 94 | % | 80 - 120 | | 9491114 | LJV | Method Blank | Total Alkalinity (Total as CaCO3) | 2024/07/03 | <2.0 | | mg/L | | | 9491114 | LJV | RPD | Total Alkalinity (Total as CaCO3) | 2024/07/03 | 1.8 | | % | 20 | | 9491115 | LJV | Matrix Spike | Dissolved Fluoride (F-) | 2024/07/03 | | 94 | % | 80 - 120 | | 9491115 | LJV | Spiked Blank | Dissolved Fluoride (F-) | 2024/07/03 | | 95 | % | 80 - 120 | | 9491115 | LJV | Method Blank | Dissolved Fluoride (F-) | 2024/07/03 | <0.10 | | mg/L | | | 9491115 | LJV | RPD | Dissolved Fluoride (F-) | 2024/07/03 | NC | | % | 20 | | 9491202 | LJV | QC Standard | Turbidity | 2024/07/03 | | 84 | % | 80 - 120 | | 9491202 | LJV | Spiked Blank | Turbidity | 2024/07/03 | | 107 | % | 80 - 120 | | 9491202 | LJV | Method Blank | Turbidity | 2024/07/03 | <0.10 | | NTU | | | 9491202 | LJV | RPD | Turbidity | 2024/07/03 | 0.36 | | % | 20 | | 9491485 | MCN | Matrix Spike [ZON060-06] | Nitrogen (Ammonia Nitrogen) | 2024/07/03 | | 92 | % | 80 - 120 | | 9491485 | MCN | Spiked Blank | Nitrogen (Ammonia Nitrogen) | 2024/07/03 | | 99 | % | 80 - 120 | | 9491485 | MCN | Method Blank | Nitrogen (Ammonia Nitrogen) | 2024/07/03 | <0.050 | | mg/L | | | 9491485 | MCN | RPD [ZON060-06] | Nitrogen (Ammonia Nitrogen) | 2024/07/03 | NC | | % | 20 | | 9492224 | MTZ | Matrix Spike | Total Aluminum (AI) | 2024/07/04 | | 100 | % | 80 - 120 | | | | | Total Antimony (Sb) | 2024/07/04 | | 104 | % | 80 - 120 | | | | | Total Arsenic (As) | 2024/07/04 | | 98 | % | 80 - 120 | | | | | Total Barium (Ba) | 2024/07/04 | | 93 | % | 80 - 120 | | | | | Total Beryllium (Be) | 2024/07/04 | | 102 | % | 80 - 120 | Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: SJP | QA/QC
Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | |----------------|------|--------------|-----------------------|---------------|-------|----------|-------|-----------| | | | | Total Bismuth (Bi) | 2024/07/04 | | 98 | % | 80 - 120 | | | | | Total Boron (B) | 2024/07/04 | | 100 | % | 80 - 120 | | | | | Total Cadmium (Cd) | 2024/07/04 | | 97 | % | 80 - 120 | | | | | Total Calcium (Ca) | 2024/07/04 | | 101 | % | 80 - 120 | | | | | Total Chromium (Cr) | 2024/07/04 | | 98 | % | 80 - 120 | | | | | Total Cobalt (Co) | 2024/07/04 | | 97 | % | 80 - 120 | | | | | Total Copper (Cu) | 2024/07/04 | | 97 | % | 80 - 120 | | | | | Total Iron (Fe) | 2024/07/04 | | 102 | % | 80 - 120 | | | | | Total Lead (Pb) | 2024/07/04 | | 96 | % | 80 - 120 | | | | | Total Magnesium (Mg) | 2024/07/04 | | 104 | % | 80 - 120 | | | | | Total Manganese (Mn) | 2024/07/04 | | 102 | % | 80 - 120 | | | | | Total Molybdenum (Mo) | 2024/07/04 | | 103 | % | 80 - 120 | | | | | Total Nickel (Ni) | 2024/07/04 | | 99 | % | 80 - 120 | | | | | Total Phosphorus (P) | 2024/07/04 | | 103 | % | 80 - 120 | | | | | Total Potassium (K) | 2024/07/04 | | 100 | % | 80 - 120 | | | | | Total Selenium (Se) | 2024/07/04 | | 99 | % | 80 - 120 | | | | | Total Silver (Ag) | 2024/07/04 | | 98 | % | 80 - 120 | | | | | Total Sodium (Na) | 2024/07/04 | | 103 | % | 80 - 120 | | | | | Total Strontium (Sr) | 2024/07/04 | | 100 | % | 80 - 120 | | | | | Total Thallium (TI) | 2024/07/04 | | 99 | % | 80 - 120 | | | | | Total Tin (Sn) | 2024/07/04 | | 101 | % | 80 - 120 | | | | | Total Titanium (Ti) | 2024/07/04 | | 99 | % | 80 - 120 | | | | | Total Uranium (U) | 2024/07/04 | | 102 | % | 80 - 120 | | | | | Total Vanadium (V) | 2024/07/04 | | 99 | % | 80 - 120 | | | | | Total Zinc (Zn) | 2024/07/04 | | 99 | % | 80 - 120 | | 9492224 | MTZ | Spiked Blank | Total Aluminum (AI) | 2024/07/04 | | 99 | % | 80 - 120 | | | | | Total Antimony (Sb) | 2024/07/04 | | 101 | % | 80 - 120 | | | | | Total Arsenic (As) | 2024/07/04 | | 98 | % | 80 - 120 | | | | | Total Barium (Ba) | 2024/07/04 | | 95 | % | 80 - 120 | | | | | Total Beryllium (Be) | 2024/07/04 | | 99 | % | 80 - 120 | | | | | Total Bismuth (Bi) | 2024/07/04 | | 99 | % | 80 - 120 | | | | | Total Boron (B) | 2024/07/04 | | 99 | % | 80 - 120 | | | | | Total Cadmium (Cd) | 2024/07/04 | | 96 | % | 80 - 120 | | | | | Total Calcium (Ca) | 2024/07/04 | | 102 | % | 80 - 120 | | | | | Total Chromium (Cr) | 2024/07/04 | | 98 | % | 80 - 120 | | | | | Total Cobalt (Co) | 2024/07/04 | | 96 | % | 80 - 120 | | | | | Total Copper (Cu) | 2024/07/04 | | 96 | % | 80 - 120 | | | | | Total Iron (Fe) | 2024/07/04 | | 102 | % | 80 - 120 | | | | | Total Lead (Pb) | 2024/07/04 | | 97 | % | 80 - 120 | | | | | Total Magnesium (Mg) | 2024/07/04 | | 104 | % | 80 - 120 | | | | | Total Manganese (Mn) | 2024/07/04 | | 100 | % | 80 - 120 | | | | | Total Molybdenum (Mo) | 2024/07/04 | | 102 | % | 80 - 120 | | | | | Total Nickel (Ni) | 2024/07/04 | | 98 | % | 80 - 120 | | | | | Total Phosphorus (P) | 2024/07/04 | | 102 | % | 80 - 120 | | | | | Total Potassium (K) | 2024/07/04 | |
100 | % | 80 - 120 | | | | | Total Selenium (Se) | 2024/07/04 | | 97 | % | 80 - 120 | | | | | Total Silver (Ag) | 2024/07/04 | | 97 | % | 80 - 120 | | | | | Total Sodium (Na) | 2024/07/04 | | 102 | % | 80 - 120 | | | | | Total Strontium (Sr) | 2024/07/04 | | 98 | % | 80 - 120 | | | | | Total Thallium (TI) | 2024/07/04 | | 100 | % | 80 - 120 | | | | | Total Tin (Sn) | 2024/07/04 | | 99 | % | 80 - 120 | | | | | Total Titanium (Ti) | 2024/07/04 | | 98 | % | 80 - 120 | | | | | / | 2024/07/04 | | | | 80 - 120 | Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: SJP | | | | QUALITY ASSURANC | | | | | | |---------|------|--------------|---------------------------------------|---------------|-----------|----------|--------------|-----------| | QA/QC | | | | | | | | | | Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | | | | Total Vanadium (V) | 2024/07/04 | | 100 | % | 80 - 120 | | | | | Total Zinc (Zn) | 2024/07/04 | | 99 | % | 80 - 120 | | 9492224 | MTZ | Method Blank | Total Aluminum (Al) | 2024/07/04 | <5.0 | | ug/L | | | | | | Total Antimony (Sb) | 2024/07/04 | <1.0 | | ug/L | | | | | | Total Arsenic (As) | 2024/07/04 | <1.0 | | ug/L | | | | | | Total Barium (Ba) | 2024/07/04 | <1.0 | | ug/L | | | | | | Total Beryllium (Be) | 2024/07/04 | <0.10 | | ug/L | | | | | | Total Bismuth (Bi) | 2024/07/04 | <2.0 | | ug/L | | | | | | Total Boron (B) | 2024/07/04 | <50 | | ug/L | | | | | | Total Cadmium (Cd) | 2024/07/04 | <0.010 | | ug/L | | | | | | Total Calcium (Ca) | 2024/07/04 | <100 | | ug/L | | | | | | Total Chromium (Cr) | 2024/07/04 | <1.0 | | ug/L | | | | | | Total Cobalt (Co) | 2024/07/04 | <0.40 | | ug/L | | | | | | Total Copper (Cu) | 2024/07/04 | <0.50 | | ug/L | | | | | | Total Iron (Fe) | 2024/07/04 | <50 | | ug/L | | | | | | Total Lead (Pb) | 2024/07/04 | <0.50 | | ug/L | | | | | | Total Magnesium (Mg) | 2024/07/04 | <100 | | ug/L | | | | | | Total Manganese (Mn) | 2024/07/04 | <2.0 | | ug/L | | | | | | Total Molybdenum (Mo) | 2024/07/04 | <2.0 | | ug/L | | | | | | Total Nickel (Ni) | 2024/07/04 | <2.0 | | ug/L | | | | | | Total Phosphorus (P) | 2024/07/04 | <100 | | ug/L | | | | | | Total Potassium (K) | 2024/07/04 | <100 | | ug/L | | | | | | Total Selenium (Se) | 2024/07/04 | <0.50 | | ug/L | | | | | | Total Silver (Ag) | 2024/07/04 | <0.10 | | ug/L | | | | | | Total Sodium (Na) | 2024/07/04 | <100 | | ug/L | | | | | | Total Strontium (Sr) | 2024/07/04 | <2.0 | | ug/L | | | | | | Total Thallium (TI) | 2024/07/04 | <0.10 | | | | | | | | Total Triallidiri (Tr) Total Tin (Sn) | 2024/07/04 | <2.0 | | ug/L
ug/L | | | | | | | | <2.0 | | | | | | | | Total Livenium (Ti) | 2024/07/04 | | | ug/L | | | | | | Total Uranium (U) | 2024/07/04 | <0.10 | | ug/L | | | | | | Total Vanadium (V) | 2024/07/04 | <2.0 | | ug/L | | | | | 222 | Total Zinc (Zn) | 2024/07/04 | <5.0 | | ug/L | 20 | | 9492224 | MTZ | RPD | Total Aluminum (Al) | 2024/07/04 | 2.1 | | % | 20 | | | | | Total Antimony (Sb) | 2024/07/04 | NC | | % | 20 | | | | | Total Arsenic (As) | 2024/07/04 | NC | | % | 20 | | | | | Total Barium (Ba) | 2024/07/04 | 1.1 | | % | 20 | | | | | Total Boron (B) | 2024/07/04 | NC | | % | 20 | | | | | Total Cadmium (Cd) | 2024/07/04 | NC | | % | 20 | | | | | Total Calcium (Ca) | 2024/07/04 | 0.97 | | % | 20 | | | | | Total Chromium (Cr) | 2024/07/04 | NC | | % | 20 | | | | | Total Copper (Cu) | 2024/07/04 | 1.1 | | % | 20 | | | | | Total Iron (Fe) | 2024/07/04 | NC | | % | 20 | | | | | Total Lead (Pb) | 2024/07/04 | 0.065 (3) | | % | 20 | | | | | Total Magnesium (Mg) | 2024/07/04 | 1.7 | | % | 20 | | | | | Total Manganese (Mn) | 2024/07/04 | 1.0 | | % | 20 | | | | | Total Nickel (Ni) | 2024/07/04 | NC | | % | 20 | | | | | Total Phosphorus (P) | 2024/07/04 | NC | | % | 20 | | | | | Total Potassium (K) | 2024/07/04 | 4.1 | | % | 20 | | | | | Total Selenium (Se) | 2024/07/04 | NC | | % | 20 | | | | | Total Sodium (Na) | 2024/07/04 | 1.4 | | % | 20 | | | | | Total Strontium (Sr) | 2024/07/04 | 4.0 | | % | 20 | | | | | Total Uranium (U) | 2024/07/04 | NC | | % | 20 | | | | | Total Zinc (Zn) | 2024/07/04 | 2.4 | | % | 20 | Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: SJP | | | | | E REPORT (CONT D) | | | | | |----------------|------|--------------|-----------------------|-------------------|-------|----------|-------|-----------| | QA/QC
Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | 9492245 | MTZ | Matrix Spike | Total Aluminum (AI) | 2024/07/04 | | 98 | % | 80 - 120 | | | | | Total Antimony (Sb) | 2024/07/04 | | 103 | % | 80 - 120 | | | | | Total Arsenic (As) | 2024/07/04 | | 96 | % | 80 - 120 | | | | | Total Barium (Ba) | 2024/07/04 | | 93 | % | 80 - 120 | | | | | Total Beryllium (Be) | 2024/07/04 | | 100 | % | 80 - 120 | | | | | Total Bismuth (Bi) | 2024/07/04 | | 99 | % | 80 - 120 | | | | | Total Boron (B) | 2024/07/04 | | 98 | % | 80 - 120 | | | | | Total Cadmium (Cd) | 2024/07/04 | | 98 | % | 80 - 120 | | | | | Total Calcium (Ca) | 2024/07/04 | | 101 | % | 80 - 120 | | | | | Total Chromium (Cr) | 2024/07/04 | | 97 | % | 80 - 120 | | | | | Total Cobalt (Co) | 2024/07/04 | | 95 | % | 80 - 120 | | | | | Total Copper (Cu) | 2024/07/04 | | 94 | % | 80 - 120 | | | | | Total Iron (Fe) | 2024/07/04 | | 98 | % | 80 - 120 | | | | | Total Lead (Pb) | 2024/07/04 | | 97 | % | 80 - 120 | | | | | Total Magnesium (Mg) | 2024/07/04 | | 102 | % | 80 - 120 | | | | | Total Manganese (Mn) | 2024/07/04 | | 98 | % | 80 - 120 | | | | | Total Molybdenum (Mo) | 2024/07/04 | | 102 | % | 80 - 120 | | | | | Total Nickel (Ni) | 2024/07/04 | | 97 | % | 80 - 120 | | | | | Total Phosphorus (P) | 2024/07/04 | | 104 | % | 80 - 120 | | | | | Total Potassium (K) | 2024/07/04 | | 100 | % | 80 - 120 | | | | | Total Selenium (Se) | 2024/07/04 | | 99 | % | 80 - 120 | | | | | Total Silver (Ag) | 2024/07/04 | | 97 | % | 80 - 120 | | | | | Total Sodium (Na) | 2024/07/04 | | 100 | % | 80 - 120 | | | | | Total Strontium (Sr) | 2024/07/04 | | 96 | % | 80 - 120 | | | | | Total Thallium (Tl) | 2024/07/04 | | 100 | % | 80 - 120 | | | | | Total Tin (Sn) | 2024/07/04 | | 101 | % | 80 - 120 | | | | | Total Titanium (Ti) | 2024/07/04 | | 101 | % | 80 - 120 | | | | | Total Uranium (U) | 2024/07/04 | | 103 | % | 80 - 120 | | | | | Total Vanadium (V) | 2024/07/04 | | 99 | % | 80 - 120 | | | | | Total Zinc (Zn) | 2024/07/04 | | 96 | % | 80 - 120 | | 9492245 | MTZ | Spiked Blank | Total Aluminum (AI) | 2024/07/04 | | 99 | % | 80 - 120 | | | | | Total Antimony (Sb) | 2024/07/04 | | 101 | % | 80 - 120 | | | | | Total Arsenic (As) | 2024/07/04 | | 97 | % | 80 - 120 | | | | | Total Barium (Ba) | 2024/07/04 | | 94 | % | 80 - 120 | | | | | Total Beryllium (Be) | 2024/07/04 | | 102 | % | 80 - 120 | | | | | Total Bismuth (Bi) | 2024/07/04 | | 100 | % | 80 - 120 | | | | | Total Boron (B) | 2024/07/04 | | 103 | % | 80 - 120 | | | | | Total Cadmium (Cd) | 2024/07/04 | | 95 | % | 80 - 120 | | | | | Total Calcium (Ca) | 2024/07/04 | | 100 | % | 80 - 120 | | | | | Total Chromium (Cr) | 2024/07/04 | | 97 | % | 80 - 120 | | | | | Total Cobalt (Co) | 2024/07/04 | | 96 | % | 80 - 120 | | | | | Total Copper (Cu) | 2024/07/04 | | 95 | % | 80 - 120 | | | | | Total Iron (Fe) | 2024/07/04 | | 101 | % | 80 - 120 | | | | | Total Lead (Pb) | 2024/07/04 | | 98 | % | 80 - 120 | | | | | Total Magnesium (Mg) | 2024/07/04 | | 102 | % | 80 - 120 | | | | | Total Manganese (Mn) | 2024/07/04 | | 99 | % | 80 - 120 | | | | | Total Molybdenum (Mo) | 2024/07/04 | | 100 | % | 80 - 120 | | | | | Total Nickel (Ni) | 2024/07/04 | | 98 | % | 80 - 120 | | | | | Total Phosphorus (P) | 2024/07/04 | | 100 | % | 80 - 120 | | | | | Total Potassium (K) | 2024/07/04 | | 99 | % | 80 - 120 | | | | | Total Selenium (Se) | 2024/07/04 | | 97 | % | 80 - 120 | | | | | Total Silver (Ag) | 2024/07/04 | | 96 | % | 80 - 120 | | | | | Total Sodium (Na) | 2024/07/04 | | 103 | % | 80 - 120 | Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: SJP | | | | QUALITY ASSURANCE | • | | | | | |----------------|------|--------------|-----------------------|---------------|--------|----------|-------|-----------| | QA/QC
Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | | | | Total Strontium (Sr) | 2024/07/04 | | 96 | % | 80 - 120 | | | | | Total Thallium (TI) | 2024/07/04 | | 99 | % | 80 - 120 | | | | | Total Tin (Sn) | 2024/07/04 | | 97 | % | 80 - 120 | | | | | Total Titanium (Ti) | 2024/07/04 | | 100 | % | 80 - 120 | | | | | Total Uranium (U) | 2024/07/04 | | 104 | % | 80 - 120 | | | | | Total Vanadium (V) | 2024/07/04 | | 99 | % | 80 - 120 | | | | | Total Zinc (Zn) | 2024/07/04 | | 97 | % | 80 - 120 | | 9492245 | MTZ | Method Blank | Total Aluminum (Al) | 2024/07/04 | <5.0 | | ug/L | | | | | | Total Antimony (Sb) | 2024/07/04 | <1.0 | | ug/L | | | | | | Total Arsenic (As) | 2024/07/04 | <1.0 | | ug/L | | | | | | Total Barium (Ba) | 2024/07/04 | <1.0 | | ug/L | | | | | | Total Beryllium (Be) | 2024/07/04 | <0.10 | | ug/L | | | | | | Total Bismuth (Bi) | 2024/07/04 | <2.0 | | ug/L | | | | | | Total Boron (B) | 2024/07/04 | <50 | | ug/L | | | | | | Total Cadmium (Cd) | 2024/07/04 | <0.010 | | ug/L | | | | | | Total Calcium (Ca) | 2024/07/04 | <100 | | ug/L | | | | | | Total Chromium (Cr) | 2024/07/04 | <1.0 | | ug/L | | | | | | Total Cobalt (Co) | 2024/07/04 | <0.40 | | ug/L | | | | | | Total Copper (Cu) | 2024/07/04 | <0.50 | | ug/L | | | | | | Total Iron (Fe) | 2024/07/04 | <50 | | ug/L | | | | | | Total Lead (Pb) | 2024/07/04 | <0.50 | | ug/L | | | | | | Total Magnesium (Mg) | 2024/07/04 | <100 | | ug/L | | | | | | Total Manganese (Mn) | 2024/07/04 | <2.0 | | ug/L | | | | | | Total Molybdenum (Mo) | 2024/07/04 | <2.0 | | ug/L | | | | | | Total Nickel (Ni) | 2024/07/04 | <2.0 | | ug/L | | | | | | Total Phosphorus (P) | 2024/07/04 | <100 | | ug/L | | | | | | Total Potassium (K) | 2024/07/04 | <100 | | ug/L | | | | | | Total Selenium (Se) |
2024/07/04 | <0.50 | | ug/L | | | | | | Total Silver (Ag) | 2024/07/04 | <0.10 | | ug/L | | | | | | Total Sodium (Na) | 2024/07/04 | <100 | | ug/L | | | | | | Total Strontium (Sr) | 2024/07/04 | <2.0 | | ug/L | | | | | | Total Thallium (TI) | 2024/07/04 | <0.10 | | ug/L | | | | | | Total Tin (Sn) | 2024/07/04 | <2.0 | | ug/L | | | | | | Total Titanium (Ti) | 2024/07/04 | <2.0 | | ug/L | | | | | | Total Uranium (U) | 2024/07/04 | <0.10 | | ug/L | | | | | | Total Vanadium (V) | 2024/07/04 | <2.0 | | ug/L | | | | | | Total Zinc (Zn) | 2024/07/04 | <5.0 | | ug/L | | | 9492245 | MTZ | RPD | Total Aluminum (AI) | 2024/07/04 | NC | | % | 20 | | | | | Total Antimony (Sb) | 2024/07/04 | NC | | % | 20 | | | | | Total Arsenic (As) | 2024/07/04 | NC | | % | 20 | | | | | Total Barium (Ba) | 2024/07/04 | NC | | % | 20 | | | | | Total Beryllium (Be) | 2024/07/04 | NC | | % | 20 | | | | | Total Bismuth (Bi) | 2024/07/04 | NC | | % | 20 | | | | | Total Boron (B) | 2024/07/04 | NC | | % | 20 | | | | | Total Cadmium (Cd) | 2024/07/04 | NC | | % | 20 | | | | | Total Calcium (Ca) | 2024/07/04 | 1.1 | | % | 20 | | | | | Total Chromium (Cr) | 2024/07/04 | NC | | % | 20 | | | | | Total Cobalt (Co) | 2024/07/04 | NC | | % | 20 | | | | | Total Copper (Cu) | 2024/07/04 | 1.2 | | % | 20 | | | | | Total Iron (Fe) | 2024/07/04 | NC | | % | 20 | | | | | Total Lead (Pb) | 2024/07/04 | NC | | % | 20 | | | | | Total Magnesium (Mg) | 2024/07/04 | 2.9 | | % | 20 | | | | | Total Manganese (Mn) | 2024/07/04 | NC | | % | 20 | Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: SJP #### QUALITY ASSURANCE REPORT(CONT'D) | QA/QC | | | | | | | | | |---------|------|--------------|-----------------------|---------------|-------|----------|-------|-----------| | Batch | Init | QC Type | Parameter | Date Analyzed | Value | Recovery | UNITS | QC Limits | | | | | Total Molybdenum (Mo) | 2024/07/04 | NC | | % | 20 | | | | | Total Nickel (Ni) | 2024/07/04 | NC | | % | 20 | | | | | Total Phosphorus (P) | 2024/07/04 | NC | | % | 20 | | | | | Total Potassium (K) | 2024/07/04 | 4.6 | | % | 20 | | | | | Total Selenium (Se) | 2024/07/04 | NC | | % | 20 | | | | | Total Silver (Ag) | 2024/07/04 | NC | | % | 20 | | | | | Total Sodium (Na) | 2024/07/04 | 1.1 | | % | 20 | | | | | Total Strontium (Sr) | 2024/07/04 | 3.3 | | % | 20 | | | | | Total Thallium (TI) | 2024/07/04 | NC | | % | 20 | | | | | Total Tin (Sn) | 2024/07/04 | NC | | % | 20 | | | | | Total Titanium (Ti) | 2024/07/04 | NC | | % | 20 | | | | | Total Uranium (U) | 2024/07/04 | 2.1 | | % | 20 | | | | | Total Vanadium (V) | 2024/07/04 | NC | | % | 20 | | | | | Total Zinc (Zn) | 2024/07/04 | 2.7 | | % | 20 | | 9493829 | LJV | QC Standard | Turbidity | 2024/07/04 | | 85 | % | 80 - 120 | | 9493829 | LJV | Spiked Blank | Turbidity | 2024/07/04 | | 107 | % | 80 - 120 | | 9493829 | LJV | Method Blank | Turbidity | 2024/07/04 | <0.10 | | NTU | | | 9493829 | LJV | RPD | Turbidity | 2024/07/04 | 5.0 | | % | 20 | N/A = Not Applicable Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement. Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference. QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy. Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy. Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination. NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration) NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL). - (1) Poor spike recovery due to probable sample matrix interference. - (2) Poor spike recovery due to sample matrix, recovery confirmed by repeat analysis. - (3) POTENTIAL EXCEEDANCE FOR PARAMETER Client Project #: 12601021-15 Your P.O. #: 735-009466 Sampler Initials: SJP #### **VALIDATION SIGNATURE PAGE** The analytical data and all QC contained in this report were reviewed and validated by: Janah M. Bhyno Janah Rhyno, Scientific Specialist Bureau Veritas Proprietary Software Logiciel Propriétaire de Bureau Veritas **Automated Statchk** Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Suzanne Rogers, General Manager responsible for Nova Scotia Environmental laboratory operations. | | n
Si | Bureau Veritas
200 Bluewster Road, Bedford, Nov | va Scolia Canad | ta 848 1G9 Tel | 902) 420-0203 To | II-free 800-56 | 3-6286 F | 9x:(902) 420- | 8612 yyw | bvns.com | | | | | | Chair | of Custody Record | Page 1 of 1 | |--|--|--|--|----------------|------------------|---|------------|-----------------|--------------|----------|---------------|---------------------|---|----------------|----------|--|--|---------------------------| | | | INVOICE TO: | | | | Report In | formation | | | | | Project Information | | | | | Laboratory Use | Only | | npany Nam | #16276 GHD | imited | | demonstration | - | | | | | | | | C40238 | | | | Bureau Veritas Job # | Bottle Order #: | | aci Name | Accounts Paval | ole | | Contact Name | L. D. | mo/Sadie | Jacobs | -Peters C | allie An | drews | Quotation# | | 735-00946 | 16 | | | | 993792 | | | 120 Western Pa | arkway | | Address | 0.500,000,110 | | | 7 0101010 | oins viii | 01.0.110 | P.O.# | | 12601021 | | | | | | | Address 120 Western Parkway Bedford NS B4B 0V2 | | | | Address | - | | | | | _ | Project # | | 1200 (021-10 | | | -1 | Chain Of Custody Record | Project Manager | | пе | (902) 468-1248 | | | Phone | | | Fax | | Project Name | | | | | | | | | | | ail. | | leCDN@ghd.com | | Email | Jessica.Ro | mo@ahd | | | s-Peter | s@ahd.c | | | 70 13 | 18 | | | C#993792-01-01 | Marie Muise | | Regulatory (| riteria. | | T | | Instructions | - | | | | | SIS REQUESTED | /PI FASE | BE SPECIFIC | 21 | | | Turnaround Time (TAT) Re | quired: | | ** Specify M | fatrix: Surface/Ground/T
Potable/Nonpotable/Tin | apwater/Sewage/Efflueni//Seawater | | | | | rved | Total Metals in | | spilos | | | EDF-2024 | -06-1523 | | (will be app
Standard 1
Please not | Please provide advance notice for ri
standard) TAT:
plied if Rush TAT is not specified);
TAT = 5-7 Working days for most tests
to: Standard TAT for certain tests such as 8C
tact your Project Manager for details. | X | | SAMPLES MUST BE KEPT COOL (< 10°C) FROM TIME OF SAMPLING UNTIL | | | The state of
s | | | Field Filtered & Preserved Lab Filtration Required Atlantic RCAp-MS Total Water Fluoride Total Suspended Solids | [m] 42 - 1 | | | | | Date Requi | Time Required Comments / Hazards / Other Required Analysis | | | | | | | | e Barcodé Label | Sample (Location) Identification | Dat | su Sampled | Time Sampled | Malrix | 9 5 | 5.5 | II. | ۳ | | - | | | | | | | | | | SW1 | 26 | - 100.29 | 1005 | Sw | | X | X | X | | | | | | 6 | | | | | SID#665408 | SW2 | 26 | Jun -29 | 1245 | 1 | | x | x | x | | | | | | 6 | | | | | | SW3 | 26 | -Jun-24 | 1135 | | | х | X | х | | | 5 | | | 6 | | | | 2 701 1 | SID#665410 | SW4 SW | 6 26- | JUN-24 | 1340 | | | X | х | Х | | 111 | | | | 6 | | | | | | -swe- Sw4 | 1 26 | Jun-54 | 1400 | | | X | × | X | | 1 | | | 1771 | 6 | | | | 0)10100 | | SWDUP | 26 | -Jon-29 | | 1 | | Х | х | х | | | | | | 6 | | - DOUBLE | | - | Time | | | | | | | | Pool 1 | QUISHED BY: (Signatur | | Date: (YYIMMIDE |) Time | | RECE | IVED BY: | (Signature/Pr | rint) | | Date: (YY/ | MM/DD) | Time | # jars used an | Time Ser | stive Te | Lab Use Only mperature ("C) on Receipt Custos | ly Seal Intact on Cooler? | | | 1 - 0 | | | | | | 44. | im | Car | n. | | | | | | | 719,9 [| Yes No. | Bureau Veritas Canada (2019) Inc. # Attachment 2 **Surface Water Quality Data 2022-2024** Attachment 2 Page 1 of 5 | ream from merel. HW NV 220 0.78 0.22 0.43 0.86 0.22 1.31 1.22 0.38 0.42 0.73 0.67 1.15 2.52 0.55 1.10 0.02 4.80 4.80 1.25 1.21 0.30 1.35 1.25 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 | _ | | | | | | | s | W 1 | | | | | SI | N2 | | | | | SW3 | | | | | SW3A (deco | nmissioned) | | |--|-------------------------------------|-------|-------------|-------------|--------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------| | Transfer Provinces | Parameters | Units | | | | | | SW1 | SW1 | SW1 | SW1 | SW2 | SW2 | SW2 | SW2 | | SW2 | (, | , | , , | , | SW3 | , | SW3A | SW3A-DUP | | | | ream burn | Date | | | | | 10/5/2022 | 1/19/2023 | 4/12/2023 | 7/12/2023 | 3/25/2024 | 6/24/2024 | 10/5/2022 | 1/19/2023 | 4/12/2023 | 7/12/2023 | 2/28/2024 | 6/24/2024 | 10/5/2022 | 1/19/2023 | 4/12/2023 | 2/28/2024 | 6/24/2024 | 6/24/2024 | 4/12/2023 | 4/12/2023 | 7/12/2023 | 2/28/2024 | | Sixter Assumption of CoCO 10 mg/L NV NV 180 62 23 30 85 13 410 15 53 18 13 410 15 15 12 21 24 4 5.7 6.4 6.0 30 5.5 13 11 41 5.5 cococine for the control of the cococine for | Organics | Part | Anion Sum | me/L | NV | NV | 2.520 | 0.78 | 0.32 | 0.43 | 0.85 | 0.26 | 1.31 | 1.23 | 0.38 | 0.42 | 0.73 | 0.67 | 1.15 | 2.52 | 0.55 | 1.16 | 0.82 | 4.89 | 4.88 | 1.25 | 1.21 | 0.96 | 1.33 | | Part | Bicarb. Alkalinity (calc. as CaCO3) | mg/L | NV | NV | 25 | <1.0 | 3.3 | 3.8 | 13 | <1.0 | 16 | 3.9 | 5.8 | <1.0 | 25 | 8.5 | 21 | 24 | 4 | 6.7 | 6.4 | 40 | 39 | 5.4 | 3.7 | 14 | 8.8 | | Californian | Calculated TDS | mg/L | NV | NV | 160 | 60 | 23 | 30 | 59 | 21 | 88 | 87 | 27 | 33 | 46 | 41 | 75 | 160 | 39 | 78 | 51 | 320 | 320 | 85 | 84 | 64 | 84 | | Interiments (CACOS) Interi | Carb. Alkalinity (calc. as CaCO3) | mg/L | NV | NV | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | on Balance (S Difference) S. NV NV 794 174 588 104 550 148 438 428 106 229 759 308 456 349 678 459 649 02 171 53 7760 448 431 432 432 432 432 432 432 432 432 432 432 | Cation Sum | me/L | NV | NV | 2.35 | 1 | 0.36 | 0.53 | 0.95 | 0.35 | 1.43 | 1.34 | 0.47 | 0.67 | 0.85 | 0.63 | 1.26 | 2.35 | 0.63 | 1.28 | 0.72 | 4.87 | 5 | 1.39 | 1.41 | 1.05 | 1.22 | | angelier lordex (g) 20°C) NiA NV NV -1.18 NC -3.18 -3.38 -2.28 N°C -1.71 -2.28 N°C -1.71 -1.85 -3.11 -1.85 -3.17 -2.25 -3.07 -0.366 -0.356 -2.3 -2.48 -2.08 -2.28 N°C -1.71 -2.89 -3.11 N°C -1.91 -3.11 -1.85 -3.17 -2.25 -3.07 -0.366 -0.356 -2.35 -2.25 N°C -1.97 -2.81 -3.35 N°C -1.97 -3.14 N° | Hardness (CaCO3) | mg/L | NV | NV | 110 | 42 | 13 | 21 | 40 | 11 | 62 | 55 | 15 | 22 | 31 | 19 | 50 | 110 | 23 | 53 | 26 | 220 | 230 | 58 | 58 | 43 | 47 | | .angeller fines (gl C) NA NV 1.43 NC 4.02 3.81 2.5 NC 1.97 3.14 3.36 NC 2.16 3.36 2.1 1.43 3.42 2.8 3.33 0.618 0.608 2.55 2.73 2.31 2.51 Note (N) mgL 13 13 13 13 13 13 13 13 13 13 13 13 13 | Ion Balance (% Difference) | % | NV | NV | 29.4 | 12.4 | 5.88 | 10.4 | 5.56 | 14.8 | 4.38 | 4.28 | 10.6 | 22.9 | 7.59 | 3.08 | 4.56 | 3.49 | 6.78 | 4.92 | 6.49 | 0.2 | 1.21 | 5.3 | 7.63 | 4.48 | 4.31 | | Window Night Nig | Langelier Index (@ 20C) | N/A | NV | NV | -1.18 | NC | -3.76 | -3.36 | -2.25 | NC | -1.71 | -2.89 | -3.11 | NC | -1.91 | -3.11 | -1.85 | -1.18 | -3.17 | -2.35 | -3.07 | -0.366 | -0.356 | -2.3 | -2.48 | -2.06 | -2.32 | | Subtration pH (@2 CC) N/A NV NV 104 NC 104 NC 101 0.84 9.06 NC 8.76 9.5 9.88 NC 8.77 9.5 9.88 NC 8.79 9.62 9.77 9.39 9.8 9.22 9.54 7.91 7.9 9.28 9.43 8.97 9.16 norganics subtration pH (@2 CC) N/A NV NV NV 10.6 NC 10.4 10.1 9.31 NC 9.02 9.75 10.1 NC 9.17 9.88 9.03 8.65 10 9.47 9.79 8.18 8.15 8.15 9.53 9.88 9.27 9.16 norganics subtrate ph (%2 CC) N/A NV NV 10.6 NC 10.4 10.1 9.81 NC 9.02 9.75 10.1 NC 9.17 9.88 9.03 8.65 10 9.47 9.79 8.18 8.15 8.15 9.53 9.88 9.27 9.16 norganics subtrate ph (%2 CC) N/A NV NV 2.5 4.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1 | Langelier Index (@ 4C) | N/A | NV | NV | -1.43 | NC | -4.02 | -3.61 | -2.5 | NC | -1.97 | -3.14 | -3.36 | NC | -2.16 | -3.36 | -2.1 | -1.43 | -3.42 | -2.6 | -3.33 | -0.615 | -0.605 | -2.55 | -2.73 | -2.31 | -2.57 | | Saltration Hi (@ 4G) No. NV NV 10.6 NC 10.4 10.1 9.31 NC 9.02 9.75 10.1 NC 9.17 0.88 9.03 8.65 10 9.47 9.79 8.15 8.15 9.53 9.68 9.22 9.41 moreganics moreganics moreganics with the control of contro | Nitrate (N) | mg/L | 13 | 13 | 0.11 | < 0.050 | < 0.050 | < 0.050 | < 0.050 | < 0.050 | 0.075 | < 0.050 | < 0.050 | < 0.050 | 0.11 | 0.07 | 0.14 | <0.050 | 0.055 | < 0.050 | 0.1 | 0.098 | 0.094 | < 0.050 | < 0.050 | <0.050 | 0.17 | | norganics (| Saturation pH (@ 20C) | N/A | NV | NV | 10.4 | NC | 10.1 | 9.84 | 9.06 | NC | 8.76 | 9.5 | 9.88 | NC | 8.92 | 9.62 | 8.77 | 8.39 | 9.8 | 9.22 | 9.54 | 7.91 | 7.9 | 9.28 | 9.43 | 8.97 | 9.16 | | Total Alkalinity (Total as GaCO3) mg/L NV NV 25 420 33 38 13 420 16 3.9 5.8 420 25 8.5 21 24 4 6.7 6.4 40 39 5.4 3.7 14 8.8 | Saturation pH (@ 4C) | N/A | NV | NV | 10.6 | NC | 10.4 | 10.1 | 9.31 | NC | 9.02 | 9.75 | 10.1 | NC | 9.17 | 9.88 | 9.03 | 8.65 | 10 | 9.47 | 9.79 | 8.15 | 8.15 | 9.53 | 9.68 | 9.22 | 9.41 | | Dissolved Chloride (Ch) | Inorganics | | • | • | • | | • | | | | • | | | | | | | | • | | | | | | • | | | | Description TCU NV NV 280 200 86 77 290 52 170 52 45 30 120 27 70 48 11 47 24 38 29 32 25 25 39 27 | Total Alkalinity (Total as CaCO3) | mg/L | NV | NV | 25 | <2.0 | 3.3 | 3.8 | 13 | <2.0 | 16 | 3.9 | 5.8 | <2.0 | 25 | 8.5 | 21 | 24 | 4 | 6.7 | 6.4 | 40 | 39 | 5.4 | 3.7 | 14 | 8.8 | | Dissolved Fluoride (F) | Dissolved Chloride (CI-) | mg/L | 120 | 120 | 8.6 | 5.5 | 2.4 | 2.5 | 2.6 | 3.6 | 3 | 7.8 | 4.1 | 6.9 | 3.1 | 12 | 3.6 | 8.6 | 4.6 | 6.2 | 8.5 | 11 | 11 | 7.2 | 7.2 | 3.7 | 13 | | Witter W | Colour | TCU | NV | NV | 280 | 200 | 86 | 77 | 280 | 52 | 170 | 52 | 45 | 30 | 120 | 27 | 70 | 48 (1) | 47 | 24 | 38 | 29 | 32 | 25 | 25 | 89 | 27 | | Nitrie (N) | Dissolved Fluoride (F-) | mg/L | 120 | 120 | <0.10 | NC | NC | NC | NC | <0.10 | <0.10 | NC | NC | NC | NC | <0.10 | <0.10 | NC | NC | NC | <0.10 | <0.10 | <0.10 | NC | NC | NC | <0.10 | | Nitrogen (Ammonia Nitrogen) mg/L (see note)a | Nitrate + Nitrite (N) | mg/L | NV | NV | 0.11 | < 0.050 | < 0.050 | < 0.050 | < 0.050 | < 0.050 | 0.075 | < 0.050 | < 0.050 | < 0.050 | 0.11 | 0.07 | 0.14 |
< 0.050 | 0.055 | <0.050 | 0.1 | 0.098 | 0.094 | < 0.050 | < 0.050 | <0.050 | 0.17 | | Total Organic Carbon (C) mg/L NV NV 25 24 9.1 8.4 25 6.2 18 11 6.5 5.2 15 4.4 11 10 6.6 5.2 5.3 5.4 5.4 4.6 4.7 13 4 mg/L NV NV 0 0 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 < | Nitrite (N) | mg/L | 0.06 | 0.06 | <0.010 | <0.010 | < 0.010 | < 0.010 | <0.010 | <0.010 | <0.010 | < 0.010 | < 0.010 | <0.010 | < 0.010 | <0.010 | < 0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | < 0.010 | < 0.010 | <0.010 | <0.010 | <0.010 | | Dehtophosphate (P) mg/L NV NV 0 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.0 | Nitrogen (Ammonia Nitrogen) | mg/L | (see note)a | (see note)a | 0.064 | < 0.050 | < 0.050 | < 0.050 | 0.051 | 0.061 | 0.095 | <0.050 | < 0.050 | 0.064 | < 0.050 | <0.050 | 0.062 | <0.050 | <0.050 | 0.06 | 0.075 | < 0.050 | 0.063 | < 0.050 | 0.06 | <0.050 | <0.050 | | PH 6.5-9.0 6.5-9.0 7.22 6.79 6.38 6.49 6.81 6.04 7.05 6.62 6.77 6.82 7 6.51 6.92 7.22 6.62 6.86 6.46 7.54 7.55 6.98 6.95 6.9 6.85 Reactive Silica (SiO2) mg/L NV NV 5.4 4.1 2.7 1.5 4.2 2 3 5.4 2.9 1.8 4.2 3.2 3.2 2.9 2.6 0.92 2.3 2.5 2.3 1.7 1.7 1.7 3.1 3.1 1.7 1.7 1.7 3.1 3.1 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1 | Total Organic Carbon (C) | mg/L | NV | NV | 25 | 24 | 9.1 | 8.4 | 25 | 6.2 | 18 | 11 | 6.5 | 5.2 | 15 | 4.4 | 11 | 10 | 6.6 | 5.2 | 5.3 | 5.4 | 5.4 | 4.6 | 4.7 | 13 | 4 | | Reactive Silica (SiO2) mg/L NV NV 5.4 4.1 2.7 1.5 4.2 2 3 5.4 2.9 1.8 4.2 3.2 3.2 2.9 2.6 0.92 2.3 2.5 2.3 1.7 1.7 3.1 3.1 claid Supended Solids mg/L NV NV 8 8 8 < 1.0 3.4 3.7 2 1.6 2.4 2.8 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.4 2 < 1.0 1.6 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 < 1.0 1.4 2 | Orthophosphate (P) | mg/L | NV | NV | 0 | < 0.010 | <0.010 | < 0.010 | < 0.010 | < 0.010 | 0.01 | <0.010 | < 0.010 | <0.010 | < 0.010 | <0.010 | <0.010 | <0.010 | < 0.010 | <0.010 | < 0.010 | <0.010 | < 0.010 | < 0.010 | <0.010 | <0.010 | <0.010 | | Total Suspended Solids mg/L NV NV 8 8 8 <1.0 3.4 3.7 2 1.6 2.4 2.8 <1.0 1.6 1.4 2 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 | pH | pН | 6.5 - 9.0 | 6.5 - 9.0 | 7.22 | 6.79 | 6.38 | 6.49 | 6.81 | 6.04 | 7.05 | 6.62 | 6.77 | 6.82 | 7 | 6.51 | 6.92 | 7.22 | 6.62 | 6.86 | 6.46 | 7.54 | 7.55 | 6.98 | 6.95 | 6.9 | 6.85 | | Dissolved Sulphate (SO4) mg/L NV NV 86 30 8.9 13 25 7.8 43 45 7.2 11 6.2 7.6 29 86 16 41 21 180 180 45 45 27 37 Turbidity NTU NV NV NV 8 1.8 2.6 1.6 3.9 6.2 3.6 1.9 8 2.3 5.4 4.9 6.5 0.39 4.7 4.1 6.1 0.93 0.9 2.3 2.8 1.3 7.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | Reactive Silica (SiO2) | mg/L | NV | NV | 5.4 | 4.1 | 2.7 | 1.5 | 4.2 | 2 | 3 | 5.4 | 2.9 | 1.8 | 4.2 | 3.2 | 3.2 | 2.9 | 2.6 | 0.92 | 2.3 | 2.5 | 2.3 | 1.7 | 1.7 | 3.1 | 3.1 | | Turbidity NTU NV NV 8 1.8 2.6 1.6 3.9 6.2 3.6 1.9 8 2.3 5.4 4.9 6.5 0.39 4.7 4.1 6.1 0.93 0.9 2.3 2.8 1.3 7.6 Conductivity us/cm NV NV 390 110 39 56 92 36 71 140 47 73 82 69 62 390 68 140 87 530 390 150 160 120 140 140 140 140 140 140 140 140 140 14 | Total Suspended Solids | mg/L | NV | NV | 8 | 8 | <1.0 | 3.4 | 3.7 | 2 | 1.6 | 2.4 | 2.8 | <1.0 | 1.6 | 1.4 | 2 | <1.0 | <1.0 | 4.4 | 1.8 | <1.0 | <1.0 | 5.6 | 3.8 | 1 | 2.8 | | Conductivity US/cm NV NV 390 110 39 56 92 36 71 140 47 73 82 69 62 390 68 140 87 530 390 150 160 120 140 estimates Second Conductivity Conduct | Dissolved Sulphate (SO4) | mg/L | NV | NV | 86 | 30 | 8.9 | 13 | 25 | 7.8 | 43 | 45 | 7.2 | 11 | 6.2 | 7.6 | 29 | 86 | 16 | 41 | 21 | 180 | 180 | 45 | 45 | 27 | 37 | | Field Parameters Temperature °C NV NV NV 10.16 2.21 6.64 17.34 1.92 15.73 10.84 2.02 6.16 18.6 -0.02 16.6 12.44 3.47 9.14 1.7 19.75 19.75 8.08 8.08 22.33 1.4 Oxygen Reduction Potential (ORP) N/A NV NV 280 165 231 154 280 284 - 201 232 131 86 207 - 223 231 83 19.4 - - 130 130 211 215 Conductivity mS/cm NV NV 1.193 0.05 0.018 0.028 0.17 0.02 0.157 0.071 0.022 0.034 0.086 0.039 0.145 0.016 0.031 0.069 Turbidity NTU NV NV 18.16 13.42 18.16 10.35 5.69 8.7 2.84 8.5 16.36 10.18 3.68 9.23 0.81 8.45 15.81 6.89 7.91 1.7 1.7 6.73 6.73 4.31 9.92 | Turbidity | NTU | NV | NV | 8 | 1.8 | 2.6 | 1.6 | 3.9 | 6.2 | 3.6 | 1.9 | 8 | 2.3 | 5.4 | 4.9 | 6.5 | 0.39 | 4.7 | 4.1 | 6.1 | 0.93 | 0.9 | 2.3 | 2.8 | 1.3 | 7.6 | | Temperature Compensators Composition No. | Conductivity | uS/cm | NV | NV | 390 | 110 | 39 | 56 | 92 | 36 | 71 | 140 | 47 | 73 | 82 | 69 | 62 | 390 | 68 | 140 | 87 | 530 | 390 | 150 | 160 | 120 | 140 | | pH 6.5-9.0 6.5-9.0 6.5-9.0 6.5-9.0 6.5-9.0 6.5-9.0 6.5-9.0 6.5-9.0 6.5-9.0 6.5-9.0 6.5-9.0 6.5-9.0 6.5-9.0 6.5-9.0
6.5-9.0 6.5 | Field Parameters | • | • | | Oxygen Reduction Potential (ORP) N/A NV NV 280 165 231 154 280 284 - 201 232 131 86 207 - 223 231 83 194 130 130 211 215 215 215 215 215 215 215 215 215 | Temperature | °C | NV | NV | NV | 10.16 | 2.21 | 6.64 | 17.34 | 1.92 | 15.73 | 10.84 | 2.02 | 6.16 | 18.6 | -0.02 | 16.6 | 12.44 | 3.47 | 9.14 | 1.7 | 19.75 | 19.75 | 8.08 | 8.08 | 22.33 | 1.4 | | Conductivity mS/cm NV NV 1.193 0.05 0.018 0.028 0.17 0.02 0.157 0.071 0.022 0.034 0.086 0.039 0.143 0.116 0.031 0.069 0.044 0.535 0.535 0.075 0.075 0.126 0.069 Turbidity NTU NV NV 46 0 0 0 2.2 0.8 3.9 1.9 12.2 0 7.8 4.1 0 2.3 0 0 0 13.4 0 11 1 9.5 9.5 9.5 0.8 0 Dissolved Oxygen mg/L NV NV 18.16 13.42 18.16 10.35 5.69 8.7 2.84 8.5 16.36 10.18 3.68 9.23 0.81 8.45 15.81 6.89 7.91 1.7 1.7 6.73 6.73 6.73 4.31 9.92 | pH | pН | 6.5-9.0 | 6.5-9.0 | 6.55 | 6.17 | 5.17 | 6.43 | 5.81 | 4.36 | 6.23 | 5.63 | 5.32 | 6.55 | 5.99 | 5.76 | 6.01 | 5.27 | 5.15 | 6.43 | 5.9 | 7.11 | 7.11 | 6.44 | 6.44 | 6.04 | 5.6 | | Turbidity NTU NV NV 46 0 0 0 2.2 0.8 3.9 1.9 12.2 0 7.8 4.1 0 2.3 0 0 13.4 0 1 1 9.5 9.5 0.8 0 Dissolved Oxygen mg/L NV NV 18.16 13.42 18.16 10.35 5.69 8.7 2.84 8.5 16.36 10.18 3.68 9.23 0.81 8.45 15.81 6.89 7.91 1.7 1.7 6.73 6.73 6.73 4.31 9.92 | Oxygen Reduction Potential (ORP) | N/A | NV | NV | 280 | 165 | 231 | 154 | 280 | 284 | - | 201 | 232 | 131 | 86 | 207 | - | 223 | 231 | 83 | 194 | - | - | 130 | 130 | 211 | 215 | | Turbidity NTU NV NV 46 0 0 0 2.2 0.8 3.9 1.9 12.2 0 7.8 4.1 0 2.3 0 0 13.4 0 1 1 9.5 9.5 0.8 0 Dissolved Oxygen mg/L NV NV 18.16 13.42 18.16 10.35 5.69 8.7 2.84 8.5 16.36 10.18 3.68 9.23 0.81 8.45 15.81 6.89 7.91 1.7 1.7 6.73 6.73 6.73 4.31 9.92 | Conductivity | mS/cm | NV | NV | 1.193 | 0.05 | 0.018 | 0.028 | 0.17 | 0.02 | 0.157 | 0.071 | 0.022 | 0.034 | 0.086 | 0.039 | 0.143 | 0.116 | 0.031 | 0.069 | 0.044 | 0.535 | 0.535 | 0.075 | 0.075 | 0.126 | 0.069 | | | Turbidity | NTU | | | 46 | | | | 0.8 | | | | | | | | 2.3 | 0 | | | 0 | 1 | | | | | | | | Dissolved Oxygen | mg/L | NV | NV | 18.16 | 13.42 | 18.16 | 10.35 | 5.69 | 8.7 | 2.84 | 8.5 | 16.36 | 10.18 | 3.68 | 9.23 | 0.81 | 8.45 | 15.81 | 6.89 | 7.91 | 1.7 | 1.7 | 6.73 | 6.73 | 4.31 | 9.92 | | | Dissolved Oxygen | % | NV | NV | 135.9 | | | | | 65.4 | - | 79 | | 83.4 | | | - | 81.6 | 122.2 | | 58.3 | - | - | 58.6 | 58.6 | | | Notes: General chemistry parameters are generally not considered NV - No value; FWAL - Freshwater aquatic life; NC - not calculated nd = non detect value. Detection limits were not reported -- Not applicable a - Nitrogen (Ammonia Nitrogen) guideline calculated using Table 2. Water quality guidelines for total ammonia for the protection of aquatic life (mg/L NH3) provided in the Development of the Canadian Water Quality Guidelines for the Protection of Aquatic Life: Ammonia. All results were compared to guidelines in effect at the time of sampling. Screening: indicates values are greater than CCME FWAL Shaded indicates values are greater than NS Tier 1 EQS Bold indicates values are greater than maximum background concentrations reported between October <u>Underlined</u> 2022 and July 2023 References: Canadian Council of Ministers of the Environment (CCME), current to 2021. Canadian Water Quality Guidelines (WQGs) for the Protection of Aquatic Life (freshwater, long term) Attachment 2 Page 2 of 5 | | | 20115 | NO. T | | | | | | SW4 | | | | | SW5 (| (decommissi | oned) | SV | V6 | |-------------------------------------|-------|---------------|------------------|---------------------|-----------|-----------|-----------|-----------|-----------|-------------------|-----------|-------------------|-----------|-----------|-------------|-----------|-----------|-----------| | Parameters | Units | CCME;
FWAL | NS Tier 1
EQS | Baseline
Maximum | SW4 | SW4 | SW4-Dup | SW4 | SW4 | SWDUP (FD of SW4) | SW4 | SWDUP (FD of SW4) | SW4 | SW5 | SW5 | SW5 | SW6 | SW6 | | Date | | | | | 10/5/2022 | 1/19/2023 | 1/19/2023 | 4/12/2023 | 7/12/2023 | 7/12/2023 | 2/28/2024 | 2/28/2024 | 6/24/2024 | 4/12/2023 | 7/12/2023 | 2/28/2024 | 2/28/2024 | 6/24/2024 | | Organics | Anion Sum | me/L | NV | NV | 2.520 | 0.79 | 0.18 | 0.21 | 0.31 | 0.18 | 0.18 | 0.49 | 0.44 | 0.64 | 1.17 | 0.79 | 0.48 | 0.79 | 2.49 | | Bicarb. Alkalinity (calc. as CaCO3) | mg/L | NV | NV | 25 | 16 | 3.7 | 3.2 | 5.6 | 4.9 | 4.8 | 4.3 | 3.1 | 17 | 6.1 | 12 | 4.6 | 6.1 | 26 | | Calculated TDS | mg/L | NV | NV | 160 | 50 | 16 | 17 | 23 | 17 | 17 | 32 | 30 | 42 | 78 | 53 | 32 | 52 | 170 | | Carb. Alkalinity (calc. as CaCO3) | mg/L | NV | NV | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | Cation Sum | me/L | NV | NV | 2.35 | 0.76 | 0.3 | 0.31 | 0.4 | 0.33 | 0.32 | 0.5 | 0.52 | 0.72 | 1.24 | 0.84 | 0.44 | 0.77 | 2.6 | | Hardness (CaCO3) | mg/L | NV | NV | 110 | 25 | 7.5 | 7.8 | 11 | 8.8 | 8.5 | 9.7 | 9.9 | 22 | 52 | 34 | 15 | 28 | 120 | | Ion Balance (% Difference) | % | NV | NV | 29.4 | 1.94 | 25 | 19.2 | 12.7 | 29.4 | 28 | 1.01 | 8.33 | 5.88 | 2.9 | 3.07 | 4.35 | 1.28 | 2.16 | | Langelier Index (@ 20C) | N/A | NV | NV | -1.18 | -2.08 | -3.92 | -3.97 | -3.23 | -3.64 | -3.7 | -3.9 | -3.98 | -2.05 | -2.37 | -2.35 | -3.73 | -3.04 | -1.07 | | Langelier Index (@ 4C) | N/A | NV | NV | -1.43 | -2.33 | -4.17 | -4.23 | -3.49 | -3.89 | -3.95 | -4.15 | -4.23 | -2.31 | -2.62 | -2.6 | -3.98 | -3.29 | -1.32 | | Nitrate (N) | mg/L | 13 | 13 | 0.11 | < 0.050 | < 0.050 | < 0.050 | < 0.050 | 0.066 | 0.06 | <0.050 | <0.050 | 0.084 | < 0.050 | < 0.050 | < 0.050 | 0.095 | 0.078 | | Saturation pH (@ 20C) | N/A | NV | NV | 10.4 | 9.25 | 10.4 | 10.4 | 10.1 | 10.2 | 10.2 | 10.2 | 10.4 | 9.27 | 9.26 | 9.13 | 9.95 | 9.52 | 8.31 | | Saturation pH (@ 4C) | N/A | NV | NV | 10.6 | 9.5 | 10.6 | 10.7 | 10.3 | 10.4 | 10.5 | 10.5 | 10.6 | 9.52 | 9.51 | 9.38 | 10.2 | 9.77 | 8.56 | | Inorganics | Total Alkalinity (Total as CaCO3) | mg/L | NV | NV | 25 | 16 | 3.7 | 3.2 | 5.6 | 4.9 | 4.8 | 4.3 | 3.1 | 17 | 6.1 | 12 | 4.6 | 6.1 | 26 | | Dissolved Chloride (CI-) | mg/L | 120 | 120 | 8.6 | 8.2 | 3.8 | 3.6 | 4.9 | 2.7 | 2.8 | 10 | 10 | 6.2 | 6.4 | 2.9 | 5.8 | 8.3 | 3.5 | | Colour | TCU | NV | NV | 280 | 58 | 43 | 45 | 35 | 100 | 110 | 37 | 38 | 76 | 25 | 86 | 72 | 40 | 100 | | Dissolved Fluoride (F-) | mg/L | 120 | 120 | <0.10 | NC | NC | NC | NC | NC | NC | <0.10 | <0.10 | <0.10 | NC | NC | <0.10 | <0.10 | <0.10 | | Nitrate + Nitrite (N) | mg/L | NV | NV | 0.11 | < 0.050 | < 0.050 | < 0.050 | < 0.050 | 0.066 | 0.06 | < 0.050 | < 0.050 | 0.084 | < 0.050 | < 0.050 | < 0.050 | 0.095 | 0.078 | | Nitrite (N) | mg/L | 0.06 | 0.06 | < 0.010 | < 0.010 | < 0.010 | 0.01 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | <0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | | Nitrogen (Ammonia Nitrogen) | mg/L | (see note)a | (see note)a | 0.064 | < 0.050 | < 0.050 | 0.06 | < 0.050 | < 0.050 | < 0.050 | <0.050 | < 0.050 | <0.050 | < 0.050 | < 0.050 | < 0.050 | <0.050 | 0.063 | | Total Organic Carbon (C) | mg/L | NV | NV | 25 | 8.3 | 6.2 | 6.2 | 5.2 | 15 | 14 | 4.8 | 4.7 | 11 | 4.8 | 13 | 7.2 | 5.1 | 15 | | Orthophosphate (P) | mg/L | NV | NV | 0 | <0.010 | <0.010 | <0.010 | < 0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | < 0.010 | <0.010 | 0.011 | | pH | pН | 6.5 - 9.0 | 6.5 - 9.0 | 7.22 | 7.17 | 6.47 | 6.47 | 6.82 | 6.55 | 6.53 | 6.33 | 6.38 | 7.22 | 6.9 | 6.78 | 6.22 | 6.48 | 7.24 | | Reactive Silica (SiO2) | mg/L | NV | NV | 5.4 | 4.8 | 3.5 | 3.1 | 3.2 | 4.1 | 4.2 | 2.9 | 2.9 | 4.3 | 0.89 | 2.8 | 3.6 | 2.5 | 4.6 | | Total Suspended Solids | mg/L | NV | NV | 8 | 1.4 | <1.0 | <1.0 | <1.0 | 1.8 | 1.6 | 7.6 | 6.2 | 3.6 | 1.6 | 6.2 | 1.8 | 2 | 3.8 | | Dissolved Sulphate (SO4) | mg/L | NV | NV | 86 | 12 | <2.0 | 2.1 | 3 | <2.0 | <2.0 | 5.9 | 3.9 | 6.1 | 42 | 22 | 11 | 21 | 89 | | Turbidity | NTU | NV | NV | 8 | 1.4 | 2.7 | 3 | 2.1 | 3.1 | 3.2 | 6.8 | 5.9 | 3.9 | 1.3 | 1.4 | 6.7 | 6.8 | 6.5 | | Conductivity | uS/cm | NV | NV | 390 | 75 | 31 | 31 | 41
 30 | 30 | 45 | 44 | 36 | 140 | 93 | 48 | 88 | 130 | | Field Parameters | Temperature | °C | NV | NV | NV | 9.51 | 3.24 | 3.24 | 5.23 | 15.97 | 15.97 | -0.23 | -0.23 | 19.27 | 8.96 | 23.17 | 0.37 | -0.09 | 22.03 | | pH | pН | 6.5-9.0 | 6.5-9.0 | 6.55 | 5.43 | 5.53 | 5.53 | 6.38 | 5.5 | 5.5 | 4.63 | 4.63 | 6.31 | 6.27 | 5.78 | 5.69 | 4.79 | 6.72 | | Oxygen Reduction Potential (ORP) | N/A | NV | NV | 280 | 191 | 196 | 196 | 208 | 229 | 229 | 262 | 262 | - | 47 | 195 | 198 | 226 | - | | Conductivity | mS/cm | NV | NV | 1.193 | 1.193 | 0.016 | 0.016 | 0.021 | 0.035 | 0.035 | 0.02 | 0.02 | 0.104 | 0.069 | 0.101 | 0.042 | 0.024 | 0.28 | | Turbidity | NTU | NV | NV | 46 | 0 | 0 | 0 | 5 | 0.7 | 0.7 | 0 | 0 | 2.1 | 46 | 0 | 1000 | 0 | 3.3 | | Dissolved Oxygen | mg/L | NV | NV | 18.16 | 9.13 | 15.5 | 15.5 | 17.52 | 7.6 | 7.6 | 9.9 | 9.9 | 5.46 | 11.04 | 3.33 | 10.58 | 7.23 | 1.01 | | Dissolved Oxygen | % | NV | NV | 135.9 | 79.7 | 118.7 | 118.7 | 93.8 | 77.4 | 77.4 | 69.2 | 69.2 | | 95.9 | 38.5 | 74.9 | 50.9 | - | Notes: General chemistry parameters are generally not considered NV - No value; FWAL - Freshwater aquatic life; NC - not calculated nd = non detect value. Detection limits were not reported -- Not applicable a - Nitrogen (Ammonia Nitrogen) guideline calculated using Table 2. Water quality guidelines for total ammonia for the protection of aquatic life (mg/L NH3) provided in the Development of the Canadian Water Quality Guidelines for the Protection of Aquatic Life: Ammonia. All results were compared to guidelines in effect at the time of sampling. Screening: indicates values are greater than CCME FWAL Shaded indicates values are greater than NS Tier 1 EQS Bold indicates values are greater than maximum background concentrations reported between October 2022 and July 2023 <u>Underlined</u> References: Canadian Council of Ministers of the Environment (CCME), current to 2021. Canadian Water Quality Guidelines (WQGs) for the Protection of Aquatic Life (freshwater, long term) Page 3 of 5 #### Surface Water Quality Data - Total Metals Antrim Project, Gays River, NS | | | | | | | | SW1 | | SW2 | | | | | | | | SW3 | | | | |-----------------------|-------|--------------|---------------|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------| | Parameters | Units | CCME
FWAL | NS Tier 1 EQS | Baseline
Maximum | SW1 | SW1 | SW1 | SW1 | SW1 | SW2 | SW2 | SW2 | SW2 | SW-2 | SW-2 | SW3 (historic, decommissioned) | SW3 (historic, decommissioned) | SW3 (historic, decommissioned) | SW3 (historic, decommissioned) | SW3 | | Date | | | | | 1/19/2023 | 4/12/2023 | 7/12/2023 | 3/25/2024 | 6/24/2024 | 10/5/2022 | 1/19/2023 | 4/12/2023 | 7/12/2023 | 2/28/2024 | 6/24/2024 | 10/5/2022 | 1/19/2023 | 4/12/2023 | 2/28/2024 | 6/24/2024 | | Total Aluminum (AI) | ug/L | (see note)a | 5 | 490 | 220 | 190 | 430 | 310 | 190 | 190 | 490 | 210 | 220 | 300 | 350 | 69 | 280 | 250 | 280 | 25 | | Total Antimony (Sb) | ug/L | NV | 9 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | Total Arsenic (As) | ug/L | 5 | 5 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | Total Barium (Ba) | ug/L | NV | 1000 | 30 | 4.9 | 5.7 | 9.6 | 6.3 | 11 | 30 | 8.4 | 9.8 | 13 | 12 | 18 | 16 | 8.3 | 9.9 | 9.6 | 21 | | Total Beryllium (Be) | ug/L | NV | 0.15 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | Total Bismuth (Bi) | ug/L | NV | NV | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | Total Boron (B) | ug/L | 1500 | 1500 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | | Total Cadmium (Cd) | ug/L | (see note)b | 0.09 | 0.044 | 0.01 | 0.01 | 0.02 | 0.011 | 0.016 | 0.044 | 0.018 | <0.010 | 0.017 | 0.012 | 0.028 | <0.010 | <0.010 | <0.010 | 0.011 | <0.010 | | Total Calcium (Ca) | ug/L | NV | NV | 39000 | 4200 | 7400 | 14000 | 3200 | 23000 | 18000 | 4400 | 6900 | 9700 | 5600 | 17000 | 39000 | 8100 | 19000 | 9300 | 84000 | | Total Chromium (Cr) | ug/L | NV | 8.9 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | Total Cobalt (Co) | ug/L | NV | 1 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | | Total Copper (Cu) | ug/L | (see note) | 2 | 0.99 | <0.50 | 0.55 | 0.66 | <0.50 | <0.50 | 0.87 | <0.50 | < 0.50 | 0.61 | < 0.50 | 0.82 | <0.50 | 0.7 | < 0.50 | 0.5 | < 0.50 | | Total Iron (Fe) | ug/L | 300 | 300 | 1500 | 230 | 220 | 1300 | 320 | 1300 | 290 | 470 | 170 | 1500 | 280 | 930 | 210 | 230 | 280 | 320 | 170 | | Total Lead (Pb) | ug/L | (see note) | 1 1 | 0.56 | < 0.50 | < 0.50 | 0.56 | <0.50 | <0.50 | < 0.50 | <0.50 | <0.50 | <0.50 | < 0.50 | <0.50 | <0.50 | < 0.50 | < 0.50 | <0.50 | < 0.50 | | Total Magnesium (Mg) | ug/L | NV | NV | 2500 | 520 | 650 | 1200 | 590 | 1300 | 2500 | 900 | 1100 | 1800 | 1300 | 2100 | 1800 | 740 | 1100 | 750 | <u>3700</u> | | Total Manganese (Mn) | ug/L | (see note)e | 430 | 400 | 17 | 19 | 90 | 19 | 130 | 180 | 28 | 9.7 | 81 | 26 | 120 | 66 | 6.8 | 110 | 99 | 240 | | Total Molybdenum (Mo) | ug/L | 73 | 73 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | Total Nickel (Ni) | ug/L | (see note)f | 25 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | Total Phosphorus (P) | ug/L | NV | NV | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | | Total Potassium (K) | ug/L | NV | NV | 880 | 220 | 270 | 300 | 400 | 490 | 880 | 370 | 370 | 620 | 570 | 690 | 700 | 310 | 320 | 400 | 400 | | Total Selenium (Se) | ug/L | 1 | 1 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | < 0.50 | <0.50 | <0.50 | <0.50 | <0.50 | < 0.50 | | Total Silver (Ag) | ug/L | 0.25 | 0.25 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | Total Sodium (Na) | ug/L | NV | NV | 6600 | 2200 | 2200 | 2400 | 2500 | 2700 | 4900 | 3500 | 4800 | 3600 | 5200 | 4500 | 4800 | 3600 | 4500 | 3900 | <u>8500</u> | | Total Strontium (Sr) | ug/L | NV | 21000 | 160 | 17 | 29 | 67 | 12 | 83 | 40 | 9.3 | 15 | 23 | 13 | 38 | 160 | 30 | 79 | 37 | <u>380</u> | | Total Thallium (TI) | ug/L | 8.0 | 0.8 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | Total Tin (Sn) | ug/L | NV | NV | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | Total Titanium (Ti) | ug/L | NV | NV | 14 | 7.2 | 3.7 | 9 | 6.9 | 4.6 | 4.4 | 14 | 6.4 | 6 | 6.6 | 9.9 | 2.3 | 6.1 | 6.2 | 7.1 | <2.0 | | Total Uranium (U) | ug/L | 15 | 15 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <u>0.12</u> | | Total Vanadium (V) | ug/L | NV | 120 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | Total Zinc (Zn) | ug/L | NV | 7 | 9 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | 9 | <5.0 | <5.0 | <5.0 | 7.8 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | | | | • | | | | | | | | | | | | | • | | • | | | Notes: NV - No value; FWAL - Freshwater aquatic life -- Not applicable nd = non detect value. Detection limits were not reported a - Aluminum guideline for FWAL = $5 \mu g/L$ for pH <6.5 and 100 $\mu g/L$ for b - Cadmium guideline for FWAL is 0.04 ug/L at hardness <17 mg/L, otherwise calculated as 10^(0.83[log(hardness)]-2.46) c - Copper guideline = When water hardness is 0 to <82 mg/L, the guideline is 2 μg/L; when hardness is > 82 to < 180 mg/L equation: e 0.845[In(hardness)] -1.465 X 0.2 μg/L is used to determine the copper guideline. At hardness >180 mg/L the guideline is 4 μg/L. Water hardness at all locations are <82 mg/L and as such, the guideline is 2 μg/L. an locations are <a brace and a such, the guideline is 2 μg/L. d - Lead guideline = When water hardness is 0 to <60 mg/L, the guideline is 1ug/L; when hardness is >60 to < 180 mg/L equation: e 1.273[In(hardness)] -4.705 ug/L is used to determine the lead guideline. At hardness >180 mg/L the guideline is 7 ug/L. e - Manganese guideline calculated using the Manganese - Canadian Water Quality Guideline and Benchmark Calculator provided in Appendix B of the Scientific Criteria Document for the Development of the Canadian Water Quality Guidelines for the Protection of Aquatic Life. Criteria for manganese was posted December 19, 2019. All results were compared to guidelines in effect at the time of sampling. f - Nickel guideline = When water hardness is 0 to <60 mg/L, the guideline is 25 ug/L; when hardness is > 60 to < 180 mg/L equation: e 0.76[ln(hardness)] + 1.06 ug/L is used to determine the nickel guideline. At hardness >180 mg/L the guideline is 150 ug/L. #### Screening: Shaded indicates values are greater than CCME FWAL Bold indicates values are greater than NS Tier 1 EQS indicates values are greater than maximum background <u>Underlined</u> concentrations reported between October 2022 and July 2023 #### References: Canadian Council of Ministers of the Environment (CCME), current to 2021. Canadian Water Quality Guidelines (WQGs) for the Protection of Aquatic Life
(freshwater, long term) Attachment 2 Page 4 of 5 #### Surface Water Quality Data - Total Metals Antrim Project, Gays River, NS | | | | | | | | SW3A (dec | ommissioned) | | | | | | SW4 | | | | | | SW5 (decommission | ed) | SI | W6 | |-----------------------|-------|--------------|---------------|---------------------|-------------------|-----------|-----------------------|--------------|-----------|-----------|-----------|-------------------|-----------|-----------|-------------------|-----------|-------------------|-----------|-----------|-------------------|------------|-----------|-----------| | Parameters | Units | CCME
FWAL | NS Tier 1 EQS | Baseline
Maximum | SWDUP (FD of SW3) | SW3A | SWDUP (FD
of SW3A) | SW3A | SW3A | SW4 | SW4 | SWDUP (FD of SW4) | SW4 | SW4 | SWDUP (FD of SW4) | SW4 | SWDUP (FD of SW4) | SW4 | SW5 | SW5 | SW5 | SW6 | SW6 | | Date | | | | | 6/24/2024 | 4/12/2023 | 4/12/2023 | 7/12/2023 | 2/28/2024 | 10/5/2022 | 1/19/2023 | 1/19/2023 | 4/12/2023 | 7/12/2023 | 7/12/2023 | 2/28/2024 | 2/28/2024 | 6/24/2024 | 4/12/2023 | 7/12/2023 | 2/28/2024 | 2/28/2024 | 6/24/2024 | | Total Aluminum (AI) | ug/L | (see note)a | 5 | 490 | 28 | 170 | 170 | 130 | 290 | 140 | 310 | 310 | 240 | 420 | 420 | 430 | 440 | 230 | 110 | 200 | <u>830</u> | 310 | 350 | | Total Antimony (Sb) | ug/L | NV | 9 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | Total Arsenic (As) | ug/L | 5 | 5 | <1.0 | <1.0 | <1.0 | 1 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | Total Barium (Ba) | ug/L | NV | 1000 | 30 | 20 | 9.8 | 10 | 12 | 11 | 15 | 7.6 | 7.7 | 8.3 | 9.7 | 9.4 | 9.4 | 9.5 | 11 | 8.2 | 14 | 7 | 9.2 | 12 | | Total Beryllium (Be) | ug/L | NV | 0.15 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | Total Bismuth (Bi) | ug/L | NV | NV | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | Total Boron (B) | ug/L | 1500 | 1500 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | | Total Cadmium (Cd) | ug/L | (see note)b | 0.09 | 0.044 | <0.010 | 0.01 | 0.014 | <0.010 | 0.014 | <0.010 | 0.015 | 0.014 | <0.010 | 0.015 | 0.022 | 0.012 | 0.012 | 0.016 | <0.010 | 0.028 | 0.015 | 0.012 | 0.014 | | Total Calcium (Ca) | ug/L | NV | NV | 39000 | 86000 | 21000 | 21000 | 16000 | 17000 | 7300 | 2100 | 2100 | 3000 | 2400 | 2300 | 2700 | 2700 | 6400 | 19000 | 12000 | 4900 | 10000 | 45000 | | Total Chromium (Cr) | ug/L | NV | 8.9 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | Total Cobalt (Co) | ug/L | NV | 1 | < 0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 | < 0.40 | | Total Copper (Cu) | ug/L | (see note)c | 2 | 0.99 | <0.50 | 0.53 | <0.50 | 0.55 | 0.61 | 0.99 | 0.51 | 0.52 | <0.50 | 0.65 | 0.64 | <0.50 | <0.50 | <0.50 | <0.50 | 0.65 | <0.50 | 0.62 | 0.59 | | Total Iron (Fe) | ug/L | 300 | 300 | 1500 | 180 | 200 | 210 | 610 | 290 | 430 | 190 | 190 | 190 | 420 | 410 | 330 | 340 | 780 | 140 | 640 | 390 | 380 | 830 | | Total Lead (Pb) | ug/L | (see note)d | 1 | 0.56 | < 0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | <0.50 | < 0.50 | <0.50 | <0.50 | < 0.50 | < 0.50 | <0.50 | <0.50 | <0.50 | | Total Magnesium (Mg) | ug/L | NV | NV | 2500 | 3800 | 1200 | 1200 | 1000 | 1200 | 1700 | 580 | 590 | 750 | 650 | 650 | 720 | 750 | 1400 | 1000 | 840 | 680 | 800 | 2000 | | Total Manganese (Mn) | ug/L | (see note)e | 430 | 400 | 250 | 89 | 89 | 340 | 79 | 140 | 18 | 17 | 28 | 38 | 38 | 40 | 41 | 110 | 37 | 400 | 32 | 130 | 82 | | Total Molybdenum (Mo) | ug/L | 73 | 73 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | Total Nickel (Ni) | ug/L | (see note)f | 25 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | Total Phosphorus (P) | ug/L | NV | NV | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | <100 | | Total Potassium (K) | ug/L | NV | NV | 880 | 400 | 300 | 300 | 370 | 410 | 370 | 150 | 160 | 200 | 150 | 150 | 330 | 370 | 530 | 300 | 370 | 390 | 390 | 600 | | Total Selenium (Se) | ug/L | 1 | 1 | < 0.50 | <0.50 | < 0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | < 0.50 | <0.50 | < 0.50 | <0.50 | < 0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | < 0.50 | | Total Silver (Ag) | ug/L | 0.25 | 0.25 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | Total Sodium (Na) | ug/L | NV | NV | 6600 | <u>8700</u> | 5100 | 5100 | 3600 | 6000 | 5400 | 3200 | 3300 | 4000 | 3000 | 2900 | 6600 | <u>6900</u> | 5600 | 4400 | 3000 | 2600 | 4200 | 3600 | | Total Strontium (Sr) | ug/L | NV | 21000 | 160 | <u>380</u> | 85 | 87 | 66 | 65 | 40 | 8.5 | 8.7 | 13 | 12 | 11 | 9.8 | 9.9 | 39 | 79 | 53 | 18 | 40 | 180 | | Total Thallium (TI) | ug/L | 0.8 | 0.8 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | Total Tin (Sn) | ug/L | NV | NV | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | Total Titanium (Ti) | ug/L | NV | NV | 14 | <2.0 | 4.9 | 5.5 | 2.6 | 5.8 | 3.3 | 6.6 | 6 | 7.3 | 8.5 | 6.9 | 7.1 | 12 | 6.8 | 3.1 | 3.6 | 6 | 4.3 | 8.9 | | Total Uranium (U) | ug/L | 15 | 15 | <0.10 | <u>0.13</u> | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | Total Vanadium (V) | ug/L | NV | 120 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | Total Zinc (Zn) | ug/L | NV | 7 | 9 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | Notoe: | 3 | 1 | | | , ,,,, | | | | | | | | | | | | | , | | | 7.7 | | | Notes: NV - No value; FWAL - Freshwater aquatic life -- Not applicable nd = non detect value. Detection limits were not reported a - Aluminum guideline for FWAL = $5 \mu g/L$ for pH <6.5 and 100 $\mu g/L$ for b - Cadmium guideline for FWAL is 0.04 ug/L at hardness <17 mg/L, otherwise calculated as 10^(0.83[log(hardness)]-2.46) c - Copper guideline = When water hardness is 0 to <82 mg/L, the guideline is 2 μ g/L; when hardness is > 82 to < 180 mg/L equation: e 0.845[In(hardness)] - 1.465 X 0.2 μg/L is used to determine the copper guideline. At hardness > 180 mg/L the guideline is 4 μg/L. Water hardness at all locations are <82 mg/L and as such, the guideline is 2 μg/L. d - Lead guideline = When water hardness is 0 to <60 mg/L, the guideline is 1ug/L; when hardness d - Lead guideline = When water hardness is 0 to 460 mg/L, the guideline is 1ug/L; when hardness is >60 to < 180 mg/L equation: e 1.273[In(hardness)] -4.705 ug/L is used to determine the lead guideline. At hardness >180 mg/L the guideline is 7 ug/L. e - Manganese guideline calculated using the Manganese - Canadian Water Quality Guideline and Benchmark Calculator provided in Appendix B of the Scientific Criteria Document for the Development of the Canadian Water Quality Guidelines for the Protection of Aquatic Life. Criteria for manganese was posted December 19, 2019. All results were compared to guidelines in effect at the time of sampling. f - Nickel guideline = When water hardness is 0 to <60 mg/L, the guideline is 25 ug/L; when hardness is > 60 to < 180 mg/L equation: e 0.76[ln(hardness)] + 1.06 ug/L is used to determine the nickel guideline. At hardness >180 mg/L the guideline is 150 ug/L. #### Screening: Shaded indicates values are greater than CCME FWAL Bold indicates values are greater than NS Tier 1 EQS indicates values are greater than maximum background <u>Underlined</u> concentrations reported between October 2022 and July 2023 References: Canadian Council of Ministers of the Environment (CCME), current to 2021. Canadian Water Quality Guidelines (WQGs) for the Protection of Aquatic Life (freshwater, long term) Attachment 2 Page 5 of 5 #### Surface Water QAQC (Field Duplicates) | Parameters | Event | | Jai | n-23 | | 1 | Ap | r-23 | | | Ju | ıl-23 | | | Ма | r-24 | | | Jur | n-24 | | |---------------------------------------|--------------|------|---------------|-------------------------|-------------|-----|---------------|--------------------------|-------------|-----|---------------|-------------------------|-------------|------|--------|-------------------------|-------------|------|--------|-------------------------|------------| | Parameters | Units | RDL | SW4 | SWDUP
(FD of
SW4) | RPD | RDL | SW3A | SWDUP
(FD of
SW3A) | RPD | RDL | SW4 | SWDUP
(FD of
SW4) | RPD | RDL | SW4 | SWDUP
(FD of
SW4) | RPD | RDL | SW3 | SWDUP
(FD of
SW3) | RPD | | Calculated Parameters | Anion Sum | me/L | N/A | 0.18 | 0.21 | 15.38 | | 1.25 | 1.21 | 3.25 | | 0.18 | 0.18 | 0.00 | N/A | 0.49 | 0.44 | 10.75 | N/A | 4.89 | 4.88 | 0.20 | | Bicarb. Alkalinity (calc. as CaCO3) | mg/L | 1 | 3.7 | 3.2 | 14.49 | | 5.4 | 3.7 | 37.36 | | 4.9 | 4.8 | 2.06 | 1 | 4.3 | 3.1 | 32.43 | 1 | 40 | 39 | 2.53 | | Calculated TDS | mg/L | 1 | 16 | 17 | 6.06 | | 85 | 84
 1.18 | | 17 | 17 | 0.00 | 1 | 32 | 30 | 6.45 | 1 | 320 | 320 | 0.00 | | Carb. Alkalinity (calc. as CaCO3) | mg/L | 1 | <1.0 | <1.0 | NC | | <1.0 | <1.0 | NC | | <1.0 | <1.0 | NC | 1 | <1.0 | <1.0 | NC | 1 | <1.0 | <1.0 | NC | | Cation Sum | me/L | N/A | 0.3 | 0.31 | 3.28 | | 1.39 | 1.41 | 1.43 | | 0.33 | 0.32 | 3.08 | N/A | 0.5 | 0.52 | 3.92 | N/A | 4.87 | 5 | 2.63 | | Hardness (CaCO3) | mg/L | 1 | 7.5 | 7.8 | 3.92 | | 58 | 58 | 0.00 | | 8.8 | 8.5 | 3.47 | 1 | 9.7 | 9.9 | 2.04 | 1 | 220 | 230 | 4.44 | | Ion Balance (% Difference) | % | N/A | 25 | 19.2 | 26.24 | | 5.3 | 7.63 | 36.04 | | 29.4 | 28 | 4.88 | N/A | 1.01 | 8.33 | 156.75 | N/A | 0.2 | 1.21 | 143.26 | | Langelier Index (@ 20C) | N/A | N/A | -3.92 | -3.97 | NC | | -2.3 | -2.48 | NC | | -3.64 | -3.7 | 1.63 | | -3.9 | -3.98 | 2.03 | | -0.366 | -0.356 | 2.77 | | Langelier Index (@ 4C) | N/A | N/A | -4.17 | -4.23 | NC | | -2.55 | -2.73 | NC | | -3.89 | -3.95 | 1.53 | | -4.15 | -4.23 | 1.91 | | -0.615 | -0.605 | 1.64 | | Nitrate (N) | mg/L | 0.05 | <0.050 | <0.050 | NC | | <0.050 | <0.050 | NC | | 0.07 | 0.06 | 9.52 | 0.05 | <0.050 | <0.050 | NC | 0.05 | 0.098 | 0.094 | 4.17 | | Saturation pH (@ 20C) | N/A | N/A | 10.4 | 10.4 | NC | | 9.28 | 9.43 | NC | | 10.2 | 10.2 | 0.00 | | 10.2 | 10.4 | 1.94 | | 7.91 | 7.9 | 0.13 | | Saturation pH (@ 4C) | N/A | N/A | 10.6 | 10.7 | NC | | 9.53 | 9.68 | NC | | 10.4 | 10.5 | 0.96 | | 10.5 | 10.6 | 0.95 | | 8.15 | 8.15 | 0.00 | | Inorganics | Total Alkalinity (Total as CaCO3) | mg/L | 2 | 3.7 | 3.200 | 14.493 | | 5.4 | 3.700 | 37.363 | | 4.9 | 4.800 | 2.062 | 2 | 4.3 | 3.100 | 32.432 | 2 | 40 | 39 | 2.532 | | Dissolved Chloride (CI-) | mg/L | 1 | 3.8 | 3.6 | 5.405 | | 7.2 | 7.2 | 0.000 | | 2.7 | 2.8 | 3.636 | 1 | 10 | 10 | 0.000 | 1 | 11 | 11 | 0.000 | | Colour | TCU | 25 | 43 | 45 | 4.545 | | 25 | 25 | 0.000 | | 100 | 110 | 9.524 | 25 | 37 | 38 | 2.667 | 25 | 29 | 32 | 9.836 | | Nitrate + Nitrite (N) | mg/L | 0.05 | <0.050 | <0.050 | NC | | <0.050 | <0.050 | NC | | 0.1 | 0.1 | 9.5238095 | 0.1 | <0.10 | <0.10 | NC | 0.1 | <0.10 | <0.10 | NC | | Nitrite (N) | mg/L | 0.01 | <0.010 | 0.011 | NC | | <0.010 | <0.010 | NC | | <0.010 | <0.010 | NC | 0.05 | <0.050 | <0.050 | NC | 0.05 | 0.098 | 0.094 | 4.17 | | Nitrogen (Ammonia Nitrogen) | mg/L | 0.05 | <0.050 | 0.059 | NC | | <0.050 | 0.064 | NC | | <0.050 | <0.050 | NC | 0.01 | <0.010 | <0.010 | NC | 0.01 | <0.010 | <0.010 | NC | | Total Organic Carbon (C) | mg/L | 0.5 | 6.2 | 6.2 | 0 | | 4.6 | 4.7 | 2.150538 | | 15 | 14 | 6.8965517 | 0.05 | <0.050 | <0.050 | NC | 0.05 | <0.050 | 0.063 | NC | | Orthophosphate (P) | mg/L | 0.01 | <0.010 | <0.010 | NC | | <0.010 | <0.010 | NC | | <0.010 | <0.010 | NC | 0.5 | 4.800 | 4.700 | 2.105263 | 0.5 | 5.4 | 5.4 | 0 | | pH | pН | N/A | 6.47 | 6.47 | NC | | 6.98 | 6.95 | NC | | 6.55 | 6.53 | 0.306 | 0.01 | <0.010 | <0.010 | NC | 0.01 | <0.010 | <0.010 | NC | | Total Phosphorus | mg/L | 0.02 | <100 | <100 | NC | | <100 | <100 | NC | | - | - | NC | | 6.330 | 6.380 | 0.786782 | | 7.54 | 7.55 | 0.132538 | | Reactive Silica (SiO2) | mg/L | 0.5 | 3.5 | 3.1 | 12.121 | | 1.7 | 1.7 | 0.000 | | 4.1 | 4.2 | 2.410 | 0.5 | 2.9 | 2.9 | 0.000 | 0.5 | 2.5 | 2.3 | 8.333 | | Total Suspended Solids | mg/L | 1 | <1.0 | <1.0 | NC | | 5.600 | 3.800 | 38.29787 | | 1.800 | 1.600 | 11.764706 | 1 | 7.600 | 6.200 | 20.28986 | 1 | <1.0 | <1.0 | NC | | Dissolved Sulphate (SO4) | mg/L | 2 | <2.0 | 2.1 | NC | | 45.000 | 45 | 0.000 | | <2.0 | <2.0 | NC | 2 | 5.900 | 3.9 | 40.816 | 2 | 180 | 180 | 0.000 | | Turbidity | NTU | 0.1 | 2.7 | 3 | 10.526 | | 2.3 | 2.8 | 19.608 | | 3.1 | 3.2 | 3.175 | 0.1 | 6.8 | 5.9 | 14.173 | 0.1 | 0.93 | 0.9 | 3.279 | | Conductivity | uS/cm | 1 | 150 | 160 | 6.45 | | 31 | 31 | 0.00 | | 30 | 30 | 0.00 | 1 | 45 | 44 | 2.25 | 1 | 530 | 390 | 30.43 | | Metals | Total Aluminum (AI) | ug/L | 5 | 310 | 240 | 25.45 | | 170 | 170 | 0.00 | | 420 | 420 | 0.00 | 5 | 430 | 440 | 2.30 | 5 | 25 | 28 | 11.32 | | Total Antimony (Sb) | ug/L | 1 | <1.0 | <1.0 | NC | | <1.0 | <1.0 | NC | | <1.0 | <1.0 | NC | 1 | <1.0 | <1.0 | NC | 1 | <1.0 | <1.0 | NC | | Total Arsenic (As) | ug/L | 1 | <1.0 | <1.0 | NC | | <1.0 | 1.00 | NC | | <1.0 | <1.0 | NC | 1 | <1.0 | <1.0 | NC | 1 | <1.0 | <1.0 | NC | | Total Barium (Ba) | ug/L | 1 | 7.70 | 8.30 | 7.50 | | 9.80 | 10.00 | 2.02 | | 9.70 | 9.40 | 3.14 | 1 | 9.40 | 9.50 | 1.06 | 1 | 21 | 20 | 4.88 | | Total Beryllium (Be) | ug/L | 0.10 | <0.10 | <0.10 | NC | | <0.10 | <0.10 | NC | | <0.10 | <0.10 | NC | 0.1 | <0.10 | <0.10 | NC | 0.1 | <0.10 | <0.10 | NC | | Total Bismuth (Bi) | ug/L | 2 | <2.0 | <2.0 | NC | | <2.0 | <2.0 | NC | | <2.0 | <2.0 | NC | 2 | <2.0 | <2.0 | NC | 2 | <2.0 | <2.0 | NC | | Total Boron (B) | ug/L | 50 | <50 | <50 | NC | | <50 | <50 | NC | | <50 | <50 | NC | 50 | <50 | <50 | NC | 50 | <50 | <50 | NC | | Total Cadmium (Cd) | ug/L | 0.01 | 0.01 | <0.010 | NC | | 0.01 | 0.01 | NC | | 0.02 | 0.02 | 37.84 | 0.01 | 0.01 | 0.01 | 0.00 | 0.01 | <0.010 | <0.010 | NC | | Total Calcium (Ca) | ug/L | 100 | 2100 | 3000 | 35.29 | | 21000 | 21000 | 0.00 | | 2400 | 2300 | 4.26 | 100 | 2700 | 2700 | 0.00 | 100 | 84000 | 86000 | 2.35 | | Total Chromium (Cr) | ug/L | 1.00 | <1.0 | <1.0 | NC | | <1.0 | <1.0 | NC | | <1.0 | <1.0 | NC | 1 | <1.0 | <1.0 | NC | 1 | <1.0 | <1.0 | NC | | Total Cobalt (Co) | ug/L | 0.40 | <0.40 | <0.40 | NC | | <0.40 | <0.40 | NC | | <0.40 | <0.40 | NC | 0.4 | <0.40 | <0.40 | NC | 0.4 | <0.40 | <0.40 | NC | | Total Copper (Cu) | ug/L | 0.50 | 0.52 | <0.50 | NC | | 0.53 | <0.50 | NC | | 0.65 | 0.64 | 1.55 | 0.5 | <0.50 | <0.50 | NC | 0.5 | <0.50 | <0.50 | NC | | Total Iron (Fe) | ug/L | 50 | 190.00 | 190.00 | 0.00 | | 200.00 | 210.00 | 4.88 | | 420.00 | 410.00 | 2.41 | 50 | 330.00 | 340.00 | 2.99 | 50 | 170 | 180 | 5.71 | | Total Lead (Pb) | ug/L | 0.50 | <0.50 | <0.50 | NC | | <0.50 | <0.50 | NC | | <0.50 | <0.50 | NC | 0.5 | <0.50 | <0.50 | NC | 0.5 | <0.50 | <0.50 | NC | | Total Magnesium (Mg) | ug/L | 100 | 590 | 750 | 23.88 | | 1200 | 1200 | 0.00 | | 650 | 650 | 0.00 | 100 | 720 | 750 | 4.08 | 100 | 3700 | 3800 | 2.67 | | Total Manganese (Mn) | ug/L | 2 | 17 | 28 | 48.89 | | 89 | 89 | 0.00 | | 38 | 38 | 0.00 | 2 | 40 | 41 | 2.47 | 2 | 240 | 250 | 4.08 | | Total Molybdenum (Mo) | ug/L | 2 | <2.0 | <2.0 | NC | | <2.0 | <2.0 | NC | | <2.0 | <2.0 | NC | 2 | <2.0 | <2.0 | NC | 2 | <2.0 | <2.0 | NC | | Total Nickel (Ni) | ug/L | 2 | <2.0 | <2.0 | NC | | <2.0 | <2.0 | NC | | <2.0 | <2.0 | NC | 2 | <2.0 | <2.0 | NC | 2 | <2.0 | <2.0 | NC | | Total Phosphorus (P) | ug/L | 100 | <100 | <100 | NC | | <100 | <100 | NC | | <100 | <100 | NC | 100 | <100 | <100 | NC | 100 | <100 | <100 | NC | | Total Potassium (K) | ug/L | 100 | 160 | 200 | 22.22 | | 300 | 300 | 0.00 | | 150 | 150 | 0.00 | 100 | 330 | 370 | 11.43 | 100 | 400 | 400 | 0.00 | | Total Selenium (Se) | ug/L | 0.50 | <0.50 | <0.50 | NC NC | | <0.50 | <0.50 | NC NC | | <0.50 | <0.50 | NC | 0.5 | <0.50 | <0.50 | NC | 0.5 | <0.50 | <0.50 | NC | | Total Silver (Ag) | ug/L | 0.10 | <0.10 | <0.10 | NC | | <0.10 | <0.10 | NC | | <0.10 | <0.10 | NC | 0.3 | <0.10 | <0.10 | NC | 0.1 | <0.10 | <0.10 | NC | | Total Sodium (Na) | ug/L
ug/L | 100 | 3300 | 4000 | 19.18 | 1 | 5100 | 5100 | 0.00 | | 3000 | 2900 | 3.39 | 100 | 6600 | 6900 | 4.44 | 100 | 8500 | 8700 | 2.33 | | Total Strontium (Sr) | ug/L
ug/L | 2 | 8.70 | 13 | 39.63 | 1 | 85.00 | 87 | 2.33 | | 12.00 | 11 | 8.70 | 2 | 9.80 | 10 | 1.02 | 2 | 380 | 380 | 0.00 | | Total Thallium (TI) | · | 0.10 | <0.10 | <0.10 | 39.63
NC | | <0.10 | <0.10 | 2.33
NC | | <0.10 | <0.10 | 8.70
NC | 0.1 | <0.10 | <0.10 | NC | 0.1 | | | NC | | Total Tin (Sn) | ug/L | | <2.0 | <0.10 | NC
NC | | <2.0 | <2.0 | NC
NC | | <2.0 | <2.0 | NC
NC | 2 | | | | | <0.10 | <0.10 | | | Total Tin (Sn) Total Titanium (Ti) | ug/L | 2 | | | NC
19.55 | | <2.0
4.90 | | NC
11.54 | | <2.0
8.50 | | NC
20.78 | | <2.0 | <2.0 | NC
51.21 | 2 | <2.0 | <2.0 | NC
NC | | Total Titanium (TI) Total Uranium (U) | ug/L | 2 | 6.00 | 7.30 | | | | 5.50 | | | | 6.90 | | 2 | 7.10 | 12.00 | 51.31 | 2 | <2.0 | <2.0 | NC
8.00 | | | ug/L | 0.10 | <0.10
<2.0 | <0.10
<2.0 | NC
NC | | <0.10
<2.0 | <0.10
<2.0 | NC
NC | | <0.10
<2.0 | <0.10
<2.0 | NC
NC | 0.1 | <0.10 | <0.10 | NC
NC | 0.1 | 0.12 | 0.13 | 8.00 | | Total Vanadium (1) | | | <01) | <2 () | NU. | | · <>() | <ソ() | NC: | | <ン() | · <>(1) | NC | 2 | <2.0 | <2.0 | NC | 2 | <2.0 | <2.0 | NC | | Total Vanadium (V) Total Zinc (Zn) | ug/L
ug/L | 5 | <5.0 | <5.0 | NC | | <5.0 | <5.0 | NC | | <5.0 | <5.0 | NC | 5 | <5.0 | <5.0 | NC | 5 | <5.0 | <5.0 | NC | N/A = not applicable NC = Not calculated. Occurs when reliable RPD calculation (both samples < 5x RDL); when both results are not detected, or when one result is detected and the other is not detected, RPD is not calculated - = not analyzed/not recorded # Appendix F.2 **Water Balance Assessment** # Water Balance Assessment **Antrim Gypsum Project Nova Scotia** CertainTeed Canada, Inc. 15 August 2024 | Project na | ime | Antrim EA | | | | | | |------------|----------|--------------------------------|-------------------|--|-------------------|-----------|----------| | Document | t title | Water Balance Asse | essment Antrim | Gypsum Project | Nova Scotia | | | | Project nu | ımber | 12601021 | | | | | | | File name | | | | | | | | | Status | Revision | Author | Reviewer | | Approved for | issue | | | Code | | | Name | Signature | Name | Signature | Date | | S3 | 00 | Sarah Irwin
Aidan Van Heyst | Chris
Muirhead | Draft | Callie
Andrews | Draft | 23/07/24 | | S4 | 01 | Sarah Irwin
Aidan Van Heyst | Chris
Muirhead | ************************************** | Callie
Andrews | alli an | 15/08/24 | | | | | | | | | | #### **GHD Limited** Contact: Chris Muirhead, Engineer | GHD 110, 120 Western Parkway, Bedford, Nova Scotia B4B 0V2, Canada T +1 902 468 1248 | F
+1 902 468 2207 | E info-northamerica@ghd.com | ghd.com #### © GHD 2024 This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited. # **Contents** | 1. | Introd | uction | 1 | |---------|--------|--|----------------------| | | 1.1 | Purpose of this report | , | | | 1.2 | Scope and limitations | • | | 2. | Backg | ground | 2 | | | 2.1 | Project Overview | 2 | | | 2.2 | Mine Water Management Overview | 2 | | 3. | Data (| Collection | (| | | 3.1 | Existing Soil Characterization | 6 | | | 3.2 | Topographic Data | (| | | 3.3 | Climate Data | 6 | | 4. | Water | Balance Methodology | 7 | | | 4.1 | Flow Estimation | 7 | | | 4.2 | Groundwater Model Output | Ç | | | 4.3 | Mine Water Management System | ę | | 5. | Water | Balance Results | 12 | | | 5.1 | Impacts to the Receiving Environment | 12 | | | | 5.1.1 Water Balance Assessment | 12 | | | | 5.1.1.1 Supplemental Flow Requirements | 1; | | | | 5.1.1.2 Water Balance Assessment Results 5.1.2 Water Balance Assessment Discussion | 1;
1 ₄ | | | 5.2 | Pit Filling Calculations | 14 | | • | | • | | | 6.
_ | Summ | • | 14 | | 7. | Refere | ences | 15 | | Tak | ole in | dex | | | Table | e 2 1 | Summary of assessment points | ļ | | Table | | Monthly and annual average climate data calculated from the ECCC Halifax | · | | | | Stanfield climate station. | 7 | | Table | | Runoff coefficient summary | 7 | | Table | | Mine development phase summary | (| | Table | | Water transfers during Phase 1 | 10 | | Table | | Water transfers during Phase 2 | 1(| | Table | | Water transfers during Pit Filling | 1(| | Table | | Assessment point summary results for mean annual conditions | 12 | | Table | | Supplemental flow rates | 13 | | rable | e 5.3 | Pit filling times under various precipitation and backfill scenarios | 14 | # Figure index | Figure 2.1 | Project area map and assessment point locations | 4 | |------------|---|----| | Figure 4.1 | Discharge locations | 11 | # **Appendices** Appendix A Monthly Water Balance Results Appendix B Preliminary Supplemental Flow Requirement Assessment # 1. Introduction # 1.1 Purpose of this report CertainTeed Canada Inc. (CertainTeed) has retained GHD Limited (GHD) to provide technical and permitting services in support of a Provincial Class 1 Environmental Assessment Registration Document (EARD) submission to Nova Scotia Environment and Climate Change (NSECC) for the Antrim Gypsum Project (Project), located in Cooks Brook, Nova Scotia (NS). GHD's scope of work includes the development of a water balance model (WBM) for the Project to support the EARD. For the purpose of the EARD and this assessment, a Project Area (PA) was defined as the footprint of Project related infrastructure covering an area of approximately 602 hectares (ha). The WBM simulates the interactions between the local climate, hydrologic responses of the assessed catchment areas, and water management operations to model the distribution of water through the site and predict impacts to the surrounding natural water features. Results from the WBM were used to address the following objectives: - Evaluate the impact of mine development on drainage patterns in the receiving environment by comparing runoff volumes between baseline (i.e., pre-development) and predicted post-developed conditions to support the assessment of impacts to black ash, and fish and fish habitat. - Estimate the time to fill the open pit with water as part of the closure plan for reclamation following backfill activities. The purpose of this report is to document the data inputs and methodology behind the development of the WBM and summarize the model outputs as they pertain to the study objectives. The WBM was used to analyze results for five phases of Project development as summarized below: - Baseline: Existing conditions at the PA prior to any development activities. - Phase 1 Conditions: The first phase of excavation and processing of gypsum. The northern portion of the open pit has been excavated and the northern portion of the proposed overburden stockpile has been developed. - Phase 2 Conditions: Full build-out conditions for the PA including excavation of the open pit, backfilling of the northern portion of the pit and development of all stockpiles. - Pit Filling Conditions: Active mining has finished, and reclamation activities have commenced. Stockpiles have been covered and seeded and any administrative areas have been restored. The open pit is filling with direct precipitation, groundwater inflows, overflow from the South Settling Pond, and surface flows from upstream catchments - Closure Conditions: All mine infrastructure has been removed. The open pit is filled to an elevation of 25.1 meters above sea level (masl). No further closure activities to be conducted. The results of the water balance analysis are organized to follow the framework of the study objectives. # 1.2 Scope and limitations This report: has been prepared by GHD for CertainTeed Canada, Inc. and may only be used and relied on by CertainTeed Canada, Inc. and Nova Scotia Environment and Climate Change (NSECC) for the purpose agreed between GHD and CertainTeed Canada, Inc. as set out in section 1.1 of this report. GHD otherwise disclaims responsibility to any person other than CertainTeed Canada, Inc. and NSECC arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible. The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report. The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared. The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report (refer section(s) 2 of this report). GHD disclaims liability arising from any of the assumptions being incorrect. # 2. Background ## 2.1 Project Overview The Project is located approximately 50 kilometres (km) northeast from Halifax, near Gays River, along Lake Egmont Road in the community of Cooks Brook, NS. CertainTeed proposes to develop the Project as a conventional gypsum mining operation, including an open pit, combined overburden and waste rock stockpile (referred to herein as the overburden stockpile), topsoil stockpiles, rock processing plant, as well as water management infrastructure. The Project will produce marketable gypsum and anhydrate at an estimated average rate of production of 1.5 million tonnes per year. The gypsum and anhydrate products will be transported via trucks to a port facility in Sheet Harbour, approximately 82 km from the PA, for shipment to manufacturing facilities either in Canada or the United States. The operating life of the Project is proposed to be 23 years. The scope of the Project includes activities associated with construction, operation, and closure. Project construction activities will include clearing and grubbing the topsoil stockpiles, overburden stockpile, run-of-mine (ROM) stockpile, mine pit, and construction of the processing facility (i.e., sizer buildings, conveyor, screening building, etc.), access roads, fuelling infrastructure, surface water management and other Project infrastructure. The operation phase will include extraction (surface miner, loading, and hauling), processing, and waste management. Blasting may be used for extraction if required. Gypsum will be screened while stockpiled. The closure phase will include earthworks and demolition required to return the Project Area to a safe, stable, and vegetated state, and all monitoring and treatment, if required. Reclamation and Closure Plan requirements are governed by the *Nova Scotia Mineral Resources Act*. The Project has documented black ash across the PA, including a concentration of trees within the northwest corner, and several individual trees within the southern portion of the PA. One tree is located within the extents of the proposed open pit. This tree is proposed to be transplanted, in collaboration with the Mi'kmaq of Nova Scotia, in keeping with several other recent projects where transplantation of black ash has been allowed to support industrial and infrastructure development projects (Touquoy Gold Mine, Highway 104 and 107 upgrade projects). A comprehensive monitoring program will be established to support Project development which will act as a research project relating to the required hydrologic regime required for the remaining black ash (all but one individual tree) that will be avoided by the Project. # 2.2 Mine Water Management Overview The Project is located in the catchment area of the Gays River – a tributary of the Shubenacadie River. The total PA is 602 hectares (ha) and the total catchment area downstream of the PA, along the Gays River is approximately 8,577 ha. The PA is drained by several tributaries, including Annand Brook, which flows west through the neighbouring Scotia Mine property and polishing pond before entering the Gays River. The Scotia Mine property is located immediately west of the of the Project. Scotia Mine is a surface lead/zinc mine that consists of an open pit (currently filled with water) and associated mine infrastructure, including a tailings pond, polishing pond, roads and buildings. Under existing conditions a tributary of Annand Brook flows through the Project
Area before flowing into the Scotia Mine polishing pond. The land cover of the PA is comprised of numerous wetlands, watercourses, and forested lands. Figure 2.1 presents a map of the Project, including field verified and provincially mapped watercourses. In operation, the mine water management system will discharge to the receiving environment at five (5) locations, including the North Settling Pond, South Settling Pond as well as 3 discharge points to supplement flows to the natural environment. In closure, the open pit will receive water from the natural environment while also discharging directly to the environment. **Figure 2.1** also shows a map of the proposed mine features, including the mine water sources, collection ponds, and discharge points to the Gays River system. To assess the impact of the Project on the receiving environment, the WBM simulates monthly flow volumes for baseline, Phase 1 operation, Phase 2 operation, and closure conditions, which are compared at various points along the tributaries and main branch of the Gays River system referred to as "assessment points". These assessment points have been selected to support the evaluation on impacts on fish and fish habitat. **Figure 2.1** shows the location of the assessment points and corresponding subcatchment areas. **Table 2.1** summarizes the identification number (ID), subcatchment area, location, and justification for the selection of the assessment points. The sizes of the subcatchment areas will change overtime as a result of the Project development. The Baseline, Phase 1, Phase 2, Pit Filling, and Closure phases are described in Section 3.3 of the report. For additional information regarding the conceptual water management plan for the Project, refer to the Antrim Gypsum Project Conceptual Water Management Plan (GHD, 2024a). Map Projection: Transverse Mercator Horizontal Datum: North American 1983 Grid: NAD 1983 UTM Zone 20N CERTAINTEED CANADA, INC LAKE EGMONT, HALIFAX CO, NOVA SCOTIA ANTRIM GYPSUM PROJECT WATER BALANCE ANALYSIS ASSESSMENT POINT LOCATIONS Project No. 12601021 Revision No. Date Aug 14, 2024 FIGURE 2.1 Table 2.1 Summary of assessment points | Assessment | Catchme | nt Area at Se | elect Mine Ph | ases (ha) | 5 | |------------|----------|---------------|---------------|-----------|--| | Point | Baseline | Phase 1 | Phase 2 | Closure | Description | | AP1 | 136.38 | 120.39 | 88.84 | 97.12 | Located on Watercourse (WC) 41, a tributary of Annand Brook. Used to assess the direct impacts of mine infrastructure and the pit on mean annual flows within the tributary. | | AP2 | 85.07 | 85.07 | 85.07 | 85.07 | Located on WC 3, a tributary of Annand Brook. Provides an upstream control point. | | AP3 | 351.17 | 335.18 | 258.63 | 266.17 | Located on Annand Brook upstream of the Scotia Mine Polishing Pond and downstream of AP1 and AP2. Used to assess the direct impacts of mine infrastructure and the pit on mean annual flows within Annand Brook. | | AP4 | 513.97 | 466.36 | 453.47 | 459.96 | Located on Annand Brook downstream of the Scotia Mine Polishing Pond. Used to assess the direct impacts of mine infrastructure and the pit on mean annual flows within Annand Brook. | | AP5 | 32.98 | 10.89 | 31.11 | 32.84 | Located along Wetland 34 before draining to Annand Brook. Used to assess the direct impacts of the pit on mean annual flows leading to the identified black ash habitat. | | AP6 | 61.28 | 38.63 | 42.7 | 64.74 | Located on WC22, a tributary to Annand Brook downstream of AP17. Used to assess the direct impacts of the pit on mean annual flows leading to the identified black ash habitat. | | AP7 | 128.88 | 84.14 | 108.42 | 132.2 | Located on Annand Brook downstream of AP4, AP5, and AP6. Used to assess the direct impacts of mine infrastructure and the pit on mean annual flows within Annand Brook. | | AP8 | 179.29 | 134.55 | 158.84 | 182.6 | Located on Annand Brook downstream of AP7 and upstream of the confluence with the Gays River. Used to assess the direct impacts of mine infrastructure and the pit on mean annual flows within Annand Brook. | | AP9 | 4053.81 | 4053.81 | 4053.81 | 4053.81 | Located on the Gays River. Provides an upstream control point. | | AP10 | 93.16 | 76.33 | 72.14 | 72.14 | Located on an unlabelled tributary to the Gays River. Used to assess the direct impacts of mine infrastructure on mean annual flows within the tributary. | | AP11 | 4151.15 | 4134.31 | 4130.12 | 4130.12 | Located on the Gays River downstream of AP9 and AP10. Used to assess the direct impacts of mine infrastructure on mean annual flows within the Gays River. | | AP12 | 61.98 | 26.14 | 26.14 | 34.34 | Located on WC26, tributary to the Gays River. Used to assess the direct impacts of mine infrastructure on mean annual flows within the Gays River. | | AP13 | 4435.57 | 4381.64 | 4377.44 | 4385.63 | Located on the Gays River downstream of AP11 and AP12. Used to assess the direct impacts of mine infrastructure on mean annual flows within the Gays River. | | AP14 | 7951.00 | 7896.92 | 7892.73 | 7901.10 | Located on the Gays River downstream of AP13. Used to assess the direct impacts of mine infrastructure on mean annual flows within the Gays River. | | Assessment | Catchme | nt Area at Se | elect Mine Ph | ases (ha) | Parasintian | |------------|----------|---------------|---------------|-----------|---| | Point | Baseline | Phase 1 | Phase 2 | Closure | - Description | | AP15 | 8023.30 | 7969.22 | 7965.03 | 7973.37 | Located on the Gays River downstream of AP14. Used to assess the direct impacts of mine infrastructure on mean annual flows within the Gays River. | | AP16 | 8716.56 | 8570.13 | 8577.34 | 8615.93 | Located on the Gays River downstream of AP8 and AP15. Used to assess the direct impacts of mine infrastructure on mean annual flows within the Gays River. | | AP17 | 20.6 | 9.37 | 13.38 | 22.62 | Located on WC 21, a tributary to Annand Brook upstream of AP6. Used to assess the direct impacts of mine infrastructure and the pit on mean annual flows to the identified Black ash habitat. | ## 3. Data Collection # 3.1 Existing Soil Characterization The existing soil characterization to inform the water balance assessment was quantified by the Detailed Soil Survey for Nova Scotia. The PA was identified to consist of 98% Sandy Clay Loam. ## 3.2 Topographic Data A Nova Scotia Department of Natural Resources Digital Elevation Model (DEM) was used to perform the delineation of the baseline subcatchments in the Gays River system using the watershed delineation tool in PCSWMM. PCSWMM is a combined hydrologic and hydraulic modelling software with geospatial tools for assessing contributing drainage areas based upon DEM data. The DEM elevation data was collected in 2011. It has a planar resolution of 1 m x 1m. The horizontal datum is the North American Datum of 1983 UTM Zone 20 (NAD83 UTM Zone 20). Contours were generated from the DEM to verify the baseline subcatchment boundaries. Digitally generated subcatchment were verified manually for baseline conditions. Phase 1, Phase 2, Pit Filling and Closure subcatchments were manually delineated around Project infrastructure. Proposed contours of the mine infrastructure including the stockpiles and open pits were generated by Moose Mountain and were used to support the delineation of the subcatchments under post-development conditions. ## 3.3 Climate Data The WBM uses daily climate data inputs including daily precipitation (rainfall and snowfall), daily average temperature, and calculated daily potential evaporation. A 50-year record of daily precipitation and average temperature values were obtained from the Halifax Stanfield International Airport Environment Canada Climate Change (ECCC) climate station (ID 8202251) for the years between 1964-2023. The Halifax Stanfield climate station is located approximately 21 km southwest from the PA. Alternatively the Upper Stewiacke climate station is located 75 km north of the PA. The Upper Stewiacke climate station has a lengthy period of record (1915-2024). Neither climate stations represented significant shifts in proximity to the coast, as such, Halifax Stanfield International Airport was determined as the appropriate station due to the closer proximity to the PA. Potential evapotranspiration (PET) values were calculated using the Hamon method, which estimates PET based on the empirical relationship between mean daily air temperature, saturated water vapour concentration and day length (hours of sunshine). Daily average temperature values from the Halifax Stanfield climate record were used to calculate daily PET values. The daily PET values were then input into a soil-water balance model to calculate Actual Evapotranspiration (AET) for the corresponding 50-year climate record. Table 3.1 summarizes the average monthly values of the climate data used in the water balance analysis. Table 3.1 Monthly and annual average climate data calculated from the ECCC Halifax Stanfield climate station. | Climate
Variable | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Annual | |--|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|--------| | Precipitation (mm) | 144.4 | 122.1 | 124.3 | 115.7 | 105.3 | 100.8 | 93.3 | 99.0 | 105.4 | 131.2 | 153.9 | 163.7 | 1459.2 | | Rainfall (mm) | 85.2 | 67.9 | 81.6 | 96.9 | 103.0 | 100.8 | 93.3 | 99.0 | 105.4 | 129.7 | 139.6 | 117.5 | 1219.9 | | Snowfall
(mm) | 59.2 | 54.2 | 42.7 | 18.8 | 2.3 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 14.4 | 46.2
 239.3 | | Mean
Temperature
(°C) | -5.6 | -5.5 | -1.4 | 4.1 | 9.8 | 15.0 | 18.8 | 18.7 | 14.6 | 9.0 | 3.5 | -2.2 | | | Potential
Evapotranspir
ation (mm) | 3.9 | 3.9 | 12.1 | 33.5 | 59.2 | 82.5 | 104.1 | 95.3 | 64.4 | 41.1 | 21.3 | 8.0 | 529.4 | # 4. Water Balance Methodology This section of the report describes the water balance modelling methodology, including the Baseline, Phase 1, Phase 2, Pit Filling and Closure flow estimates, incorporation of the groundwater model output, and water transfers between mine infrastructure. The WBM was developed using the GoldSim software. GoldSim is a highly graphical program used for carrying out dynamic simulations to support decision making (https://www.goldsim.com/Web/Home/, last accessed 4 July 2024). GoldSim is especially well-suited to simulate dynamic, computationally intensive, but well-defined network models such as a water balance. GoldSim can perform Monte Carlo simulations, track outputs from those simulations, and provide a graphical interface to facilitate the review and identification of interactions between system components. The WBM was developed to utilize climate inputs at a daily time-step, allowing for the results to be summarized at monthly and annual time intervals. The WBM was used to estimate flow volumes at the proposed mine water management features and 17 assessment points located on the tributaries of the Gays River system over the duration of the Project. ## 4.1 Flow Estimation Flow volumes were estimated at the assessment points as the product of precipitation, catchment area, and a runoff coefficient, which is a measure of the amount of runoff generated by a precipitation event that varies depending on the land cover and antecedent moisture conditions of the surficial soils. **Table 4.1** summarizes the mean annual runoff coefficients by land cover type and provides a breakdown of the proportion of runoff that is contributed by surface water and baseflow from groundwater sources. Table 4.1 Runoff coefficient summary | Land Cover Type | Runoff Coefficient | Surface Water
Contribution | Groundwater Contribution | |-----------------|--------------------|-------------------------------|--------------------------| | Undisturbed | 0.69 | 0.55 | 0.14 | | Open Water | 1.00 | 1.00 | 0.00 | | Hard Mine | 0.80 | 0.85 | 0.00 | | Topsoil | 0.62-0.72 | 0.48-0.58 | 0.14 | | Waste Rock | 0.49-0.79 | 0.35-0.66 | 0.14 | The proportion of the flow contributed by baseflow was determined from the average annual recharge rate of 200 millimetres per year (mm/year) (GHD, 2024b). A baseflow component of the runoff coefficient was estimated for undisturbed, waste rock, and topsoil land cover types by dividing the mean annual recharge rate by mean annual precipitation for the PA, resulting in a value of 0.14. The baseflow contribution is consistent for the three land cover types, because the waste rock and topsoil stockpiles will sit on top of the undisturbed land. The hard mine and open water land cover types are impervious and therefore are disconnected from the groundwater system. The surface runoff component of the runoff coefficient was then estimated by subtracting 0.14 from the runoff coefficient. #### **Undisturbed Land Cover** The undisturbed land cover type represents the natural ground cover, which is primarily comprised of natural stand forest with wetlands and open water features. To estimate the runoff coefficient for this composite land cover, observed data was utilized. A long-term hydrometric record from the Beaverbank near Kinsac Water Survey Canada (WSC) gauge station was used to calculate the mean unit flow rate, which was then divided by the mean precipitation for the PA calculated over the same period (from 1965 to 2020), resulting in a mean annual runoff coefficient of 0.69. The Beaverbank near Kinsac hydrometric record was selected for the analysis because it is near to the Halifax Stanfield International Airport climate station (chosen for this study), its catchment area has similar land cover type (primarily forested), and its catchment area is comparable to Assessment Point 16 on the Gays River (within 10%). #### **Impervious Land Cover** The open water runoff coefficient of 1.0 was applied to the collection ponds, polishing pond at the Scotia Mine polishing pond, and the pit lake post-closure. All open water sources were modelled as reservoirs, which experience evaporative losses from their surface area. In the absence of observed data or standard literature values, the hard mine runoff coefficient of 0.80 was estimated assuming the first 2 mm of rainfall is captured in depression storage on the ground and evaporated. #### **Stockpile Land Cover** The overburden stockpile and topsoil runoff coefficients were estimated using a simple continuous hydrological model developed using the HEC-HMS software. The topsoil stockpile was modelled as a subcatchment of uniform land cover characterized as sandy clay loam. The overburden stockpile was modelled as a silty sand to provide a conservative estimate for infiltration rates into the stockpile. The underlying soil was assumed to be a compacted sandy clay loam. The topsoil stockpile results predict that total precipitation will generate 37% surface runoff, 28% evaporation, and 35% infiltration based on the average annual climate conditions. Infiltration is further broken down into 14% groundwater recharge and 21% seepage discharge. The overburden stockpile results predict that total precipitation will generate 5% surface runoff, 20% evaporation, and 75% infiltration, which is further partitioned into 14% groundwater recharge and 61% seepage. If the stockpiles have not reached saturation, then a portion of the infiltration volume will be absorbed, reducing the amount of water that discharges as seepage. As such, a range of seepage rates are considered in this assessment: from half to the full seepage rate at saturation. In closure, it is assumed that the topsoil stockpile will have been used to facilitate reclamation process and that the overburden stockpile will be covered to mimic the natural ground cover. #### **Seasonal Variation** To account for the seasonal variation in antecedent moisture conditions of the undisturbed, topsoil, and waste rock land cover types, the runoff coefficients were calculated monthly. # 4.2 Groundwater Model Output In baseline conditions, it is assumed that the groundwater flow patterns will follow the surficial subcatchment boundaries, meaning groundwater recharge (9% of precipitation on average) will return to the surface as baseflow at the subcatchment outlets (i.e., the assessment points). After the open pit has been mined, the assumption that groundwater flow patterns follow the subcatchment boundaries is no longer valid. The development of the open pit will alter groundwater flow patterns from baseline conditions, which is demonstrated in the radius of influence map presented in the Hydrogeological Modelling report (GHD, 2024b). #### **Baseflow Impacts** Baseflow volume variations to the natural lakes and watercourses were determined using the Project groundwater model (GHD, 2024b). The baseflow impacts were incorporated into the WBM as percent changes from baseline conditions at each assessment point. #### **Open Pit Inflow** Groundwater inflow rates to the open pits were also obtained from the Project groundwater model (GHD, 2024b). Predicted groundwater inflow rates range from 1,237 m³/day in Phase 1, to 2,718 m³/day in Phase 2, to 63 m³/day in closure when the pit lake is fully formed. Groundwater inflow rates are predicted to continue into closure because the eventual pit lake elevation is lower than the current ground elevation is for certain portions on the pit lake. ## 4.3 Mine Water Management System The proposed mine water management system will discharge through five discharge points to the Gays River and to Annand Brook over the duration of the Project. This discharge points include the North Settling Pond overflow to the Gays River at AP12, North Settling Pond supplemental pumping to support black ash hydrology at AP5, AP6, and AP17, and South Settling pond/pit dewatering discharge to Annand Brook at AP3. The discharge points from the PA are shown on **Figure 4.1**. **Table 4.2** describes the four mine development stages in the context of the water balance modelling approach. **Table 4.3** and **Table 4.4** describe the water transfers presented in the flow diagrams. | Table 4.2 Mine develo | opment phase summary | |-----------------------|----------------------| |-----------------------|----------------------| | Mine Development Phase | Description | |------------------------|--| | Phase 1 | Year 1-6 of the Project Ore extraction and mine infrastructure remain within private land | | | Open pit is sized to allow for backfill to support the black ash | | Phase 2 | Year 7-23 of the Project Ore extraction and mine infrastructure expand into Crown land Backfill to original elevation and contours in the northern portion of the open pit to support black ash | | Pit Filling | Year 23+ of the Project Represents the first full year when the open pit is mined to its full extent and will begin to fill with water It is assumed that the administrative and crusher pad areas are restored to resemble baseline conditions. | | Mine Development Phase | Description | | | | | | | | |------------------------|--|--|--|--|--|--|--|--| |
Closure | Year 23+ of the Project when the Pit is filled with water | | | | | | | | | | Open pit overflow will be directed to Annand Brook along the western boundary of the PA | | | | | | | | | | Surface water ditched surrounding mine infrastructure will continue to discharge to the Gays River | | | | | | | | Table 4.3 Water transfers during Phase 1 | Infrastructure Element | Sources of Inflow | Discharge Point | |------------------------|---|---| | North Settling Pond | Surface runoff from overburden and topsoil stockpiles Surface runoff from administrative and crusher pad areas Dewatering pump from Phase 1open pit | Supplemental pumping to AP3 Supplemental pumping to AP5 Supplemental pumping to AP6 Supplemental pumping to AP17 WC26 | | Phase 1 Pit | Pit wall runoffGroundwater inflow | North Settling Pond | Table 4.4 Water transfers during Phase 2 | Infrastructure Element | Sources of Inflow | Discharge Point | |------------------------|---|--| | North Settling Pond | Surface runoff from waste rock and topsoil
stockpiles Surface runoff from administrative and crusher
pad areas | Supplemental pumping to AP5 Supplemental pumping to AP6 Supplemental pumping to AP17 WC26 | | South Settling Pond | Stockpile runoff from overburden stockpiles Surface runoff from AP1 catchment Dewatering pump from Phase 2 open pit | Annand Brook via AP3 | | Phase 2 Pit | Pit wall runoffGroundwater inflow | South Settling Pond | Table 4.5 Water transfers during Pit Filling | Infrastructure Element | Sources of Inflow | Discharge Point | |------------------------|---|--| | North Settling Pond | Surface runoff from overburden and topsoil
stockpiles Surface runoff from administrative and crusher
pad areas | Supplemental pumping to AP5 Supplemental pumping to AP6 Supplemental pumping to AP17 WC26 | | South Settling Pond | Stockpile runoff from overburden stockpiles Surface runoff from AP1 catchment | Phase 2 Pit | | Phase 2 Pit | Pit wall runoff Groundwater inflow South Settling Pond Inflow Inflow from AP1 and AP2 catchments | No Discharge Point | Metres Map Projection: Transverse Mercator Horizontal Datum: North American 1983 Grid: NAD 1983 UTM Zone 20N CERTAINTEED CANADA, INC LAKE EGMONT, HALIFAX CO, NOVA SCOTIA ANTRIM GYPSUM PROJECT **CONTACT WATER DISCHARGE LOCATIONS** Date Aug 14, 2024 FIGURE 4.1 # 5. Water Balance Results The water balance results are summarised in two sections: impacts to the receiving environment and pit filling calculations. The results are presented below. # 5.1 Impacts to the Receiving Environment #### 5.1.1 Water Balance Assessment A summary of average annual flow impacts during Baseline, Phase 1, Phase 2, Pit Filling and Closure development phases at each of the 17 assessment points are presented in **Table 5.1** based on the proposed Project development. Detailed monthly water balance results can be found in **Appendix A**. Table 5.1 Assessment point summary results for mean annual conditions | Assessment | Baseline Flow | Baseline Flow | Percent Cha | nge from Baseline | 9 | | | |------------|---------------|---------------|-------------|-------------------|-------------|---------|--| | Point | Volume (m3) | Rate (L/s) | Phase 1 | Phase 2 | Pit Filling | Closure | | | 1 | 1,241,581 | 39.4 | -16% | -37% | -31% | -31% | | | 2 | 847,327 | 26.9 | 1% | -3% | -3% | -1% | | | 3 | 3,397,509 | 107.7 | 0% | 15% | -2% | -6% | | | 4 | 5,778,887 | 183.2 | 3% | 11% | 2% | 1% | | | 5 | 257,870 | 8.2 | 0% | 0% | 0% | 0% | | | 6 | 592,872 | 18.8 | 0% | 0% | 0% | 0% | | | 7 | 6,859,151 | 217.5 | 1% | 7% | -1% | 1% | | | 8 | 7,343,483 | 232.9 | 1% | 7% | -1% | 1% | | | 9 | 37,484,739 | 1,188.6 | 0% | 0% | 0% | 0% | | | 10 | 874,711 | 27.7 | -22% | -25% | -25% | -25% | | | 11 | 38,384,011 | 1,217.1 | 0% | -1% | -1% | -1% | | | 12 | 626,188 | 19.9 | 47% | 56% | 3% | 14% | | | 13 | 41,014,330 | 1,300.6 | 0% | 0% | -1% | 0% | | | 14 | 72,387,000 | 2,295.4 | 0% | 0% | 0% | 0% | | | 15 | 73,038,000 | 2,316.0 | 0% | 0% | 0% | 0% | | | 16 | 80,384,000 | 2,549.0 | 0% 1% | | 0% | 0% | | | 17 | 187,538 | 5.9 | 0% | 0% | 0% | 0% | | The assessment points are split into two main river systems: the Gays River and Annand Brook. Annand Brook includes AP1, AP2, AP3, AP4, AP5, AP6, AP7, AP8, and AP17. Identified water balance concerns for the PA include the presence of black ash within catchments for AP5, AP6 and AP17 as well as potential impacts to the Scotia Mine Polishing Pond (located between AP3 and AP4). As per the Black Ash (Fraxinus nigra) Tolerance and Sensitivity – Antrim Gypsum Project (Strum, 2024), black ash is an endangered species and is highly sensitive to water level fluctuations. In addition, fluctuations in flow through the Scotia Mine polishing pond will be reduced to reduce alterations to the existing hydrology of the system. #### 5.1.1.1 Supplemental Flow Requirements The main area of concern along Annand Brook includes AP3 and AP4 (as these assessment points are associated with the Scotia Mine polishing pond) and AP5, AP6, and AP17 (as these assessment points are associated with the black ash populations). To minimize impacts to these areas, a preliminary water balance assessment was completed to determine required supplemental flows for these locations. The results of this preliminary water balance are shown in **Appendix B**. Supplemental flows are required to ensure minimal impacts to AP3, AP4, AP5, AP6 and AP17 during Phase 1, Phase 2 and Pit Filling conditions. No supplemental flows are required during Closure conditions for any catchment. Since AP4 is immediately downstream of AP3, supplemental flows are directed to AP3 with no additional flows required to be added at AP4. The supplemental flows required to reduce impacts to the black ash and maintain the flow through the Scotia Mine polishing pond are indicated in **Table 5.2**. Table 5.2 Supplemental flow rates | Assessment Point | Phase 1 Supplemental Flows (L/s) | Phase 2 Supplemental Flow (L/s) | Pit Filling Supplemental Flow (L/s) | |------------------|----------------------------------|---------------------------------|-------------------------------------| | 3 | 12.0 | NA | 80.6 | | 5 | 5.5 | 0.5 | NA | | 6 | 4.3 | 4.7 | 1.5 | | 17 | 3.6 | 2.6 | 0.34 | The flow rates presented in **Table 5.2** depict average flow rates required to minimize the annual changes in flow to AP3, AP4, AP5, AP6 and AP17 during the Project life cycle. The flow rates will be refined based on additional environmental data collection/monitoring, pump design, outlet design and operating procedures during future phases of design. #### 5.1.1.2 Water Balance Assessment Results In Phase 1, supplemental flows will be taken from North Settling Pond and will be pumped to AP5, AP6 and AP17 at rates of 5.5 L/s, 4.3 L/s and 3.6 L/s, respectively. AP3 will be supplemented by open pit dewatering at a rate of 12 L/s, with the remainder of the pit dewatering flows being discharged to the North Settling Pond. The North Settling Pond ultimately discharges to AP12. As shown in **Table 5.1**, there are negligible impacts at AP3, AP4, AP5, AP6, and AP17 on an annual basis. The downstream points on the Gays River show a negligible impact from mining activities. In Phase 2, similar pumping schemes are used, with slightly lower flow rates as some of the areas to AP5 and AP17 have been recuperated through backfilling. Supplemental flows will be taken from South Settling Pond and will be pumped to AP5, AP6, and AP17 at rates of 0.5 L/s, 4.7 L/s, and 2.6 L/s, respectively. In this phase, AP3 does not require any flow supplementation, as the South Settling Pond is to be pumped around the pit and discharged to AP3. As shown in **Table 5.1**, the impacts at AP5, AP6 and AP17 are negligible on an annual basis. No supplemental flows were required for AP3 and the Scotia Mine Polishing Pond as the pit is discharging to the South Settling Pond in this phase, which ultimately discharges to AP3. During pit filling, flows to AP3 are required to be supplemented and the supplemental flow rate will be pumped directly from the pit. The supplemental flow rate from the pit to AP3 is 80.6 L/s. Supplemental flows will be taken from the North Settling Pond and will be pumped to AP6 and AP17 at rates of 1.5 L/s and 0.34 L/s, respectively. During closure, the mine will be decommissioned including pumps, ponds, and other mine infrastructure such as the administration area. Since supplemental pumping to the affected black ash population is not possible in this phase, the PA will be graded such that the drainage area leading to the identified black ash locations provides sufficient water to maintain
flow rates as per Baseline, Phase 1, Phase 2 and Pit Filling conditions. Grading will be required at the location of the decommissioned administrative and crusher pad areas to achieve the required drainage areas to the black ash catchments. As shown on **Table 5.2**, regrading of the decommissioned administrative and crusher pad areas results in negligible changes in flow to AP5, AP6, and AP17 to support the black ash community. #### 5.1.2 Water Balance Assessment Discussion The water balance assessment above presents a summary of the annual impacts to each assessment point while monthly results are presented in **Appendix A**. The annual analysis indicates there are negligible impacts to the black ash contributing drainage areas, however, the monthly water balance indicates that the preliminary supplemental flow schedule presented above will not balance the flows on a monthly basis. It is recognized that the hydrology of the flows interacting with the black ash locations must remain unchanged from baseline conditions on a smaller scale than on a yearly basis. The water balance presented above has sufficiently indicated that there is enough water on the property to ensure the hydrology can be balanced on a monthly basis. The operations of the supplemental flow pumps and outlet structures will be designed during future design phases of the project in such a way as to mimic the baseline hydrology on a month-to-month basis. This can be accomplished using a multitude of methods including but not limited to; a small pond at the outlet of the pump, scheduled pumping times, outlet wetlands to slow the release of water or level spreaders to mimic overland flow. These potential outlet structures will be assessed in conjunction with mine operating procedures and water balance requirements to ensure the month-to-month hydrology of the black ash communities are unaffected. # 5.2 Pit Filling Calculations After the open pit has been mined to completion and backfill has been placed accordingly, it will begin to fill with water to form a lake. During this time, pit inflows include direct precipitation, groundwater inflows, overflow from the South Settling Pond, and surface flows from upstream catchments (AP1 and AP2) to help reduce the time required to form the lake and stabilize the groundwater flow patterns. The outputs from the pit during filling will be evaporation and supplemental pumping to AP3 to maintain flows through the Scotia Mine polishing pond. The open pit will discharge to Annand Brook upstream of the Scotia Mine polishing pond after it is filled. The pit has a maximum capacity of 23 Mm³ corresponding to an overflow elevation of 25.1 m. The pit will be backfilled with a total of 16 Mm³ of waste rock beginning at the end of Phase 1. The backfill will be placed in the northern end of the pit to reduce impacts to black ash populations while mining continues to the south and will be placed to match the existing grade. Approximately 11.5 Mm³ of waste rock will be placed below the overflow elevation of 25.1 m. It is assumed that the waste rock has a void space ratio of 0.3, which was estimated based on the waste rock properties of similar mining projects. As such, the volume of water required to fill the pit will be approximately 15.6 Mm³. | Table 5.3 Pit filling times under various precipitation and backfill scena | |--| |--| | | Average Precipitation Conditions | , , | Average 10-yr Minimum
Precipitation | |----------------------|----------------------------------|------|--| | No Backfill Scenario | 18.9 | 17.4 | 20.8 | | Backfill Scenario | 13.9 | 12.7 | 15.5 | # 6. Summary A water balance model was developed to understand the potential impacts of the Project on the way water flows at the PA and in the surrounding systems: Annand Brook and the Gays River. The water balance output was used to assess the impact of the project on the baseline drainage patterns at 17 assessment points on the watercourses of the Annand Brook and Gays River catchments and determine potential mitigation strategies required to support the fish and fish habitat effects assessment. The water balance assessment determined that mitigation measures were needed to supplement flows to black ash habitat as well as the Scotia Mine Polishing Pond. Upon use of supplemental flows to mitigate flow loss, the results of the water balance showed negligible impacts on annual flows to the Black ash habitat and negligible loss of flow to the Scotia Mine Polishing Pond. The water balance assessment was used to determine that under average annual climate conditions the pit is estimated to fill in 13.9 years assuming placement of backfill along the northern portion of the pit to aid in development of the pit lake while reducing groundwater impacts to the surrounding watercourses. # 7. References GHD, 2024a, Conceptual Water Management Plan, Antrim Gypsum Project Nova Scotia GHD, 2024b, Hydrogeological Modelling Report, Antrim Gypsum Project Nova Scotia Strum Consulting (formerly McCallum Environmental), 2024, Black ash (Fraxinus Nigra) Tolerance and Sensitivity – Antrim Gypsum Project # **Appendices** # Appendix A **Monthly Water Balance Results** | | Baseline Flow Volumes (m) | | | | | | | | | | | | | | | | | |----------------|---------------------------|---------|-----------|-----------|---------|---------|-----------|-----------|------------|---------|------------|---------|------------|------------|------------|------------|---------| | Month | AP1 | AP2 | AP3 | AP4 | AP5 | AP6 | AP7 | AP8 | AP9 | AP10 | AP11 | AP12 | AP13 | AP14 | AP15 | AP16 | AP17 | | January | 127,935 | 85,370 | 344,746 | 566,179 | 27,700 | 60,159 | 685,482 | 734,726 | 3,847,000 | 89,424 | 3,939,000 | 62,874 | 4,209,000 | 7,459,000 | 7,526,000 | 8,261,000 | 19,324 | | February | 106,111 | 71,280 | 287,240 | 476,744 | 22,699 | 50,124 | 575,262 | 616,272 | 3,195,000 | 74,342 | 3,271,000 | 52,551 | 3,495,000 | 6,186,000 | 6,243,000 | 6,859,000 | 16,028 | | March | 162,833 | 109,384 | 440,786 | 731,591 | 34,833 | 76,918 | 880,790 | 943,723 | 4,902,000 | 114,082 | 5,020,000 | 80,643 | 5,364,000 | 9,493,000 | 9,580,000 | 10,520,000 | 24,596 | | April | 181,446 | 120,898 | 488,448 | 800,284 | 39,390 | 85,235 | 963,408 | 1,033,000 | 5,455,000 | 126,761 | 5,586,000 | 89,020 | 5,968,000 | 10,580,000 | 10,670,000 | 11,710,000 | 27,407 | | May | 117,087 | 78,727 | 317,153 | 527,160 | 25,005 | 55,344 | 626,648 | 671,926 | 3,526,000 | 82,058 | 3,610,000 | 58,049 | 3,858,000 | 6,826,000 | 6,888,000 | 7,560,000 | 17,686 | | June | 59,779 | 42,373 | 167,919 | 302,033 | 11,499 | 29,302 | 344,657 | 368,539 | 1,817,000 | 42,690 | 1,861,000 | 31,489 | 1,988,000 | 3,485,000 | 3,517,000 | 3,885,000 | 9,029 | | July | 27,504 | 21,835 | 83,698 | 174,277 | 3,930 | 14,605 | 186,078 | 197,887 | 854,700 | 20,496 | 875,223 | 16,477 | 935,189 | 1,603,000 | 1,618,000 | 1,816,000 | 4,154 | | August | 24,628 | 20,213 | 76,765 | 166,037 | 3,135 | 13,396 | 176,899 | 187,706 | 770,573 | 18,594 | 789,076 | 15,316 | 843,141 | 1,436,000 | 1,449,000 | 1,637,000 | 3,720 | | September | 29,752 | 23,861 | 91,201 | 192,158 | 4,111 | 15,915 | 211,123 | 223,983 | 926,466 | 22,259 | 948,712 | 18,028 | 1,014,000 | 1,735,000 | 1,750,000 | 1,974,000 | 4,494 | | October | 81,627 | 57,558 | 228,461 | 407,866 | 15,877 | 39,867 | 477,361 | 509,866 | 2,479,000 | 58,183 | 2,539,000 | 42,742 | 2,713,000 | 4,759,000 | 4,802,000 | 5,312,000 | 12,330 | | November | 150,694 | 101,419 | 408,449 | 679,924 | 32,126 | 71,275 | 816,798 | 875,105 | 4,538,000 | 105,647 | 4,647,000 | 74,793 | 4,966,000 | 8,785,000 | 8,865,000 | 9,740,000 | 22,762 | | December | 172,185 | 114,409 | 462,643 | 754,634 | 37,565 | 80,732 | 914,645 | 980,750 | 5,174,000 | 120,175 | 5,298,000 | 84,206 | 5,661,000 | 10,040,000 | 10,130,000 | 11,110,000 | 26,008 | | Annual Average | 1,241,581 | 847,327 | 3,397,509 | 5,778,887 | 257,870 | 592,872 | 6,859,151 | 7,343,483 | 37,484,739 | 874,711 | 38,384,011 | 626,188 | 41,014,330 | 72,387,000 | 73,038,000 | 80,384,000 | 187,538 | | | Phase 1 - Percent Change from Baseline | | | | | | | | | | | | | | | | | |----------------|--|-----|-------|-----|------|------|-----|-----|-----|------|------|------|------|------|------|--------|------| | Month | AP1 | AP2 | AP3 | AP4 | AP5 | AP6 | AP7 | AP8 | AP9 | AP10 | AP11 | AP12 | AP13 | AP14 | AP15 | AP16 / | AP17 | | January | -15% | 0% | 6 0% | 4% | -14% | -6% | 2% | 2% | 0% | -21% | 0% | 39% | 0% | 0% | 0% | 0% | -9% | | February | -15% | 19 | 6 0% | 4% | -8% | -3% | 2% | 2% | 0% | -21% | 0% | 36% | 0% | 0% | 0% | 0% | -5% | | March | -15% | 19 | -3% | 2% | -25% | -14% | -1% | -1% | 0% | -21% | 0% | 42% | 0% | 0% | 0% | 0% | -20% | | April | -15% | 09 | -3% | 2% | -31% | -17% | -2% | -2% | 0% | -21% | 0% | 37% | 0% | 0% | 0% | 0% | -25% | | May | -15% | 19 | 6 0% | 4% | -8% | -3% | 0% | 0% | 0% | -21% | 0% | 27% | 0% | 0% | 0% | 0% | -5% | | June | -17% | 19 | 6 5% | 5% | 57% | 26% | 3% | 2% | 0% | -23% | -1% | 53% | 0% | 0% | 0% | 0% | 40% | | July | -23% | 29 | 6 17% | 8% | 308% | 95% | 9% | 8% | 0% | -28% | -1% | | 1% | 1% | 1% | 1% | 160% | | August | -25% | 29 | 6 18% | 8% | 403% | 106% | 9% | 8% | 0% | -29% | -1% | 122% | 1% | 1% | 1% | | 184% | | September | -23% | 29 | 6 12% | 5% | | 78% | 7% | 6% | 0% | -28% | -1% | | 1% | 1% | 1% | 2% | 134% | | October | -17% | 19 | 6 1% | 3% | 26% | 9% | 1% | 1% | 0% | -23% | -1% | | 1% | | 0% | 0% | 15% | | November | -15% | 19 | 6 -3% | 2% | -23% | -12% | -1% | -1% | 0% | -21% | 0% | 45% | 0% | 0% | 0% | 0% | -19% | | December | -14% | 09 | 6 -2% | 3% | -28% | -14% | -1% | -1% | 0% | -21% | 0% | | 0% | 0% | 0% | 0% | -22% | | Annual Average | -16% | 19 | 6 0% | 3% | 0% | 0% | 1% | 1% | 0% | -22% | 0% | 47% | 0% | 0% |
0% | 0% | 0% | | | | | | | | | Phase 2 | - Percent Cha | ange from Bas | seline | | | | | | | | |----------------|------|-----|------|-----|-----|------|---------|---------------|---------------|--------|------|------|------|------|------|------|------| | Month | AP1 | AP2 | AP3 | AP4 | AP5 | AP6 | AP7 | AP8 | AP9 | AP10 | AP11 | AP12 | AP13 | AP14 | AP15 | AP16 | AP17 | | January | -36% | -2% | 7% | 8% | -1% | -4% | 6% | 5% | 0% | -25% | -1% | 41% | 0% | 0% | 0% | 1% | -6% | | February | -36% | -2% | 10% | 9% | 0% | -2% | 7% | 7% | 0% | -25% | -1% | 49% | 0% | 0% | 0% | 1% | -3% | | March | -36% | -2% | 4% | 6% | -2% | -12% | 3% | 3% | 0% | -25% | -1% | 46% | 0% | 0% | 0% | 0% | -14% | | April | -36% | -2% | 0% | 4% | -2% | -15% | 1% | 1% | 0% | -25% | -1% | 35% | 0% | 0% | 0% | 0% | -17% | | May | -36% | -2% | 9% | 9% | 0% | -2% | 5% | 4% | 0% | -25% | -1% | 37% | 0% | 0% | 0% | 0% | -3% | | June | -38% | -4% | 36% | 22% | 6% | 22% | 14% | 13% | 0% | -27% | -1% | 75% | 1% | 0% | 0% | 2% | 26% | | July | -40% | -6% | 95% | 45% | 28% | 81% | 31% | 29% | 0% | -31% | -1% | 151% | 2% | 1% | 1% | 4% | 106% | | August | -41% | -7% | 108% | 49% | 37% | 90% | 35% | 33% | 0% | -32% | -1% | 174% | 2% | 1% | 1% | 5% | 121% | | September | -40% | -7% | 90% | 42% | 26% | 65% | 33% | 31% | 0% | -31% | -1% | 182% | 2% | 1% | 2% | 5% | 87% | | October | -37% | -3% | 27% | 17% | 3% | 7% | 12% | 12% | 0% | -27% | -1% | 86% | 1% | 0% | 0% | 2% | 9% | | November | -36% | -2% | 5% | 6% | -2% | -11% | 3% | 3% | 0% | -25% | -1% | 47% | 0% | 0% | 0% | 0% | -13% | | December | -36% | -2% | 1% | 5% | -2% | -12% | 2% | 2% | 0% | -25% | -1% | 37% | 0% | 0% | 0% | 0% | -15% | | Annual Average | -37% | -3% | 15% | 11% | 0% | 0% | 7% | 7% | 0% | -25% | -1% | 56% | 0% | 0% | 0% | 1% | 0% | | | Pit Filling Phase - Percent Change from Baseline | | | | | | | | | | | | | | | | | |----------------|--|-----|------|------|-----|-----|------|------|-----|------|------|------|------|------|------|------|------| | Month | AP1 | AP2 | AP3 | AP4 | AP5 | AP6 | AP7 | AP8 | AP9 | AP10 | AP11 | AP12 | AP13 | AP14 | AP15 | AP16 | AP17 | | January | -31% | -2% | -21% | -9% | 0% | 2% | -8% | -7% | 0% | -25% | -1% | 10% | 0% | 0% | 0% | -1% | 3% | | February | -31% | -2% | -9% | -2% | 0% | 2% | -2% | -2% | 0% | -25% | -1% | 7% | 0% | 0% | 0% | 0% | 2% | | March | -31% | -2% | -26% | -12% | 0% | -1% | -11% | -10% | 0% | -25% | -1% | 9% | 0% | 0% | 0% | -1% | 1% | | April | -31% | -2% | -31% | -15% | 0% | 0% | -14% | -13% | 0% | -25% | -1% | 10% | 0% | 0% | 0% | -1% | 2% | | May | -31% | -2% | -6% | 0% | 0% | 1% | -3% | -3% | 0% | -25% | -1% | 5% | -1% | 0% | 0% | 0% | 2% | | June | -33% | -4% | 47% | 28% | 0% | 0% | 17% | 16% | 0% | -27% | -1% | -9% | -1% | 0% | 0% | 1% | -3% | | July | -37% | -6% | 174% | 82% | 0% | -1% | 59% | 55% | 0% | -31% | -1% | -32% | -1% | -1% | -1% | 5% | -13% | | August | -38% | -7% | 191% | 87% | 0% | -4% | 63% | 59% | 0% | -32% | -1% | -33% | -1% | -1% | -1% | 6% | -18% | | September | -37% | -7% | 142% | 66% | 0% | -7% | 50% | 47% | 0% | -31% | -1% | -38% | -1% | -1% | -1% | 5% | -18% | | October | -33% | -3% | 17% | 11% | 0% | -3% | 7% | 6% | 0% | -27% | -1% | -10% | -1% | 0% | 0% | 0% | -4% | | November | -31% | -2% | -23% | -11% | 0% | -1% | -10% | -9% | 0% | -25% | -1% | 7% | 0% | 0% | 0% | -1% | 1% | | December | -31% | -2% | -27% | -13% | 0% | 1% | -11% | -10% | 0% | -25% | -1% | 11% | 0% | 0% | 0% | -1% | 3% | | Annual Average | -31% | -3% | -2% | 2% | 0% | 0% | -1% | -1% | 0% | -25% | -1% | 3% | -1% | 0% | 0% | 0% | 0% | | | Closure Phase - Percent Change from Baseline | | | | | | | | | | | | | | | | | |----------------|--|-----|------|------|-----|------|------|------|-----|------|------|------|------|------|------|------|------| | Month | AP1 | AP2 | AP3 | AP4 | AP5 | AP6 | AP7 | AP8 | AP9 | AP10 | AP11 | AP12 | AP13 | AP14 | AP15 | AP16 | AP17 | | January | -30% | -1% | -1% | 3% | -8% | 0% | 1% | 1% | 0% | -24% | -1% | 14% | 0% | 0% | 0% | 0% | 2% | | February | -31% | -1% | 0% | 4% | -8% | -1% | 2% | 2% | 0% | -25% | -1% | 13% | 0% | 0% | 0% | 0% | 1% | | March | -31% | -1% | -1% | 3% | -8% | -1% | 1% | 1% | 0% | -25% | -1% | 13% | 0% | 0% | 0% | 0% | 1% | | April | -30% | -1% | -5% | 0% | -8% | 0% | -1% | -1% | 0% | -24% | -1% | 13% | 0% | 0% | 0% | 0% | 2% | | May | -31% | -1% | -10% | -2% | -8% | -1% | -3% | -3% | 0% | -25% | -1% | 11% | 0% | 0% | 0% | 0% | 1% | | June | -32% | -2% | -13% | -4% | -8% | -4% | -5% | -5% | 0% | -26% | -1% | 4% | 0% | 0% | 0% | -1% | -6% | | July | -35% | -3% | -24% | -10% | -8% | -11% | -10% | -10% | 0% | -30% | -1% | -11% | -1% | 0% | 0% | -1% | -20% | | August | -36% | -4% | -19% | -7% | -8% | -12% | -8% | -8% | 0% | -31% | -1% | -13% | -1% | 0% | 0% | -1% | -25% | | September | -35% | -3% | -23% | -9% | -8% | -11% | -10% | -9% | 0% | -30% | -1% | -7% | -1% | 0% | 0% | -1% | -22% | | October | -32% | -2% | -7% | -1% | -8% | -4% | -2% | -2% | 0% | -26% | -1% | 8% | 0% | 0% | 0% | 0% | -5% | | November | -31% | -1% | -5% | 1% | -8% | -1% | 0% | 0% | 0% | -25% | -1% | 13% | 0% | 0% | 0% | 0% | 1% | | December | -30% | -1% | -3% | 2% | -8% | 0% | 0% | 0% | 0% | -24% | -1% | 14% | 0% | 0% | 0% | 0% | 2% | | Annual Average | -31% | -1% | -6% | 0% | -8% | -2% | -1% | -1% | 0% | -25% | -1% | 10% | 0% | 0% | 0% | 0% | -1% | # Appendix B Preliminary Supplemental Flow Requirement Assessment | Assessment Point | Flow Rate (L/s) | | | | | | | | | | | |------------------|-----------------|---------|---------|-------------|---------|--|--|--|--|--|--| | Assessment Foint | Baseline | Phase 1 | Phase 2 | Pit Filling | Closure | | | | | | | | 3 | 107.7 | 95.7 | 127.7 | 27.1 | 101.3 | | | | | | | | 4 | 183.2 | 177.2 | 208.5 | 107.7 | 184.8 | | | | | | | | 5 | 8.2 | 2.7 | 7.7 | 8.1 | 8.1 | | | | | | | | 6 | 18.8 | 16.4 | 11.5 | 16.9 | 18.8 | | | | | | | | 12 | 19.9 | 68.1 | 31.3 | 22.3 | 22.6 | | | | | | | | 17 | 5.9 | 2.3 | 3.3 | 5.6 | 5.9 | | | | | | | # Appendix F.3 **Conceptual Surface Water Management Plan** # Conceptual Surface Water Management Plan **Antrim Gypsum Project Nova Scotia** CertainTeed Canada, Inc. 19 August 2024 | Project name | | Antrim EA | | | | | | | | | | | |-----------------|----|--|-------------------|-----------|--------------------|-----------|----------|--|--|--|--|--| | Document title | | Conceptual Surface Water Management Plan Antrim Gypsum Project Nova Scotia | | | | | | | | | | | | Project number | | 12601021 | | | | | | | | | | | | File name | | 12601021-RPT-13-Conceptual Surface Water Management Plan.docx | | | | | | | | | | | | Status Revision | | Author | Reviewer | | Approved for issue | | | | | | | | | Code | | | Name | Signature | Name | Signature | Date | | | | | | | S3 | 00 | Aidan Van Heyst | Chris
Muirhead | Draft | Callie
Andrews | Draft | 23/07/24 | | | | | | | S4 | 01 | Aidan Van Heyst | Chris
Muirhead | E Mulmard | Callie
Andrews | an an | 19/08/24 | #### **GHD Limited** Contact: Chris Muirhead, Engineer | GHD 110, 120 Western Parkway, Bedford, Nova Scotia B4B 0V2, Canada T +1 902 468 1248 | F +1 902 468 2207 | E info-northamerica@ghd.com | ghd.com #### © GHD 2024 This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited. # **Contents** | 1. | Introd | duction | | 1 | |----|--------|---------|---------------------------------|----| | | 1.1 | Purpos | 1 | | | | 1.2 | 1 | | | | 2. | Physi | 2 | | | | | 2.1 | 2 | | | | | 2.2 | Climat | te | 2 | | | 2.3 | Surfac | ce Water | 2 | | 3. | Wate | 3 | | | | | 3.1 | 3 | | | | | 3.2 | Water | 3 | | | | 3.3 | Stages | s of Mine Development | 4 | | | | 3.3.1 | Phase 1 | 4 | | | | 3.3.2 | Phase 2 | 4 | | | | 3.3.3 | Pit Filling | 4 | | | | 3.3.4 | Closure | 4 | | 4. | Desig | 4 | | | | | 4.1 | 4 | | | | | | 4.1.1 | Collection Ditches and Culverts | 5 | | | | 4.1.2 | Settling Ponds | 5 | | | | 4.1.3 | 1 9 7 | 6 | | | | 4.1.4 | | 6 | | | | 4.1.5 | Pit Dewatering | 6 | | | 4.2 | | eptual Water Management Phases | 6 | | | | 4.2.1 | Phase 1 | 6 | | | | 4.2.2 | Phase 2 | 9 | | | | 4.2.3 | Pit Filling | 11 | | | | 4.2.4 | Closure | 13 | | 5. | Conc | lusions | | 15 | | 6. | Refer | ences | | 15 | # **Table index** | Table 2.1 | Design storms used in the SVVM design | 2 | |------------|--|----| | Table 4.1 | Water Management Infrastructure Design Basis Criteria Summary | 4 | | Figure in | dex | | | Figure 4.1 | Conceptual Water Management Plan for Phase 1 of Mine Development | 8 | | Figure 4.2 | Conceptual Water Management Plan for Phase 2 of Mine Development | 10 | | Figure 4.3 | Conceptual Water Management Plan for Pit Filling | 12 | | Figure 4.4 | Conceptual Water Management Plan for Closure Conditions | 14 | # 1. Introduction # 1.1 Purpose of this report CertainTeed Canada Inc. (CertainTeed) has retained GHD Limited (GHD) to provide technical and permitting services in support of a Provincial Class 1 Environmental Assessment Registration Document (EARD) submission to Nova Scotia Environment and Climate Change (NSECC) for the Antrim Gypsum Project (Project), located in Cooks Brook, Nova Scotia. GHD's scope of work includes the development of a conceptual water management plan (CWMP) for the Project to support the EARD. The CWMP describes the strategies proposed for water and sediment management throughout the main stages of the Project, including Phase 1, Phase 2 and Closure. The CWMP has been prepared during the preliminary design stage. The proposed infrastructure layout is
preliminary; therefore, the final alignments and dimensions will be confirmed during the next stages of design and may be subject to change based on ongoing data collection, regulatory and community engagement, and design iterations. The CWMP is organized as follows: - Section 1 Introduction: Introduces the project, purpose, and roles and responsibilities of the CWMP for the Project. - Section 2 Summary of Physical Conditions: Briefly summarizes the physical site characteristics, and local climate, surface water and groundwater conditions. - Section 3 Water Management: Presents an overview of the water management objectives and strategies, facilities, stages of Mine development and applicable site water management during these stages. - Section 4 Design of Water Management Facilities: Presents the basis of design of the mine water management facilities as well as a summary of the conceptual water management infrastructure present at each phase of Project development. # 1.2 Scope and limitations This report: has been prepared by GHD for CertainTeed Canada, Inc. and may only be used and relied on by CertainTeed Canada, Inc. and Nova Scotia Environment and Climate Change (NSECC) for the purpose agreed between GHD and CertainTeed Canada, Inc. as set out in section 1.1 of this report. GHD otherwise disclaims responsibility to any person other than CertainTeed Canada, Inc. and NSECC arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible. The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report. The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared. The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report (refer section 4 of this report). GHD disclaims liability arising from any of the assumptions being incorrect. #### Accessibility of documents If this report is required to be accessible in any other format, this can be provided by GHD upon request and at an additional cost if necessary. # 2. Physical Setting ### 2.1 Site Characteristics The Project Area (PA) is 602 ha and is located immediately south of the existing Scotia Mine. A portion of the development will occur in the catchment area of the Scotia Mine polishing pond. Black ash species has been identified within the PA, which has led to the creation of the black ash exclusion zone. This buffer zone helps to protect habitat and biological value of the black ash. One tree is located within the extents of the proposed open pit. This tree is proposed to be transplanted, in collaboration with the Mi'kmaq of Nova Scotia, in keeping with several other recent projects where transplantation of black ash has been allowed to support industrial and infrastructure development projects (Touquoy Gold Mine, Highway 104 and 107 upgrade projects). A comprehensive monitoring program will be established to support Project development which will act as a research project relating to the required hydrologic regime required for the remaining black ash (all but one individual tree) that will be avoided by the Project. ### 2.2 Climate The PA is located inland and somewhat removed from the immediate climactic influence of the Atlantic Ocean. It is characterized by warmer summers and cooler winters. Impacts due to climate change were considered when developing design storms for Projects with long durations. Up to date climate change data was obtained for the Halifax International Airport (wwww.climatedata.ca, last accessed July 12, 2024). Climatedata.ca is a collaboration between Environment and Climate Change Canada, the Computer Research Institute of Montreal (CRIM), CLIMAtlantic, Ouranos, the Pacific Climate Impacts Consortium (PCIC), the Prairie Climate Center (PCC), and HabitatSeven, aimed at providing readily available future climate projections. The predicted IDF Curve based upon Coupled Model Intercomparison Project 5 (CMIP5) Representative Concentration Pathways 4.5 (RCP4.5) for the years of 2031-2060 were used in this assessment. **Table 2.1** provides a summary of the design storms. Table 2.1 Design storms used in the SWM design | Design Storm | 5-year Climate Change | 100-year Climate Change | |-------------------------------|-----------------------|-------------------------| | Cumulative Precipitation (mm) | 105.6 | 163.2 | | Duration (hour) | 24 | 24 | | Distribution | Chicago | Chicago | ## 2.3 Surface Water The PA lies within the Gays River drainage basin, which is part of the larger Shubenacadie River drainage basin. The watershed occupies an area of roughly 205 km². The area is characterized by rolling till plains, drumlin fields, extensive rockland, and numerous freshwater lakes, streams, bogs, and wetlands having relatively low relief and hummocky type terrain. The Gays River drainage basin discharges to the Shubenacadie River from southeast to northwest. Elevations within the catchment vary from approximately 181 meters above sea level (masl) in the headwater areas and gradually decrease to 8 masl where the Gays River outlets to the Shubenacadie River. The Shubenacadie River eventually outlets into Cobequid Bay near Maitland. The headwaters of the Gays River basin are located along the topographic divide separating the Musquodoboit River Valley to the southeast. The Gays River and Annand Brook are the main mapped linear watercourses in the mine site, while Lake Egmont and the Scotia Mine Polishing Pond are the major lakes. # 3. Water Management This section describes a description of the proposed CWMP for the Project, including the water management objectives and strategies, a brief description of the proposed water management facilities and the proposed water management plan through different stages of the Project development. ## 3.1 Water Management Objectives and Strategies The objective of the CWMP is to support and guide mine water management through Phase 1, Phase 2, Pit Filling, and Closure stages of mine development. The primary objectives of water management are to reduce operational risks and environmental impacts of the Project. The following strategies are planned to achieve the primary objectives: - Mitigate water quantity impacts on receiving waters and identified areas of concern - Provide treatment of suspended solids from contact water - Incorporate system flexibility to manage water under variable climatic conditions The CWMP provides an overview of the water supply source, water management and water treatment associated with the mine site. # 3.2 Water Management Facilities Project infrastructure includes an open pit, materials and storage facilities, roads, infrastructure for crushing, water management (i.e., settling ponds, ditches, culverts, pumps), hauling, truck maintenance, administration, and road upgrades. The CWMP encompasses the main water management facilities described in further detail below: - Overburden and Topsoil Stockpiles | The stockpiles are all located in the east portion of the PA with some material to be used to backfill the open pit during Phase 2 conditions. - Runoff collection ditches and culverts | The surface water ditches include contact water ditches that collect runoff from all mine infrastructure. The contact water ditches drain to one of two settling ponds located in the north and in the south of the PA. - North Settling Pond | The North Settling Pond is located northeast of the mine infrastructure and the open pit and will collect surface water runoff and seepage from the crusher pad and administrative areas, the topsoil and overburden stockpiles, and the roads surrounding these facilities. It will also receive pumped pit dewatering during Phase 1 of operations. The North Settling Pond will be constructed during Phase 1 of development and will remain in operation until closure - South Settling Pond | The South Settling Pond is located south of the Project infrastructure and east of the open pit and will collect surface water runoff and seepage from the southern portion of the Phase 2 waste rock stockpile. It will also receive pumped pit dewatering during Phase 2 of operations. The South Settling Pond will be constructed during Phase 2 of development and will remain in operation through to the end of operations of the Site. - Pumping Systems | There will be several pumps located across the mine site in order to provide supplemental flows to areas of concern. Further discussion regarding the pumping systems during each phase are present in Section 4. For further information regarding the need for supplemental flow in certain areas of the mine, refer to the Water Balance Assessment (GHD, 2024) # 3.3 Stages of Mine Development ### 3.3.1 Phase 1 Spanning a duration of 6 years, Project activities are focused on mining and maintenance activities within the current PA boundary. These include mining using the surface miner, pit dewatering, ore management, waste material management, surface water management, dust and noise management, and maintenance and repairs. The open pit will be progressively backfilled in Phase 1 to minimize the hydrological changes to the area of the black ash. ### 3.3.2 Phase 2 Spanning a duration of 17 years, Phase 2 activities are the same as Phase 1 activities with the main difference being that the Project activities are expanded onto Crown land. ## 3.3.3 Pit Filling Upon completion of mining activities and during reclamation of the Project, water will no longer be dewatered from the pit and the open pit will be allowed to fill with water. During this
time, despite the PA largely being in a reclaimed state, water management will still be required to mitigate environmental concerns for black ash and to mitigate impacts to Annand Brook. ### 3.3.4 Closure Closure begins following the completion of Phase 2 of mining and will encompass Pit Filling. Closure activities are mainly focused on reclaiming the areas affected by Project and directing water to the open pit for refilling, which includes the removal of all facilities, allowing the pit to fill with water to form a pit lake, capping the stockpiles and revegetation and regrading of disturbed areas. Closure conditions, distinct from Pit Filling conditions, refer to the period in time following the filling of the open pit with water when no further surface water management will be required. # 4. Design of Water Management Facilities It is noted that the infrastructure sizing provided in this document is conceptual only and will be further developed during the next stages of design. ## 4.1 Water Management Design Basis Water management for the Project will consist of the collection and management of mine water. The criteria used for design development and analyses of the water management infrastructure are based on the conceptual mine plan, operational requirements, and environmental conditions. The design basis criteria for storm events utilized for the CWMP design are summarized in **Table 4.1** below. Table 4.1 Water Management Infrastructure Design Basis Criteria Summary | Item | Design Basis | |-----------------------|--| | Contact Water Ditches | Designed to convey stormwater runoff resulting from the 1 in 100 year, 24-hour climate change event. | | Item | Design Basis | |----------------|---| | Settling Ponds | Phase 1 North Settling Pond is designed to contain runoff resulting from the 5-year, 24-hour climate change rainfall volume during an emergency shut-off (i.e., no pond outflow is allowed, emergency operating conditions only). | | | Phase 1 North Settling Pond emergency spillway to pass the 100 year, 24-hour climate change event. | | | Phase 2 South Settling Pond is designed for minimum 24-hour detention for the 100-year, 24-hour climate change event (with 0.3 m freeboard). | | Pump Systems | Designed to convey the desired supplemental flow rates to areas of environmental concern. | The PA was modelled using PCSWMM (Version 7.6.3695) which is a hydrologic and hydraulic modelling software that uses the EPA SWMM (Version 5.1.015) engine. PCSWMM was used to develop the design storm hydrographs, estimate peak flow rates and runoff volumes for the design storm events. To add contingency to the SWMM design, the impacts due to climate change were considered when developing design storms. Halifax Regional Municipality and Halifax Water provides climate change adjusted IDF curves and design storms. Two design storms were used to develop and confirm the CWMP infrastructure: - 1 in 5-year 24-hour Chicago Storm temporal distribution - 1 in 100-year 24-hour Chicago Storm temporal distribution #### 4.1.1 Collection Ditches and Culverts CWMP will consists of a series of surface water ditched collecting all Project stormwater runoff. The surface water ditches include contact water ditches, which collect runoff from all infrastructure. Surface water ditches will collect stormwater runoff from the topsoil and waste rock stockpiles and will direct it towards one of two settling ponds. Contact water ditches will be lined with a geotextile liner and a layer of riprap to protect the ditch from erosion. Detailed outlet design of the ditches into the settling ponds will be completed during later design stages. The ditches are proposed to be open channel ditches with trapezoidal cross-sections. ### 4.1.2 Settling Ponds Settling ponds will be constructed during Phase 1 and Phase 2, with the North Settling Pond located on private land in the north of the PA, and South Settling Pond located on Crown land. The North Settling Pond will be constructed in Phase 1 prior to the waste rock stockpile development. Settling ponds collect runoff from the overburden stockpiles, till and organic material stockpiles, and the processing area. The ponds will be lined with geotextile and a layer of riprap to prevent erosion from water entering the pond. Further assessment of the inlet and outlet structures will be completed during future design phases. The settling ponds will each contain emergency overflow spillways. The overflow channel will convey flows resulting from storm events greater than the 1 in 100-year, 24-hour climate change adjusted design storm event. The North Settling Pond will direct the overflow spillway towards the Gays River at AP12, while South Settling Pond will direct emergency overflow towards the open pit. Effluent from the North Settling Pond will be pumped to various mitigation points to provide supplemental flows for areas of concern. The remainder of the North Settling Pond water will discharge into AP12 which will then flow north into the Gays River. Effluent from South Settling Pond will be pumped around the open pit and discharged to Annand Brook upstream of the Scotia Mine Polishing Pond. The settling ponds will provide water treatment of stormwater runoff for total suspended solids (TSS). No other water quality treatment is predicted to be required as the Project is being developed to mine for Gypsum. Gypsum mining generally does not result in the mobilization of metals or other potentially harmful constituents (e.g., Arsenic, Aluminum, Cyanide etc.) in the same manner as other mining practices do. However, all mining operations have site-specific components to them and as such, all contact water from the PA will be conveyed to a settling pond prior to discharge. Water quality monitoring will be completed to ensure the water quality remains consistent with baseline conditions with no additional treatment being required outside of passive TSS settling. ## 4.1.3 Pumping Systems and Pipelines A series of pumps and pipeline systems will be required to convey collected water from specific collections points (e.g., the North Settling Pond, South Settling Pond) to the areas of concern to mitigate flow impacts or bypass mine infrastructure and ensure continuity of flow (e.g., black ash locations, bypass pumping of watercourses around the open pit). These pumps will be sized to convey the calculated flow rates required to mitigate flow impacts to black ash. #### 4.1.4 Erosion and Sediment Control Measures Erosion control measures in the contact water ditches and settling ponds include placement of riprap, check dams, silt fence and straw waddle across the PA. These erosion control measures are to be maintained during operations including replacement of riprap, restoration of check dams if damaged, and general visual inspection of the ditches and settling ponds on a regular basis. Sediment build-up could occur in the collection ditches, therefore contact water ditches should be inspected regularly and cleaned out as needed to ensure sediment does not build up within the ditches or travel directly into the settling pond, reducing the available storage volume of the settling pond itself. The North Settling Pond outlet structure will be designed such that stormwater entering the pond sees a minimum of 24 hr detention time prior to discharge to aid in settling of suspended solids. The South Settling Pond will only discharge through a pump. As such, the intake for the pump will be placed in a clear stone well to aid in the filtering of suspended solids prior to pumping of water from the settling pond. As discussed in Section 4.1.3, there are several pumps and pipeline structures. The pipelines will pump water from a collection point to a discharge point at which point the water will enter the natural water system. The design of the outlet structures for these pipelines will be completed during future design phases, however, the design of the outlet structure will be completed in a way to prevent erosion downstream of the outlet while mimicking the natural hydrology of the watershed. Several methods can be used to accomplish this (e.g., level spreaders, energy dissipation basin with overflow, treatment wetland with overflow to the natural environment) and the specific design for each discharge location will be determined based on the operating schedule of the pumps, micro-siting of the outlet location and any specific environmental concerns for the receiving watercourse. ## 4.1.5 Pit Dewatering The progressive development of the open pit will result in water entering the open pit from precipitation and groundwater inflows. As the pit deepens and increases in footprint, it will be necessary to control water inflow through construction of in-pit dewatering systems such as sumps, pipelines, and pumps. ## 4.2 Conceptual Water Management Phases This section will describe the CWMP for each phase of Project development. ### 4.2.1 Phase 1 During Phase 1 conditions, surface water will be managed as follows: - Water will be directed northwest towards the North Settling Pond located north of the stockpile area - Water from around the stockpiles will be collected via surface water ditches and will drain via gravity to the North Settling Pond - Water from the administrative and processing areas will drain via overland flow to surface water ditches which drain via gravity to the North Settling Pond - Water from the open pit will be pumped to the North Settling Pond through a pipeline - Three (3) supplemental flow pumps will be required during Phase 1 to mitigate environmental concerns for the black ash. Two (2) pumps
will take a portion of the surface water runoff from the North Settling Pond and discharge to Assessment Points (AP) 5 and 7 (as defined in the Water Balance Assessment (GHD, 2024)) to mitigate flow loss to watercourses/wetlands associated black ash. One (1) pump will take water from the open pit and pump it to AP 3 (as defined in the Water Balance Assessment (GHD, 2024)) to mitigate any potential flow losses to Annad Brook. - Water in excess of the required supplemental flow volumes present in the North Settling Pond will be released to AP 12 (as defined the in the Water Balance Assessment (GHD, 2024)). Figure 4.1 below depicts the conceptual water management plan for Phase 1 of Project development. Figure 4.1 Conceptual Water Management Plan for Phase 1 of Mine Development ### 4.2.2 Phase 2 During Phase 2 conditions, surface water will be managed as follows: - Water will be directed either to the North Settling Pond or to the South Settling Pond. The administrative and processing areas as well as the northern portions of the stockpiles will be directed via gravity to the North Settling Pond while the southern portion of the stockpiles will be directed towards the South Settling Pond - The northern portion of the open pit is assumed to be backfilled to surface at this point in time. As such, all water collected within the open pit will be pumped from the open pit to South Settling Pond. - The supplemental flow pumps established in Phase 1 from the North Settling Pond to AP 5 and AP 17 will be maintained during Phase 2. In addition, pumps will be required to pump water from the South Settling Pond as well as the intersection of the AP 2 watercourse with the pit, around the pit, to AP 3, downstream of the pit. Figure 4.2 below depicts the CWMP for Phase 2 of Project development. Figure 4.2 Conceptual Water Management Plan for Phase 2 of Mine Development ## 4.2.3 Pit Filling During Pit Filling conditions, surface water will be managed as follows: - All groundwater inflow and rainfall that enters the pit will remain in the pit to allow the pit to fill with water - Water from AP 1 and AP 2 will be allowed to drain into the open pit to aid in filling of the pit - The supplemental flow pumps established in Phase 1 from the North Settling Pond to AP 5 and AP 17 will be maintained during Pit Filling. In addition, a supplemental flow pump will be required to pump water from the open pit to AP 3 to mitigate potential flow reductions to Annad Brook south of the Scotia Mine polishing pond. - Drainage to the North Settling Pond will be unaltered - The South Settling Pond will be decommissioned Figure 4.3 below depicts the conceptual water management plan for Pit Filling conditions. Figure 4.3 Conceptual Water Management Plan for Pit Filling ## 4.2.4 Closure During Closure conditions, surface water will be managed as follows: - All supplemental flow infrastructure will be removed - Water north and west of the pit lake will continue to flow overland or use surface water ditches which were developed during previous phases of mine development - The North Settling Pond will be decommissioned, and water will be directed towards AP 12 Figure 4.4 below depicts the conceptual water management plan for Closure conditions. Figure 4.4 Conceptual Water Management Plan for Closure Conditions # 5. Conclusions GHD has developed a CWMP for four (4) phases of Project development; Phase 1, Phase 2, Pit Filling and Closure. The CWMP will be developed in further detail during later design phases to ensure connectivity with operating procedures and mitigate any potential impacts of mine development on the adjacent environment. # 6. References GHD, 2024, Water Balance Assessment Antrim Gypsum Project Nova Scotia → The Power of Commitment