

APPENDIX N. WATER QUALITY DATA

CLIENT NAME: DEXTER CONSTRUCTION COMPANY LTD PO BOX 48100

BEDFORD, NS B4A3Z2

(902) 835-3381

ATTENTION TO: Rhett Thompson

PROJECT: Lantz Quarry

AGAT WORK ORDER: 21X750707

WATER ANALYSIS REVIEWED BY: Marta Manka, Data Reporter

DATE REPORTED: May 31, 2021

PAGES (INCLUDING COVER): 10 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (902) 468-8718

<u>^Notes</u>			

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 10

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 21X750707

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

		De	exter - Low	Level TSS	
DATE RECEIVED: 2021-05-22					DATE REPORTED: 2021-05-31
		Lantz Quarry	Lantz Quarry	Lantz Quarry	
	SAMPLE DESCRIPTION:	SW-1	SW-2	SW-3	

SAMPLE TYPE: Water Water Water DATE SAMPLED: 2021-05-20 2021-05-20 2021-05-20 2501373 2501374 2501375 Parameter Unit G/S RDL Total Suspended Solids - Low Level mg/L <1 12

Comments:

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis perfored at AGAT Halifax (unless marked by *)

Certified By:

Marta Manka

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21X750707

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Standard Water Analysis + Total Metals

			Standard	Ivalei Aliaiy	7515 + 10tai i	vietais
DATE RECEIVED: 2021-05-22						DATE REPORTED: 2021-05-31
			Lantz Quarry	Lantz Quarry	Lantz Quarry	
	S	AMPLE DESCRIPTION:	SW-1	SW-2	SW-3	
		SAMPLE TYPE:	Water	Water	Water	
		DATE SAMPLED:	2021-05-20	2021-05-20	2021-05-20	
Parameter	Unit	G/S RDL	2501373	2501374	2501375	
pН			7.99	7.47	7.88	
Reactive Silica as SiO2	mg/L	0.5	5.3	6.2	9.4	
Chloride	mg/L	1	3	4	4	
Fluoride	mg/L	0.12	<0.12	<0.12	0.17	
Sulphate	mg/L	2	<2	4	65	
Alkalinity	mg/L	5	33	48	104	
True Color	TCU	5.00	56.2	21.9	<5.00	
Turbidity	NTU	0.5	2.1	2.3	1.2	
Electrical Conductivity	umho/cm	1	72	124	414	
Nitrate + Nitrite as N	mg/L	0.05	0.12	0.18	0.06	
Nitrate as N	mg/L	0.05	0.06	0.12	0.06	
Nitrite as N	mg/L	0.05	0.06	0.06	< 0.05	
Ammonia as N	mg/L	0.03	0.19	< 0.03	< 0.03	
Total Organic Carbon	mg/L	0.5	13.4	8.8	4.5	
Ortho-Phosphate as P	mg/L	0.01	0.02	0.02	0.02	
Total Sodium	mg/L	0.1	3.2	4.5	6.4	
Total Potassium	mg/L	0.1	0.7	1.0	4.4	
Total Calcium	mg/L	0.1	9.7	17.6	58.5	
Total Magnesium	mg/L	0.1	1.1	1.4	3.6	
Bicarb. Alkalinity (as CaCO3)	mg/L	5	33	48	104	
Carb. Alkalinity (as CaCO3)	mg/L	10	<10	<10	<10	
Hydroxide	mg/L	5	<5	<5	<5	
Calculated TDS	mg/L	1	39	63	205	
Hardness	mg/L		28.8	49.7	161	
Langelier Index (@20C)	NA		-1.05	-1.17	0.05	
Langelier Index (@ 4C)	NA		-1.37	-1.49	-0.27	
Saturation pH (@ 20C)	NA		9.04	8.64	7.83	
Saturation pH (@ 4C)	NA		9.36	8.96	8.15	
Anion Sum	me/L		0.75	1.17	3.55	

Certified By:

Marta Manta

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21X750707

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Standard Water Analysis + Total Metals

DATE RECEIVED: 2021-05-22						DATE REPORTED: 2021-05-31
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	Lantz Quarry SW-1 Water 2021-05-20	Lantz Quarry SW-2 Water 2021-05-20	Lantz Quarry SW-3 Water 2021-05-20	
Parameter	Unit	G/S RDL	2501373	2501374	2501375	
Cation sum	me/L		0.77	1.25	3.62	
% Difference/ Ion Balance	%		1.2	3.2	0.9	
Total Aluminum	ug/L	5	175	88	14	
otal Antimony	ug/L	2	<2	<2	4	
otal Arsenic	ug/L	2	<2	<2	2	
Total Barium	ug/L	5	22	20	46	
otal Beryllium	ug/L	2	<2	<2	<2	
otal Bismuth	ug/L	2	<2	<2	<2	
otal Boron	ug/L	5	<5	6	12	
otal Cadmium	ug/L	0.09	<0.09	< 0.09	< 0.09	
otal Chromium	ug/L	1	<1	<1	<1	
otal Cobalt	ug/L	1	<1	<1	<1	
Total Copper	ug/L	1	1	<1	2	
Total Iron	ug/L	50	161	202	144	
Total Lead	ug/L	0.5	<0.5	<0.5	<0.5	
Total Manganese	ug/L	2	20	366	6	
otal Molybdenum	ug/L	2	<2	<2	6	
otal Nickel	ug/L	2	<2	<2	4	
otal Phosphorous	mg/L	0.02	0.03	<0.02	<0.02	
otal Selenium	ug/L	1	<1	<1	<1	
otal Silver	ug/L	0.1	<0.1	<0.1	<0.1	
otal Strontium	ug/L	5	30	54	280	
otal Thallium	ug/L	0.1	<0.1	<0.1	<0.1	
otal Tin	ug/L	2	<2	<2	<2	
otal Titanium	ug/L	2	3	<2	<2	
otal Uranium	ug/L	0.2	<0.2	<0.2	8.8	
otal Vanadium	ug/L	2	<2	<2	<2	
Total Zinc	ug/L	5	<5	<5	<5	

Certified By:

Marta Manka

Certificate of Analysis

AGAT WORK ORDER: 21X750707

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLED BY:

Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

11 Morris Drive, Unit 122

Standard Water Analysis + Total Metals

DATE RECEIVED: 2021-05-22 DATE REPORTED: 2021-05-31

Comments:

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard

2501373

% Difference / Ion Balance, Hardness, Langelier Index, Nitrate + Nitrite, Hydroxide and Saturation pH are calculated parameters. The calculated parameters are non-accredited. The component

parameters of the calculations are accredited.

When the cation and anion sums are at, or below 1 me/L, the acceptable criteria is less than 0.3me/L

2501374-2501375 % Difference / Ion Balance, Hardness, Langelier Index, Nitrate + Nitrite, Hydroxide and Saturation pH are calculated parameters. The calculated parameters are non-accredited. The component

parameters of the calculations are accredited.

Analysis perfored at AGAT Halifax (unless marked by *)

Certified By:

Marta Manka

Quality Assurance

CLIENT NAME: DEXTER CONSTRUCTION COMPANY LTD

AGAT WORK ORDER: 21X750707

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE:								AIVIP	LED B	Υ:					
Water Analysis PT Date: May 31, 2021 DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE MATRIX SPIKE															
RPT Date: May 31, 2021			С	UPLICAT	E		REFERENCE MATERIAL			METHOD	BLAN	K SPIKE	MAT	RIX SP	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	1 1 1	eptable mits	Recovery	Liv	eptable mits
								Lower	Upper		Lower	Upper		Lower	Uppei
Standard Water Analysis + Tota	al Metals														
pH	2498073		7.28	7.41	1.8%	<	101%	80%	120%	NA			NA		
Reactive Silica as SiO2	2498135		12.5	12.6	1.2%	< 0.5	120%	80%	120%	99%	80%	120%	101%	80%	120%
Chloride	2496214		<1	<1	NA	< 1	86%	80%	120%	NA	80%	120%	84%	70%	130%
Fluoride	2496214		<0.12	<0.12	NA	< 0.12	105%	80%	120%	NA	80%	120%	97%	70%	130%
Sulphate	2496214		70	72	2.7%	< 2	102%	80%	120%	NA	80%	120%	NA	70%	130%
Alkalinity	2498073		43	42	1.2%	< 5	93%	80%	120%	NA			NA		
True Color	2498135		<5.00	<5.00	NA	< 5	97%	80%	120%	93%	80%	120%	NA		
Turbidity	2498073		0.9	1.1	NA	< 0.5	95%	80%	120%	NA			NA		
Electrical Conductivity	2498073		252	253	0.4%	< 1	102%	90%	110%	NA			NA		
Nitrate as N	2496214		0.05	< 0.05	NA	< 0.05	90%	80%	120%	NA	80%	120%	83%	70%	130%
Nitrite as N	2496214		<0.05	<0.05	NA	< 0.05	96%	80%	120%	NA	80%	120%	88%	70%	130%
Ammonia as N	2501373		<0.03	< 0.03	NA	< 0.03	101%	80%	120%	110%	80%	120%	NA	70%	130%
Total Organic Carbon	2498073		3.4	3.5	3.2%	< 0.5	95%	80%	120%	NA	80%	120%	95%	80%	120%
Ortho-Phosphate as P	2498135		0.05	0.05	3.0%	< 0.01	101%	80%	120%	101%	80%	120%	106%	80%	120%
Total Sodium	2496352		111	107	3.8%	< 0.1	113%	80%	120%	120%	80%	120%	NA	70%	130%
Total Potassium	2496352		0.8	0.8	0.8%	< 0.1	100%	80%	120%	109%	80%	120%	95%	70%	130%
Total Calcium	2496352		<0.1	0.8	NA	< 0.1	97%	80%	120%	109%	80%	120%	107%	70%	130%
Total Magnesium	2496352		<0.1	<0.1	NA	< 0.1	100%	80%	120%	102%	80%	120%	100%	70%	
Bicarb. Alkalinity (as CaCO3)	2498073		43	42	1.2%	< 5	NA	80%	120%	NA	00 /6	12070	NA	1076	1307
Carb. Alkalinity (as CaCO3)	2498073		<10	<10	NA	< 10	NA	80%	120%	NA			NA		
Lludrovido	0.400072				NIA	. 5	NIA	000/	4000/	NIA			NIA		
Hydroxide	2498073		<5	<5 40	NA	< 5	NA	80%	120%	NA	000/	4000/	NA	700/	1200/
Total Antimony	2496352		22	19	NA	< 5	107%	80%	120%	118%	80%	120%	115%	70%	130%
Total Antimony Total Arsenic	2496352		<2 7	<2	NA	< 2	101%	80%	120%	112%	80%	120%	100%	70%	130%
Total Barium	2496352 2496352		<i>7</i> <5	7 <5	NA NA	< 2 < 5	105% 101%	80% 80%	120% 120%	106% 109%	80% 80%	120% 120%	NA 101%	70% 70%	130% 130%
Total Ballulli	2490332		23	~ 5	INA	~ 3	10176	00 /6	12076	10976	00 /6	12076	10176	1070	130 /
Total Beryllium	2496352		<2	<2	NA	< 2	102%	80%	120%	111%	80%	120%	95%	70%	130%
Total Bismuth	2496352		<2	<2	NA	< 2	102%	80%	120%	111%	80%	120%	92%	70%	130%
Total Boron	2496352		15	16	NA	< 5	101%	80%	120%	113%	80%	120%	105%	70%	130%
Total Cadmium	2496352		<0.09	<0.09	NA	< 0.09	97%	80%	120%	103%	80%	120%	89%	70%	130%
Total Chromium	2496352		<1	<1	NA	< 1	95%	80%	120%	103%	80%	120%	100%	70%	130%
Total Cobalt	2496352		<1	<1	NA	< 1	96%	80%	120%	101%	80%	120%	102%	70%	130%
Total Copper	2496352		10	9	1.0%	< 1	98%	80%	120%	100%	80%	120%	101%	70%	130%
Total Iron	2496352		90	79	NA	< 50	97%	80%	120%	97%	80%	120%	102%	70%	130%
Total Lead	2496352		1.0	1.0	NA	< 0.5	100%	80%	120%	107%	80%	120%	95%	70%	130%
Total Manganese	2496352		<2	<2	NA	< 2	96%	80%	120%	103%	80%	120%	104%	70%	130%
Total Molybdenum	2496352		<2	<2	NA	< 2	91%	80%	120%	98%	80%	120%	101%	70%	130%
Total Nickel	2496352		<2	<2	NA	< 2	95%	80%		105%	80%	120%	96%	70%	
Total Phosphorous	2496352		0.05	0.05	NA	< 0.02	98%	80%		110%		120%	114%	70%	
Total Selenium	2496352		<1	<1	NA	< 1	100%	80%		109%		120%	91%		130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 10

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: DEXTER CONSTRUCTION COMPANY LTD AGAT WORK ORDER: 21X750707 PROJECT: Lantz Quarry ATTENTION TO: Rhett Thompson

SAMPLING SITE: SAMPLED BY:

	Water Analysis (Continued)																
PT Date: May 31, 2021 DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE MATRIX SPIKE															KE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured			Recovery	Acceptable Limits		1 1 1 1 1 1 1 1		Recovery	1 :	ptable nits
		ld	·	·			Value	Lower	Upper	,	Lower	Upper		Lower	Upper		
Total Silver	2496352		<0.1	<0.1	NA	< 0.1	100%	80%	120%	108%	80%	120%	93%	70%	130%		
Total Strontium	2496352		<5	<5	NA	< 5	96%	80%	120%	101%	80%	120%	103%	70%	130%		
Total Thallium	2496352		<0.1	<0.1	NA	< 0.1	97%	80%	120%	103%	80%	120%	90%	70%	130%		
Total Tin	2496352		<2	<2	NA	< 2	99%	80%	120%	107%	80%	120%	101%	70%	130%		
Total Titanium	2496352		3	2	NA	< 2	95%	80%	120%	103%	80%	120%	106%	70%	130%		
Total Uranium	2496352		0.3	0.3	NA	< 0.2	100%	80%	120%	109%	80%	120%	101%	70%	130%		
Total Vanadium	2496352		<2	<2	NA	< 2	94%	80%	120%	100%	80%	120%	99%	70%	130%		
Total Zinc	2496352		<5	<5	NA	< 5	97%	80%	120%	101%	80%	120%	129%	70%	130%		
Comments: If RPD value is NA, t	he results of the	duplicates	are less t	han 5x the	RDL and	the RPD	will not be	calcula	ted.								
Dexter - Low Level TSS																	

Total Suspended Solids - Low Level 2498131 80% 120% NA 99% 80% 120% 80% 120% 101%

(1 L)

Certified By:

Marta Manka

Method Summary

CLIENT NAME: DEXTER CONSTRUCTION COMPANY LTD

AGAT WORK ORDER: 21X750707

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE.		SAIVIPLED BY.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Total Suspended Solids - Low Level (1 L)	INOR-121-6024, 6025	SM 2540C, D	GRAVIMETRIC
рН	INOR-121-6001	SM 4500 H+B	PC TITRATE
Reactive Silica as SiO2	INOR-121-6027	SM 4500-SiO2 F	COLORIMETER
Chloride	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Fluoride	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Sulphate	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Alkalinity	INOR-121-6001	SM 2320 B	
True Color	INOR-121-6008	SM 2120 B	LACHAT FIA
Turbidity	INOR-121-6022	SM 2130 B	NEPHELOMETER
Electrical Conductivity	INOR-121-6001	SM 2510 B	PC TITRATE
Nitrate + Nitrite as N	INORG-121-6005	SM 4110 B	CALCULATION
Nitrate as N	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Nitrite as N	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Ammonia as N	INOR-121-6047	SM 4500-NH3 H	COLORIMETER
Total Organic Carbon	INOR-121-6026	SM 5310 B	TOC ANALYZER
Ortho-Phosphate as P	INOR-121-6012	SM 4500-P G	COLORIMETER
Total Sodium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Potassium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Calcium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Magnesium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Bicarb. Alkalinity (as CaCO3)	INORG-121-6001	SM 2320 B	PC TITRATE
Carb. Alkalinity (as CaCO3)	INORG-121-6001	SM 2320 B	PC TITRATE
Hydroxide	INORG-121-6001	SM 2320 B	PC-TITRATE
Calculated TDS	CALCULATION	SM 1030E	CALCULATION
Hardness	CALCULATION	SM 2340B	CALCULATION
Langelier Index (@20C)	CALCULATION	CALCULATION	CALCULATION
Langelier Index (@ 4C)	CALCULATION	CALCULATION	CALCULATION
Saturation pH (@ 20C)	CALCULATION	CALCULATION	CALCULATION
Saturation pH (@ 4C)	CALCULATION	CALCULATION	CALCULATION
Anion Sum	CALCULATION	SM 1030E	CALCULATION
Cation sum	CALCULATION	SM 1030E	CALCULATION
% Difference/ Ion Balance	CALCULATION	SM 1030E	CALCULATION
Total Aluminum	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Antimony	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Arsenic	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Barium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Beryllium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Bismuth	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Boron	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Cadmium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS

Method Summary

CLIENT NAME: DEXTER CONSTRUCTION COMPANY LTD

AGAT WORK ORDER: 21X750707

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Total Chromium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Cobalt	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Copper	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Iron	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Lead	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Manganese	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Molybdenum	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Nickel	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Phosphorous	MET-121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Selenium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Silver	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Strontium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Thallium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Tin	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Titanium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Uranium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Vanadium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Zinc	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS

Chain of Custody Record

Rhett Thompson

Company: Dexter Construction Company Limited

927 Rocky Lake Drive Bedford, NS

Report Information

Contact:

Address:

Email:

Fmail:

2. Name:

Report Information (Please print):

Gavin Isenor

rthompson@dexter.ca

gisenor@dexter.ca

1. Name: Rhett Thompson

Unit 122 • 11 Morris Drive Dartmouth, NS

B3B 1M2

webearth.agatlabs.com • www.agatlabs.com

Laboratory I	Use Only	
--------------	----------	--

Arrival Condition:	□Good	☐ Poor (see notes)
Arrival Temperature	4.3	4, 4, 6/

Hold Time: OIVIDO

P: 902.46	B.8718 - F: 902.468.8924	AGAT Job Number:	=
	Report Format	Notes:	
	Single Sample]
	per page Multiple Sample	Turnaround Time Required (TAT)	

Regular TAT 5 to 7 working days

									■	Includ	·	a C	ll Ru	sh 1	ΓAT	Γ	$\neg s_i$	ame	dav	V		day	1111	1	
Phone: 902-832-6348			Regulat	ory Requirements (Check):														days				3 day			
Client Project #:	ANTZ (Quarry		uidelines on Report 🔲 Do not I	st Guid	delines	on Rep	ort	Ш	Expor	t:		_{Da}	+o D		u a de		_				·			
AGAT Quotation: Contract			□ PIRI										Da	te R	equi	rea:	_								_
Please Note: If quotation number is	not provided client will be billed fo	ull price for analy	sis. ☐ Tie		ot.		coarse ine	IĨ	Drini	king V	/ater	Sam	ple:	 □ Y€	es	No		Salt 1		er S	amp	le:		es l	No
Invoice To	Same	Yes 🗹 / No	☐ ☐ Gas					- 11	Reg.	_										-				00	
Company:			ССМЕ				o l			9	5												Т		T
			□ Ind	a marcial			Available						level								□ MF		Ψ		
				HRM 101 S/Park □ Storm Water			Ä			IMO			□ low le	tion									2		
				icultural	ll p	is.	Diss			Pal34				tiona							□ MPN	onas	MPN		
Phone:	Fax:		— ☐ FW	AL diment	eserv	Analy		200	3			S	(PIR	K Frac	/BTD								፱		
PO/Credit Card#: 105930					Filtered/Preserved	Water	Total	5	3	O TDS		Phosphorus	H/BTE	TPH/BTEX Fractionation	VS TPH/						□P/A	□ Pse	Coliform		(N/Y) st
Sample Identification	Date/Time Sampled	Sample Matrix	# Containers	Comments – Site/Sample Info. Sample Containment	Field Filte	Standard Water Analysis	Metals:	Mercury	Hd Hd	M TSS	IKN	Total Pho	Tier 1: TPH/BTEX (PIRI)	Tier 2: TF	CCME-CWS TPH/BTEX	voc	ТНМ	HAA	PAH	PCB	TC + EC	П НРС	Fecal Co	Other:	Hazardo
LANTZ QUARRY	MAY 20/21	10	4			1	1			1			1	+										7	
500-1	,																							3	
LANTZ QUANDY	MAYZORI	W	4		+	-		+	+		-	-			-								-	-	-
SW-2																									
(ANTO DIDARY	MAY ZO/ZI	w	4		-							-	1		-							4			
CANTE DIAMY	7 11 20/21												T											+	
																							11		
					+	-	-	+	+	\vdash	+	+	+	H	-				-			-	+	+	-
					+		7	+	+		+	+	+		1				\dashv				+	+	
Samples Rollinguished By (Print Name):		Date/1	,	Samples Received By (Print Name)		7		1	_	Dat	e/Time	_		T	Dinte	^	Olla		_	_		=	1 .	_	7
ROSSAT MCD	STOSH	110	4422/21		/	/	1	/								Copy v Copy		- 1		Pag	ge ∟	1] of L	-	1
Response Responsibled By (Sign): Re Leve Type Type Type		ino .	Samples Received By (Signi)					Date/Time				Yellow Copy - A White Copy- A													

Dominion ID DREAM LEGISOR

Date rowsed January 201

CLIENT NAME: DEXTER CONSTRUCTION COMPANY LTD PO BOX 48100

BEDFORD, NS B4A3Z2

(902) 835-3381

ATTENTION TO: Rhett Thompson

PROJECT: Lantz Quarry

AGAT WORK ORDER: 21X725289

WATER ANALYSIS REVIEWED BY: Marta Manka, Data Reporter

DATE REPORTED: Apr 05, 2021

PAGES (INCLUDING COVER): 10 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (902) 468-8718

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 10

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Unit

mg/L

CLIENT NAME: DEXTER CONSTRUCTION COMPANY LTD

Certificate of Analysis

AGAT WORK ORDER: 21X725289

PROJECT: Lantz Quarry

2021-03-23

2255275

ATTENTION TO: Rhett Thompson

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

	De			
				DATE REPORTED: 2021-04-05
	Lantz Quarry	Lantz Quarry	Lantz Quarry	
SAMPLE DESCRIPTION:	SW-1	SW-2	SW-3	
SAMPLE TYPE:	Water	Water	Water	

2021-03-23 2255276

2

RDL - Reported Detection Limit;

SAMPLING SITE:

(1 L)

Comments:

DATE RECEIVED: 2021-03-24

Parameter

Total Suspended Solids - Low Level

G / S - Guideline / Standard

G/S

DATE SAMPLED:

RDL

2021-03-23

2255181

Analysis performed at AGAT Halifax (unless marked by *)

Certified By:

Marta Manka

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21X725289

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Standard Water Analysis + Total Metals

			Otanaara	rvator /tirarys	10 1 1010	ui iviotaio	
DATE RECEIVED: 2021-03-24							DATE REPORTED: 2021-04-05
	SA	AMPLE DESCRIPTION:	Lantz Quarry SW-1	Lantz Quarry SW-2		Lantz Quarry SW-3	
	G,	SAMPLE TYPE:	Water	Water		Water	
		DATE SAMPLED:	2021-03-23	2021-03-23		2021-03-23	
Parameter	Unit	G/S RDL	2255181	2255275	RDL	2255276	
Н			6.83	6.93		7.70	
Reactive Silica as SiO2	mg/L	0.5	4.2	4.4	0.5	9.6	
Chloride	mg/L	1	4	4	1	12	
Fluoride	mg/L	0.12	<0.12	<0.12	0.12	0.20	
Sulphate	mg/L	2	6	6	2	73	
Alkalinity	mg/L	5	14	21	5	103	
True Color	TCU	5.00	49.9	44.5	5.00	<5.00	
Turbidity	NTU	0.5	3.0	3.3	0.5	0.6	
Electrical Conductivity	umho/cm	1	59	67	1	454	
Nitrate + Nitrite as N	mg/L	0.05	0.05	0.08	0.05	7.97	
Nitrate as N	mg/L	0.05	0.05	0.08	0.25	7.92	
Nitrite as N	mg/L	0.05	< 0.05	<0.05	0.05	0.05	
Ammonia as N	mg/L	0.03	0.12	0.12	0.03	0.08	
Total Organic Carbon	mg/L	0.5	6.8	1.6	0.5	7.3	
Ortho-Phosphate as P	mg/L	0.01	0.01	0.01	0.01	0.01	
Total Sodium	mg/L	0.1	2.6	2.9	0.1	8.8	
Total Potassium	mg/L	0.1	0.9	1.1	0.1	5.6	
Total Calcium	mg/L	0.1	5.5	6.4	0.1	72.0	
Total Magnesium	mg/L	0.1	0.9	1.0	0.1	4.5	
Bicarb. Alkalinity (as CaCO3)	mg/L	5	14	21	5	103	
Carb. Alkalinity (as CaCO3)	mg/L	10	<10	<10	10	<10	
Hydroxide	mg/L	5	<5	<5	5	<5	
Calculated TDS	mg/L	1	29	35	1	273	
Hardness	mg/L		17.4	20.1		198	
Langelier Index (@20C)	NA		-2.82	-2.48		-0.06	
Langelier Index (@ 4C)	NA		-3.14	-2.80		-0.38	
Saturation pH (@ 20C)	NA		9.65	9.41		7.76	
Saturation pH (@ 4C)	NA		9.97	9.73		8.08	
Anion Sum	me/L		0.52	0.66		4.49	

Certified By:

Marta Manta

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21X725289

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Standard Water Analysis + Total Metals

DATE DECENTED: 2024 22 24							DATE DEDODTED: 2024 04 25
DATE RECEIVED: 2021-03-24							DATE REPORTED: 2021-04-05
			Lantz Quarry	Lantz Quarry		Lantz Quarry	
		SAMPLE DESCRIPTION:	SW-1	SW-2		SW-3	
		SAMPLE TYPE:	Water	Water		Water	
		DATE SAMPLED:	2021-03-23	2021-03-23		2021-03-23	
Parameter	Unit	G/S RDL	2255181	2255275	RDL	2255276	
Cation sum	me/L		0.52	0.60		4.51	
% Difference/ Ion Balance	%		0.1	5.4		0.2	
otal Aluminum	ug/L	5	213	210	5	17	
otal Antimony	ug/L	2	<2	<2	2	5	
otal Arsenic	ug/L	2	<2	<2	2	<2	
otal Barium	ug/L	5	15	14	5	65	
otal Beryllium	ug/L	2	<2	<2	2	<2	
otal Bismuth	ug/L	2	<2	<2	2	<2	
otal Boron	ug/L	5	<5	<5	5	14	
otal Cadmium	ug/L	0.017	<0.017	<0.017	0.017	0.033	
otal Chromium	ug/L	1	<1	<1	1	<1	
otal Cobalt	ug/L	1	<1	<1	1	<1	
otal Copper	ug/L	1	2	1	1	2	
otal Iron	ug/L	50	135	162	50	76	
otal Lead	ug/L	0.5	<0.5	<0.5	0.5	<0.5	
otal Manganese	ug/L	2	11	38	2	34	
otal Molybdenum	ug/L	2	<2	<2	2	8	
otal Nickel	ug/L	2	<2	<2	2	3	
otal Phosphorous	mg/L	0.02	0.03	0.03	0.02	0.03	
otal Selenium	ug/L	1	<1	<1	1	<1	
otal Silver	ug/L	0.1	<0.1	<0.1	0.1	<0.1	
otal Strontium	ug/L	5	19	23	5	291	
otal Thallium	ug/L	0.1	<0.1	<0.1	0.1	<0.1	
otal Tin	ug/L	2	<2	<2	2	<2	
otal Titanium	ug/L	2	4	6	2	<2	
otal Uranium	ug/L	0.2	<0.2	<0.2	0.2	9.4	
otal Vanadium	ug/L	2	<2	<2	2	<2	
Total Zinc	ug/L	5	<5	<5	5	<5	

Certified By:

Marta Manta

Certificate of Analysis

AGAT WORK ORDER: 21X725289

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLED BY:

Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

11 Morris Drive, Unit 122

Standard Water Analysis + Total Metals

DATE RECEIVED: 2021-03-24 DATE REPORTED: 2021-04-05

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

2255181-2255275 % Difference / Ion Balance, Hardness, Langelier Index, Nitrate + Nitrite, Hydroxide and Saturation pH are calculated parameters. The calculated parameters are non-accredited. The component parameters of the calculations are accredited.

The cation and anion sums are at, or below, 1 me/L, therefore the acceptable criteria is a difference of less than 0.3me/L.

2255276 % Difference / Ion Balance, Hardness, Langelier Index, Nitrate + Nitrite, Hydroxide and Saturation pH are calculated parameters. The calculated parameters are non-accredited. The component

parameters of the calculations are accredited.

Analysis performed at AGAT Halifax (unless marked by *)

SAMPLING SITE:

Certified By:

Marta Manka

Quality Assurance

CLIENT NAME: DEXTER CONSTRUCTION COMPANY LTD

AGAT WORK ORDER: 21X725289

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE.								, (IVII	LED B	••					
				Wate	er Ar	nalys	is								
RPT Date: Apr 05, 2021				UPLICATE	<u> </u>		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	Lin	ptable nits	Recovery		eptable mits
							Value	Lower	Upper		Lower	Upper		Lower	Uppei
Standard Water Analysis + Tota	al Metals														
рН	2257303		6.81	6.82	0.1%	<	100%	80%	120%	NA			NA		
Reactive Silica as SiO2	2255181		< 0.5	<0.5	NA	< 0.5	117%	80%	120%	105%	80%	120%	NA	80%	120%
Chloride	2258688		50	51	2.0%	< 1	96%	80%	120%	NA	80%	120%	NA	70%	130%
Fluoride	2258688		0.88	0.90	1.6%	< 0.12	108%	80%	120%	NA	80%	120%	90%	70%	130%
Sulphate	2258688		8	8	NA	< 2	105%	80%	120%	NA	80%	120%	105%	70%	130%
Alkalinity	2257303		29	29	1.9%	< 5	96%	80%	120%	NA			NA		
True Color	2252765		<5.00	<5.00	NA	< 5	92%	80%	120%	96%	80%	120%	NA		
Turbidity	2250215		16.7	16.3	2.4%	< 0.5	96%	80%	120%	NA			NA		
Electrical Conductivity	2257303		563	564	0.2%	1	99%	90%	110%	NA			NA		
Nitrate as N	2258688		<0.05	<0.05	NA	< 0.05	97%	80%	120%	NA	80%	120%	97%	70%	130%
Nitrite as N	2258688		<0.05	<0.05	NA	< 0.05	104%	80%	120%	NA	80%	120%	93%	70%	130%
Total Organic Carbon	2264096		2.1	2.0	NA	0.6	90%	80%	120%	NA	80%	120%	NA	80%	120%
Ortho-Phosphate as P	2255181		< 0.01	<0.01	NA	0.01	80%	80%	120%	80%	80%	120%	NA	80%	120%
Total Sodium	2252089		5.1	5.2	2.2%	< 0.1	103%	80%	120%	106%	80%	120%	NA	70%	130%
Total Potassium	2252089		<0.1	<0.1	NA	< 0.1	104%	80%	120%	110%	80%	120%	109%	70%	130%
Total Calcium	2252089		<0.1	<0.1	NA	< 0.1	99%	80%	120%	107%	80%	120%	116%	70%	130%
Total Magnesium	2252089		<0.1	<0.1	NA	< 0.1	101%	80%	120%	108%	80%	120%	107%	70%	130%
Bicarb. Alkalinity (as CaCO3)	2257303		29	29	1.9%	< 5	NA	80%	120%	NA			NA		
Carb. Alkalinity (as CaCO3)	2257303		<10	<10	NA	< 10	NA	80%	120%	NA			NA		
Hydroxide	2257303		<5	<5	NA	< 5	NA	80%	120%	NA			NA		
Total Aluminum	2252089		5	6	NA	< 5	97%	80%	120%	109%	80%	120%	108%	70%	130%
Total Antimony	2252089		<2	<2	NA	< 2	99%	80%	120%	106%	80%	120%	97%	70%	130%
Total Arsenic	2252089		204	216	5.7%	< 2	98%	80%	120%	96%	80%	120%	NA	70%	130%
Total Barium	2252089		6	6	NA	< 5	103%	80%	120%	108%	80%	120%	115%	70%	130%
Total Beryllium	2252089		<2	<2	NA	< 2	102%	80%	120%	107%	80%	120%	95%	70%	130%
Total Bismuth	2252089		<2	<2	NA	< 2	100%	80%	120%	106%	80%	120%	100%	70%	130%
Total Boron	2252089		27	28	4.0%	< 5	101%	80%	120%	105%	80%	120%	105%	70%	130%
Total Cadmium	2252089		< 0.017	< 0.017	NA	< 0.017	99%	80%	120%	104%	80%	120%	97%	70%	130%
Total Chromium	2252089		<1	<1	NA	< 1	96%	80%	120%	103%	80%	120%	97%	70%	130%
Total Cobalt	2252089		<1	<1	NA	< 1	98%	80%	120%	103%	80%	120%	102%	70%	130%
Total Copper	2252089		6	2	NA	< 1	100%	80%	120%	106%	80%	120%	88%	70%	130%
Total Iron	2252089		545	571	4.8%	< 50	102%	80%	120%	107%	80%	120%	NA	70%	130%
Total Lead	2252089		0.8	0.7	NA	< 0.5	98%	80%		103%	80%	120%	98%	70%	130%
Total Manganese	2252089		4	4	NA	< 2	101%	80%	120%	105%	80%	120%	109%	70%	130%
Total Molybdenum	2252089		<2	<2	NA	< 2	95%	80%		99%		120%	101%	70%	130%
Total Nickel	2252089		<2	<2	NA	< 2	98%	80%	120%	109%	80%	120%	103%	70%	130%
Total Phosphorous	2252089		0.03	0.03	NA	< 0.02	106%	80%	120%	110%	80%	120%	94%	70%	130%
Total Selenium	2252089		<1	<1	NA	< 1	96%	80%		98%	80%	120%	86%	70%	130%
					14/1	- 1	3070	00 /0	120 /0	30 /0	00 /0	120/0	0070	1070	10070

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 10

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: DEXTER CONSTRUCTION COMPANY LTD

AGAT WORK ORDER: 21X725289

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLING SITE: SAMPLED BY:

SAMI LING SITE.								וועורעכ		1.					
		V	Vater	· Ana	lysis	(Co	ntinu	ed)							
RPT Date: Apr 05, 2021	RPT Date: Apr 05, 2021						REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	1 1 1 1 1	ptable nits	Recovery	-: ۱	ptable nits
		ld					Value	Lower	Upper	,	Lower	Upper	, , ,	Lower	Upper
Total Strontium	2252089		<5	<5	NA	< 5	100%	80%	120%	104%	80%	120%	108%	70%	130%
Total Thallium	2252089		<0.1	<0.1	NA	< 0.1	95%	80%	120%	100%	80%	120%	97%	70%	130%
Total Tin	2252089		<2	<2	NA	< 2	99%	80%	120%	103%	80%	120%	100%	70%	130%
Total Titanium	2252089		<2	<2	NA	< 2	100%	80%	120%	107%	80%	120%	111%	70%	130%
Total Uranium	2252089		<0.2	<0.2	NA	< 0.2	98%	80%	120%	104%	80%	120%	100%	70%	130%
Total Vanadium	2252089		<2	<2	NA	< 2	95%	80%	120%	100%	80%	120%	97%	70%	130%
Total Zinc	2252089		28	27	5.2%	< 5	99%	80%	120%	104%	80%	120%	90%	70%	130%
Comments: If RPD value is NA, the r	esults of the	duplicates	s are less t	han 5x the	RDL and	the RPD	will not be	calcula	ted.						
Dexter - Low Level TSS															
Total Suspended Solids - Low Leve (1 L)	1 2254354		48	47	2.1%	< 1	97%	80%	120%	NA	80%	120%	98%	80%	120%
Standard Water Analysis + Total	Metals														
Chloride	2258688		50	51	1.7%	< 1	97%	80%	120%	NA	80%	120%	NA	70%	130%
Fluoride	2258688		0.88	0.90	1.6%	< 0.12	109%	80%	120%	NA	80%	120%	NA	70%	130%
Sulphate	2258688		8	8	NA	< 2	106%	80%	120%	NA	80%	120%	105%	70%	130%
Nitrate as N	2258688		< 0.05	< 0.05	NA	< 0.05	98%	80%	120%	NA	80%	120%	97%	70%	130%
Nitrite as N	2258688		< 0.05	< 0.05	NA	< 0.05	105%	80%	120%	NA	80%	120%	93%	70%	130%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

Marta Manka

Method Summary

CLIENT NAME: DEXTER CONSTRUCTION COMPANY LTD

AGAT WORK ORDER: 21X725289

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis	-		
Total Suspended Solids - Low Level (1 L)	INOR-121-6024, 6025	SM 2540C, D	GRAVIMETRIC
рН	INOR-121-6001	SM 4500 H+B	PC TITRATE
Reactive Silica as SiO2	INOR-121-6027	SM 4500-SiO2 F	COLORIMETER
Chloride	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Fluoride	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Sulphate	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Alkalinity	INOR-121-6001	SM 2320 B	
True Color	INOR-121-6008	SM 2120 B	LACHAT FIA
Turbidity	INOR-121-6022	SM 2130 B	NEPHELOMETER
Electrical Conductivity	INOR-121-6001	SM 2510 B	PC TITRATE
Nitrate + Nitrite as N	INORG-121-6005	SM 4110 B	CALCULATION
Nitrate as N	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Nitrite as N	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Ammonia as N	INOR-121-6047	SM 4500-NH3 H	COLORIMETER
Total Organic Carbon	INOR-121-6026	SM 5310 B	TOC ANALYZER
Ortho-Phosphate as P	INOR-121-6012	SM 4500-P G	COLORIMETER
Total Sodium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Potassium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Calcium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Magnesium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Bicarb. Alkalinity (as CaCO3)	INORG-121-6001	SM 2320 B	PC TITRATE
Carb. Alkalinity (as CaCO3)	INORG-121-6001	SM 2320 B	PC TITRATE
Hydroxide	INORG-121-6001	SM 2320 B	PC-TITRATE
Calculated TDS	CALCULATION	SM 1030E	CALCULATION
Hardness	CALCULATION	SM 2340B	CALCULATION
Langelier Index (@20C)	CALCULATION	CALCULATION	CALCULATION
Langelier Index (@ 4C)	CALCULATION	CALCULATION	CALCULATION
Saturation pH (@ 20C)	CALCULATION	CALCULATION	CALCULATION
Saturation pH (@ 4C)	CALCULATION	CALCULATION	CALCULATION
Anion Sum	CALCULATION	SM 1030E	CALCULATION
Cation sum	CALCULATION	SM 1030E	CALCULATION
% Difference/ Ion Balance	CALCULATION	SM 1030E	CALCULATION
Total Aluminum	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Antimony	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Arsenic	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Barium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Beryllium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Bismuth	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Boron	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Cadmium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS

Method Summary

CLIENT NAME: DEXTER CONSTRUCTION COMPANY LTD

AGAT WORK ORDER: 21X725289

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Total Chromium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Cobalt	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Copper	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Iron	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Lead	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Manganese	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Molybdenum	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Nickel	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Phosphorous	MET-121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Selenium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Silver	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Strontium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Thallium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Tin	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Titanium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Uranium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Vanadium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Zinc	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS

Unit 122 • 11 Morris Drive Dartmouth, NS B3B 1M2

webearth.agatlabs.com • www.agatlabs.com

ſ	Laboratory Use Only
П	Arrival Condition: Good Poor (see notes) Arrival Temperature: 3.3 4.6
	Hold Time:

Chain	of	Custody	Record
Report I	nfor	mation	

Chain of Custody Record	P: 902.468.8718	F: 902.468.8924	AGAT Job Number:	21X 123 2899					
Report Information Company: Dexter Construction Company Limited	Report Information (Please print): 1. Name: Rhett Thompson	Report Format	Notes:						
Contact: Rhett Thompson	Email: rthompson@dexter.ca	Single Sample per page	Turnaround Time Required (TAT)						
Address: 927 Rocky Lake Drive Bedford, NS	2. Name: Gavin Isenor	Multiple Sample per page							
Address. OZ. Prodny Land Brive Bedidia, NO	Email: gisenor@dexter.ca	Fund Formula	Regular TAT 5 to 7 working days						
Phone: 902-832-6348 Fax:		Included		ne day 🗆 1 day					
Client Project #: LANTZ Quarry	Regulatory Requirements (Check): ☐ List Guidelines on Report ☐ Do not list Guidelines on Report	Export:	□ 2 da	ays □3 days					
AGAT Quotation: 10510792	☐ PIRI		Date Required:						
Please Note: If quotation number is not provided client will be billed full price for analysis.	☐ Tier 1 ☐ Res ☐ Pot ☐ Coarse ☐ Tier 2 ☐ Com ☐ N/Pot ☐ Fine	Drinking Water Sampl	lo. □ Voc. [diNo. Sol	It Water Sample: ☐ Yes ▼No					
Invoice To Same Yes ☑ / No □	☐ Tier 2 ☐ Com ☐ N/Pot ☐ Fine ☐ Gas ☐ Fuel ☐ Lube	Reg. No.;	ie: 🗆 Yes 🗀 No Sai	t water sample; Yes F No					
	□ CCME □ CDWO								
Company:		100		M A A					
Contact:	☐ Industrial ☐ NSEQS-Cont Sites ☐ ☐ Commercial ☐ HRM 101 ☐ Res/Park ☐ Commercial ☐ HRM 101 ☐ ☐ Res/Park ☐ Res/Park ☐ Commercial ☐ HRM 101 ☐ Res/Park	ING	v level	M					
Address:	Agricultural Storm Water	89	onati						
Phone: Fax:	Sediment Other O	00 Z	(PIRI)	□P/A □MPN □ Pseudomonas form □ MPN					
PO/Credit Card#: 19435512 /0588996	Sediment □ Other □ Sediment □ O	□ CBOD □ TDS Sphorus	STEX STEX STEX	DP/A DPseu orm C					
	rd Wa	□ 쓩	TPH/B						
Matrix	Sediment Other Sediment Water Water Analysis Standard Water Water Analysis Standard Water Wat	DH CEC PH CTSS CTDS TKN Total Phosphorus Phenois	Tier 2: TPH/BTEX (PIRI) □ low is Tier 2: TPH/BTEX Fractionation CCME-CWS TPH/BTEX VOC THM HAA						
LANTZ QUARRY MAR 23/21 W	4								
SW-1									
CANTZ QUARRY MAR 23/21 W	4								
Sw-2		1111							
CW-3 CW-3/21 W	4								
(w-3									
ROJENT MCINTOSH MAN	Samples Received By (Print Name):	Date/Time	Pink Copy - Client	Page / of /					
amplegetelliquiaheg thy (sign): 1040 MC - Fra la	Samples Revelven By (Sign)	Date/Time	Yellow Copy - AGAT White Copy- AGAT	Nº:					
Outer 0 0 004524601 622				Date revised January 2016					
12:05 PM	1			Out a 12 NS 2 3 Talling A TATO					

CLIENT NAME: DEXTER CONSTRUCTION COMPANY LTD PO BOX 48100

BEDFORD, NS B4A3Z2

(902) 835-3381

ATTENTION TO: Rhett Thompson

PROJECT: Lantz Quarry

AGAT WORK ORDER: 21X835755

WATER ANALYSIS REVIEWED BY: Jason Coughtrey, Inorganics Supervisor

DATE REPORTED: Dec 09, 2021

PAGES (INCLUDING COVER): 11 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (902) 468-8718

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 11

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 21X835755

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLED BY:

SAMPLING SITE:							SAMPLED BY:	
				De	exter - Low	Level TSS		
DATE RECEIVED: 2021-11-26								DATE REPORTED: 2021-12-09
				Lantz Quarry	Lantz Quarry	Lantz Quarry		
		SAMPLE DESC	CRIPTION:	SW-1	SW-2	SW-3		
		SAME	PLE TYPE:	Water	Water	Water		
		DATE S	SAMPLED:	2021-11-24	2021-11-24	2021-11-24		
Parameter	Unit	G/S	RDL	3257196	3257218	3257219		
Total Suspended Solids - Low Level (1 L)	mg/L		1	<1	<1	<1		

RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Halifax (unless marked by *)

Certified By:

11 Morris Drive, Unit 122

Dartmouth, Nova Scotia CANADA B3B 1M2

http://www.agatlabs.com

TEL (902)468-8718 FAX (902)468-8924

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21X835755

PROJECT: Lantz Quarry

Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

11 Morris Drive, Unit 122

ATTENTION TO: Rhett Thompson

SAMPLED BY:

DATE RECEIVED: 2021-11-26						DATE REPORTED: 2021-12-09
			Lantz Quarry	Lantz Quarry	Lantz Quarry	
		SAMPLE DESCRIPTION:	SW-1	SW-2	SW-3	
		SAMPLE TYPE:	Water	Water	Water	
		DATE SAMPLED:	2021-11-24	2021-11-24	2021-11-24	
Parameter	Unit	G/S RDL	3257196	3257218	3257219	
рН			6.48	6.67	7.95	
Reactive Silica as SiO2	mg/L	0.5	4.3	4.1	3.6	
Chloride	mg/L	1	5	5	3	
Fluoride	mg/L	0.12	<0.12	<0.12	0.15	
Sulphate	mg/L	2	5	5	107	
Alkalinity	mg/L	5	<5	9	108	
True Color	TCU	5.00	32.1	142	6.2	
Turbidity	NTU	0.5	3.1	2.4	1.0	
Electrical Conductivity	umho/cm	1	52	57	485	
Nitrate + Nitrite as N	mg/L	0.05	<0.05	< 0.05	4.62	
Nitrate as N	mg/L	0.05	< 0.05	< 0.05	4.53	
Nitrite as N	mg/L	0.05	< 0.05	< 0.05	0.09	
Ammonia as N	mg/L	0.03	0.39	< 0.03	0.21	
Ortho-Phosphate as P	mg/L	0.01	0.10	0.04	0.03	
Total Sodium	mg/L	0.1	2.9	3.2	5.9	
Total Potassium	mg/L	0.1	0.7	0.9	5.1	
Total Calcium	mg/L	0.1	5.0	6.8	71.4	
Total Magnesium	mg/L	0.1	8.0	0.9	4.2	
Bicarb. Alkalinity (as CaCO3)	mg/L	5	<5	9	108	
Carb. Alkalinity (as CaCO3)	mg/L	10	<10	<10	<10	
Hydroxide	mg/L	5	<5	<5	<5	
Calculated TDS	mg/L	1	21	28	282	
Hardness	mg/L		15.8	20.7	196	
Langelier Index (@20C)	NA		-3.65	-3.08	0.20	
Langelier Index (@ 4C)	NA		-3.97	-3.40	-0.12	
Saturation pH (@ 20C)	NA		10.1	9.75	7.75	
Saturation pH (@ 4C)	NA		10.4	10.1	8.07	
Anion Sum	me/L		0.25	0.43	4.80	
Cation sum	me/L		0.54	0.63	4.32	

Certified By:

Josephan Coaghtray

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21X835755

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Standard Water Analysis + Total Metals

			Standard	water Ariary	rsis + Total i	vietais
DATE RECEIVED: 2021-11-26	1					DATE REPORTED: 2021-12-09
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G/S RDL	Lantz Quarry SW-1 Water 2021-11-24 3257196	Lantz Quarry SW-2 Water 2021-11-24 3257218	Lantz Quarry SW-3 Water 2021-11-24 3257219	
% Difference/ Ion Balance	%		37.2	19.5	5.3	
Total Aluminum	ug/L	5	331	364	11	
Total Antimony	ug/L	2	<2	<2	12	
Total Arsenic	ug/L	2	<2	<2	4	
Total Barium	ug/L	5	14	13	54	
Total Beryllium	ug/L	2	<2	<2	<2	
Total Bismuth	ug/L	2	<2	<2	<2	
Total Boron	ug/L	5	7	7	14	
Total Cadmium	ug/L	0.09	< 0.09	< 0.09	< 0.09	
Total Chromium	ug/L	1	<1	<1	<1	
Total Cobalt	ug/L	1	<1	<1	<1	
Total Copper	ug/L	1	<1	2	1	
Total Iron	ug/L	50	297	343	53	
Total Lead	ug/L	0.5	<0.5	0.9	<0.5	
Total Manganese	ug/L	2	7	55	37	
Total Molybdenum	ug/L	2	<2	<2	7	
Total Nickel	ug/L	2	2	<2	2	
Total Phosphorous	mg/L	0.02	<0.02	<0.02	<0.02	
Total Selenium	ug/L	1	<1	<1	1	
Total Silver	ug/L	0.1	<0.1	<0.1	<0.1	
Total Strontium	ug/L	5	18	21	388	
Total Thallium	ug/L	0.1	<0.1	<0.1	<0.1	
Total Tin	ug/L	2	<2	<2	<2	
Total Titanium	ug/L	2	3	4	<2	
Total Uranium	ug/L	0.2	<0.2	<0.2	13.4	
Total Vanadium	ug/L	2	<2	<2	<2	
Total Zinc	ug/L	5	<5	<5	<5	

Certified By:

Josan Coaghtry

Certificate of Analysis

AGAT WORK ORDER: 21X835755

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLED BY:

FAX (902)468-8924 http://www.agatlabs.com

11 Morris Drive, Unit 122

Dartmouth, Nova Scotia CANADA B3B 1M2

TEL (902)468-8718 FAX (902)468-8924

Standard Water Analysis + Total Metals

DATE RECEIVED: 2021-11-26 DATE REPORTED: 2021-12-09

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

3257196-3257218 % Difference / Ion Balance, Hardness, Langelier Index, Nitrate + Nitrite, Hydroxide and Saturation pH are calculated parameters. The calculated parameters are non-accredited. The component parameters of the calculations are accredited. When the cation and anion sums are at, or below 1 me/L, the acceptable criteria is less than 0.3me/L

3257219 % Difference / Ion Balance, Hardness, Langelier Index, Nitrate + Nitrite, Hydroxide and Saturation pH are calculated parameters. The calculated parameters are non-accredited. The component

parameters of the calculations are accredited.

Analysis performed at AGAT Halifax (unless marked by *)

SAMPLING SITE:

Certified By:

Jasan Coughtry

Certificate of Analysis

AGAT WORK ORDER: 21X835755

PROJECT: Lantz Quarry

Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

11 Morris Drive, Unit 122

ATTENTION TO: Rhett Thompson

SAMPLED BY:

Water Analysis - TOC

DATE RECEIVED: 2021-11-26 DATE REPORTED: 2021-12-09

				Lantz Quarry	Lantz Quarry	Lantz Quarry
		SAMPLE DES	CRIPTION:	SW-1	SW-2	SW-3
		SAMI	PLE TYPE:	Water	Water	Water
		DATES	SAMPLED:	2021-11-24	2021-11-24	2021-11-24
Parameter	Unit	G/S	RDL	3257196	3257218	3257219
Total Organic Carbon	mg/L		1	19	20	3

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Calgary (unless marked by *)

SAMPLING SITE:

Certified By:

Joseph Coughtry

Quality Assurance

CLIENT NAME: DEXTER CONSTRUCTION COMPANY LTD

AGAT WORK ORDER: 21X835755

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE.								MIVIP	LED B	Ι.					
				Wate	er Ar	nalys	is								
RPT Date: Dec 09, 2021			С	UPLICAT	E	Method	REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SP		KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Measured Limits		Recovery	1 1 1 1 1	ptable nits	Recovery	Lin	ptable nits
								Lower	Upper		Lower	Upper		Lower	Upper
Standard Water Analysis + Tota	al Metals														
pH	3258530		8.00	7.93	0.9%	<	102%	80%	120%	NA			NA		
Reactive Silica as SiO2	3258566		11.9	11.5	3.4%	< 0.5	96%	80%	120%	91%	80%	120%	95%	80%	120%
Chloride	3254801		53	54	1.4%	< 1	89%	80%	120%	NA	80%	120%	NA	70%	130%
Fluoride	3254801		<0.12	<0.12	NA	< 0.12	101%	80%	120%	NA	80%	120%	95%	70%	130%
Sulphate	3254801		105	106	0.9%	< 2	106%	80%	120%	NA	80%	120%	NA	70%	130%
Alkalinity	3258530		204	204	0.0%	< 5	87%	80%	120%	NA			NA		
True Color	3258566		<5.00	<5.00	NA	< 5	99%	80%	120%	96%	80%	120%	NA		
Turbidity	3251143		12.2	11.9	2.5%	< 0.5	95%	80%	120%	NA			NA		
Electrical Conductivity	3258530		450	449	0.2%	< 1	102%	90%	110%	NA			NA		
Nitrate as N	3254801		<0.05	<0.05	NA	< 0.05	90%	80%	120%	NA	80%	120%	82%	70%	130%
Nitrite as N	3254801		<0.05	<0.05	NA	< 0.05	92%	80%	120%	NA	80%	120%	109%	70%	130%
Ammonia as N	3258530		0.04	< 0.03	NA	< 0.03	115%	80%	120%	87%	80%	120%	106%	70%	130%
Ortho-Phosphate as P	3258566		0.05	0.06	16.9%	< 0.01	95%	80%	120%	106%	80%	120%	110%	80%	120%
Total Sodium	3268325		39.6	39.1	1.5%	< 0.1	105%	80%	120%	112%	80%	120%	NA	70%	130%
Total Potassium	3268325		2.3	2.3	0.6%	< 0.1	95%	80%	120%	101%	80%	120%	NA	70%	130%
Total Calcium	3268325		13.3	13.5	2.1%	< 0.1	101%	80%	120%	101%	80%	120%	NA	70%	130%
Total Magnesium	3268325		5.9	6.0	1.9%	< 0.1	97%	80%	120%	102%	80%	120%	NA	70%	130%
Bicarb. Alkalinity (as CaCO3)	3258530		204	204	0.0%	< 5	NA	80%	120%	NA			NA		
Carb. Alkalinity (as CaCO3)	3258530		<10	<10	NA	< 10	NA	80%	120%	NA			NA		
Hydroxide	3258530		<5	<5	NA	< 5	NA	80%	120%	NA			NA		
Total Aluminum	3268325		92	93	1.3%	< 5	96%	80%	120%	100%	80%	120%	102%	70%	130%
Total Antimony	3268325		2	2	NA	< 2	80%	80%	120%	120%	80%	120%	NA	70%	130%
Total Arsenic	3268325		14	14	5.2%	< 2	98%	80%	120%	101%	80%	120%	NA	70%	130%
Total Barium	3268325		13	14	NA	< 5	82%	80%	120%	89%	80%	120%	98%	70%	130%
Total Beryllium	3268325		<2	<2	NA	< 2	95%	80%	120%	102%	80%	120%	102%	70%	130%
Total Bismuth	3268325		<2	<2	NA	< 2	80%	80%	120%	99%	80%	120%	95%	70%	130%
Total Boron	3268325		118	120	2.1%	< 5	94%	80%	120%	102%	80%	120%	NA	70%	130%
Total Cadmium	3268325		0.26	0.28	NA	< 0.09	98%	80%	120%	104%	80%	120%	91%	70%	130%
Total Chromium	3268325		1	1	NA	< 1	93%	80%	120%	96%	80%	120%	101%	70%	130%
Total Cobalt	3268325		30	30	0.7%	< 1	94%	80%	120%	98%	80%	120%	NA	70%	130%
Total Copper	3268325		33	33	1.6%	< 1	99%	80°/	120%	103%	8U%	120%	NA	70%	130%
Total Iron	3268325		666	694	4.1%	< 50	92%	80%	120%	93%	80%	120%	NA	70%	130%
Total Lead	3268325		4.7	5.3	12.1%	< 0.5	100%	80%		110%	80%	120%	91%	70%	130%
Total Manganese	3268325		1390	1440	3.3%	< 2	94%		120%	97%	80%	120%	NA	70%	130%
Total Molybdenum	3268325		2	2	NA	< 2	86%	80%		93%	80%		106%		130%
Total Niekal	2260205		10	40	0.50/	. 0	070/	000/	1000/	1000/	000/	1000/	NI A	700/	12001
Total Nickel	3268325		18	18	2.5%	< 2	97%	80%		103%		120%	NA 1000/	70%	130%
Total Phosphorous	3268325		0.03	0.03	NA	< 0.02	92%	80%		92%	80%	120%	108%	70%	130%
Total Selenium Total Silver	3268325		2	2	NA	< 1	89%		120%	100%	80%		98%	70%	130%
TUTAL SILVEL	3268325		<0.1	<0.1	NA	< 0.1	95%	80%	120%	102%	80%	120%	96%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 7 of 11

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: DEXTER CONSTRUCTION COMPANY LTD

AGAT WORK ORDER: 21X835755

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLING SITE: SAMPLED BY:

AMPLING SITE: SAMPLED BY:															
		V	Vate	· Ana	lysis	(Co	ntinu	ed)							
RPT Date: Dec 09, 2021			Г	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	KE	
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	1 1 1	eptable mits	Recovery		ptable
		lu lu					Value	Lower	Upper		Lower	Upper		Lower	Upper
Total Strontium	3268325		107	108	1.0%	< 5	99%	80%	120%	100%	80%	120%	NA	70%	130%
Total Thallium	3268325		0.3	0.3	NA	< 0.1	98%	80%	120%	105%	80%	120%	90%	70%	130%
Total Tin	3268325		1640	1640	0.1%	< 2	100%	80%	120%	100%	80%	120%	NA	70%	130%
Total Titanium	3268325		<2	<2	NA	< 2	91%	80%	120%	102%	80%	120%	104%	70%	130%
Total Uranium	3268325		5.1	5.7	11.5%	< 0.2	95%	80%	120%	105%	80%	120%	NA	70%	130%
Total Vanadium	3268325		<2	<2	NA	< 2	91%	80%	120%	95%	80%	120%	99%	70%	130%
Total Zinc	3268325		355	363	2.2%	< 5	100%	80%	120%	103%	80%	120%	NA	70%	130%
Comments: If RPD value is NA, the	e results of the	duplicates	s are less	han 5x the	RDL and	the RPD	will not be	calcula	ted.						
Dexter - Low Level TSS Total Suspended Solids - Low Le (1 L)	vel 3259473 3	3259473	8	7.3	8.7%	< 1	84%	80%	120%		80%	120%	102%	80%	120%
Standard Water Analysis + Tota	al Metals														
рН	3254798		7.88	7.90	0.3%	<	102%	80%	120%	NA			NA		
Alkalinity	3254798		830	831	0.2%	< 5	87%	80%	120%	NA			NA		
Electrical Conductivity	3254798		2140	2170	1.4%	< 1	100%	90%	110%	NA			NA		
Bicarb. Alkalinity (as CaCO3)	3254798		830	831	0.2%	< 5	NA	80%	120%	NA			NA		
Carb. Alkalinity (as CaCO3)	3254798		<10	<10	NA	< 10	NA	80%	120%	NA			NA		
Hydroxide	3254798		<5	<5	NA	< 5	NA	80%	120%	NA			NA		
Comments: If RPD value is NA, the	e results of the	duplicates	s are less	han 5x the	RDL and	the RPD	will not be	calcula	ted.						
Water Analysis - TOC															
Total Organic Carbon	3250864		3	3	NA	< 1	115%	80%	120%	107%	80%	120%	106%	80%	120%

Comments: Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated. Duplicate NA: results are less than 5X the RDL and RDP will not be calculated.

Certified By:

Josan Coaghtry

Method Summary

CLIENT NAME: DEXTER CONSTRUCTION COMPANY LTD

AGAT WORK ORDER: 21X835755

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
Water Analysis						
Total Suspended Solids - Low Level (1 L)	INOR-121-6024, 6025	SM 2540C, D	GRAVIMETRIC			
pH	INOR-121-6001	SM 4500 H+B	PC TITRATE			
Reactive Silica as SiO2	INOR-121-6027	SM 4500-SiO2 F	COLORIMETER			
Chloride	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH			
Fluoride	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH			
Sulphate	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH			
Alkalinity	INOR-121-6001	SM 2320 B				
True Color	INOR-121-6008	SM 2120 B	LACHAT FIA			
Turbidity	INOR-121-6022	SM 2130 B	NEPHELOMETER			
Electrical Conductivity	INOR-121-6001	SM 2510 B	PC TITRATE			
Nitrate + Nitrite as N	INORG-121-6005	SM 4110 B	CALCULATION			
Nitrate as N	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH			
Nitrite as N	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH			
Ammonia as N	INOR-121-6047	SM 4500-NH3 H	COLORIMETER			
Ortho-Phosphate as P	INOR-121-6012	SM 4500-P G	COLORIMETER			
Offilo-Priosphate as P	MET121-6104 &	modified from SM 3125/SM 3030	COLORINETER			
Total Sodium	MET-121-6105	B/SM 3030 D	ICP-MS			
Total Potassium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Total Calcium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Total Magnesium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Bicarb. Alkalinity (as CaCO3)	INORG-121-6001	SM 2320 B	PC TITRATE			
Carb. Alkalinity (as CaCO3)	INORG-121-6001	SM 2320 B	PC TITRATE			
Hydroxide	INORG-121-6001	SM 2320 B	PC-TITRATE			
Calculated TDS	CALCULATION	SM 1030E	CALCULATION			
Hardness	CALCULATION	SM 2340B	CALCULATION			
Langelier Index (@20C)	CALCULATION	CALCULATION	CALCULATION			
Langelier Index (@ 4C)	CALCULATION	CALCULATION	CALCULATION			
Saturation pH (@ 20C)	CALCULATION	CALCULATION	CALCULATION			
Saturation pH (@ 4C)	CALCULATION	CALCULATION	CALCULATION			
Anion Sum	CALCULATION	SM 1030E	CALCULATION			
Cation sum	CALCULATION	SM 1030E	CALCULATION			
% Difference/ Ion Balance	CALCULATION	SM 1030E	CALCULATION			
	MET121-6104 &	modified from SM 3125/SM 3030				
Total Aluminum	MET-121-6105	B/SM 3030 D	ICP-MS			
Total Antimony	MET121-6104 & MET-121-6105	SM 3125	ICP-MS			
Total Arsenic	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Total Barium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Total Beryllium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Total Bismuth	MET121-6104 & MET-121-6105					
Total Boron	MET121-6104 & MET-121-6105	121-6104 & modified from SM 3125/SM 3030				
Total Cadmium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			

Method Summary

CLIENT NAME: DEXTER CONSTRUCTION COMPANY LTD

AGAT WORK ORDER: 21X835755

PROJECT: Lantz Quarry

ATTENTION TO: Rhett Thompson

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE:								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Total Chromium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Cobalt	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Copper	MET121-6104 & MET-121-6105	MET-121-6105 B/SM 3030 D						
Total Iron	MET121-6104 & MET-121-6105	MET-121-6105 B/SM 3030 D						
Total Lead	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Manganese	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Molybdenum	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Nickel	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Phosphorous	MET-121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Selenium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Silver	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Strontium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Thallium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Tin	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Titanium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Uranium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Vanadium	MET121-6104 & MET-121-6105	10.D-MC						
Total Zinc	MET121-6104 & MET-121-6105	ICD-MC						
Total Organic Carbon	INST 0170	SM 5310 B	COMBUSTION					

Document ID DIV-133 1501 002

Unit 122 - 11 Morris Drive Dartmouth, NS

B3B 1M2

webearth.agatlabs.com • www.agatlabs.com

Arrival Condition: Good Poor (see notes) Arrival Temperature: 4.5, 1.2, 2.4	The state of the s	Laboratory Use	Only
	Hold Time:		
	011/03/3/2		e: 4.5,1.2,2.4

Chain of Custoo	dy Record			P:	902	.468	3.871	8 • F	: 902	.468	.892	24	AGAT	Job	Nun	nber	2	1χ	8	55,	7.	5.5	196	100
Report Information Company: Dexter Construction Contact: Rhett Thomps Address: 927 Rocky Lal Phone: 902-832-6348 Client Project #: AGAT Quotation: Contract Please Note: If quotation number is a	rax: LANT2 th No. 197252	Quarry	1. Name Email 2. Name Email Regulat	41 0.1 4		lines o		-	M pe	ngle S r page	ample Samp	ole	Turn: Regu Rush	arou lar T	ind '	Tim ☑ 5	e R to same	equ 7 wo e da ys	orkin y	d (TA	AT)			
Invoice To		Yes 🗹 / No	□ Tie	er 2 🗆 Com 🗆 N/Pot		⊒ Fin			rinkin eg. No		ter Sa	ample	e: 🗆 '	Yes	4	lo	Salt	Wat	er S	ampl	e:	☐ Ye	es l	No
Contact:	Fax:			dustrial NSEQS-Cont Sites mmercial HRM 101 s/Park Storm Water ricultural Noeth Wester	Filtered/Preserved	Analysis	Total □ Diss □ Available	ПСВОД		DI OFESTINO!	phorus		Tier 1: TPH/BTEX (PIRI) □ low level	CCME-CWS TPH/BTEX						□P/A □MPN □MF	eudomonas	Coliform MPN MF		s (Y/N)
Sample Identification	Date/Time Sampled	Sample Matrix	# Containers	Comments – Site/Sample Info. Sample Containment	Field Filte	Standard	Mercury	1 BOD	1 1	TKN	Total Phosphorus	Phenols	ier 1: TPI	CME-CW	voc	THM	¥	PAH	PCB	TC + EC	□ HPC	Fecal Coll	Other:	Hazardous (Y/N)
LANTZ QUARRY SW-1	NOV 24/21	W	4		-	7,			1		F					Ė	Ė	а.	а.		-		0	
LANTZ QUARRY	NOV 24/21	42	4				/		•	/														
LANTZ QUARRY SW-3	NOV 24/21	w	4			V V			v	/														
Samples Relinquished By (Print Name): Ro3SRT MC amples Relinquished By (Sligh), Ro3se MC	INTOSH De Kent	Date/Ti	10026/21	Samples Received By (Print Name): Samples Received By (Sign):						Date/Ti					v Cop	- Clie	AT	Nº:	Pag	ge [1	of	1	

Date revised January 2016

APPENDIX O. PUBLIC ENGAGEMENT SESSION INFORMATION

INFORMATION SESSION

Where:

Dexter Construction's Lantz Quarry, 42 Dutch Settlement Road, Lantz, Nova Scotia

When:

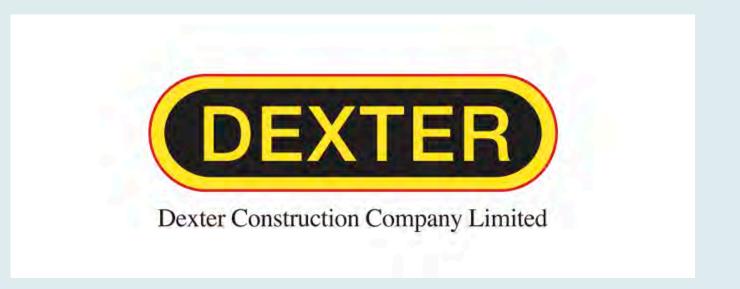
Tuesday, October 26, 2021 3:00 pm to 6:00 pm

Lantz Quarry, owned and operated by Dexter Construction Company Limited (Dexter), is located on PID 00524298 in Lantz, Nova Scotia. The map below shows the location of the Lantz Quarry, currently operating under Nova Scotia Environment and Climate Change (NSECC) Industrial Approval (IA) # 2007-060446-03. Dexter intends to expand the existing quarry area which will require a Provincial Environmental Assessment (EA) registration (Class I undertaking). Other than the proposed increase in operating area, site activities are not planned to increase in scope or frequency from current use.

On Tuesday, October 26, 2021, an information session (informal with poster boards) will be held at the Lantz Quarry. The Project Team will be on hand to discuss the proposed quarry expansion and provide details relating to the EA currently underway. We would like to invite you to come see the quarry and learn about our proposed development.

For more information, please contact Rhett Thompson at rthompson@dexter.ca or call 902-718-9778.

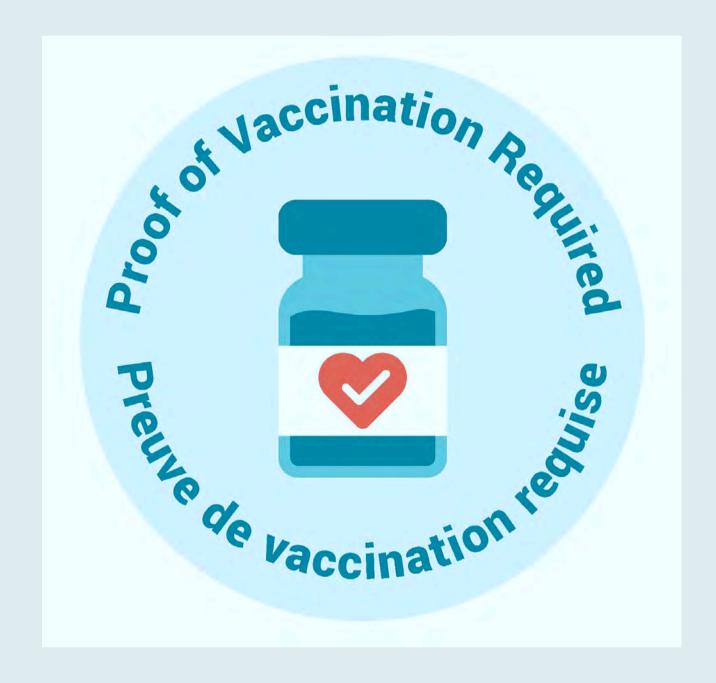
WELCOME Lantz Quarry Expansion Project

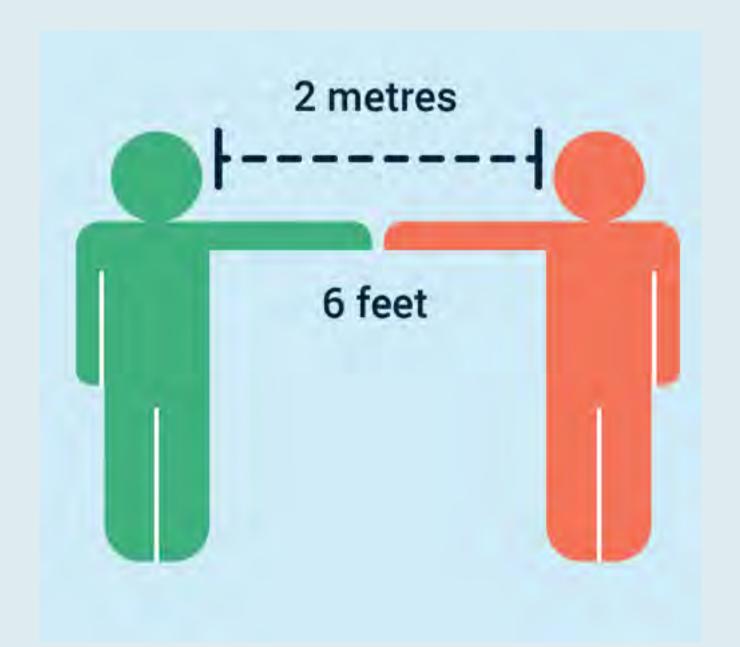

PUBLIC INFORMATION SESSION

Please sign in and provide your contact information if you would like to receive further information and updates about the Project.

If you have any comments or questions, please ask one of our representatives or fill out a comment card.

Thank you for coming!




COVID-19

Checklist

- 1. Do you feel sick?
- 2. In the past 48 hours, have you had, or are you currently experiencing a cough or two or more of the following symptoms; fever, sore throat, runny nose?
- 3. Have you visited a COVID-19 exposure site?
- 4. Have you been outside of Nova Scotia in the past 14 days?
- 5. Has Public Health told you that you are a close contact of a COVID-19 Case?


If you answered yes to any of these questions, please return home and follow Public Health instructions.

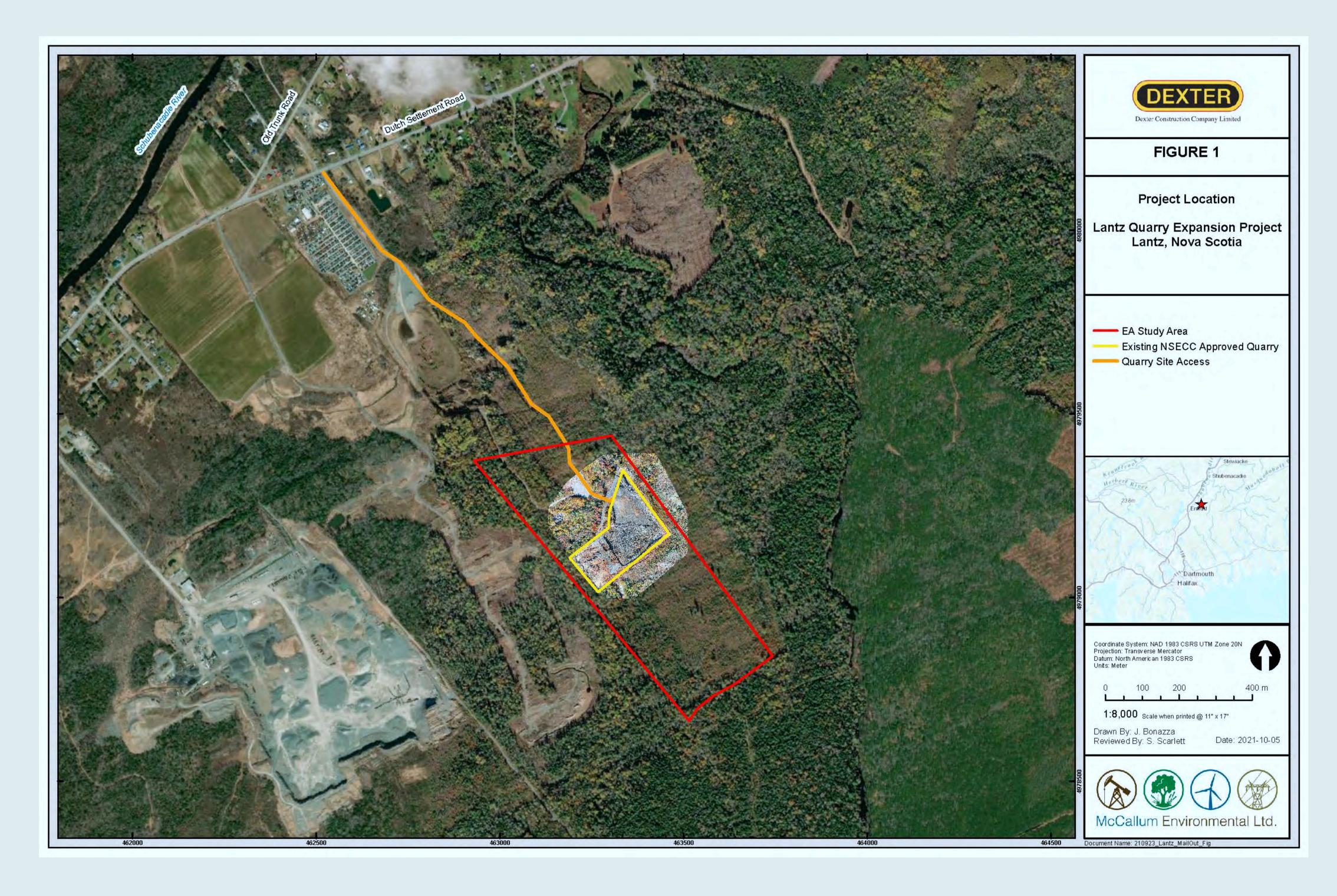
Public Information Session Guidelines

- Proof of vaccination is required
- Please maintain a physical distance of 2 m (6 ft)
- Masks are not required

PROJECT DESCRIPTION

The Lantz Quarry is an existing quarry located between the communities of Elmsdale and Dutch Settlement, approximately 35 km north of Halifax, Nova Scotia. Dexter Construction Co. Ltd. is proposing to expand the existing quarry to increase available aggregate reserves. Other than the proposed increase in size, it is expected that continued use of the quarry will be identical, or very similar to current use of the site. This activity requires Provincial Environmental Assessment (EA) registration (Class I undertaking).

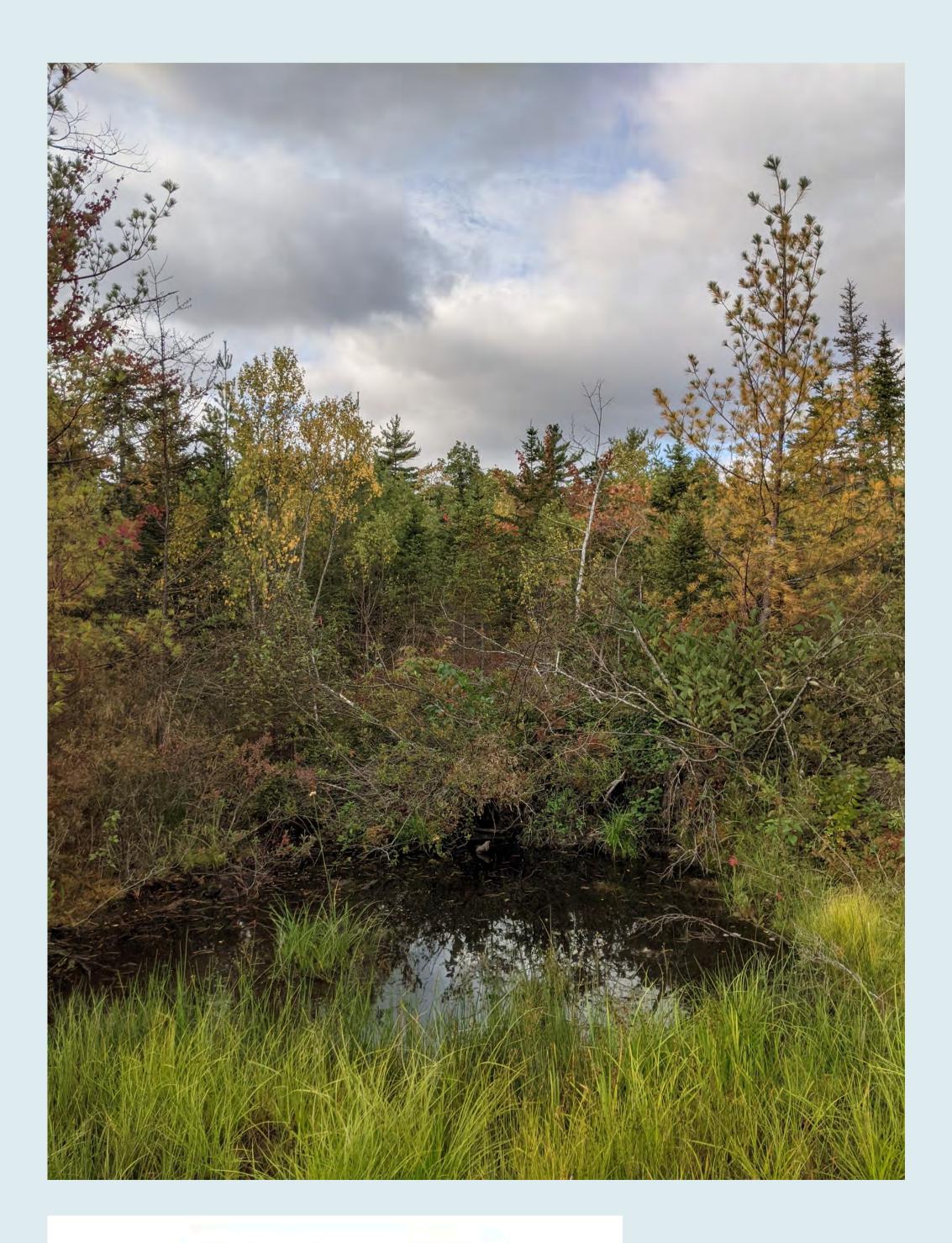
Project Schedule


Project Development Studies	Status						
Environmental Studies	Winter 2020 Spring, Summer, and Fall 2021						
Public Engagement	October 26, 2021 (Information Session) On-going throughout the Project to inform Project design.						
Environmental Assessment Registration	Spring 2022						
Quarry Extension Life	Approximately 40 years						
Expected EA Decision	Summer 2022						
Industrial Approval Amendment	Fall 2022						

PROJECT LOCATION AND DETAILS

The current active operating area of the Lantz Quarry is approximately 4 hectares. The proposed quarry expansion area (Development Area) is 8.7 hectares. The EA Study Area includes 25.8 hectares of privately-owned land. The quarry is currently operating under a Nova Scotia Environment and Climate Change (NSECC) Industrial Approval (2007-060446-03).

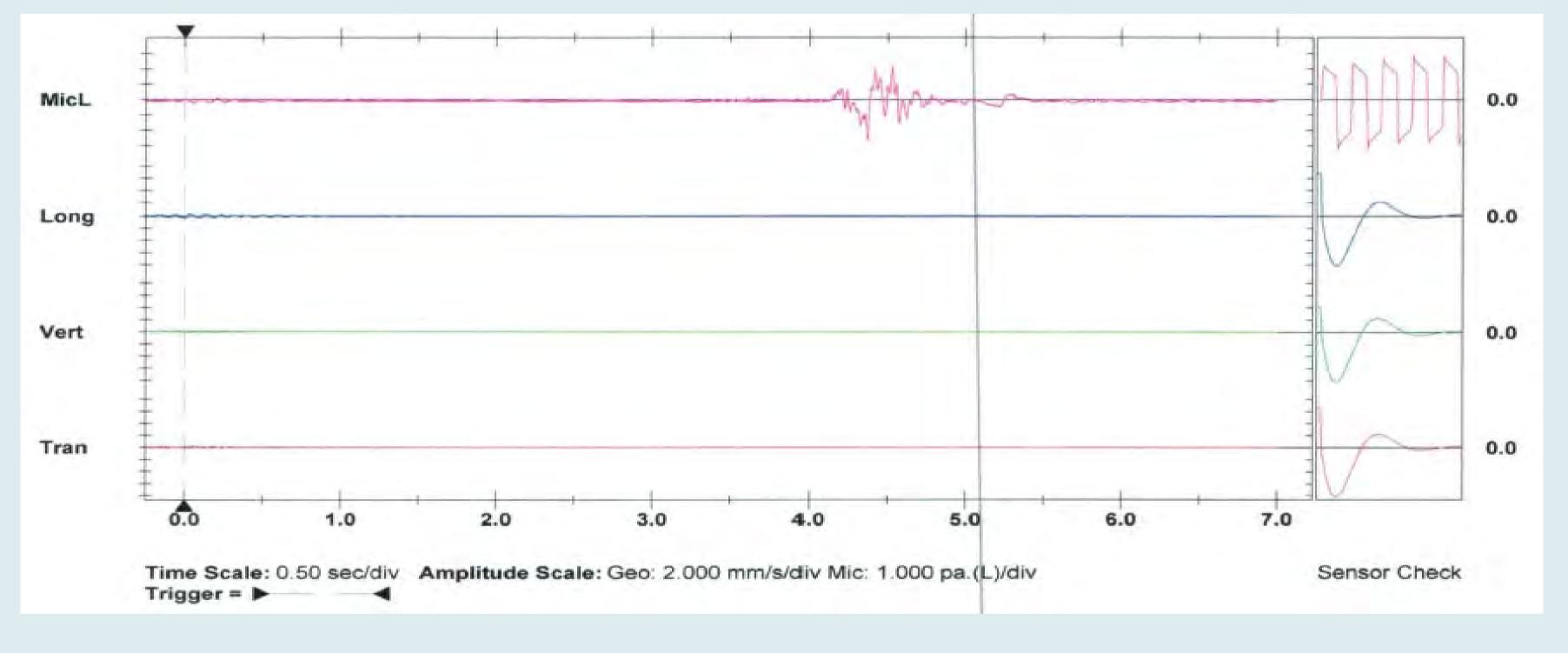
Overall, the Study Area exhibits a high degree of disturbance including the current quarry footprint, cleared areas, and an access road. Natural forested land is present in the northern extent of the Study Area and along the western Study Area boundary.

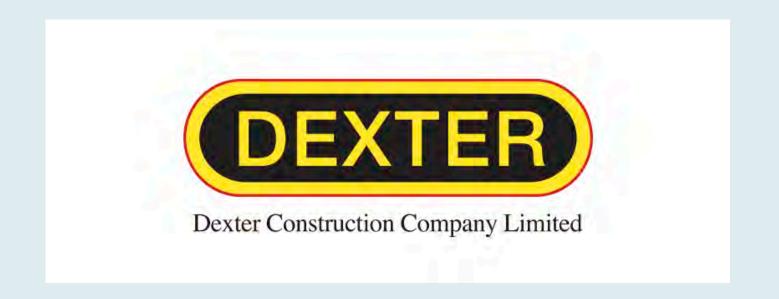


The Lantz Quarry Expansion Project is subject to provincial regulatory review by Nova Scotia Environment and Climate Change (NSECC) under the Nova Scotia Environmental Assessment (EA) Regulations (Section 49 of the NS *Environment Act*.)

Environmental surveys have been conducted following guidance from various agencies including NSECC, the Nova Scotia Department of Lands and Forestry (NSL&F), the Canadian Wildlife Service (CWS), and Fisheries and Oceans Canada (DFO).

Valued Environmental Components (VEC) are existing environmental features that have value to all stakeholders. Predicted environmental effects of the Project on these VEC's, are evaluated as part of the EA process.




Noise

- The Lantz Quarry is located in a rural setting. Aerial imagery indicates that there are no residential structures within 800 m of the Development Area, therefore, no blasting will occur within 800 m of a foundation or base of an existing offsite structure.
- Blasting will be completed in accordance with the General Blasting Safety Regulations of Nova Scotia and the Nova Scotia Pit and Quarry Guidelines.
- There are no anticipated changes to the current frequency of blasting or the operating hours of the quarry.
- All blasting events will be monitored for noise and vibration.

Air Quality

- Current quarry production and blasting frequency is anticipated to remain consistent, therefore, air quality conditions are not expected to change.
- Dust emissions will be controlled and monitored in accordance with NSECC.

Surficial Geology, Bedrock Geology, and Topography

- The potential for acid rock drainage (ARD) at the Lantz Quarry is considered low.
- Topography (land elevations) will be altered by quarry expansion.

Groundwater

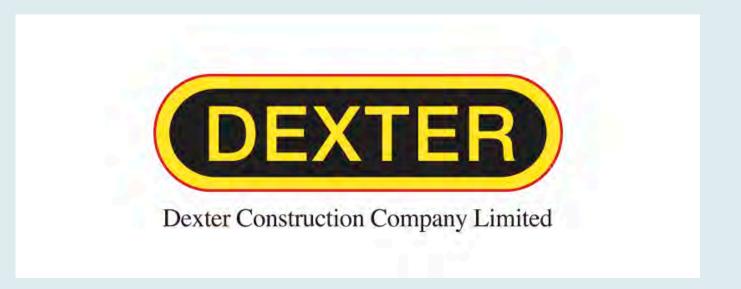
- Dexter Construction Company Ltd. will be required to monitor groundwater as part of quarry expansion.
- The closest assumed well is located ~880 m northeast of the Development Area.
- According to the NSECC Well Logs Database, there are three potable wells located within 1 km of the Development Area.
- Future quarrying is planned to stay above the groundwater level.

Surface Water, Fish, and Fish Habitat

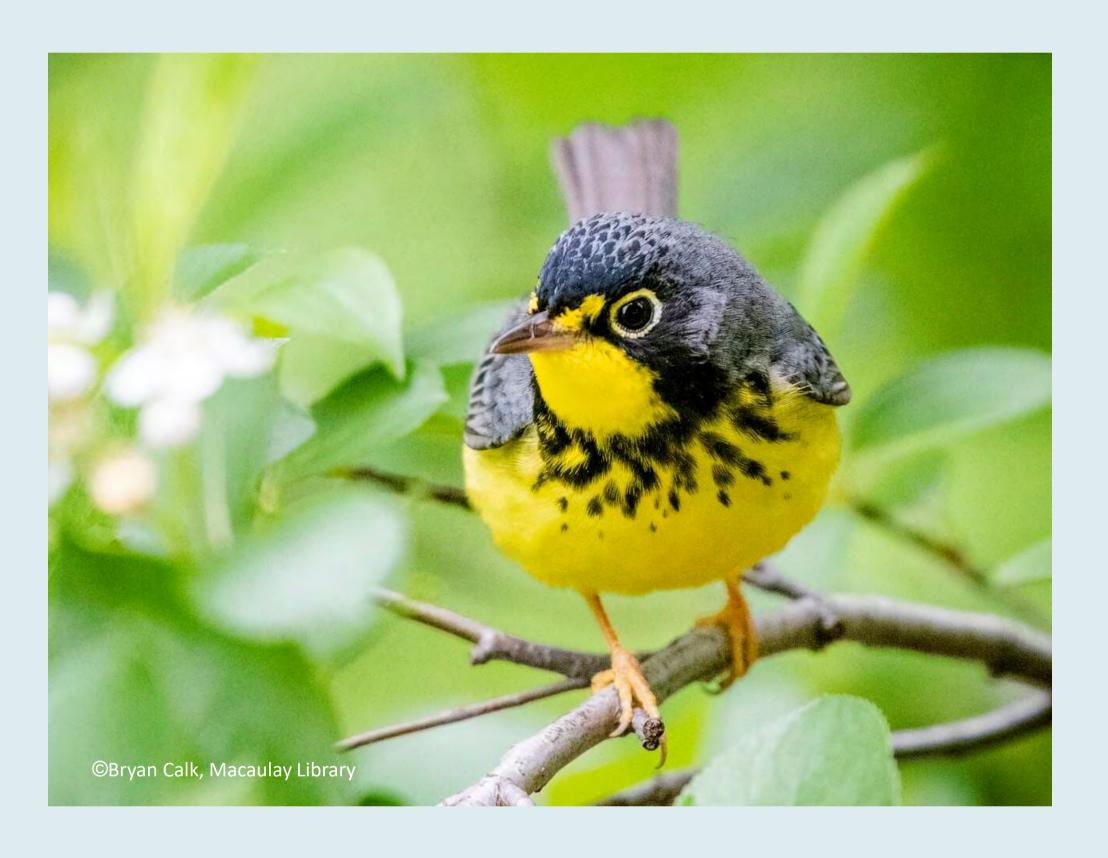
- Field evaluations identified one watercourse within the Study Area.
- This feature flows northeast and drains into Keys Brook (located off-site).
- This watercourse is intermittent, meaning it flows and/or retains water during wet times of the year.
- This watercourse provides fish habitat and is considered to be a fisheries resource.
- A water balance model is currently being completed to determine potential changes to water quantity as a result of quarry expansion.
- Environmental water management controls (e.g., settling ponds and sediment and erosion control) will be designed, as necessary, to meet NSECC Industrial Approval requirements and to ensure that quarry expansion is not negatively impacting water quality.
- A surface water monitoring program will be implemented during quarry expansion to ensure that the above conditions are being met.

Wetlands

- Field evaluations identified 17 wetlands within the Study Area.
- These wetlands include treed swamps, shrub swamps, and bogs.


• Seven wetlands exist within the Development Area. These wetlands are anticipated to be directly impacted as a result of quarry expansion. Wetland Alteration Approvals will be acquired from NSECC prior to

alteration.


Habitat, Flora, and Lichens

- The Study Area is comprised of disturbed (e.g., clear cut) and intact habitat. Intact habitat comprises mainly mixed-wood forest with some softwood dominant areas. Rocky outcrops or barrens were also observed within the Study Area.
- In total, 168 vascular plant species were recorded during botany surveys.
- No vascular plant Species at Risk (SAR) were identified within the Study Area.
- In total, 15 lichen species were observed within the Study Area, none of which are classified as a SAR.

Avifauna

- In total, 49 species were identified during targeted bird surveys.
- Three avian SAR were identified: Canada warbler, common nighthawk, and eastern wood-pewee.
- Suitable habitat is present within the Development Area for all three avian SAR.

Wildlife

- Based on field observations, the Study Area is being utilized by several wildlife species including white-tailed deer, North American porcupine, snowshoe hare, red fox, and American red squirrel.
- No suitable nesting or overwintering habitat was observed for SAR turtles; wood turtle or snapping turtle.
- No hibernacula were identified for bats.

Cultural and Heritage Resources

- An Archaeological Resource Impact Assessment (ARIA) was completed within the Study Area.
- The ARIA concluded that the Study Area has low potential for encountering Mi'kmaq or Euro-Canadian archeological resources.
- The Project Team is continuing to engage with First Nation communities to understand traditional use in the area.

Socio-economic Conditions

- Quarry expansion is anticipated to benefit the economy by providing aggregate material for local projects and contributing to Nova Scotia's natural resource sector.
- Recreation and tourism as well as human health are not anticipated to be affected by the Project.
- Transportation routes for haul truck traffic will continue to use Dutch Settlement Road to the east or west, depending on project locations, however, haul truck traffic is not expected to exceed current volumes.

• Quarry expansion is not expected to be visible from Dutch Settlement

Road.

DEVELOPMENT PLAN

- Quarrying activities are not planned to increase in scope or frequency from current use.
- Expansion of the quarry will move southwest from the current quarry face.
- Typical site activities include:
 - Clearing of vegetation and grubbing of overburden;
 - Drilling and blasting of exposed bedrock;
 - Crushing and stockpiling of various aggregate products; and,
 - Loading and hauling of finished aggregate products.
- The quarry will be serviced by portable crushers and mobile equipment that will be mobilized to site, as needed.

THANK YOU

We encourage you to speak to any of our representatives here today for more information on any of the topics covered on our posters.

If you have any further questions or comments, please fill out a comment sheet. You can also send us questions or comments at the email, address, or phone number listed on the comment sheet.

Dexter Construction Company Limited 927 Rocky Lake Dr, Bedford, Nova Scotia B4A 3Z2

Lantz Quarry Expansion Project
Public Information Session
Dexter Construction's Lantz Quarry – October 26, 2021

Name:	Please provide your comments:
Address:	
Phone:	No Complants
If you would like to receive further information and updates about the Project, please leave an e-mail address:	
	Additional Questions? Please contact Rhett Thompson, Dexter Construction Company Limited Email: rthompson@dexter.ca