

Hydrogeological Investigation

Nictaux Sand Pit Expansion Project

Shaw Group Limited

2 May 2025

Project r	ame	Shaw - Proposed Sand Pit Middleton						
Docume	nt title	Hydrogeological I	nvestigation Nic	taux Sand Pit Exp	ansion Project			
Project r	umber	12584960						
File nam	е	12584960-RPT-5	-Hydrogeological	Investigation_V2				
Status	Revision	Author	Reviewer		Approved for issue			
Code			Name	Signature	Name	Signature	Date	
S3	00	Glen Merkley	Alan Deal	Draft	Callie Andrews	Draft	28-02-2025	
S4	00	Glen Merkley	Alan Deal	agre	Callie Andrews	allian	17-03-2025	
S4	02	Glen Merkley	Alan Deal	agre	Callie Andrews	allian	02-05-2025	

GHD Limited

Contact: Glen Merkley, Team Leader (Interim) - NRIA | GHD

110, 120 Western Parkway,

Bedford, Nova Scotia B4B 0V2, Canada

T +1 902 468 1248 | F +1 902 468 2207 | E info-northamerica@ghd.com | ghd.com

© GHD 2025

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

Table 6

Table 7

1.	Introd	luction	1
••	1.1	Purpose of this Report	1
	1.2	Scope and Limitations	1
2		·	
2.		od of Investigation	1
	2.1	Desktop Review	2
	2.2	Monitoring Well Installation and Surveying	2
	2.3	Groundwater Quality Monitoring	3
	2.4	Groundwater Elevation Monitoring	4
	2.5	Hydraulic Conductivity Testing	4
	2.6	Quality Assurance and Quality Control Results	4
3.	Resul	ts of Investigation	5
	3.1	Desktop Review	5
	3.2	Groundwater Quality Results	5
	3.3	Groundwater Elevations	8
	3.4	Hydraulic Conductivity	9
4.	Hydro	ogeological Cross Sections	9
5.	Effect	s Assessment	10
6.	Concl	lusions	10
7.	Refer	ences	11
Tak	ole in	ndex	
Table	e 1	Monitoring Well Installation Details	2
Table	e 2	Monitoring Well Identification System	3
Table	e 3	2024 Baseline Groundwater Quality Sample Collection Schedule	5
Table	e 4	Groundwater Exceedances – General Chemistry	6
Table	e 5	Groundwater Exceedances – Dissolved Metals	7

2024 Groundwater Elevation Data

Single Well Response Test Data

8

9

Figure index

Figure 1 Monitoring Well Locations
Figure 2 Groundwater Elevation Contour Map - August 2024
Figure 3 Geologic Cross-Section A-A'

Figure 4 Geologic Cross-Section B-B'

Appendices

Appendix A Borehole Logs

Appendix B Groundwater Level Hydrographs

Appendix C Analytical Results

Appendix D Hydraulic Conductivity Test Results

1. Introduction

GHD Limited (GHD) was retained by the Shaw Group Limited (Shaw) to complete a hydrogeological investigation of the proposed Nictaux Sand Pit Expansion Project (the Project), an expansion of the existing Trimper Sand and Gravel Pit located near Nictaux, Annapolis County, Nova Scotia (NS). The Minister of Environment and Climate Change has granted consent to transfer the existing environmental assessment (EA) approval dated April 20, 2012 for the Trimper Sand and Gravel Pit Expansion Project originally issued to Ivan H. Trimper Construction Ltd. to 4389818 Nova Scotia Limited, a numbered company wholly owned by Shaw. Shaw intends to expand the Project Area (PA) authorized by this EA approval to include extraction of a sand resource located on parcels with the following premises identification numbers (PIDs): 05291448, 05291455, 05286976, 05286984, 05310834, 05286968, 05194030, 05313853, 05059688, and 05058334.

Shaw intends to operate the Project for the purpose of extracting commercial sand at a rate of approximately 475,000 tonnes per year. The proposed area of land disturbance, shown on Figure 1, is approximately 125 hectares (ha) in area. All sand extracted for the Project will be processed on-site via screening, washing, and classifying for commercial sale. Processing equipment will include screens, conveyors, and crushers. All on site equipment will be operated using electricity except mobile equipment (i.e., excavators, dozers, haul trucks), which will be diesel-fuelled. Shaw intend to extract sand from beneath the current water table as determined through baseline groundwater elevation monitoring.

1.1 Purpose of this Report

This hydrogeological investigation was completed in support of the environmental assessment registration document (EARD) prepared for the Project. The objective of this report is to provide an understanding of the quality and quantity of groundwater in the area and to evaluate the potential impacts of the Project on groundwater resources. The following tasks were undertaken by GHD to establish baseline hydrogeologic conditions for the project:

- Compiled, reviewed, and interpreted available hydrologic, geologic, and hydrogeologic data relevant to Shaw.
- Identified data gaps and designed a field program to address those gaps.
- Estimated overburden hydraulic conductivity values through single well response (slug) tests.
- Compiled groundwater quality data collected from the Project.

1.2 Scope and Limitations

This report: has been prepared by GHD for Shaw Group Limited and may only be used and relied on by Shaw Group Limited for the purpose agreed between GHD and Shaw Group Limited as set out in section 1.1 of this report.

GHD otherwise disclaims responsibility to any person other than Shaw Group Limited arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

2. Method of Investigation

The following section provides an overview of the fieldwork and sampling methodology used as part of the hydrogeological investigation.

2.1 Desktop Review

A desktop review of historical and recent data to develop an understanding of the regional and Project-specific hydrologic, geologic, and hydrogeologic conditions. Reviewed publicly available data included surficial and geologic mapping developed for NS, climate data, and the NS Well Logs Database (NSECC, nd). The Well Logs Database identified water supply wells and private wells located within or in the vicinity of the PA. The NS Well Logs Database also provided information on geologic conditions, groundwater elevations, and well yields.

2.2 Monitoring Well Installation and Surveying

Logan Drilling and Geotechnical (Logan) was retained by GHD to drill and complete four boreholes as monitoring wells using a CME-75 track-mounted drill rig. The field investigation was conducted between March 19 and March 27, 2024, under the supervision of qualified GHD field staff.

Logan advanced four boreholes to depths ranging from 9.10 metres below ground surface (mbgs) at MW-05 to 30.50 mbgs at MW-07, completing each as a monitoring well. Hollow stem and standard augers were used to drill through the overburden, which was characterized using split-spoon samplers. Stratigraphic descriptions are presented on the monitoring well logs in Appendix A.

Each monitoring well was constructed using a 50 mm diameter polyvinyl chloride (PVC) 20-slot screen, connected to a flush-threaded PVC riser. The annular space between the well screen and the borehole wall was backfilled with #2 silica sand to a height of 0.6 m above the well screen. This was followed by a seal of hydrated bentonite pellets measuring approximately 1 m thickness to prevent surface intrusion, and the remaining space was filled with silica sand to the ground surface. The top of each well was secured with a locking J-plug and protected by an above-ground protective cover.

Following installation, each monitoring well was developed and purged of at least three well volumes, or until the well ran dry. Additionally, Levelogger transducers (Solinst™) with built-in dataloggers were installed at a depth of 0.5-1.0 m above the bottom of each well to record water levels automatically at 15-minute intervals. A Barologger (Solinst™), installed near MW-05, was used to compensate for the effects of atmospheric pressure on the water level data.

Well locations and available installation data are provided in Table 1, below. Locations of groundwater wells are additionally provided on Figure 1. Monitoring wells were positioned to provide spatial coverage surrounding the proposed pit areas and to allow monitoring of potential changes to groundwater quality and quantity at locations between the pit and adjacent receptors, including domestic water wells, watercourses, and wetlands.

Table 1	Monitoring	Well	Installation	Details
---------	------------	------	--------------	---------

Monitoring Well ID	Coordinates		Recorded Drilled	Screen Interval	Top of Casing	
	Northing (NAD 83 UTM Z20) (m)	Easting (NAD 83 UTM Z20) (m)	Depth (mbgs ¹)	(mbgs)	Elevation (masl ²)	
MW-04	4975836	341234	10.70	2.40-10.90	49.224	
MW-05	4976847	340796	9.10	2.10-9.10	31.944	
MW-06	4976874	341523	9.10	2.10-9.10	36.203	
MW-07	4976400	341497	30.50	6.10- 30.50	60.94	

Notes:

Initially, the baseline groundwater monitoring program was exclusive to the newly installed monitoring wells, which were initially identified as MW-01 through MW-04. On June 17, 2024, the NS Minister of Environment and Climate Change granted consent to transfer the existing EA approval dated April 20, 2012, for the Trimper Sand and Gravel Pit Expansion Project originally issued to Ivan H. Trimper Construction Ltd. (Trimper) to 4389818 Nova Scotia Limited, a

¹ mbgs - meters below ground surface

² masl – meters above sea-level

numbered company wholly owned by Shaw. Monitoring wells MW-01, MW-02, and MW-03 were installed by Trimper in 2014 and were added to this monitoring program following the EA approval transfer. Two additional monitoring wells, MW-08, and MW-09, are located the adjacent property to the west owned by Quality Concrete, and were added to this monitoring program to provide additional spatial coverage west of the PA.

The addition of monitoring wells MW-01, MW-02, and MW-03 necessitated the renaming of the four monitoring wells installed by GHD in 2024 to create a cohesive numbering system for the monitoring program. This change is not reflected in the laboratory certificates of analysis provided in Appendix C.

The original monitoring well identification system compared to the updated identification system is presented in Table 2, below.

Table 2 Monitoring Well Identification System

Original Monitoring	Updated Monitoring Coordinates			Top of Casing
Well ID	Well ID (as of August 2024)	Northing (NAD 83 UTM Z20) (m)	Easting (NAD 83 UTM Z20) (m)	Elevation (masl)
MW-01	MW-01	4976213	342174	52.03
MW-02	MW-02	4976858	341941	30.40
MW-03	MW-03	4976934	341753	31.49
MW-01	MW-04	4975836	341234	50.145
MW-02	MW-05	4976847	340796	32.74
MW-03	MW-06	4976874	341523	37.169
MW-04	MW-07	4976400	341497	61.662
Unidentified Quality Concrete Well	MW-08	4976328	340227	35.81
	MW-09	4975997	340348	35.35

On November 8, 2024, monitoring wells were surveyed relative to local geodetic benchmark elevations. Surveying was conducted using Trimble R12 GNSS survey equipment with 5 centimetre (cm) vertical accuracy and 2 cm horizontal accuracy capability. All monitoring wells were surveyed at ground level directly adjacent to the monitoring well, and at the top of the PVC well casing (top of casing), corresponding to the location where water levels are measured from. The survey was conducted using a data collection package and tied into a geodetic monument in Universal Transverse Mercator (UTM), Zone 20, NAD83. Ground elevations at MW-01, MW-02, and MW-03 were taken from a LiDAR-derived Digital Elevation Model (DEM) (Nova Scotia, 2024). Top of casing elevations for MW-01, MW-02, and MW-03 were calculated by adding the measured stick-up elevations to the ground elevations.

2.3 Groundwater Quality Monitoring

The first set of newly installed monitoring wells (MW-04 and MW-05) was sampled on March 21, 2024, followed by the second set (MW-06 and MW-07) on March 27, 2024. Two subsequent rounds of groundwater monitoring, which included Trimper's existing monitoring wells, were conducted on August 28-29 and October 30-31, 2024. Prior to sampling, static water levels were measured in each monitoring well, and all wells were purged. GHD purged a minimum of three well volumes from each well while monitoring the following parameters: temperature, pH, conductivity, turbidity, and dissolved oxygen. These parameters were measured during purging until stabilization was achieved or until the well ran dry.

Before collecting groundwater samples, the water level in each well was allowed to recover to its approximate static level. Monitoring wells were developed using polyethylene Waterra tubing fitted with foot valves. Groundwater samples were subsequently collected using dedicated disposable bailers to minimize sediment accumulation in the sample bottles. Samples collected for dissolved metals analysis were filtered either in the field, or in the lab. Field

filtering was achieved using a syringe with a 0.45-micrometre (µm) filter or with dedicated Waterra tubing and an in-line filter. Lab filtering was completed for select samples submitted following the August monitoring program.

Groundwater samples were placed directly into new laboratory-supplied sample bottles and immediately transferred into coolers containing ice to maintain a temperature of <10°C. Samples were stored under cool conditions until delivery to Bureau Veritas Laboratory in Bedford, Nova Scotia. The laboratory is accredited by the Standards Council of Canada and the Canadian Association for Laboratory Accreditation Inc. Analytical methods used during testing are referenced in the chain-of-custody records included in Appendix C. Please note that the COCs submitted prior to the August 2024 monitoring event use the outdated well identification system, while those submitted for and following the August event use the updated well identification system. Refer to Table 2 for a summary of changes to monitoring well identifications.

Groundwater samples collected from the monitoring wells were submitted for standard water and dissolved metals analysis. A total of five groundwater samples, including one field duplicate sample (MWDUP) collected at MW-05, were collected during the March 2024 sampling event of the newly installed well, and submitted for analysis. Subsequently, with the addition of Trimper's existing monitoring wells in the monitoring program nine samples were collected during the August 2024 sampling event, including one field duplicate sample at MW-08. MW-07 was not sampled because the well was dry. The last monitoring event in October 2024 resulted in the collection of eight samples, including one field duplicate at MW-03. MW-06 and MW-07 were not sampled because both wells were dry.

2.4 Groundwater Elevation Monitoring

Static water levels were collected manually during each monitoring event using an electric SolinstTM, Model 101 P7 water level meter, relative to surveyed reference points (top of polyvinyl chloride [PVC] casing). Pressure transducers (SolinstTM Levelogger) were installed in each monitoring well to continuously monitors water level at an hourly frequency. Continuous water level data was compensated for the effects of atmospheric pressure using a SolinstTM Barologger installed on-site.

2.5 Hydraulic Conductivity Testing

Falling head and rising head slug tests were completed in monitoring well MW-05 on November 8, 2024. Monitoring well MW-05 was selected for testing as the surficial geology in this area is considered representative of the overall PA. Given that MW-05 was installed through both sand and silty sand substrate, being the two most common stratigraphy units observed across the PA, the results of hydraulic conductivity testing are considered to be generally representative of Project conditions.

Hydraulic conductivity testing was completed by inserting a solid slug into the well below the water level, causing an almost instantaneous rise in the water level in the well. The rate of the water level falling back to the static water level was recorded using a pressure transducer. The process was then repeated when the slug was removed, providing an instantaneous drop in the water level followed by a slower recovery period.

Continuous water level measurements, recorded at 1-second intervals using a pressure transducer, were analysed using AQTESOLV¹, an aquifer test analysis software package. Hydraulic conductivity for each test method was determined using the Bouwer-Rice² solution method.

2.6 Quality Assurance and Quality Control Results

A Quality Assurance/Quality Control (QA/QC) program was implemented to minimize and quantify potential issues arising during sample collection, handling, shipping, and analysis. Key components of the program included the use of dedicated sampling equipment, sample-specific identification protocols, and detailed chain-of-custody documentation.

¹ Copyright © 2004-2007 Glenn M. Duffield, HydroSOLVE, Inc. All Rights Reserved.

² Bouwer, H., 1989. The Bouwer and Rice slug test--an update, Ground Water, vol. 27, no. 3, pp. 304-309.

Laboratory QA/QC analyses are detailed in the certificates of analysis provided in Appendix C. These analyses include method blanks, matrix spikes, and laboratory control samples. No QA/QC issues were identified in the laboratory results that would compromise the reliability of the reported data.

3. Results of Investigation

3.1 Desktop Review

The hydrologic conditions of the PA are influenced by regional physiography, topography, and surface water features. In general, the physiographic area containing the Project is characterized by gentle rolling hills and meandering rivers contained within the wide historic river valley. Regional surface water drainage is predominantly to the northwest towards the Nictaux River and the Annapolis River. The Project is bisected by two unnamed tertiary watersheds (1DC-3-CC and 1DC-3-EE), both of which are contained within the Annapolis River secondary watershed.

Hydrogeologic characterization of NS Groundwater Regions (Kennedy, 2009) provides an indication of the bedrock groundwater regions based on dominant rock types and the chemistry of wells throughout the province. The Project overlies the boundaries of two separate bedrock groundwater regions – a sedimentary and a metamorphic groundwater region. Groundwater moves more readily through the looser sediment of the surficial glacial deposits than through bedrock. As a result, surficial aquifers occasionally form within surficial deposits, constrained by decreased porosity of the bedrock below. According to the provincial groundwater Atlas, the nearest surficial aquifer to the Project (surficial aquifer ID 49) is located approximately 1 km to the east.

The NS Well Logs Database identifies the locations of wells drilled or dug by licensed well drillers or contractors since the mid-1960s. The nearest water well identified in the database is a drilled agricultural well located approximately 850 m northwest of the PA. Six drinking water wells listed in the database are located within 1 km of the PA; five of these wells, however, do not have associated structures visible in satellite imagery. The NS Well Logs Database indicates these five wells were installed between 1979 and 1999, and as such their associated spatial data may not be accurate.

The nearest registered public drinking water supply location is approximately 2.2 km northeast of the PA, and the Middleton Wellfield Protection Area is located approximately 3.8 km northwest of the PA.

3.2 Groundwater Quality Results

GHD collected groundwater samples over three events through 2024. Where the groundwater monitoring program expanded in August to include historic Trimper wells, historic Trimper wells received two rounds of sampling, while the newly installed wells received three. Sampled wells and dates are provided in Table 3, below.

Table 3 2024 Baseline Groundwater Quality Sample Collection Schedule

Date	MW-01	MW-02	MW-03	MW-04	MW-05	MW-06	MW-07	MW-08	MW-09
March 21, 2024	-	-	-	X	X	-	-	-	-
March 27, 2024	-	-	-	-	-	X	X	-	-
August 28-29, 2024	Х	X	X	X	X	Χ	Dry	Х	X
October 30-31, 2024	X	X	X	X	X	Insufficient water volume	Dry	X	X

Note: - indicates monitoring well was not sampled as it was not yet added to the monitoring program

The groundwater analytical results at the Site are compared to Health Canada Guidelines for Canadian Drinking Water Quality (GCDWQ) [Maximum Allowable Concentration (MAC) and Aesthetic Objective (AO)], NS Tier I EQS; Potable Groundwater (Industrial, Coarse) and NS Pathway Specific Standards (PSS) for groundwater; groundwater discharge to surface water (0-10 m from a freshwater body).

The following section provides an overview of the groundwater monitoring program analytical results and exceedances. Groundwater exceedances indicated in the analytical results are summarized and are compared to the applicable in Table 4 (general chemistry) and Table 5 (dissolved metals) below.

Relative percent differences (RPDs) calculated for each field duplicate sample were less than 50%, providing additional validation of laboratory precision and confirming the absence of significant cross-contamination associated with sample collection and handling procedures.

Table 4 Groundwater Exceedances – General Chemistry

Monitoring Well ID	Date	GCDWQ; MAC	GCDWQ; AO	NS Tier I EQS; Potable Groundwater (Industrial, Coarse)	NS Tier II PSS; GW > 10m from SW
MW-01	August 29, 2024				
	October 31, 2024				
MW-02	August 29, 2024		рН		
	October 31, 2024		рН		
MW-03	August 29, 2024		рН		
	October 31, 2024		рН		
DUP-A (FD of MW-03)	October 31, 2024		рН		
MW-04	March 21, 2024		рН		
	August 29, 2024				
	October 31, 2024				
MW-05	March 21, 2024		рН		
	August 29, 2024		рН		
	October 31, 2024		рН		
DUP-A (FD of MW-05)	March 21, 2024		рН		
MW-06	March 27, 2024		Colour		
	August 29, 2024				
	October 31, 2024				
MW-07	March 27, 2024		Colour		
MW-08	August 29, 2024				
	October 31, 2024				
DUP-A (FD of MW-08)	August 29, 2024				
MW-09	August 29, 2024				
	October 31, 2024				

Note:

⁻⁻ denotes no exceedance

Table 5 Groundwater Exceedances – Dissolved Metals

Monitoring Well ID	Date	Canadian Drinking Water Quality Guidelines; MAC	Canadian Drinking Water Quality Guidelines; AO	NS Tier I EQS; Potable Groundwater (Industrial, Coarse)	NS Tier II PSS; GW > 10m from SW
MW-01	August 29, 2024	Dissolved Arsenic		Dissolved Arsenic	
	October 31, 2024	Dissolved Arsenic		Dissolved Arsenic	
MW-02	August 29, 2024		Dissolved Manganese		
	October 31, 2024		Dissolved Manganese		
MW-03	August 29, 2024				
	October 31, 2024				
DUP-A (FD of MW-03)	October 31, 2024				
MW-04	March 21, 2024				
	August 29, 2024	Dissolved Manganese	Dissolved Manganese	Dissolved Cobalt, Dissolved Manganese	
	October 31, 2024	Dissolved Manganese	Dissolved Manganese	Dissolved Cobalt, Dissolved Manganese	
MW-05	March 21, 2024		Dissolved Manganese		
	August 29, 2024		Dissolved Manganese		
	October 31, 2024				
DUP-A (FD of MW-05)	March 21, 2024		Dissolved Manganese		
MW-06	March 27, 2024	Dissolved Manganese	Dissolved Aluminium, Dissolved Iron	Dissolved Aluminium, Dissolved Manganese	Dissolved Aluminium, Dissolved Copper
	August 29, 2024	Dissolved Manganese	Dissolved Iron	Dissolved Manganese	Dissolved Aluminium, Dissolved Copper
MW-07	March 27, 2024	Dissolved Manganese	Dissolved Aluminium, Dissolved Iron, Dissolved Manganese	Dissolved Aluminium, Dissolved Manganese, Dissolved Molybdenum	Dissolved Aluminium,
MW-08	August 29, 2024	Dissolved Manganese	Dissolved Manganese	Dissolved Manganese	
	October 31, 2024		Dissolved Manganese		

Monitoring Well ID	Date	Canadian Drinking Water Quality Guidelines; MAC	Canadian Drinking Water Quality Guidelines; AO	NS Tier I EQS; Potable Groundwater (Industrial, Coarse)	NS Tier II PSS; GW > 10m from SW
DUP-A (FD of MW-08)	August 29, 2024	Dissolved Manganese	Dissolved Manganese	Dissolved Manganese	
MW-09	August 29, 2024				
	October 31, 2024				

Note:

Several monitoring wells, as summarised in Table 3, denote the presence of dissolved aluminum, arsenic, manganese, and iron which indicates that those metals are naturally occurring within overburden in the PA. Aluminum, arsenic, manganese, and iron are known to naturally occur in groundwater in Nova Scotia, as evidenced by groundwater chemistry maps published by the Nova Scotia Department of Natural Resources and Renewables (NSDNRR) (NSDNRR, 2011).

Dissolved molybdenum was identified at MW-07 during the March sampling event at a concentration exceeding the NS Tier 1 EQS criterion. Molybdenum is additionally a common component of drill rod grease, utilized during the drilling process to maintain lubrication of drill rod threads. Molybdenum may have been identified in the MW-07 sample due to residual drill rod grease deposited during the March 2024 drilling program.

All data collected from the groundwater monitoring well network is considered representative of baseline conditions as no extraction activity has occurred to date.

3.3 Groundwater Elevations

Groundwater elevations measured manually within the monitoring well network are presented in Table 6, below. Continuous groundwater elevations recorded via pressure transducer are summarized in the hydrographs provided in Appendix C.

Table 6 2024 Groundwater Elevation Data

Well ID	Date	Top of Casing Elevation (masl)	Static Water Level (mbtr)	Groundwater Elevation (masl)
MW-01	28-Aug-24	52.03	3.732	48.298
	30-Oct-24	52.03	3.905	48.125
MW-02	28-Aug-24	30.40	3.691	26.709
	30-Oct-24	30.40	3.916	26.484
MW-03	28-Aug-24	31.49	4.269	27.221
	30-Oct-24	31.49	4.536	26.954
MW-04	26-Apr-24		2.334	47.811
	28-Aug-24	50.145	3.732	46.413
	30-Oct-24		4.368	45.777
MW-05	26-Apr-24	32.74	4.56	28.18
	28-Aug-24	32.14	5.426	27.314

⁻⁻ denotes no exceedance

Well ID	Date	Top of Casing Elevation (masl)	Static Water Level (mbtr)	Groundwater Elevation (masl)
	30-Oct-24		5.764	26.976
MW-06	26-Apr-24		9.26	27.909
	28-Aug-24	37.17	9.875	27.294
	30-Oct-24		10.102	27.067
MW-07	27-Mar-24		25.546	36.116
	28-Aug-24	61.66	Dry	Dry
	30-Oct-24		Dry	Dry
MW-08	28-Aug-24	25.04	10.131	25.679
	30-Oct-24	35.81	10.566	25.244
MW-09	28-Aug-24	35.35	4.869	30.481
	30-Oct-24	30.30	5.427	29.923

Notes:

Groundwater Elevation = Top of Casing Elevation - Static Water Level masl - metres above sea level mbtr - metres below top of riser

Based on the findings of the groundwater quality monitoring program, the groundwater table within the PA is influenced by local topography, with the highest groundwater elevation recorded adjacent to the esker in the south of the PA. This indicates that groundwater flows radially off the esker towards areas of lower topography, eventually feeding local surface water bodies and wetlands. The general direction of groundwater flow within the PA is to the northwest, as indicated on Figure 2.

3.4 Hydraulic Conductivity

The results of the single well response tests were used to determine the hydraulic conductivity (K) for monitoring well MW-05. The hydraulic conductivity values, summarized below in Table 7, are consistent with silty sand and clean sand (Freeze and Cherry, 1979), which aligns with both the MW-05 borehole log stratigraphy and the understanding of local surficial geology. The results of the tests are presented in Appendix D.

Table 7 Single Well Response Test Data

Well	Falling Head	Rising Head	Geometric Mean	
	(m/sec)	(m/sec)	(m/sec)	
MW-05	4.0 x 10 ⁻⁵	4.2 x 10 ⁻⁵	4.1 x 10 ⁻⁵	

4. Hydrogeological Cross Sections

Figures 1, 3, and 4 provide a cross-section location map and geologic cross sections through the existing and expanded pit. The cross sections show the monitoring wells, groundwater elevations and expanded pit floor elevation. The elevated topography of the sand esker is shown on Figures 3 and 4 in the vicinity of MW-07. The stratigraphic sequence consists of almost entirely sand. A layer of sand with cobbles is present from approximately 46 to 54 masl at MW7 and cobbles were encountered at approximately 39 masl in both MW7 and MW4.

As shown in the cross sections, the proposed pit floor will be variable and dependant on the thickness of useable sand in each area. The proposed pit floor ranges from approximately 16 m below the observed water table in the southeast corner of the expanded pit, to above the water table in the previously approved pit areas in the eastern portion of the PA.

5. Effects Assessment

Shaw intends to extract sand from beneath the current water table as established through baseline groundwater elevation monitoring. All sand extracted from beneath the water table will be removed via dredge. As such, sand extraction is not anticipated to result in groundwater drawdown as the pit area will not be dewatered. Following extraction, any pit areas extracted beneath the water table will be left as pit lakes into the closure phase, maintaining the adjacent water table elevation.

Freshwater requirements for the wash plant are proposed to be met by withdrawal from an on-site water supply pond. The pond will be constructed by excavating beneath the water table and will be recharged by inflows from the highly permeable sand and gravel aquifer present within the PA. Process water from the wash plant will flow through a water clarifier before being recycled back into the water supply pond.

With the exception of potential losses to evaporation and the water clarifier, all water withdrawn from the supply pond is planned to be recycled within this unconfined closed loop system. Shaw currently employ a similar process water supply system at their Keddy facility. Operations and environmental monitoring completed for the Keddy facility demonstrate consistent water elevations in supply ponds and monitoring wells, confirming the process water supply system is not depleting local groundwater. Considering the similar geological conditions and process proposed for the Project, water withdrawal is not anticipated to affect surrounding water users.

There is potential for the Project to impact groundwater quality through precipitation leaching potential constituents of concern from stockpiles and spills of petroleum products. Leaching of potential constituents of concern is of greatest concern in the context of ML/ARD. Project activities will be limited to the surficial geology and are not anticipated to contact the underlying sulphide-bearing bedrock. Therefore, acid production is not anticipated to occur at the Project and precipitation leaching through the stockpiles and recharging groundwater is anticipated to have similar constituent of concern concentrations to background. Potential petroleum spills will be mitigated through the development handling methods to prevent and control leaks and spills and through the development of a Contingency Plan.

A detailed Groundwater Monitoring Plan will be developed for the Project and submitted as part of the IA application. The plan will include proposed measures to monitor potential changes groundwater quality and quantity as a result of Project activities. The existing monitoring network consists of nine monitoring wells providing spatial coverage in all directions from proposed pit areas. The results of groundwater monitoring will be used to inform adaptive water management practices to mitigate any adverse impacts that may result from the Project.

6. Conclusions

GHD was retained by Shaw to complete a hydrogeological investigation of the proposed Nictaux Sand Pit Expansion Project, an expansion of the existing Trimper Sand and Gravel Pit located near Nictaux, Annapolis County, NS. This hydrogeological investigation was completed in support of the EARD prepared for the Project. The objective of this report is to provide an understanding of the quality and quantity of groundwater in the area and to evaluate the potential impacts of the Project on groundwater resources.

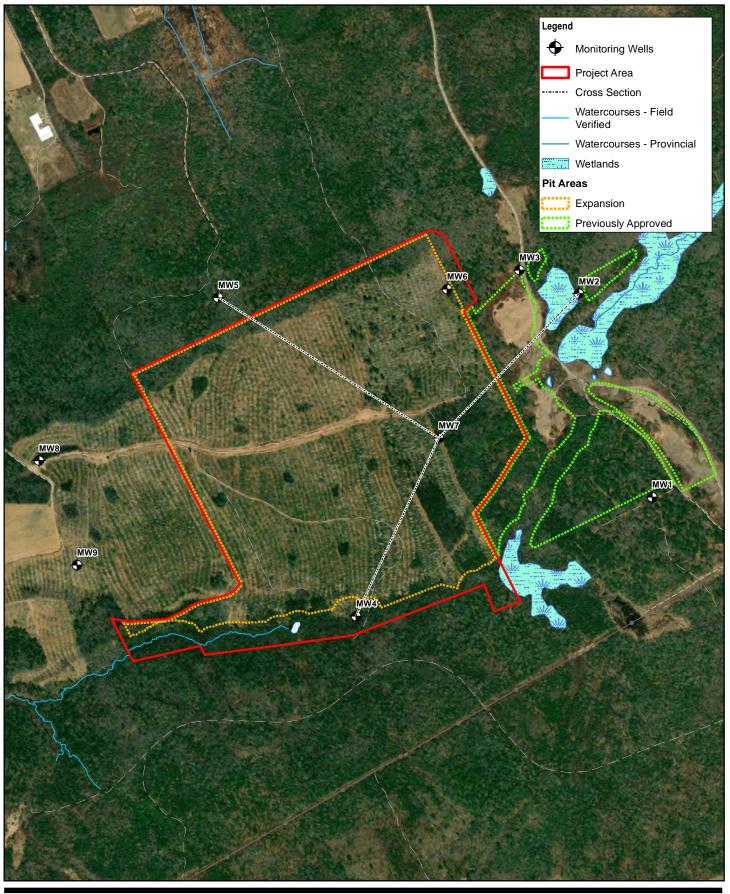
Logan Drilling and Geotechnical (Logan) was retained by GHD to drill and complete four boreholes as monitoring wells using a CME-75 track-mounted drill rig. The field investigation was conducted between March 19 and March 27, 2024, under the supervision of qualified GHD field staff.

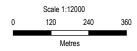
Groundwater quality monitoring was conducted on a quarterly basis between March and October 2024. The concentrations of general chemistry parameters in samples collected from the monitoring well network were less than the applied criteria with the exception of pH, which exceeded the GCDWQ AO in monitoring wells MW-02, MW-03, and MW-05, and colour, which exceeded the GCDWQ AO in MW-06 and MW-07. Dissolved arsenic exceeded the GCDWQ MAC in monitoring well MW-01, while dissolved manganese exceeded the GCDWQ MAC in wells MW-04, MW-06, MW-07, and MW-08. Arsenic and manganese are known to naturally occur in groundwater in Nova Scotia as evidenced by groundwater chemistry maps published by NSDNRR.

Dissolved molybdenum was identified at MW-07 during the March sampling event at a concentration exceeding the NS Tier 1 EQS criterion. Molybdenum is additionally a common component of drill rod grease, utilized during the drilling process to maintain lubrication of drill rod threads. Molybdenum may have been identified in the MW-07 sample due to residual drill rod grease deposited during the March 2024 drilling program.

Proposed sand extraction is not anticipated to result in groundwater drawdown as the pit area will not be dewatered. Following extraction, any pit areas extracted beneath the water table will be left as pit lakes into the closure phase, maintaining the adjacent water table elevation. Water withdrawn from the proposed on-site water supply pond will be entered into an unconfined closed loop system, with process water effluent from the wash plant returned to the pond. Shaw currently employ a similar process water supply system at their Keddy facility. Operations and environmental monitoring completed for the Keddy facility demonstrate consistent water elevations in supply ponds and monitoring wells, confirming the process water supply system is not depleting local groundwater. Considering the similar geological conditions and process proposed for the Project, water withdrawal is not anticipated to affect surrounding water users.

7. References


Freeze R.A. and Cherry, J.A., 1979. Groundwater. Prentice Hall, Inc., Engelwood Cliffs, NJ.

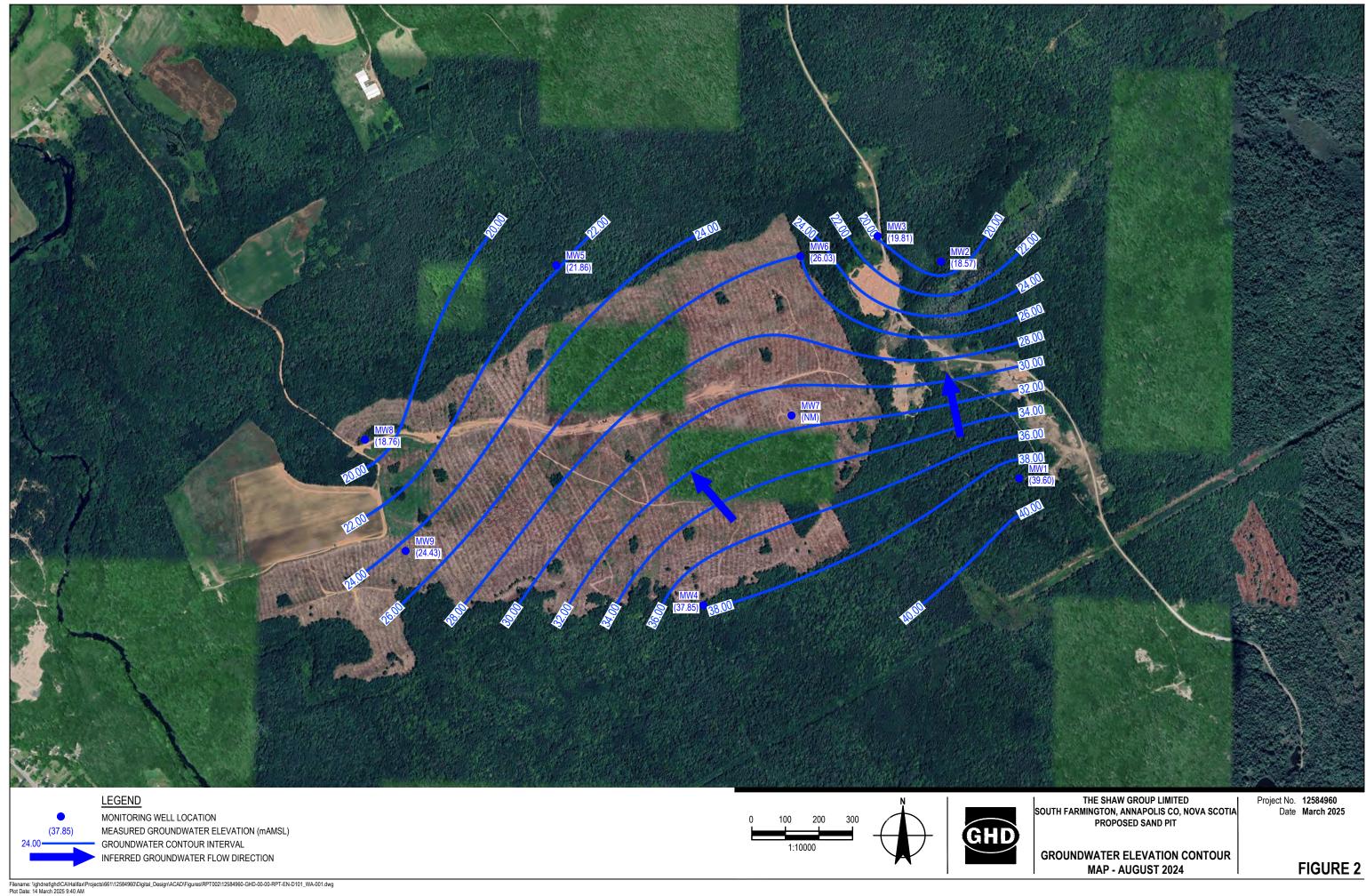

Kennedy, Gavin W, 2009. Hydrogeologic Characterization of Nova Scotia's Groundwater Regions. Retrieved: https://novascotia.ca/natr/meb/pdf/09cs04.asp

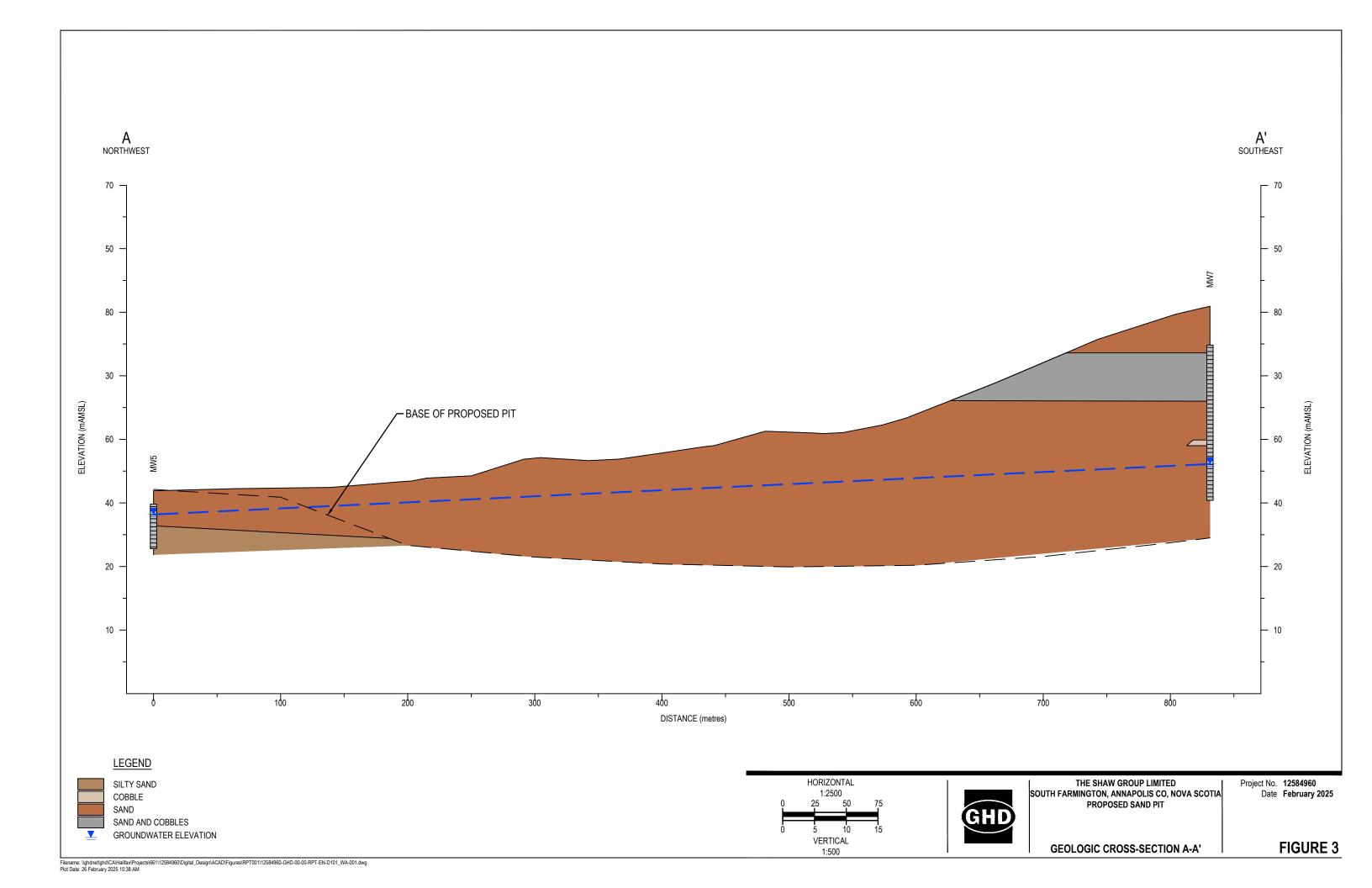
Nova Scotia. 2024. DataLocator - Elevation Explorer. Retrieved: https://nsgi.novascotia.ca/datalocator/elevation/.

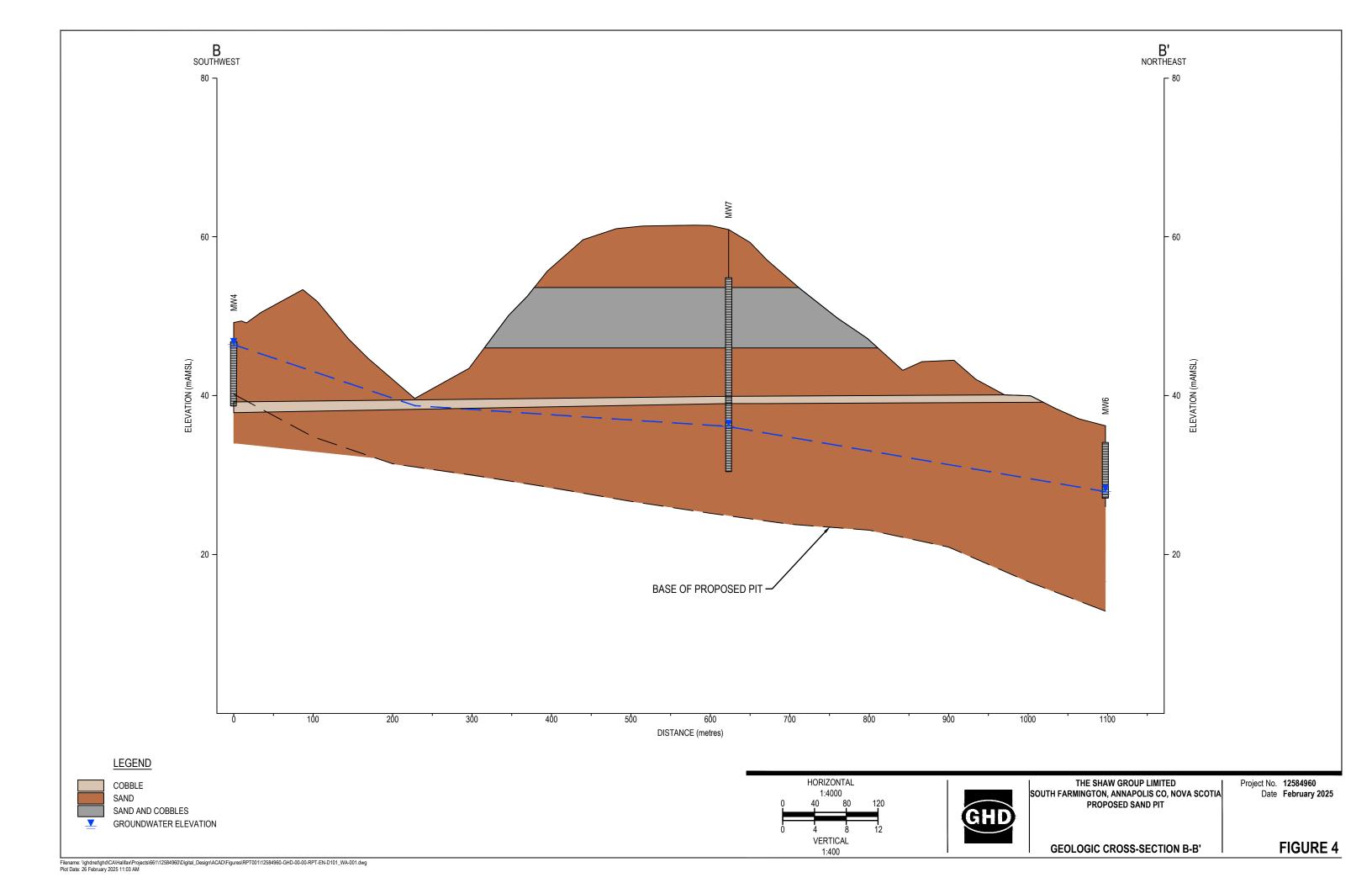
Nova Scotia Department of Natural Resources and Renewables (NSDNRR), 2011. Groundwater Chemistry Atlas. Retrieved: https://novascotia.ca/natr/meb/water-resources/groundwater-chemistry-atlas.asp.

Figures

Map Projection: Transverse Mercator Horizontal Datum: North American 1983 CSRS Grid: NAD 1983 CSRS UTM Zone 20N


THE SHAW GROUP LIMITED
SOUTH FARMINGTON, ANNAPOLIS CO, NOVA SCOTIA
PROPOSED SAND PIT


Project No. 12586970 Revision No. -


Date Dec 18, 2024

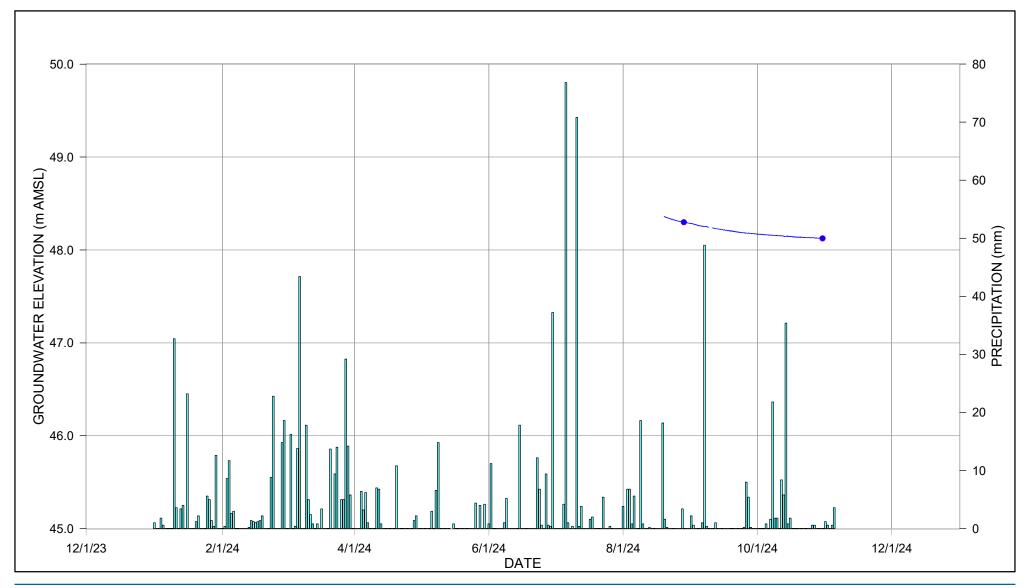
MONITORING WELL LOCATIONS

FIGURE 1

Appendices

Appendix A Borehole Logs

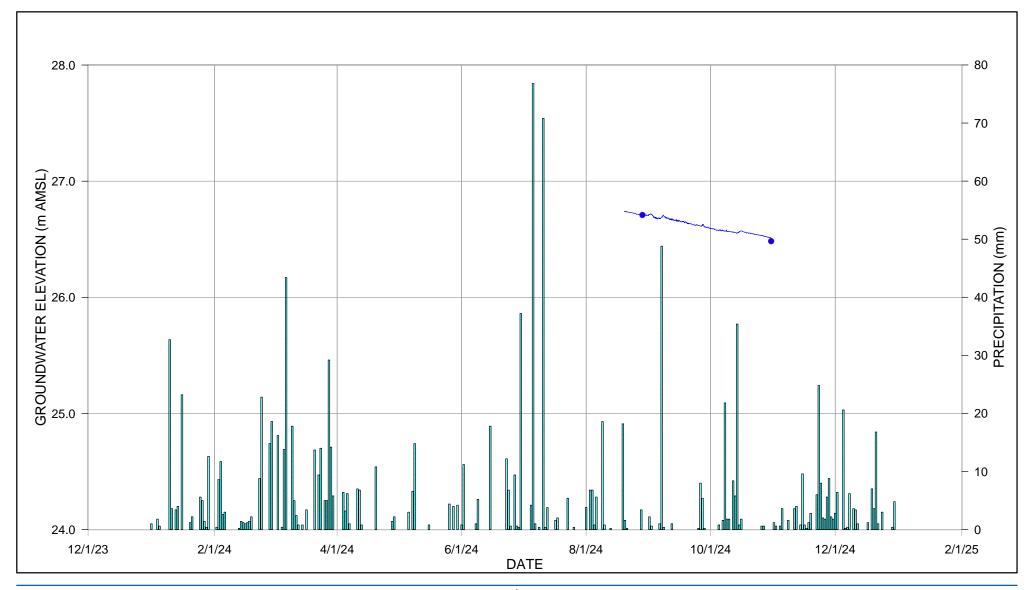
ENCLOSURE No.: REFERENCE No.: 12584960 BOREHOLE No.: MW4 **BOREHOLE REPORT** ELEVATION: ____ 49.22 m ASL Page: _1_ of _1_ **LEGEND** THE SHAW GROUP LIMITED CLIENT: SSE - SPLIT SPOON PROJECT: PROPOSED SAND PIT STE - SHELBY TUBE SOUTH FARMINGTON, ANNAPOLIS CO, NOVA SCOTIA LOCATION: _ RCE - ROCK CORE - WATER LEVEL ¥ DESCRIBED BY: J. Veniot CHECKED BY: G. Merkley O.V.C. - ORGANIC VAPOR CONC. DATE (FINISH): 20 March 2024 DATE (START): 20 March 2024 CHEM - CHEMICAL ANALYSIS Blows per 6 in. / 15 cm Stratigraphy Other Tests Penetraion Index Type and Number Organic Vapor Recovery Elevation (m) BGS State **REMARKS** Depth **DESCRIPTION OF** SOIL AND BEDROCK S.U. 1.0 m-T.O.C. 0.9 m-**GROUND SURFACE** Feet Metres 49.22 ppm Silty Sand - muddy, brown, highly 12/12/24 saturated 1 2 50mm PVC Well-Casing GEOTECH_V14.GLB Report: WELL LOG Date: 1.0 1.20 m7 WL 1.20 m 5 Bentonite Plug→ 1.80 m-2.0 Silica Sand→ 2.40 m-- 3.0 10 11 12 13 4.0 14 15 16 - 5.0 17 18 19 - 6.0 20 21 50mm PVC Well 22 Screen 23 -- 7.0 24 -25 26 _ - 8.0 27 28 29 9.0 40.12 30 Silty Sand - with clay, some cobbles, red, very dense 31 SS1 58 16-22-27-38 49 32 -10.0 39.22 33 Rock encountered 34 35 38.52 End of hole @ 10.7m 10.90 m-36


ENCLOSURE No.: REFERENCE No.: 12584960 BOREHOLE No.: MW5 **BOREHOLE REPORT** ELEVATION: ____ 31.94 m ASL Page: _1_ of _1_ **LEGEND** THE SHAW GROUP LIMITED CLIENT: SSE - SPLIT SPOON PROJECT: PROPOSED SAND PIT STE - SHELBY TUBE SOUTH FARMINGTON, ANNAPOLIS CO, NOVA SCOTIA LOCATION: _ RCE - ROCK CORE ¥ - WATER LEVEL DESCRIBED BY: J. Veniot CHECKED BY: G. Merkley O.V.C. - ORGANIC VAPOR CONC. DATE (FINISH): 20 March 2024 DATE (START): 19 March 2024 CHEM - CHEMICAL ANALYSIS Blows per 6 in. / 15 cm Stratigraphy Other Tests Penetraion Index Type and Number Recovery Organic Vapor Elevation (m) BGS State **REMARKS** Depth **DESCRIPTION OF** SOIL AND BEDROCK S.U. 1.0 m-T.O.C. 0.9 m-**GROUND SURFACE** Feet Metres 31.94 ppm Sand - some silt, grey, wet, dense Library File: GHD_GEOTECH_V14.GLB Report: WELL LOG Date: 12/12/24 2 50mm PVC Well-Casing 1.0 1.20 m-Bentonite Plug→ 5 1.80 m Silica Sand→ 2.0 2.10 m-3.0 12 13 - 4.0 N:\CA\HALIFAX\PROJECTS\661/12584960\DIGITAL_DESIGN\GINT\WELL LOGS_DEC 12 2024.GPJ 14 WL 4.375 m-15 16 - 5.0 17 SS1 75 22-21-40-30 61 18 26.44 Silty Sand - red, compact 50mm PVC Well 26.34 Screen 19 Silty Sand - some grey sand, red, dense 6.0 20 21 22 23 - 7.0 24 25 26 8.0 27 28 29 9.0 22.84 9.10 m-30 End of hole @ 9.1m

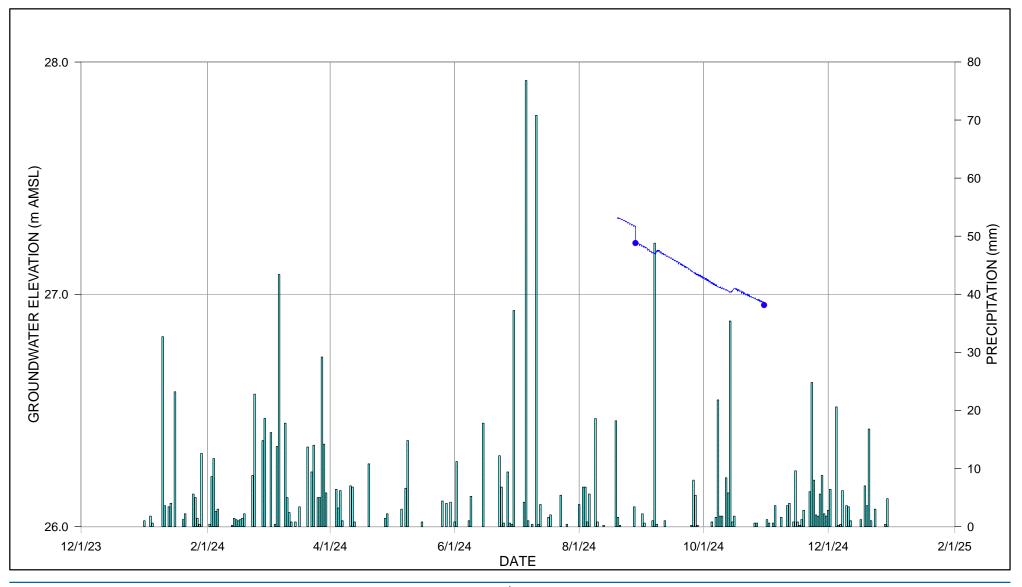
ENCLOSURE No.: REFERENCE No.: 12584960 BOREHOLE No.: ____ MW6 **BOREHOLE REPORT** ELEVATION: ____ 36.20 m ASL Page: _1_ of _1_ **LEGEND** THE SHAW GROUP LIMITED CLIENT: SSE - SPLIT SPOON PROJECT: PROPOSED SAND PIT STE - SHELBY TUBE SOUTH FARMINGTON, ANNAPOLIS CO, NOVA SCOTIA LOCATION: _ RCE - ROCK CORE ¥ - WATER LEVEL DESCRIBED BY: J. Veniot CHECKED BY: G. Merkley O.V.C. - ORGANIC VAPOR CONC. DATE (FINISH): 18 March 2024 DATE (START): 18 March 2024 CHEM - CHEMICAL ANALYSIS Blows per 6 in. / 15 cm Stratigraphy Other Tests Penetraion Index Type and Number Elevation (m) BGS Recovery Organic Vapor State **REMARKS** Depth **DESCRIPTION OF** SOIL AND BEDROCK S.U. 1.0 m-T.O.C. 0.9 m-**GROUND SURFACE** Feet Metres 36.20 Ν ppm Sand - some silt, grey, wet, dense Library File: GHD_GEOTECH_V14.GLB Report: WELL LOG Date: 12/12/24 1 2 50mm PVC Well Casing 1.0 1.20 m-Bentonite Plug→ 5 1.80 m Silica Sand→ 2.0 2.10 m-8 9 3.0 11 12 WL 3.914 m-13 - 4.0 File: N:\CA\HALIFAX\PROJECTS\661/12584960\DIGITAL_DESIGN\GINT\WELL LOGS_DEC 12 2024.GPJ 14 15 16 - 5.0 17 18 50mm PVC Well Screen 19 6.0 20 21 22 23 - 7.0 24 25 26 8.0 27 28 29 9.0 27.10 9.10 m-30 End of hole @ 9.1m

ENCLOSURE No.: 12584960 REFERENCE No.: BOREHOLE No.: MW7 **BOREHOLE REPORT ELEVATION:** 60.94 m ASL Page: _1_ of _1_ **LEGEND** THE SHAW GROUP LIMITED CLIENT: SSE - SPLIT SPOON PROJECT: PROPOSED SAND PIT STE - SHELBY TUBE SOUTH FARMINGTON, ANNAPOLIS CO, NOVA SCOTIA LOCATION: _ RCE - ROCK CORE - WATER LEVEL Ţ DESCRIBED BY: J. Veniot CHECKED BY: G. Merkley O.V.C. - ORGANIC VAPOR CONC. DATE (FINISH): 26 March 2024 DATE (START): 21 March 2024 CHEM - CHEMICAL ANALYSIS Blows per 6 in. / 15 cm Stratigraphy Other Tests Penetraion Index Type and Number Organic Vapor Recovery Elevation (m) BGS State **REMARKS** Depth **DESCRIPTION OF** SOIL AND BEDROCK S.U. 1.0 m-T.O.C. 0.9 m-Feet Metres 60.94 **GROUND SURFACE** ppm Sand 50mm PVC Well 1.0 N.Y.CANHALIFAX/PROJECTS/661/12584960/DIGITAL_DESIGN/GINTWELL LOGS_DEC 12 2024.GPJ LIbrary File: GHD_GEOTECH_V14.GLB_Report: WELL LOG_Date: 12/12/24 Casing 5 Bentonite Plug 58.54 Sand - coarse, slightly moist, becoming 10 🚠 3.0 Bentonite Blug cobbly 4.0 Silica Sand→ **₹** 5.0 15 **♣** 6.0 6.10 m-**₹** 7.0 25 8.0 53.64 Sand and Cobbles 30 \$\bigset\$ 9.0 10.0 11.0 12.0 13.0 45 14.0 **15.0** 46.04 Sand - with cobbles, coarse SS1 29 4-5-3-2 8 -16.0 **17.0** 18.0 50mm PVC Well Screen 19.0 **1**20.0 -21.0 39.94 70 **Granite Boulders** 39.04 -22.0 Sand - with cobbles, coarse 23.0 -24.0 -25.0 WL 25.546 m-85 26.0 -27.0 -28.0 32.24 29.0 Sand - trace clay, brown SS2 100 10-16-28-44 50/5' 30.0 100 30.44 30.50 m-End of hole @ 30.5m

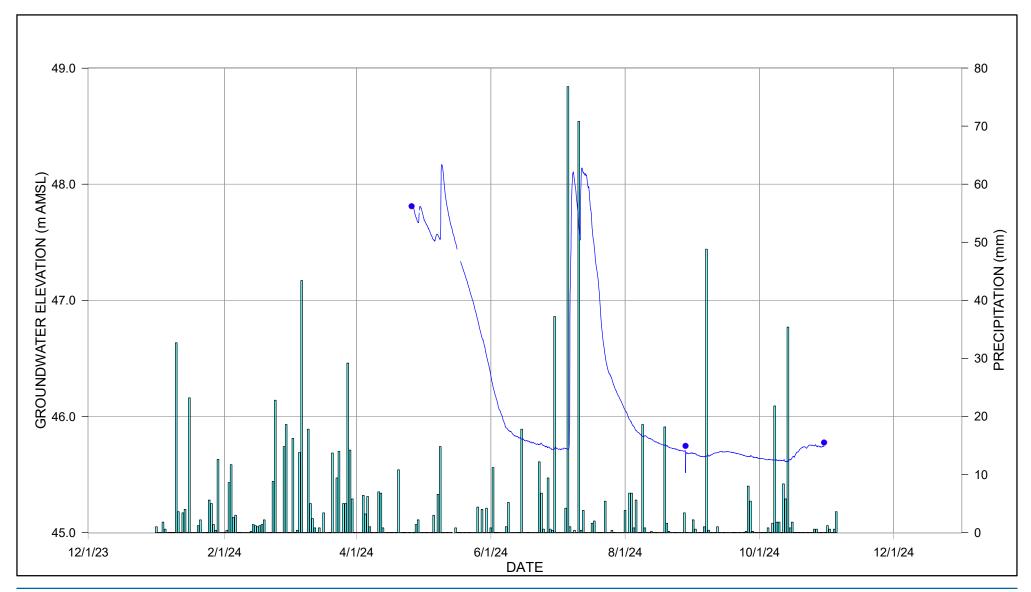
Appendix B


Groundwater Level Hydrographs

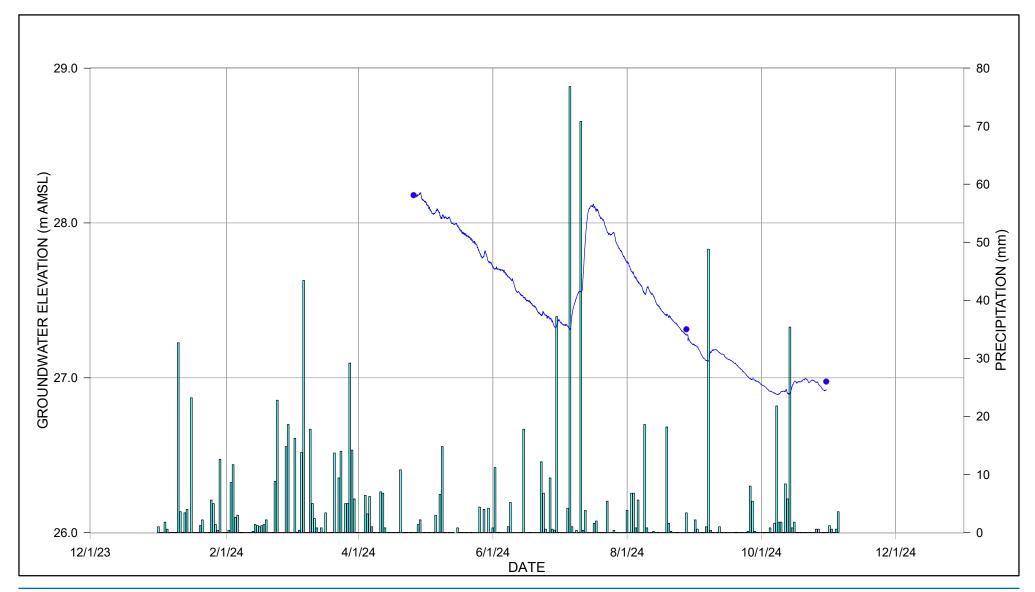
Legend
—— MW1 Logger Data PRECIPITATION (mm)

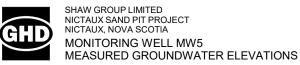

12584960 December 2024

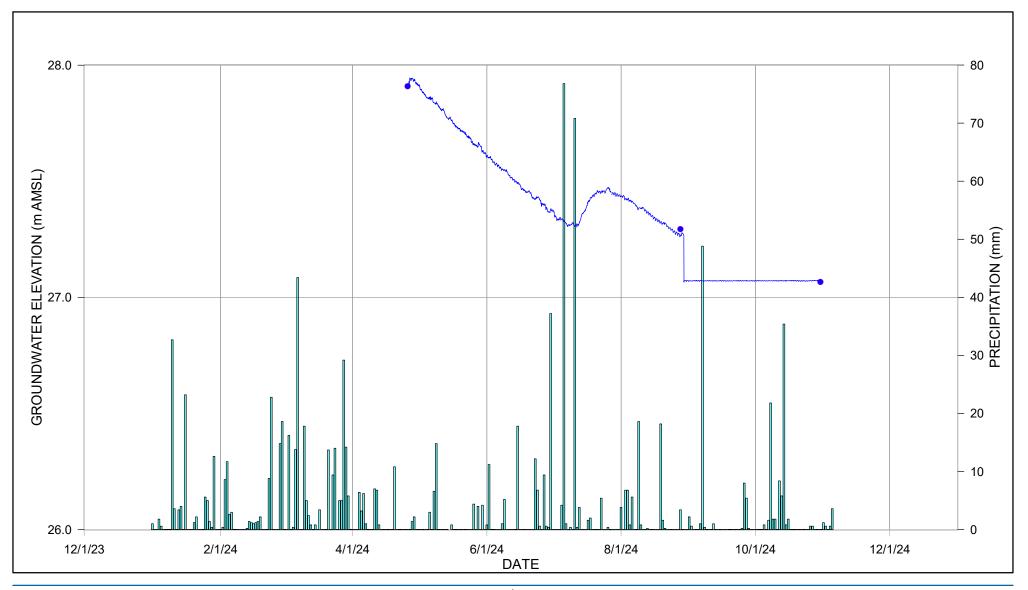
Legend — MW2 PRECIPITATION (mm)


12584960 December 2024

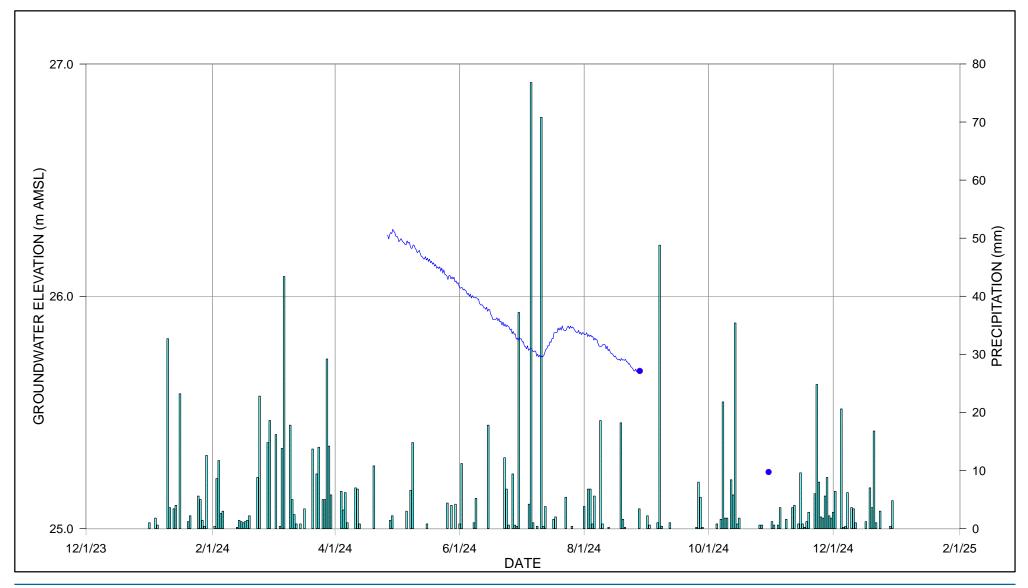

Legend — MW3 Logger PRECIPITATION (mm)


12584960 December 2024

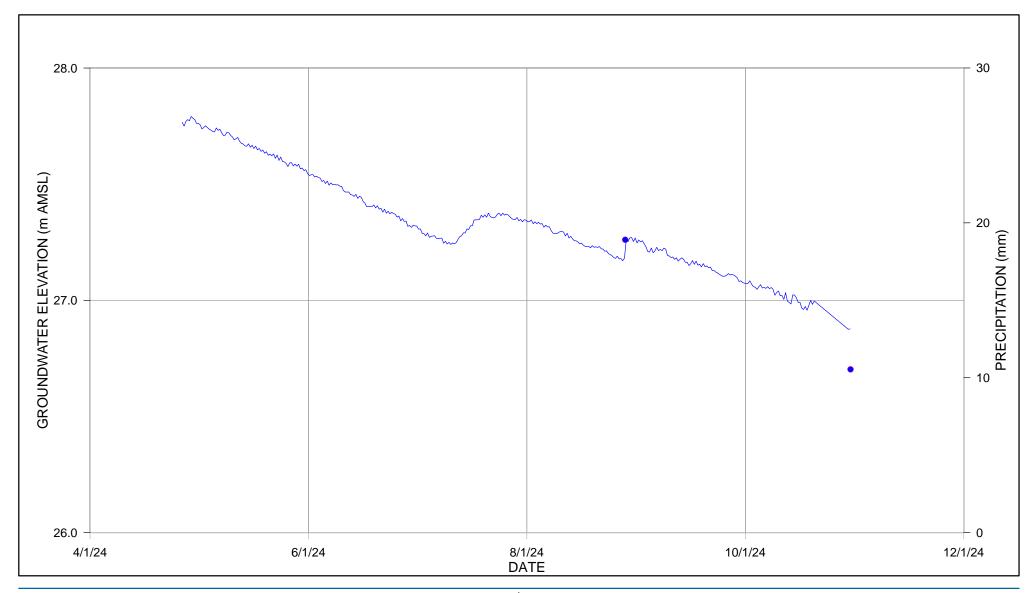

Legend PRECIPITATION (mm)


12584960 December 2024

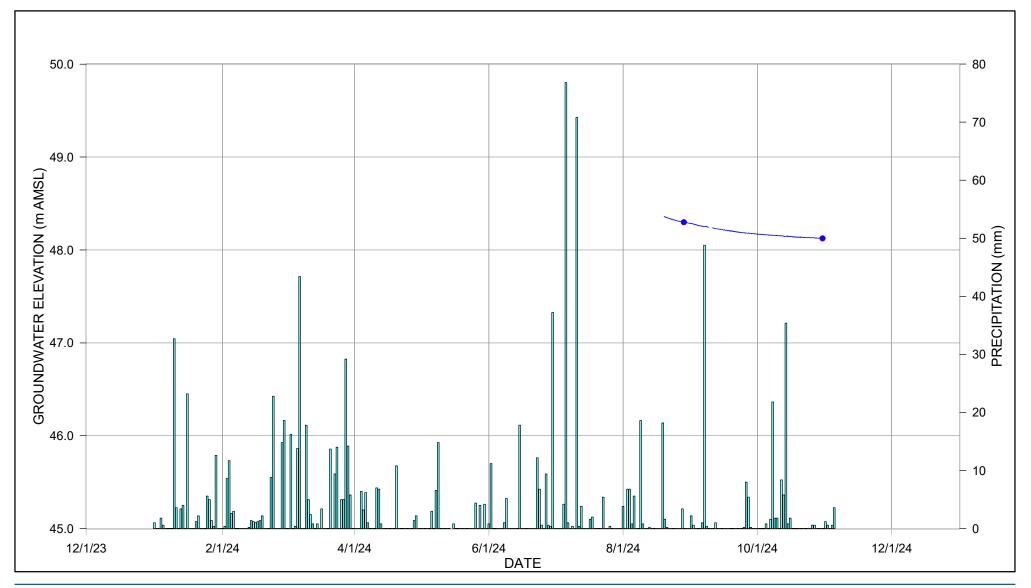

Legend — MW5 PRECIPITATION (mm)


12584960 December 2024

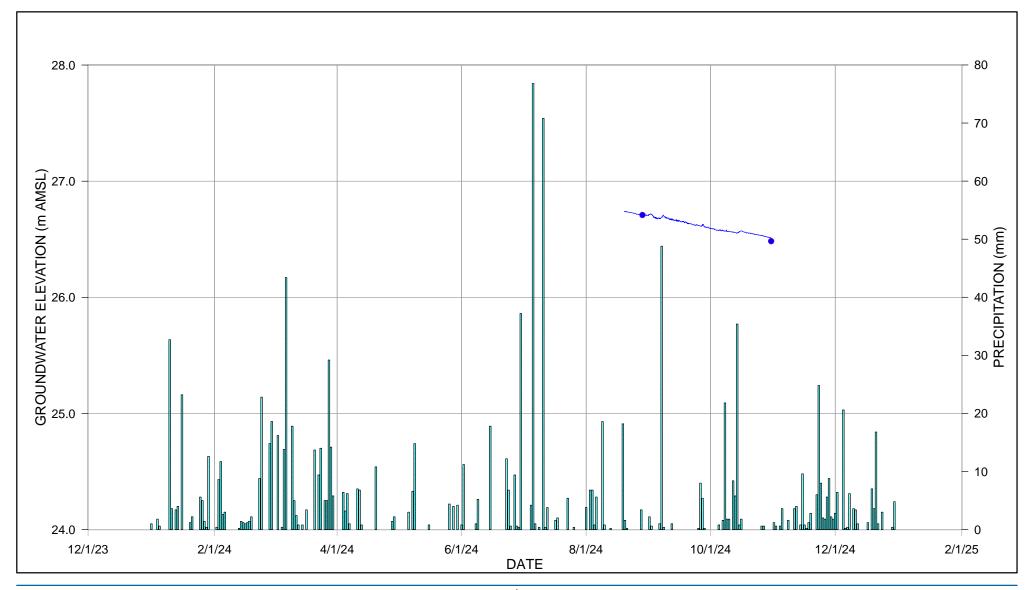
Legend PRECIPITATION (mm)


12584960 December 2024

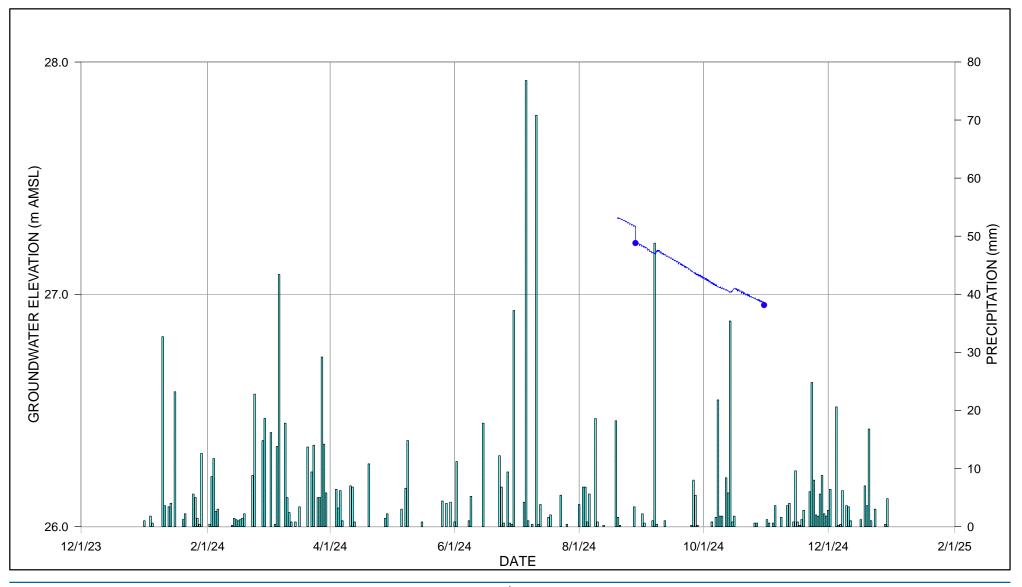
Legend PRECIPITATION (mm)



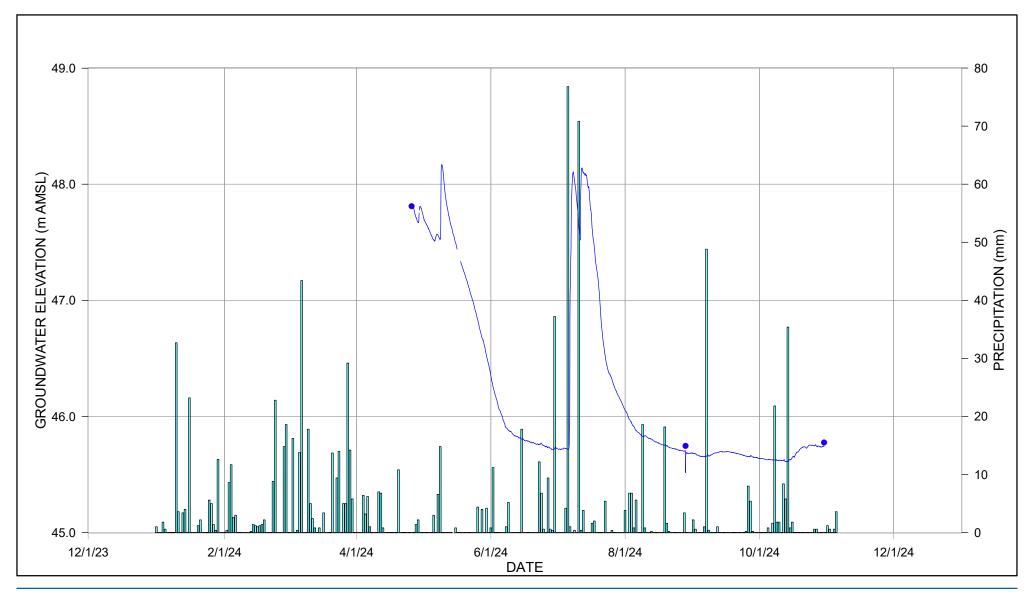
12584960 December 2024

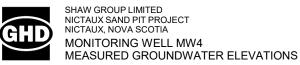

12584960 December 2024

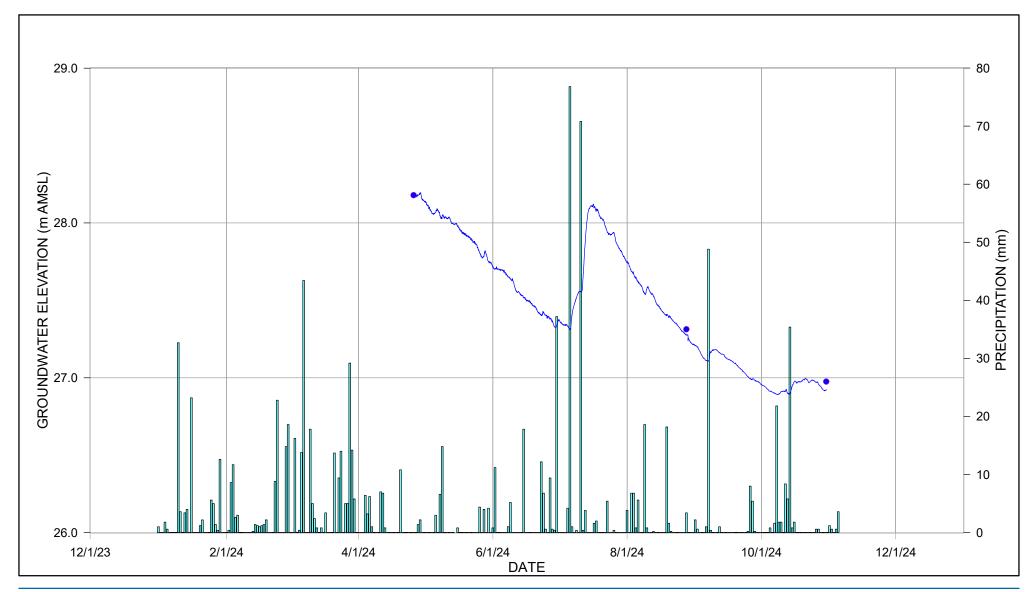
Legend
— MW1 Logger Data PRECIPITATION (mm)

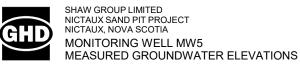

12584960 December 2024

Legend — MW2 PRECIPITATION (mm)

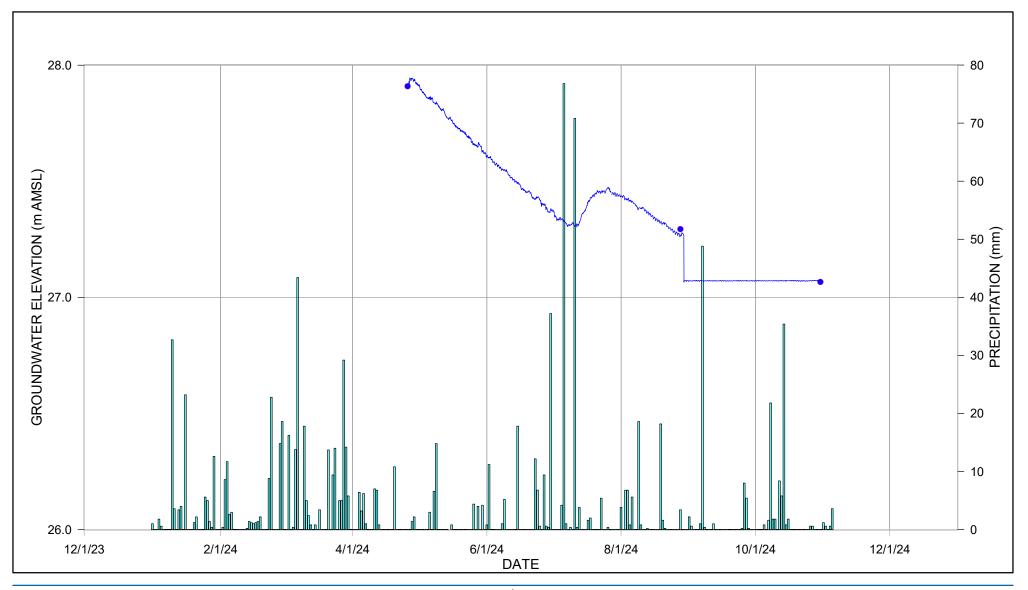

12584960 December 2024


Legend — MW3 Logger PRECIPITATION (mm)

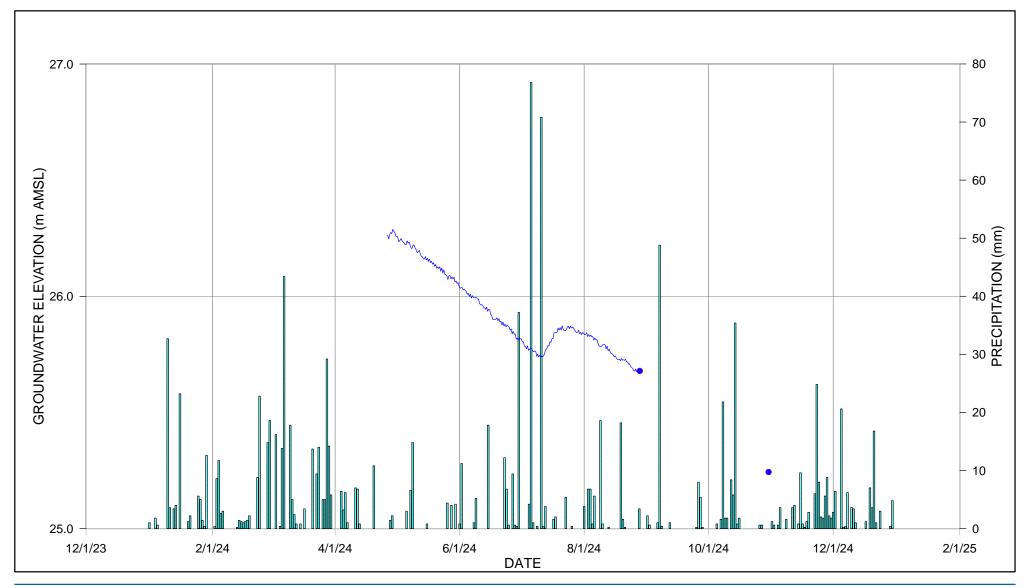

12584960 December 2024



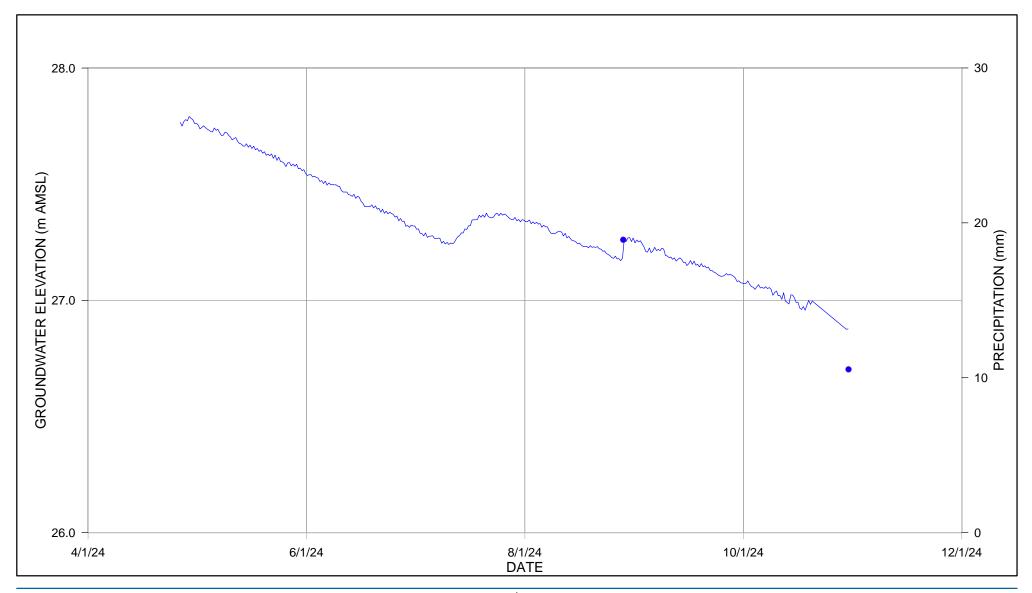
Legend PRECIPITATION (mm)



12584960 December 2024


12584960 December 2024

Legend PRECIPITATION (mm)


12584960 December 2024

Legend PRECIPITATION (mm)

12584960 December 2024

Legend
—— MW9 PRECIPITATION (mm)

12584960 December 2024

Appendix C

Analytical Results

January 2024 Page 1 of 1

Groundwater Results - General Chemistry
Nictaux Sand Pit Expansion Project

			Cri	teria		MV	V-01	MW	/- 02		MW-03			MW-04			MW	-05		MV	V-06	MW-07		MW-08		MW	<i>I</i> -09
Parameters	Units	CDWQG; MAC	CDWQG; AO	NS Her I EQS; Potable Groundwat	NS Tier II PSS; GW > 10m from SW	MW-01	MW-01	MW-02	MW-02	MW-03	MW-03	DUP-A (FD of MW-03)	MW-04	MW-04	MW-04	MW-05	DUP-A (FD of MW-05)	MW-05	MW-05	MW-06	MW-06	MW-07	MW-08	DUP-A (FD of MW-08)	MW-08	MW-09	MW-09
Date						29-Aug-24	31-Oct-24	29-Aug-24	31-Oct-24	29-Aug-24	31-Oct-24	31-Oct-24	21-Mar-24	29-Aug-24	31-Oct-24	21-Mar-24	21-Mar-24	29-Aug-24	31-Oct-24	27-Mar-24	29-Aug-24	27-Mar-24	29-Aug-24	29-Aug-24	31-Oct-24	29-Aug-24	31-Oct-24
Anion Sum	me/L	-	-	-	-	1.07	1.04	0.24	0.33	0.44	0.36	0.28	0.42	1.06	1.23	0.83	0.89	0.45	0.27	1.46	0.79	2.65	1.53	1.74	1.02	0.47	0.48
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	-	-	-	41	39	6.7	7.7	12	7.5	4.8	14	42	51	28	28	13	4.1	37	27	110	67	78	41	13	12
Calculated TDS	mg/L	-	500	-	-	72	73	23	30	33	31	28	28	66	77	49	51	32	23	96	59	150	81	87	62	36	38
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	-	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cation Sum	me/L	-	-	-	-	1.12	1.17	0.26	0.34	0.44	0.41	0.41	0.41	1.07	1.34	0.67	0.68	0.46	0.29	1.56	0.99	2.83	1.23	1.22	1.02	0.49	0.51
Hardness (CaCO3)	mg/L	-	-	-	-	33	35	6.6	9	12	11	11	11	41	52	23	24	14	6	41	30	80	43	43	37	14	15
Ion Balance (% Difference)	%	-	-	-	-	2.28	5.88	4	1.49	0	6.49	18.8	1.2	0.47	4.28	10.7	13.4	1.1	3.57	3.31	11.2	3.28	10.9	17.6	0	2.08	3.03
Langelier Index (@ 20C)	N/A	-	-	-	-	-0.808	-0.695	-3.87	-3.69	-3.15	-3.09	-3.27	-3.03	-1.15	-0.898	-2.09	-2.04	-2.81	-4.2	-1.31	-1.69	-0.195	-0.508	-0.358	-0.959	-2.45	-2.55
Langelier Index (@ 4C)	N/A	-	-	-	-	-1.06	-0.946	-4.13	-3.95	-3.4	-3.34	-3.52	-3.28	-1.4	-1.15	-2.34	-2.3	-3.06	-4.45	-1.56	-1.95	-0.446	-0.759	-0.609	-1.21	-2.7	-2.8
Nitrate (N)	mg/L	10	-	-	130	0.053	0.069	< 0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050	0.066	0.07	0.079	0.081	<0.050	<0.050	0.96	0.056	0.42	< 0.050	<0.050	<0.050	0.16	0.16
Saturation pH (@ 20C)	N/A	-	-	-	-	8.66	8.65	10.4	10.2	9.71	9.96	10.2	9.67	8.63	8.44	9.01	9.01	9.61	10.6	8.66	8.91	7.94	8.35	8.29	8.62	9.61	9.6
Saturation pH (@ 4C)	N/A	-	-	-	-	8.91	8.9	10.7	10.4	9.96	10.2	10.4	9.93	8.88	8.7	9.26	9.26	9.86	10.8	8.91	9.16	8.19	8.6	8.54	8.87	9.86	9.85
Inorganics	•	•																									
Total Alkalinity (Total as CaCO3)	mg/L	-	-	-	-	41	40	6.7	7.7	12	7.5	4.8	14	43	51	28	28	13	4.1	37	27	110	68	78	41	13	12
Dissolved Chloride (CI-)	mg/L	-	250	-	1200	4.8	3.9	3.7	3.9	5.7	4.9	4.9	3.8	5.1	4.7	6.4	8.9	4.4	4.4	10	6.7	9.6	4.3	4.2	4.8	5.1	5.2
Colour	TCU	-	15	-	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	5.2	<5.0	<5.0	<5.0	6	<5.0	<5.0	47	7	<u>17</u>	<5.0	<5.0	<5.0	<5.0	<5.0
Nitrate + Nitrite (N)	mg/L	-	-	-	-	0.053	0.069	< 0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050	0.066	0.07	0.079	0.081	<0.050	<0.050	0.96	0.056	0.42	< 0.050	<0.050	<0.050	0.16	0.16
Nitrite (N)	mg/L	1	-	-	0.6	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Nitrogen (Ammonia Nitrogen)	mg/L	-	-	-	-	< 0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	< 0.050	0.06	< 0.050	< 0.050	<0.050	0.06	<0.050	1.70	0.19	2.90	0.10	0.06	<0.050	0.06	< 0.050
Total Organic Carbon (C)	mg/L	-	-	-	-	0.63	<0.50	1.1	0.8	1.3	1.4	1.2	1.5	0.94	0.75	2.8	2.6	<5.0	0.81	16	6.4	110	0.69	0.69	0.76	0.66	<5.0
Orthophosphate (P)	mg/L	-	-	-	-	0.026	0.035	<0.010	0.01	0.029	0.025	0.026	<0.010	<0.010	0.015	0.019	0.019	0.065	0.1	0.011	<0.010	<0.010	0.021	0.022	0.023	0.015	0.016
рН	рН	-	7.0-10.5	-	-	7.85	7.96	<u>6.54</u>	<u>6.5</u>	<u>6.56</u>	<u>6.87</u>	<u>6.91</u>	<u>6.64</u>	7.48	7.55	<u>6.92</u>	<u>6.97</u>	<u>6.8</u>	<u>6.39</u>	7.35	7.22	7.75	7.84	7.93	7.66	7.16	7.05
Reactive Silica (SiO2)	mg/L	-	-	-	-	14	14	9.9	11	9.2	9.5	9.3	5.2	11	12	7.3	7.2	7.3	6.4	9.6	12	3.6	8	8.2	8.8	10	10
Dissolved Sulphate (SO4)	mg/L	-	500	-	-	5.3	6.2	<2.0	3.4	2.2	3.5	2.2	2.1	3.2	3.7	3.8	4	3	2.9	17	2.6	9.6	2.8	2.8	2.7	2.6	3.7
Turbidity	NTU	-	-	-	-	2.1	5.4	16	13	8.7	20	14	16	95	21	550	560	600	14	410	370	130	320	280	11	66	350
Conductivity	uS/cm	-	-	-	-	120	120	31	41	49	46	46	43	120	130	93	93	51	36	150	87	260	160	160	110	55	54

Notes:

nd = non detect value. Detection limits were not reported

-- Not applicable

Screening:

Shaded Indicates values are greater than GCDWQ, MAC

Bold Indicates values are greater than NS Tier I EQS

Double Underline Indicates values are greater than NS Tier II PSS

Single Underline Indicates values are greater than GCDWQ, AO

References:

MAC,AO: Guideline - Summary of Guidelines for Canadian Drinking Water Quality (SGCDWQ), Health Canada, 2024

Industrial Land Use, Coarse

Nova Scotia Tier II Pathway Specific Standards (PSS) for Groundwater Discharging to Surface Water, >10 m from Surface Water Body

January 2024 Page 1 of 1

Table 2 **Groundwater Results - Dissolved Metals** Nictaux Sand Pit Expansion Project

			Crit	eria		MW	-01	MW	/-02		MW-03			MW-04			M	N-05		MV	V-06	MW-07		MW-08		MV	N-09
Parameters	Units	CDWQG; MAC	CDWQG; AO	NS Tier I EQS; Potable Groundwat er (Industrial.	NS Tier II PSS; GW > 10m from SW	MW-01	MW-01	MW-02	MW-02	MW-03	MW-03	DUP-A (FD of MW-03)	MW-04	MW-04	MW-04	MW-05	DUP-A (FD of MW-05)	MW-05	MW-05	MW-06	MW-06	MW-07	MW-08	DUP-A (FD of MW-08)	MW-08	MW-09	MW-09
Date						29-Aug-24	31-Oct-24	29-Aug-24	31-Oct-24	29-Aug-24	31-Oct-24	31-Oct-24	21-Mar-24	29-Aug-24	31-Oct-24	21-Mar-24	21-Mar-24	29-Aug-24	31-Oct-24	27-Mar-24	29-Aug-24	27-Mar-24	29-Aug-24	29-Aug-24	31-Oct-24	29-Aug-24	31-Oct-24
Dissolved Aluminum (AI)	ug/L	2900	100	100	50	<5.0	<5.0	24	18	<5.0	<5.0	<5.0	20	<5.0	<5.0	6.3	7.8	12	11	<u>330</u>	<u>62</u>	<u>320</u>	<5.0	<5.0	<5.0	<5.0	<5.0
Dissolved Antimony (Sb)	ug/L	6	-	6	90	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dissolved Arsenic (As)	ug/L	10	-	10	50	12	13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.5	1.5	1.1	<1.0	<1.0
Dissolved Barium (Ba)	ug/L	2000	-	1000	10000	9.2	9.3	6.8	7.7	3.4	3.3	3.3	11	91	140	20	20	10	11	1300	27	36	8.6	9.1	6.9	4.4	4.3
Dissolved Beryllium (Be)	ug/L	-		4	1.5	<0.10	<0.10	0.11	<0.10	< 0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10
Dissolved Bismuth (Bi)	ug/L	-	-	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Dissolved Boron (B)	ug/L	5000	-	5000	15000	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	130	<50	<50	<50	<50	<50	<50	<50
Dissolved Cadmium (Cd)	ug/L	7	-	5	0.9	0.013	<0.010	0.024	0.018	0.05	0.022	0.032	< 0.010	0.024	0.017	0.023	0.024	0.018	0.012	0.049	0.085	<0.10	0.017	0.023	<0.010	< 0.010	<0.010
Dissolved Calcium (Ca)	ug/L	-	-	-	-	11000	12000	1100	1600	3200	2800	2700	3000	12000	15000	7100	7200	3800	1200	13000	9300	25000	14000	14000	12000	3800	4200
Dissolved Chromium (Cr)	ug/L	50	-	-	89	1.3	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dissolved Cobalt (Co)	ug/L	-	-	3.8	40	<0.40	<0.40	< 0.40	<0.40	< 0.40	< 0.40	< 0.40	5.7	11	3.1	1.6	1.7	1.1	<0.40	1.3	1.3	1.4	< 0.40	<0.40	<0.40	<0.40	< 0.40
Dissolved Copper (Cu)	ug/L	2000	1000	2000	20	< 0.50	<0.50	0.92	0.72	1	0.96	1.1	1.7	5.8	3.3	7	7.8	9.2	2.6	<u>25</u>	<u>140</u>	5.5	< 0.50	<0.50	<0.50	< 0.50	< 0.50
Dissolved Iron (Fe)	ug/L	-	300	300	3000	<50	<50	<50	89	<50	<50	<50	220	<50	<50	<50	<50	<50	<50	<u>410</u>	800	<u>1600</u>	<50	<50	<50	<50	<50
Dissolved Lead (Pb)	ug/L	5	-	5	10	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.63	< 0.50	< 0.50	<0.50	< 0.50	< 0.50
Dissolved Magnesium (Mg)	ug/L	-	-	-	-	1100	1200	920	1200	890	970	950	780	2800	3600	1300	1300	1000	750	2100	1600	4200	1800	1800	1600	1100	1200
Dissolved Manganese (Mn)	ug/L	120	20	120	4300	<2.0	<2.0	<u>50</u>	32	4	3.5	4.2	<u>95</u>	260	<u>160</u>	97	<u>98</u>	<u>41</u>	3.2	<u>170</u>	580	470	130	<u>130</u>	<u>71</u>	<2.0	<2.0
Dissolved Molybdenum (Mo)	ug/L	-	-	70	730	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.7	160	14	14	9.8	<2.0	<2.0
Dissolved Nickel (Ni)	ug/L	-	-	100	250	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	5.5	2.2	2.4	2.5	<2.0	<2.0	2.6	3.8	17	<2.0	<2.0	<2.0	<2.0	<2.0
Dissolved Phosphorus (P)	ug/L	-	-	-	-	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Dissolved Potassium (K)	ug/L	-	-	-	-	390	340	210	500	1000	890	920	350	690	940	1100	1100	920	660	3000	2300	7800	1700	1700	1600	680	720
Dissolved Selenium (Se)	ug/L	50	-	50	10	0.51	0.52	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	< 0.50
Dissolved Silver (Ag)	ug/L	-	-	-	2.5	<0.10	<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.15	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Dissolved Sodium (Na)	ug/L	-	200000	-	-	10000	11000	2900	3300	4100	3800	3900	4000	5600	6200	4100	4200	3800	3600	12000	6600	18000	7400	7200	5700	4300	4400
Dissolved Strontium (Sr)	ug/L	7000		2400	210000	22	23	7.3	10	17	14	15	22	69	91	21	22	14	7	54	33	73	62	62	58	20	20
Dissolved Thallium (TI)	ug/L	-	-	2	8	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Dissolved Tin (Sn)	ug/L	-	-	2400	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	6.7	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Dissolved Titanium (Ti)	ug/L	-		-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	8.7	<2.0	4.2	<2.0	<2.0	<2.0	<2.0	<2.0
Dissolved Uranium (U)	ug/L	20		20	150	1	1	<0.10	<0.10	<0.10	<0.10	<0.10	0.14	<0.10	<0.10	<0.10	<0.10	0.16	<0.10	0.19	<0.10	<0.10	0.54	0.54	0.44	<0.10	<0.10
Dissolved Vanadium (V)	ug/L	-	-	6.2	1200	15	16	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Dissolved Zinc (Zn)	ug/L	-	5000	5000	70	<5.0	<5.0	<5.0	6.7	8.2	<5.0	<5.0	5.2	30	12	8.3	7.3	10	<5.0	43	19	17	<5.0	<5.0	<5.0	<5.0	6.8

Notes:
nd = non detect value. Detection limits were not reported

Screening:
Shaded
Bold
Double Underline ndicates values are greater than GCDWQ, MAC Indicates values are greater than NS Tier I EQS Indicates values are greater than NS Tier II PSS Indicates values are greater than GCDWQ, AO Single Underline

References:

MAC,AO: Guideline - Summary of Guidelines for Canadian Drinking Water Quality (SGCDWQ), Health Canada, 2024

Groundwater, Potable, Industrial Land Use, Coarse

Nova Scotia Tier II Pathway Specific Standards (PSS) for Groundwater Discharging to Surface Water, >10 m from Surface Water Body

Site Location: SHAW-PROPOSED SAND PIT

Your C.O.C. #: C#981420-01-01

Attention: Glen Merkley

GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2

Report Date: 2024/04/05

Report #: R8094501 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C492645 Received: 2024/03/28, 09:32

Sample Matrix: Ground Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Carbonate, Bicarbonate and Hydroxide	1	N/A	2024/04/03	N/A	SM 24 4500-CO2 D
Carbonate, Bicarbonate and Hydroxide	4	N/A	2024/04/04	N/A	SM 24 4500-CO2 D
Alkalinity	5	N/A	2024/04/03	ATL SOP 00142	SM 24 2320 B
Chloride	5	N/A	2024/04/03	ATL SOP 00014	SM 24 4500-Cl- E m
Colour	5	N/A	2024/04/04	ATL SOP 00020	SM 24 2120C m
Conductance - water	5	N/A	2024/04/03	ATL SOP 00004	SM 24 2510B m
Hardness (calculated as CaCO3)	4	N/A	2024/04/03	ATL SOP 00048	Auto Calc
Hardness (calculated as CaCO3)	1	N/A	2024/04/05	ATL SOP 00048	Auto Calc
Metals Water Diss. MS (1)	1	N/A	2024/04/04	ATL SOP 00058	EPA 6020B R2 m
Metals Water Diss. MS (as rec'd)	3	N/A	2024/04/02	ATL SOP 00058	EPA 6020B R2 m
Metals Water Diss. MS (as rec'd)	1	N/A	2024/04/03	ATL SOP 00058	EPA 6020B R2 m
Ion Balance (% Difference)	5	N/A	2024/04/05	N/A	Auto Calc.
Anion and Cation Sum	5	N/A	2024/04/05	N/A	Auto Calc.
Nitrogen Ammonia - water	5	N/A	2024/04/04	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	5	N/A	2024/04/04	ATL SOP 00016	USGS I-2547-11m
Nitrogen - Nitrite	5	N/A	2024/04/04	ATL SOP 00017	SM 24 4500-NO2- B m
Nitrogen - Nitrate (as N)	5	N/A	2024/04/05	ATL SOP 00018	ASTM D3867-16
pH (2)	5	N/A	2024/04/03	ATL SOP 00003	SM 24 4500-H+ B m
Phosphorus - ortho	5	N/A	2024/04/04	ATL SOP 00021	SM 24 4500-P E m
Sat. pH and Langelier Index (@ 20C)	5	N/A	2024/04/05	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	5	N/A	2024/04/05	ATL SOP 00049	Auto Calc.
Reactive Silica	5	N/A	2024/04/03	ATL SOP 00022	EPA 366.0 m
Sulphate	5	N/A	2024/04/03	ATL SOP 00023	ASTM D516-16 m
Total Dissolved Solids (TDS calc)	5	N/A	2024/04/05	N/A	Auto Calc.
Organic carbon - Total (TOC) (3)	2	N/A	2024/04/02	ATL SOP 00203	SM 24 5310B m
Organic carbon - Total (TOC) (3)	3	N/A	2024/04/03	ATL SOP 00203	SM 24 5310B m
Turbidity	5	N/A	2024/04/03	ATL SOP 00011	EPA 180.1 R2 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

Site Location: SHAW-PROPOSED SAND PIT

Your C.O.C. #: C#981420-01-01

Attention: Glen Merkley

GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2

Report Date: 2024/04/05

Report #: R8094501 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C492645

Received: 2024/03/28, 09:32

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Sample filtered in laboratory prior to analysis for dissolved metals.
- (2) The APHA Standard Method requires pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.
- (3) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to:

Marie Muise, Key Account Specialist Email: Marie.MUISE@bureauveritas.com Phone# (902)420-0203 Ext:253

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Suzanne Rogers, General Manager responsible for Nova Scotia Environmental laboratory operations.

Client Project #: 12584960

Site Location: SHAW-PROPOSED SAND PIT

Your P.O. #: 735-009799 Sampler Initials: JV

RESULTS OF ANALYSES OF GROUND WATER

Bureau Veritas ID		YTH079				YTH080			
Compline Date		2024/03/21				2024/03/21			
Sampling Date		12:15				13:00			
COC Number		C#981420-01-01				C#981420-01-01			
	UNITS	MW-01	RDL	MDL	QC Batch	MW-02	RDL	MDL	QC Batch
Calculated Parameters								-	
Anion Sum	me/L	0.420	N/A	N/A	9302211	0.830	N/A	N/A	9302211
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	14	1.0	0.20	9302207	28	1.0	0.20	9302207
Calculated TDS	mg/L	28	1.0	0.20	9302216	49	1.0	0.20	9302216
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	0.20	9302207	<1.0	1.0	0.20	9302207
Cation Sum	me/L	0.410	N/A	N/A	9302211	0.670	N/A	N/A	9302211
Hardness (CaCO3)	mg/L	11	1.0	1.0	9302208	23	1.0	1.0	9302208
Ion Balance (% Difference)	%	1.20	N/A	N/A	9302209	10.7	N/A	N/A	9302209
Langelier Index (@ 20C)	N/A	-3.03			9302214	-2.09			9302214
Langelier Index (@ 4C)	N/A	-3.28			9302215	-2.34			9302215
Nitrate (N)	mg/L	<0.050	0.050	N/A	9302212	0.079	0.050	N/A	9302212
Saturation pH (@ 20C)	N/A	9.67			9302214	9.01			9302214
Saturation pH (@ 4C)	N/A	9.93			9302215	9.26			9302215
Inorganics									
Total Alkalinity (Total as CaCO3)	mg/L	14	2.0	N/A	9310772	28	2.0	N/A	9310772
Dissolved Chloride (Cl-)	mg/L	3.8	1.0	N/A	9310873	6.4	1.0	N/A	9310873
Colour	TCU	5.2	5.0	N/A	9310989	<5.0	5.0	N/A	9310989
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	N/A	9310991	0.079	0.050	N/A	9310991
Nitrite (N)	mg/L	<0.010	0.010	N/A	9310992	<0.010	0.010	N/A	9310992
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	N/A	9313630	<0.050	0.050	N/A	9313630
Total Organic Carbon (C)	mg/L	1.5	0.50	N/A	9306874	2.8	0.50	N/A	9311021
Orthophosphate (P)	mg/L	<0.010	0.010	N/A	9310990	0.019	0.010	N/A	9310990
рН	рН	6.64			9310775	6.92			9310775
Reactive Silica (SiO2)	mg/L	5.2	0.50	N/A	9310988	7.3	0.50	N/A	9310988
Dissolved Sulphate (SO4)	mg/L	2.1	2.0	N/A	9310987	3.8	2.0	N/A	9310987
Turbidity	NTU	16	0.10	0.10	9310876	550	1.0	1.0	9310889
Conductivity	uS/cm	43	1.0	N/A	9310776	93	1.0	N/A	9310776
RDL = Reportable Detection Limit									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: 12584960

Site Location: SHAW-PROPOSED SAND PIT

Your P.O. #: 735-009799 Sampler Initials: JV

RESULTS OF ANALYSES OF GROUND WATER

Bureau Veritas ID		YTH081		YTH082			YTH083			
Sampling Date		2024/03/27		2024/03/27			2024/03/21			
		15:40		16:16			, ,			
COC Number		C#981420-01-01		C#981420-01-01			C#981420-01-01			
	UNITS	MW-03	RDL	MW-04	RDL	QC Batch	DUP-A	RDL	MDL	QC Batch
Calculated Parameters										
Anion Sum	me/L	1.46	N/A	2.65	N/A	9302211	0.890	N/A	N/A	9302211
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	37	1.0	110	1.0	9302207	28	1.0	0.20	9302207
Calculated TDS	mg/L	96	1.0	150	1.0	9302216	51	1.0	0.20	9302216
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	<1.0	1.0	9302207	<1.0	1.0	0.20	9302207
Cation Sum	me/L	1.56	N/A	2.83	N/A	9302211	0.680	N/A	N/A	9302211
Hardness (CaCO3)	mg/L	41	1.0	80	1.0	9302208	24	1.0	1.0	9302208
Ion Balance (% Difference)	%	3.31	N/A	3.28	N/A	9302209	13.4	N/A	N/A	9302209
Langelier Index (@ 20C)	N/A	-1.31		-0.195		9302214	-2.04			9302214
Langelier Index (@ 4C)	N/A	-1.56		-0.446		9302215	-2.30			9302215
Nitrate (N)	mg/L	0.96	0.050	0.42	0.050	9302212	0.081	0.050	N/A	9302212
Saturation pH (@ 20C)	N/A	8.66		7.94		9302214	9.01			9302214
Saturation pH (@ 4C)	N/A	8.91		8.19		9302215	9.26			9302215
Inorganics										
Total Alkalinity (Total as CaCO3)	mg/L	37	2.0	110	2.0	9310785	28	2.0	N/A	9310767
Dissolved Chloride (Cl-)	mg/L	10	1.0	9.6	1.0	9310873	8.9	1.0	N/A	9310873
Colour	TCU	47	5.0	17	5.0	9310989	6.0	5.0	N/A	9310989
Nitrate + Nitrite (N)	mg/L	0.96	0.050	0.42	0.050	9310991	0.081	0.050	N/A	9310991
Nitrite (N)	mg/L	<0.010	0.010	<0.010	0.010	9310992	<0.010	0.010	N/A	9310992
Nitrogen (Ammonia Nitrogen)	mg/L	1.7	0.050	2.9	0.25	9313630	<0.050	0.050	N/A	9313632
Total Organic Carbon (C)	mg/L	16	0.50	110	1.5	9311021	2.6	0.50	N/A	9306874
Orthophosphate (P)	mg/L	0.011	0.010	<0.010	0.010	9310990	0.019	0.010	N/A	9310990
рН	рН	7.35		7.75		9310783	6.97			9310768
Reactive Silica (SiO2)	mg/L	9.6	0.50	3.6	0.50	9310988	7.2	0.50	N/A	9310988
Dissolved Sulphate (SO4)	mg/L	17	2.0	9.6	2.0	9310987	4.0	2.0	N/A	9310987
Turbidity	NTU	410	1.0	130	1.0	9310889	560	1.0	1.0	9310876
Conductivity	uS/cm	150	1.0	260	1.0	9310784	93	1.0	N/A	9310762

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: 12584960

Site Location: SHAW-PROPOSED SAND PIT

Your P.O. #: 735-009799 Sampler Initials: JV

RESULTS OF ANALYSES OF GROUND WATER

Bureau Veritas ID		YTH083			
Sampling Date		2024/03/21			
COC Number		C#981420-01-01			
	UNITS	DUP-A Lab-Dup	RDL	MDL	QC Batch
Inorganics					
Total Alkalinity (Total as CaCO3)	mg/L	27	2.0	N/A	9310767
рН	На	6.79			9310768
Pri :					
Conductivity	uS/cm	92	1.0	N/A	9310762

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 12584960

Site Location: SHAW-PROPOSED SAND PIT

Your P.O. #: 735-009799 Sampler Initials: JV

ELEMENTS BY ICP/MS (GROUND WATER)

Bureau Veritas ID		YTH079	YTH080		YTH081			
Sampling Date		2024/03/21	2024/03/21		2024/03/27			
Janipinig Date		12:15	13:00		15:40			
COC Number		C#981420-01-01	C#981420-01-01		C#981420-01-01			
	UNITS	MW-01	MW-02	QC Batch	MW-03	RDL	MDL	QC Batch
Metals								
Dissolved Aluminum (AI)	ug/L	20	6.3	9308406	330	5.0	N/A	9313684
Dissolved Antimony (Sb)	ug/L	<1.0	<1.0	9308406	<1.0	1.0	N/A	9313684
Dissolved Arsenic (As)	ug/L	<1.0	<1.0	9308406	<1.0	1.0	N/A	9313684
Dissolved Barium (Ba)	ug/L	11	20	9308406	1300	1.0	N/A	9313684
Dissolved Beryllium (Be)	ug/L	<0.10	<0.10	9308406	<0.10	0.10	N/A	9313684
Dissolved Bismuth (Bi)	ug/L	<2.0	<2.0	9308406	<2.0	2.0	N/A	9313684
Dissolved Boron (B)	ug/L	<50	<50	9308406	130	50	N/A	9313684
Dissolved Cadmium (Cd)	ug/L	<0.010	0.023	9308406	0.049	0.010	N/A	9313684
Dissolved Calcium (Ca)	ug/L	3000	7100	9308406	13000	100	N/A	9313684
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	9308406	<1.0	1.0	N/A	9313684
Dissolved Cobalt (Co)	ug/L	5.7	1.6	9308406	1.3	0.40	N/A	9313684
Dissolved Copper (Cu)	ug/L	1.7	7.0	9308406	25	0.50	N/A	9313684
Dissolved Iron (Fe)	ug/L	220	<50	9308406	410	50	N/A	9313684
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	9308406	<0.50	0.50	N/A	9313684
Dissolved Magnesium (Mg)	ug/L	780	1300	9308406	2100	100	N/A	9313684
Dissolved Manganese (Mn)	ug/L	95	97	9308406	170	2.0	N/A	9313684
Dissolved Molybdenum (Mo)	ug/L	<2.0	<2.0	9308406	<2.0	2.0	N/A	9313684
Dissolved Nickel (Ni)	ug/L	<2.0	2.4	9308406	2.6	2.0	N/A	9313684
Dissolved Phosphorus (P)	ug/L	<100	<100	9308406	<100	100	N/A	9313684
Dissolved Potassium (K)	ug/L	350	1100	9308406	3000	100	N/A	9313684
Dissolved Selenium (Se)	ug/L	<0.50	<0.50	9308406	<0.50	0.50	N/A	9313684
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	9308406	<0.10	0.10	N/A	9313684
Dissolved Sodium (Na)	ug/L	4000	4100	9308406	12000	100	N/A	9313684
Dissolved Strontium (Sr)	ug/L	22	21	9308406	54	2.0	N/A	9313684
Dissolved Thallium (TI)	ug/L	<0.10	<0.10	9308406	<0.10	0.10	N/A	9313684
Dissolved Tin (Sn)	ug/L	<2.0	<2.0	9308406	<2.0	2.0	N/A	9313684
Dissolved Titanium (Ti)	ug/L	<2.0	<2.0	9308406	8.7	2.0	N/A	9313684
Dissolved Uranium (U)	ug/L	0.14	<0.10	9308406	0.19	0.10	N/A	9313684
Dissolved Vanadium (V)	ug/L	<2.0	<2.0	9308406	<2.0	2.0	N/A	9313684
Dissolved Zinc (Zn)	ug/L	5.2	8.3	9308406	43	5.0	N/A	9313684
PDL - Papartable Detection Lie	mit							

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: 12584960

Site Location: SHAW-PROPOSED SAND PIT

Your P.O. #: 735-009799 Sampler Initials: JV

ELEMENTS BY ICP/MS (GROUND WATER)

Bureau Veritas ID		YTH082		YTH083			
Sampling Date		2024/03/27 16:16		2024/03/21			
COC Number		C#981420-01-01		C#981420-01-01			
	UNITS	MW-04	RDL	DUP-A	RDL	MDL	QC Batch
Metals							
Dissolved Aluminum (Al)	ug/L	320	5.0	7.8	5.0	N/A	9308406
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	<1.0	1.0	N/A	9308406
Dissolved Arsenic (As)	ug/L	<1.0	1.0	<1.0	1.0	N/A	9308406
Dissolved Barium (Ba)	ug/L	36	1.0	20	1.0	N/A	9308406
Dissolved Beryllium (Be)	ug/L	<0.10	0.10	<0.10	0.10	N/A	9308406
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	<2.0	2.0	N/A	9308406
Dissolved Boron (B)	ug/L	<50	50	<50	50	N/A	9308406
Dissolved Cadmium (Cd)	ug/L	<0.10 (1)	0.10	0.024	0.010	N/A	9308406
Dissolved Calcium (Ca)	ug/L	25000	100	7200	100	N/A	9308406
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	<1.0	1.0	N/A	9308406
Dissolved Cobalt (Co)	ug/L	1.4	0.40	1.7	0.40	N/A	9308406
Dissolved Copper (Cu)	ug/L	5.5	0.50	7.8	0.50	N/A	9308406
Dissolved Iron (Fe)	ug/L	1600	50	<50	50	N/A	9308406
Dissolved Lead (Pb)	ug/L	0.63	0.50	<0.50	0.50	N/A	9308406
Dissolved Magnesium (Mg)	ug/L	4200	100	1300	100	N/A	9308406
Dissolved Manganese (Mn)	ug/L	470	2.0	98	2.0	N/A	9308406
Dissolved Molybdenum (Mo)	ug/L	160	2.0	<2.0	2.0	N/A	9308406
Dissolved Nickel (Ni)	ug/L	17	2.0	2.5	2.0	N/A	9308406
Dissolved Phosphorus (P)	ug/L	<100	100	<100	100	N/A	9308406
Dissolved Potassium (K)	ug/L	7800	100	1100	100	N/A	9308406
Dissolved Selenium (Se)	ug/L	<0.50	0.50	<0.50	0.50	N/A	9308406
Dissolved Silver (Ag)	ug/L	<0.10	0.10	<0.10	0.10	N/A	9308406
Dissolved Sodium (Na)	ug/L	18000	100	4200	100	N/A	9308406
Dissolved Strontium (Sr)	ug/L	73	2.0	22	2.0	N/A	9308406
Dissolved Thallium (TI)	ug/L	<0.10	0.10	<0.10	0.10	N/A	9308406
Dissolved Tin (Sn)	ug/L	<2.0	2.0	<2.0	2.0	N/A	9308406
Dissolved Titanium (Ti)	ug/L	4.2	2.0	<2.0	2.0	N/A	9308406
Dissolved Uranium (U)	ug/L	<0.10	0.10	<0.10	0.10	N/A	9308406
Dissolved Vanadium (V)	ug/L	<2.0	2.0	<2.0	2.0	N/A	9308406
Dissolved Zinc (Zn)	ug/L	17	5.0	7.3	5.0	N/A	9308406
RDL = Reportable Detection Li	mit						

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

Client Project #: 12584960

Site Location: SHAW-PROPOSED SAND PIT

Your P.O. #: 735-009799 Sampler Initials: JV

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	2.0°C
r deliage ±	2.0 0

Sample YTH080 [MW-02] : ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent. RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample YTH081 [MW-03] : ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent.

Sample YTH083 [DUP-A] : ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent. Ion balance acceptable. Low ionic strength sample.

Results relate only to the items tested.

Report Date: 2024/04/05

GHD Limited

Client Project #: 12584960

Site Location: SHAW-PROPOSED SAND PIT

Your P.O. #: 735-009799 Sampler Initials: JV

QUALITY ASSURANCE REPORT

			QOALITI ASSORA					
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9306874	SSI	Matrix Spike	Total Organic Carbon (C)	2024/04/02	value	97	%	85 - 115
9306874	SSI	Spiked Blank	Total Organic Carbon (C)	2024/04/02		105	%	80 - 120
9306874	SSI	Method Blank	Total Organic Carbon (C)	2024/04/02	<0.50	103	mg/L	00 120
9306874	SSI	RPD	Total Organic Carbon (C)	2024/04/02	0.56		// // // // // // // // // // // // //	15
9308406	MOA	Matrix Spike	Dissolved Aluminum (Al)	2024/04/03	0.50	NC	%	80 - 120
3300400	IVIOA	Matrix Spike	Dissolved Antimony (Sb)	2024/04/03		105	%	80 - 120
			Dissolved Artimony (35)	2024/04/03		101	%	80 - 120
			Dissolved Barium (Ba)	2024/04/03		99	%	80 - 120
			Dissolved Beryllium (Be)	2024/04/03		98	%	80 - 120
			Dissolved Bismuth (Bi)	2024/04/03		97	%	80 - 120
			Dissolved Boron (B)	2024/04/03		95	%	80 - 120
			Dissolved Boron (B) Dissolved Cadmium (Cd)	2024/04/03		96	%	80 - 120
			Dissolved Calcium (Ca)	2024/04/03		98	%	80 - 120
			Dissolved Carciain (Ca) Dissolved Chromium (Cr)	2024/04/03		99	%	80 - 120
			Dissolved Cobalt (Co)	2024/04/03		98	%	80 - 120
			Dissolved Copper (Cu)	2024/04/03		96	%	80 - 120
			Dissolved Copper (Cu) Dissolved Iron (Fe)	2024/04/03		101	%	80 - 120
			Dissolved from (Pe) Dissolved Lead (Pb)	2024/04/03		99	%	80 - 120 80 - 120
			Dissolved Lead (FB) Dissolved Magnesium (Mg)	2024/04/03		104	%	80 - 120
			Dissolved Magnese (Mn)	2024/04/03		NC	%	80 - 120
			Dissolved Maligariese (Mili) Dissolved Molybdenum (Mo)	2024/04/03		NC	%	80 - 120 80 - 120
			Dissolved Molybderidin (Mo) Dissolved Nickel (Ni)	2024/04/03		99	%	80 - 120 80 - 120
			Dissolved Nicker (NI) Dissolved Phosphorus (P)	2024/04/03		101	%	80 - 120 80 - 120
			Dissolved Priosphorus (P) Dissolved Potassium (K)	2024/04/03		101	%	80 - 120 80 - 120
			• • •	• •		98	%	
			Dissolved Selenium (Se) Dissolved Silver (Ag)	2024/04/03 2024/04/03		96	% %	80 - 120 80 - 120
			Dissolved Silver (Ag) Dissolved Sodium (Na)	2024/04/03		NC	%	80 - 120 80 - 120
			` '	• •				
			Dissolved Strontium (Sr)	2024/04/03		102 99	%	80 - 120
			Dissolved Thallium (TI)	2024/04/03			%	80 - 120
			Dissolved Titanium (Ti)	2024/04/03		102	%	80 - 120
			Dissolved Titanium (Ti)	2024/04/03		102	%	80 - 120
			Dissolved Uranium (U) Dissolved Vanadium (V)	2024/04/03		106	%	80 - 120
			, ,	2024/04/03		100	%	80 - 120
0200406	N40A	Cailead Blank	Dissolved Zinc (Zn)	2024/04/03		102	%	80 - 120
9308406	IVIOA	Spiked Blank	Dissolved Aluminum (Al)	2024/04/02 2024/04/02		107 96	% %	80 - 120
			Dissolved Arcania (As)	• •		102	%	80 - 120
			Dissolved Arsenic (As) Dissolved Barium (Ba)	2024/04/02		102		80 - 120
			Dissolved Bartum (Ba) Dissolved Beryllium (Be)	2024/04/02 2024/04/02			%	80 - 120 80 - 120
						100 94	%	80 - 120
			Dissolved Bismuth (Bi)	2024/04/02			%	80 - 120
			Dissolved Boron (B)	2024/04/02		89 106	%	80 - 120
			Dissolved Calaium (Cd)	2024/04/02		106	%	80 - 120
			Dissolved Calcium (Ca)	2024/04/02		104	%	80 - 120
			Dissolved Chalt (Co)	2024/04/02 2024/04/02		101	%	80 - 120
			Dissolved Cobalt (Co)	• •		101	%	80 - 120
			Dissolved Copper (Cu)	2024/04/02		101 107	%	80 - 120 80 - 120
			Dissolved Iron (Fe)	2024/04/02		107	%	80 - 120
			Dissolved Lead (Pb)	2024/04/02		104	%	80 - 120
			Dissolved Magnesium (Mg)	2024/04/02		109	%	80 - 120
			Dissolved Manganese (Mn)	2024/04/02		105	%	80 - 120
			Dissolved Molybdenum (Mo)	2024/04/02		98	%	80 - 120
			Dissolved Nickel (Ni)	2024/04/02		103	%	80 - 120

Client Project #: 12584960

Site Location: SHAW-PROPOSED SAND PIT

Your P.O. #: 735-009799 Sampler Initials: JV

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Phosphorus (P)	2024/04/02		108	%	80 - 120
			Dissolved Potassium (K)	2024/04/02		109	%	80 - 120
			Dissolved Selenium (Se)	2024/04/02		100	%	80 - 120
			Dissolved Silver (Ag)	2024/04/02		99	%	80 - 120
			Dissolved Sodium (Na)	2024/04/02		104	%	80 - 120
			Dissolved Strontium (Sr)	2024/04/02		105	%	80 - 120
			Dissolved Thallium (TI)	2024/04/02		96	%	80 - 120
			Dissolved Tin (Sn)	2024/04/02		95	%	80 - 120
			Dissolved Titanium (Ti)	2024/04/02		103	%	80 - 120
			Dissolved Uranium (U)	2024/04/02		109	%	80 - 120
			Dissolved Vanadium (V)	2024/04/02		103	%	80 - 120
			Dissolved Zinc (Zn)	2024/04/02		99	%	80 - 120
9308406	MOA	Method Blank	Dissolved Aluminum (Al)	2024/04/02	<5.0		ug/L	
			Dissolved Antimony (Sb)	2024/04/02	<1.0		ug/L	
			Dissolved Arsenic (As)	2024/04/02	<1.0		ug/L	
			Dissolved Barium (Ba)	2024/04/02	<1.0		ug/L	
			Dissolved Beryllium (Be)	2024/04/02	<0.10		ug/L	
			Dissolved Bismuth (Bi)	2024/04/02	<2.0		ug/L	
			Dissolved Boron (B)	2024/04/02	<50		ug/L	
			Dissolved Cadmium (Cd)	2024/04/02	<0.010		ug/L	
			Dissolved Calcium (Ca)	2024/04/02	<100		ug/L	
			Dissolved Chromium (Cr)	2024/04/02	<1.0		ug/L	
			Dissolved Cobalt (Co)	2024/04/02	<0.40		ug/L	
			Dissolved Copper (Cu)	2024/04/02	<0.50		ug/L	
			Dissolved Iron (Fe)	2024/04/02	<50		ug/L	
			Dissolved Lead (Pb)	2024/04/02	<0.50		ug/L	
			Dissolved Magnesium (Mg)	2024/04/02	<100		ug/L	
			Dissolved Manganese (Mn)	2024/04/02	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2024/04/02	<2.0		ug/L	
			Dissolved Nickel (Ni)	2024/04/02	<2.0		ug/L	
			Dissolved Phosphorus (P)	2024/04/02	<100		ug/L	
			Dissolved Potassium (K)	2024/04/02	<100		ug/L	
			Dissolved Selenium (Se)	2024/04/02	<0.50		ug/L	
			Dissolved Silver (Ag)	2024/04/02	<0.10		ug/L	
			Dissolved Sodium (Na)	2024/04/02	<100		ug/L	
			Dissolved Strontium (Sr)	2024/04/02	<2.0		ug/L	
			Dissolved Thallium (TI)	2024/04/02	<0.10		ug/L	
			Dissolved Tin (Sn)	2024/04/02	<2.0		ug/L	
			Dissolved Titanium (Ti)	2024/04/02	<2.0		ug/L	
			Dissolved Uranium (U)	2024/04/02	<0.10		ug/L	
			Dissolved Vanadium (V)	2024/04/02	<2.0		ug/L	
			Dissolved Zinc (Zn)	2024/04/02	<5.0		ug/L	
9308406	MOA	RPD	Dissolved Aluminum (AI)	2024/04/03	2.2		%	20
			Dissolved Antimony (Sb)	2024/04/03	NC		%	20
			Dissolved Arsenic (As)	2024/04/03	NC		%	20
			Dissolved Barium (Ba)	2024/04/03	0.26		%	20
			Dissolved Beryllium (Be)	2024/04/03	NC		%	20
			Dissolved Bismuth (Bi)	2024/04/03	NC		%	20
			Dissolved Boron (B)	2024/04/03	0.35		%	20
			Dissolved Cadmium (Cd)	2024/04/03	NC		%	20
			Dissolved Calcium (Ca)	2024/04/03	1.8		%	20
			Dissolved Chromium (Cr)	2024/04/03	NC		%	20

Client Project #: 12584960

Site Location: SHAW-PROPOSED SAND PIT

Your P.O. #: 735-009799 Sampler Initials: JV

			•					
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Cobalt (Co)	2024/04/03	NC		%	20
			Dissolved Copper (Cu)	2024/04/03	0.30		%	20
			Dissolved Iron (Fe)	2024/04/03	NC		%	20
			Dissolved Lead (Pb)	2024/04/03	NC		%	20
			Dissolved Magnesium (Mg)	2024/04/03	0.14		%	20
			Dissolved Manganese (Mn)	2024/04/03	0.16		%	20
			Dissolved Molybdenum (Mo)	2024/04/03	0.15		%	20
			Dissolved Nickel (Ni)	2024/04/03	5.1		%	20
			Dissolved Phosphorus (P)	2024/04/03	NC		%	20
			Dissolved Potassium (K)	2024/04/03	0.32		%	20
			Dissolved Selenium (Se)	2024/04/03	NC		%	20
			Dissolved Silver (Ag)	2024/04/03	NC		%	20
			Dissolved Sodium (Na)	2024/04/03	0.29		%	20
			Dissolved Strontium (Sr)	2024/04/03	1.2		%	20
			Dissolved Thallium (TI)	2024/04/03	1.8		%	20
			Dissolved Tin (Sn)	2024/04/03	NC		%	20
			Dissolved Titr (511) Dissolved Titanium (Ti)	2024/04/03	NC		%	20
			Dissolved Tranium (T) Dissolved Uranium (U)	2024/04/03	NC		%	20
			Dissolved Vanadium (V)	2024/04/03	3.8		%	20
				2024/04/03			% %	20
0240762	1.157	Spiked Blank	Dissolved Zinc (Zn)		7.2	00		
9310762	LJV	•	Conductivity	2024/04/03	-1.0	99	% 	80 - 120
9310762	LJV	Method Blank	Conductivity	2024/04/03	<1.0		uS/cm	40
9310762	LJV	RPD [YTH083-01]	Conductivity	2024/04/03	0.56	20	%	10
9310767	LJV	Spiked Blank	Total Alkalinity (Total as CaCO3)	2024/04/03		98	%	80 - 120
9310767	LJV	Method Blank	Total Alkalinity (Total as CaCO3)	2024/04/03	<2.0		mg/L	
9310767	LJV	RPD [YTH083-01]	Total Alkalinity (Total as CaCO3)	2024/04/03	1.4		%	20
9310768	IJV	Spiked Blank	рН	2024/04/03		101	%	97 - 103
9310768	IJV	RPD [YTH083-01]	рН	2024/04/03	2.5		%	N/A
9310772	IJV	Spiked Blank	Total Alkalinity (Total as CaCO3)	2024/04/03		101	%	80 - 120
9310772	IJV	Method Blank	Total Alkalinity (Total as CaCO3)	2024/04/03	<2.0		mg/L	
9310772	IJV	RPD	Total Alkalinity (Total as CaCO3)	2024/04/03	NC		%	20
9310775	LJV	Spiked Blank	рН	2024/04/03		101	%	97 - 103
9310775	IJV	RPD	рН	2024/04/03	2.4		%	N/A
9310776	LJV	Spiked Blank	Conductivity	2024/04/03		99	%	80 - 120
9310776	LJV	Method Blank	Conductivity	2024/04/03	<1.0		uS/cm	
9310776	LJV	RPD	Conductivity	2024/04/03	NC		%	10
9310783	LJV	Spiked Blank	рН	2024/04/03		101	%	97 - 103
9310783	LJV	RPD	рН	2024/04/03	0.47		%	N/A
9310784	LJV	Spiked Blank	Conductivity	2024/04/03		96	%	80 - 120
9310784	LJV	Method Blank	Conductivity	2024/04/03	<1.0		uS/cm	
9310784	LJV	RPD	Conductivity	2024/04/03	1.2		%	10
9310785	LJV	Spiked Blank	Total Alkalinity (Total as CaCO3)	2024/04/03		99	%	80 - 120
9310785	LJV	Method Blank	Total Alkalinity (Total as CaCO3)	2024/04/03	<2.0		mg/L	
9310785	LJV	RPD	Total Alkalinity (Total as CaCO3)	2024/04/03	0.33		%	20
9310873	MCN	Matrix Spike	Dissolved Chloride (Cl-)	2024/04/03		93	%	80 - 120
9310873	MCN	Spiked Blank	Dissolved Chloride (CI-)	2024/04/03		93	%	80 - 120
9310873	MCN	Method Blank	Dissolved Chloride (CI-)	2024/04/03	<1.0	33	mg/L	00 120
9310873	MCN	RPD	Dissolved Chloride (CI-)	2024/04/03	0.71		%	20
9310876	LJV	QC Standard	Turbidity	2024/04/03	0.71	118	%	80 - 120
9310876	LJV	Spiked Blank	Turbidity	2024/04/03		107	% %	80 - 120
9310876	LJV	Method Blank	Turbidity	2024/04/03	<0.10	107	™ NTU	00 - 120
			•					20
9310876	IJV	RPD	Turbidity	2024/04/03	NC		%	20

Report Date: 2024/04/05

GHD Limited

Client Project #: 12584960

Site Location: SHAW-PROPOSED SAND PIT

Your P.O. #: 735-009799 Sampler Initials: JV

QA/QC	114	00.7	D. m. m. et a	Data Analysis d	Malara	D	LINUTC	001::
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9310889	LJV	QC Standard	Turbidity	2024/04/03		119	%	80 - 120
9310889	LJV	Spiked Blank	Turbidity	2024/04/03	.0.10	107	%	80 - 120
9310889	LJV	Method Blank	Turbidity	2024/04/03	<0.10		NTU	20
9310889	LJV	RPD	Turbidity	2024/04/03	2.1	00	%	20
9310987	MCN	Matrix Spike	Dissolved Sulphate (SO4)	2024/04/03		99	%	80 - 120
9310987	MCN	Spiked Blank	Dissolved Sulphate (SO4)	2024/04/03		96	%	80 - 120
9310987	MCN	Method Blank	Dissolved Sulphate (SO4)	2024/04/03	<2.0		mg/L	
9310987	MCN	RPD	Dissolved Sulphate (SO4)	2024/04/03	8.8		%	20
9310988	MCN	•	Reactive Silica (SiO2)	2024/04/03		86	%	80 - 120
9310988	MCN	Spiked Blank	Reactive Silica (SiO2)	2024/04/03		91	%	80 - 120
9310988	MCN	Method Blank	Reactive Silica (SiO2)	2024/04/03	<0.50		mg/L	
9310988	MCN	RPD	Reactive Silica (SiO2)	2024/04/03	1.3		%	20
9310989	MCN	Spiked Blank	Colour	2024/04/04		96	%	80 - 120
9310989	MCN	Method Blank	Colour	2024/04/04	<5.0		TCU	
9310989	MCN	RPD	Colour	2024/04/04	13		%	20
9310990	EMT	Matrix Spike	Orthophosphate (P)	2024/04/04		78 (1)	%	80 - 120
9310990	EMT	Spiked Blank	Orthophosphate (P)	2024/04/04		85	%	80 - 120
9310990	EMT	Method Blank	Orthophosphate (P)	2024/04/04	<0.010		mg/L	
9310990	EMT	RPD	Orthophosphate (P)	2024/04/04	NC		%	20
9310991	EMT	Matrix Spike	Nitrate + Nitrite (N)	2024/04/04		96	%	80 - 120
9310991	EMT	Spiked Blank	Nitrate + Nitrite (N)	2024/04/04		96	%	80 - 120
9310991	EMT	Method Blank	Nitrate + Nitrite (N)	2024/04/04	<0.050		mg/L	
9310991	EMT	RPD	Nitrate + Nitrite (N)	2024/04/04	3.2		%	20
9310992	EMT	Matrix Spike	Nitrite (N)	2024/04/04		83	%	80 - 120
9310992	EMT	Spiked Blank	Nitrite (N)	2024/04/04		100	%	80 - 120
9310992	EMT	Method Blank	Nitrite (N)	2024/04/04	<0.010		mg/L	
9310992	EMT	RPD	Nitrite (N)	2024/04/04	NC		%	20
9311021	SSI	Matrix Spike	Total Organic Carbon (C)	2024/04/03		98	%	85 - 115
9311021	SSI	Spiked Blank	Total Organic Carbon (C)	2024/04/03		103	%	80 - 120
9311021	SSI	Method Blank	Total Organic Carbon (C)	2024/04/03	<0.50		mg/L	
9311021	SSI	RPD	Total Organic Carbon (C)	2024/04/03	1.4		%	15
9313630	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2024/04/04		NC	%	80 - 120
9313630	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2024/04/04		107	%	80 - 120
9313630	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2024/04/04	< 0.050		mg/L	
9313630	MCN	RPD	Nitrogen (Ammonia Nitrogen)	2024/04/04	0.69		%	20
9313632	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2024/04/04		NC	%	80 - 120
9313632	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2024/04/04		106	%	80 - 120
9313632	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2024/04/04	<0.050		mg/L	
9313632	MCN		Nitrogen (Ammonia Nitrogen)	2024/04/04	2.8		%	20
9313684	MOA	Matrix Spike	Dissolved Aluminum (AI)	2024/04/04		108	%	80 - 120
		•	Dissolved Antimony (Sb)	2024/04/04		99	%	80 - 120
			Dissolved Arsenic (As)	2024/04/04		105	%	80 - 120
			Dissolved Barium (Ba)	2024/04/04		102	%	80 - 120
			Dissolved Beryllium (Be)	2024/04/04		107	%	80 - 120
			Dissolved Bismuth (Bi)	2024/04/04		89	%	80 - 120
			Dissolved Boron (B)	2024/04/04		96	%	80 - 120
			Dissolved Cadmium (Cd)	2024/04/04		107	%	80 - 120
			Dissolved Calcium (Ca)	2024/04/04		108	%	80 - 120
			Dissolved Chromium (Cr)	2024/04/04		104	%	80 - 120
			Dissolved Cobalt (Co)	2024/04/04		103	%	80 - 120
			Dissolved Copper (Cu)	2024/04/04		103	% %	80 - 120

Client Project #: 12584960

Site Location: SHAW-PROPOSED SAND PIT

Your P.O. #: 735-009799 Sampler Initials: JV

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		•	Dissolved Lead (Pb)	2024/04/04		105	%	80 - 120
			Dissolved Magnesium (Mg)	2024/04/04		112	%	80 - 120
			Dissolved Manganese (Mn)	2024/04/04		NC	%	80 - 120
			Dissolved Molybdenum (Mo)	2024/04/04		97	%	80 - 120
			Dissolved Nickel (Ni)	2024/04/04		104	%	80 - 120
			Dissolved Phosphorus (P)	2024/04/04		113	%	80 - 120
			Dissolved Potassium (K)	2024/04/04		111	%	80 - 120
			Dissolved Selenium (Se)	2024/04/04		105	%	80 - 120
			Dissolved Silver (Ag)	2024/04/04		103	%	80 - 120
			Dissolved Sodium (Na)	2024/04/04		106	%	80 - 120
			Dissolved Strontium (Sr)	2024/04/04		104	%	80 - 120
			Dissolved Thallium (TI)	2024/04/04		97	%	80 - 120
			Dissolved Tin (Sn)	2024/04/04		97	%	80 - 120
			Dissolved Titanium (Ti)	2024/04/04		106	%	80 - 120
			Dissolved Uranium (U)	2024/04/04		108	%	80 - 120
			Dissolved Vanadium (V)	2024/04/04		105	%	80 - 120
			Dissolved Zinc (Zn)	2024/04/04		103	%	80 - 120
9313684	MOA	Spiked Blank	Dissolved Aluminum (Al)	2024/04/04		100	%	80 - 120
			Dissolved Antimony (Sb)	2024/04/04		99	%	80 - 120
			Dissolved Arsenic (As)	2024/04/04		99	%	80 - 120
			Dissolved Barium (Ba)	2024/04/04		97	%	80 - 120
			Dissolved Beryllium (Be)	2024/04/04		101	%	80 - 120
			Dissolved Bismuth (Bi)	2024/04/04		95	%	80 - 120
			Dissolved Boron (B)	2024/04/04		98	%	80 - 120
			Dissolved Cadmium (Cd)	2024/04/04		101	%	80 - 120
			Dissolved Calcium (Ca)	2024/04/04		100	%	80 - 120
			Dissolved Chromium (Cr)	2024/04/04		99	%	80 - 120
			Dissolved Cobalt (Co)	2024/04/04		99	%	80 - 120
			Dissolved Copper (Cu)	2024/04/04		99	%	80 - 120
			Dissolved Iron (Fe)	2024/04/04		102	%	80 - 120
			Dissolved Lead (Pb)	2024/04/04		100	%	80 - 120
			Dissolved Magnesium (Mg)	2024/04/04		105	%	80 - 120
			Dissolved Manganese (Mn)	2024/04/04		101	%	80 - 120
			Dissolved Molybdenum (Mo)	2024/04/04		99	%	80 - 120
			Dissolved Nickel (Ni)	2024/04/04		100	%	80 - 120
			Dissolved Phosphorus (P)	2024/04/04		103	%	80 - 120
			Dissolved Potassium (K)	2024/04/04		103	%	80 - 120
			Dissolved Selenium (Se)	2024/04/04		100	%	80 - 120
			Dissolved Silver (Ag)	2024/04/04		96	%	80 - 120
			Dissolved Sodium (Na)	2024/04/04		100	%	80 - 120
			Dissolved Strontium (Sr)	2024/04/04		101	%	80 - 120
			Dissolved Thallium (TI)	2024/04/04		99	%	80 - 120
			Dissolved Tin (Sn)	2024/04/04		99	%	80 - 120
			Dissolved Titanium (Ti)	2024/04/04		100	%	80 - 120
			Dissolved Uranium (U)	2024/04/04		104	%	80 - 120
			Dissolved Vanadium (V)	2024/04/04		100	%	80 - 120
			Dissolved Zinc (Zn)	2024/04/04		104	%	80 - 120
9313684	MOA	Method Blank	Dissolved Aluminum (AI)	2024/04/04	<5.0		ug/L	
			Dissolved Antimony (Sb)	2024/04/04	<1.0		ug/L	
			Dissolved Arsenic (As)	2024/04/04	<1.0		ug/L	
			Dissolved Barium (Ba)	2024/04/04	<1.0		ug/L	
			Dissolved Beryllium (Be)	2024/04/04	< 0.10		ug/L	

Client Project #: 12584960

Site Location: SHAW-PROPOSED SAND PIT

Your P.O. #: 735-009799 Sampler Initials: JV

QA/QC	la:4	OCTure	Davamakas	Data Analysis	Value	Deserven	LINUTC	OC Limite
Batch	Init	QC Type	Parameter Dissolved Riemuth (Ri)	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Bismuth (Bi)	2024/04/04	<2.0		ug/L	
			Dissolved Boron (B)	2024/04/04	<50		ug/L	
			Dissolved Calaium (Ca)	2024/04/04	<0.010		ug/L	
			Dissolved Calcium (Ca)	2024/04/04	<100		ug/L	
			Dissolved Chromium (Cr)	2024/04/04	<1.0		ug/L	
			Dissolved Cobalt (Co)	2024/04/04	<0.40		ug/L	
			Dissolved trap (Cu)	2024/04/04	<0.50		ug/L	
			Dissolved Iron (Fe)	2024/04/04	<50		ug/L	
			Dissolved Lead (Pb)	2024/04/04	<0.50		ug/L	
			Dissolved Magnesium (Mg)	2024/04/04	<100		ug/L	
			Dissolved Manganese (Mn)	2024/04/04	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2024/04/04	<2.0		ug/L	
			Dissolved Nickel (Ni)	2024/04/04	<2.0		ug/L	
			Dissolved Phosphorus (P)	2024/04/04	<100		ug/L	
			Dissolved Potassium (K)	2024/04/04	<100		ug/L	
			Dissolved Selenium (Se)	2024/04/04	<0.50		ug/L	
			Dissolved Silver (Ag)	2024/04/04	<0.10		ug/L	
			Dissolved Sodium (Na)	2024/04/04	<100		ug/L	
			Dissolved Strontium (Sr)	2024/04/04	<2.0		ug/L	
			Dissolved Thallium (TI)	2024/04/04	<0.10		ug/L	
			Dissolved Tin (Sn)	2024/04/04	<2.0		ug/L	
			Dissolved Titanium (Ti)	2024/04/04	<2.0		ug/L	
			Dissolved Uranium (U)	2024/04/04	<0.10		ug/L	
			Dissolved Vanadium (V)	2024/04/04	<2.0		ug/L	
			Dissolved Zinc (Zn)	2024/04/04	<5.0		ug/L	
313684	MOA	RPD	Dissolved Aluminum (Al)	2024/04/04	1.0		%	20
			Dissolved Antimony (Sb)	2024/04/04	NC		%	20
			Dissolved Arsenic (As)	2024/04/04	0.84		%	20
			Dissolved Barium (Ba)	2024/04/04	4.4		%	20
			Dissolved Beryllium (Be)	2024/04/04	9.0		%	20
			Dissolved Bismuth (Bi)	2024/04/04	NC		%	20
			Dissolved Boron (B)	2024/04/04	NC		%	20
			Dissolved Cadmium (Cd)	2024/04/04	7.3		%	20
			Dissolved Calcium (Ca)	2024/04/04	0.51		%	20
			Dissolved Chromium (Cr)	2024/04/04	NC		%	20
			Dissolved Cobalt (Co)	2024/04/04	2.6		%	20
			Dissolved Copper (Cu)	2024/04/04	2.9		%	20
			Dissolved Iron (Fe)	2024/04/04	1.2		%	20
			Dissolved Lead (Pb)	2024/04/04	NC		%	20
			Dissolved Magnesium (Mg)	2024/04/04	0.90		%	20
			Dissolved Manganese (Mn)	2024/04/04	0.20		%	20
			Dissolved Molybdenum (Mo)	2024/04/04	NC		%	20
			Dissolved Nickel (Ni)	2024/04/04	NC		%	20
			Dissolved Phosphorus (P)	2024/04/04	NC		%	20
			Dissolved Potassium (K)	2024/04/04	1.6		%	20
			Dissolved Selenium (Se)	2024/04/04	NC		%	20
			Dissolved Silver (Ag)	2024/04/04	NC		%	20
			Dissolved Sodium (Na)	2024/04/04	0.92		%	20
			Dissolved Souldin (Na) Dissolved Strontium (Sr)	2024/04/04	2.9		%	20
			Dissolved Strontium (SI)	2024/04/04	NC		% %	20
			Dissolved Thailidif (11) Dissolved Tin (Sn)	2024/04/04	NC		% %	20
			Dissolved Titr (Sil) Dissolved Titanium (Ti)	· ·			% %	
			טואפטועפט דונטווועווו (11)	2024/04/04	NC		70	20

Client Project #: 12584960

Site Location: SHAW-PROPOSED SAND PIT

Your P.O. #: 735-009799 Sampler Initials: JV

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Uranium (U)	2024/04/04	0.58		%	20
			Dissolved Vanadium (V)	2024/04/04	NC		%	20
			Dissolved Zinc (Zn)	2024/04/04	1.6		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Poor spike recovery due to probable sample matrix interference.

Client Project #: 12584960

Site Location: SHAW-PROPOSED SAND PIT

Your P.O. #: 735-009799 Sampler Initials: JV

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Colleen Acker, B.Sc, Scientific Service Specialist

Automated Statchk

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Suzanne Rogers, General Manager responsible for Nova Scotia Environmental laboratory operations.

VERITAS	1	NVOICE TO:			Report In	ormatic	on				Proj	ect Info	rmation			Laboratory U	se Only
npany Name	#16276 GHD L	imited	Compan	Name						Quotation #	C400	91				Bureau Veritas Job #	Bottle Order #:
tact Name	Accounts Payab	le	Contact	Clas Mad	kley					P.O.#	70	Foul	OW 73	5-009	1799		130000000
ress	120 Western Pa		Address							Project #	-	4960			1.0		981420
	Bedford NS B4E	(000) 400	2007	10001 000	1700					Project Name	Sho	w.	Proposed	Sary		Chain Of Custody Record	Project Manager
one	(902) 468-1248	Fax. (902) 468-7 leCDN@ghd.com	1110110	(902) 802	-4790 dey@ghd.c	nm.	Fax,	_	_	Site #	-	5.7	PI)				Marie Muise
Regulatory C		iec Drieging.com	Email	pecial Instructions	ney@gna.c	T	1		ANALV	Sampled By 'SIS REQUESTED (P		ECIEIC)		_		C#981420-01-01 Turnaround Time (TAT)	\ Paguired
Regulatory C	Metties		Y	FILTERED		1			ANALI	DIS REQUESTED (FI	LENGE DE SF	EGIF10)				Please provide advance notice	No. of the last of
** Specify M	atrox: Surface/Ground/Ta	spwater/Sewage/Efflueni/Seawater	7.55	7 10-11-2		erved	ed solved (FieldFilt) in	Total Metals in							(will be app Standard To Please note	tandard) TAT: lied if Rush TAT is not specified); AT = 5-7 Working days for most tests :: Standard TAT for certain losts such a sct your Project Manager for detals.	s BOD and Dioxins/Furans are a
	Potable/Nonpotable/Tis	COOL (< 10°C) FROM TIME OF SAME	PLING UNTIL DELIVERY	TO BUREAU VERITA:	s	Filtered	Piltration Required RCAp-MS Dissolved	Atlantic RCAp-MS Water							Date Requir	fic Rush TAT (if applies to entire sub ed. Fine Comments / Hazards / O	s Required.
Sample	Barcoda Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	Field	At At	₹ ¥ \$		-		-	-	-	Bottles		
		MW-01	2 MARZ	12:15	GV	1	х								4		
		MW-02	21 MAR24	13:00	6W	1	X								4		
		MW-03	27 Mars 25	1 15:40	GW	V	X								4		
		MW-04	27 MARZ		GW	1	x	1					1 1		4	70.4.	
		DUP-A	21 MAR 2:	1 -	GW	1	×						1		4		
		SW-1			_		71-	x				1				BE	DF-2024-03-1390
												1				同意概	
												1					
				1	1		7					+			1		
												+		-			
	QUISHED BY: (Signatur	e/Print) De	ate: (YY/MM/DD)	Time	RECE	VED BY	': (Signatur	n/Print1		Date: (YY/MM/I	OD) T	ime	# jars used an	5	1	Lab Use Only	
	4 -		USSI		A I			-bah		- Santa (1 million	-		notsubmitted	Time Se	estitue.		ustody Soal Intact on Cooler?

Bureau Veritas Canada (2019) Inc.

Site Location: Shaw-Proposed Sandpit Middleton

Your C.O.C. #: C#1007056-01-01

Attention: Glen Merkley

GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2

Report Date: 2024/09/09

Report #: R8311894 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4R0855 Received: 2024/08/30, 09:20

Sample Matrix: Ground Water # Samples Received: 9

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Carbonate, Bicarbonate and Hydroxide	9	N/A	2024/09/06	N/A	SM 24 4500-CO2 D
Alkalinity	9	N/A	2024/09/05	ATL SOP 00142	SM 24 2320 B
Chloride	9	N/A	2024/09/05	ATL SOP 00014	SM 24 4500-Cl- E m
Colour	9	N/A	2024/09/05	ATL SOP 00020	SM 24 2120C m
Conductance - water	9	N/A	2024/09/05	ATL SOP 00004	SM 24 2510B m
Hardness (calculated as CaCO3)	3	N/A	2024/09/04	ATL SOP 00048	Auto Calc
Hardness (calculated as CaCO3)	2	N/A	2024/09/05	ATL SOP 00048	Auto Calc
Hardness (calculated as CaCO3)	4	N/A	2024/09/06	ATL SOP 00048	Auto Calc
Metals Water Diss. MS- Lab Filtered (1)	3	N/A	2024/09/04	ATL SOP 00058	EPA 6020B R2 m
Metals Water Diss. MS- Field Filtered	6	N/A	2024/09/05	ATL SOP 00058	EPA 6020B R2 m
Ion Balance (% Difference)	9	N/A	2024/09/06	N/A	Auto Calc.
Anion and Cation Sum	9	N/A	2024/09/06	N/A	Auto Calc.
Nitrogen Ammonia - water	9	N/A	2024/09/04	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	9	N/A	2024/09/05	ATL SOP 00016	USGS I-2547-11m
Nitrogen - Nitrite	9	N/A	2024/09/05	ATL SOP 00017	SM 24 4500-NO2- B m
Nitrogen - Nitrate (as N)	9	N/A	2024/09/06	ATL SOP 00018	ASTM D3867-16
pH (2)	9	N/A	2024/09/05	ATL SOP 00003	SM 24 4500-H+ B m
Phosphorus - ortho	9	N/A	2024/09/05	ATL SOP 00021	SM 24 4500-P E m
Sat. pH and Langelier Index (@ 20C)	9	N/A	2024/09/06	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	9	N/A	2024/09/06	ATL SOP 00049	Auto Calc.
Reactive Silica	9	N/A	2024/09/05	ATL SOP 00022	EPA 366.0 m
Sulphate	9	N/A	2024/09/05	ATL SOP 00023	ASTM D516-16 m
Total Dissolved Solids (TDS calc)	9	N/A	2024/09/06	N/A	Auto Calc.
Organic carbon - Total (TOC) (3)	9	N/A	2024/09/04	ATL SOP 00203	SM 24 5310B m
Turbidity	2	N/A	2024/09/05	ATL SOP 00011	EPA 180.1 R2 m
Turbidity	7	N/A	2024/09/06	ATL SOP 00011	EPA 180.1 R2 m

Sample Matrix: Surface Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	y Extracted	Analyzed	Laboratory Method	Analytical Method
Carbonate, Bicarbonate and Hydroxide	3	N/A	2024/09/0	6 N/A	SM 24 4500-CO2 D
Alkalinity	3	N/A	2024/09/0	5 ATL SOP 00142	SM 24 2320 B

Site Location: Shaw-Proposed Sandpit Middleton

Your C.O.C. #: C#1007056-01-01

Attention: Glen Merkley

GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2

Report Date: 2024/09/09

Report #: R8311894 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4R0855
Received: 2024/08/30, 09:20
Sample Matrix: Surface Water

Sample Matrix: Surface Water # Samples Received: 3

# Samples Received. 5					
		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride	3	N/A	2024/09/05	ATL SOP 00014	SM 24 4500-Cl- E m
Colour	3	N/A	2024/09/05	ATL SOP 00020	SM 24 2120C m
Conductance - water	3	N/A	2024/09/05	ATL SOP 00004	SM 24 2510B m
Hardness (calculated as CaCO3)	2	N/A	2024/09/05	ATL SOP 00048	Auto Calc
Hardness (calculated as CaCO3)	1	N/A	2024/09/06	ATL SOP 00048	Auto Calc
Metals Water Total MS	2	2024/09/03	2024/09/04	ATL SOP 00058	EPA 6020B R2 m
Metals Water Total MS	1	2024/09/03	2024/09/05	ATL SOP 00058	EPA 6020B R2 m
Ion Balance (% Difference)	3	N/A	2024/09/06	N/A	Auto Calc.
Anion and Cation Sum	3	N/A	2024/09/06	N/A	Auto Calc.
Nitrogen Ammonia - water	3	N/A	2024/09/04	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	3	N/A	2024/09/05	ATL SOP 00016	USGS I-2547-11m
Nitrogen - Nitrite	3	N/A	2024/09/05	ATL SOP 00017	SM 24 4500-NO2- B m
Nitrogen - Nitrate (as N)	3	N/A	2024/09/06	ATL SOP 00018	ASTM D3867-16
pH (2)	3	N/A	2024/09/05	ATL SOP 00003	SM 24 4500-H+ B m
Phosphorus - ortho	3	N/A	2024/09/05	ATL SOP 00021	SM 24 4500-P E m
Sat. pH and Langelier Index (@ 20C)	3	N/A	2024/09/06	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	3	N/A	2024/09/06	ATL SOP 00049	Auto Calc.
Reactive Silica	3	N/A	2024/09/05	ATL SOP 00022	EPA 366.0 m
Sulphate	3	N/A	2024/09/05	ATL SOP 00023	ASTM D516-16 m
Total Dissolved Solids (TDS calc)	3	N/A	2024/09/06	N/A	Auto Calc.
Organic carbon - Total (TOC) (3)	3	N/A	2024/09/04	ATL SOP 00203	SM 24 5310B m
Total Suspended Solids	3	2024/09/04	2024/09/05	ATL SOP 00007	SM 24 2540D m
Turbidity	2	N/A	2024/09/05	ATL SOP 00011	EPA 180.1 R2 m
Turbidity	1	N/A	2024/09/09	ATL SOP 00011	EPA 180.1 R2 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement

Site Location: Shaw-Proposed Sandpit Middleton

Your C.O.C. #: C#1007056-01-01

Attention: Glen Merkley

GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2

Report Date: 2024/09/09

Report #: R8311894 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4R0855

Received: 2024/08/30, 09:20

Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- $\begin{tabular}{ll} \textbf{(1) Sample filtered in laboratory prior to analysis for dissolved metals.} \end{tabular}$
- (2) The APHA Standard Method requires pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.
- (3) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Encryption Key

Bureau Veritas
09 Sep 2024 16:10:35

Please direct all questions regarding this Certificate of Analysis to:

Marie Muise, Key Account Specialist Email: Marie.MUISE@bureauveritas.com Phone# (902)420-0203 Ext:253

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Suzanne Rogers, General Manager responsible for Nova Scotia Environmental laboratory operations.

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

RESULTS OF ANALYSES OF GROUND WATER

Bureau Veritas ID		ABLU47		ABLU48		ABLU49			
Sampling Data		2024/08/29		2024/08/29		2024/08/29			
Sampling Date		15:15		14:53		14:32			
COC Number		C#1007056-01-01		C#1007056-01-01		C#1007056-01-01			
	UNITS	MW1	QC Batch	MW2	QC Batch	MW3	RDL	MDL	QC Batch
Calculated Parameters									
Anion Sum	me/L	1.07	9610149	0.240	9610149	0.440	N/A	N/A	9610149
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	41	9610145	6.7	9610145	12	1.0	0.20	9610145
Calculated TDS	mg/L	72	9610154	23	9610154	33	1.0	0.20	9610154
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	9610145	<1.0	9610145	<1.0	1.0	0.20	9610145
Cation Sum	me/L	1.12	9610149	0.260	9610149	0.440	N/A	N/A	9610149
Hardness (CaCO3)	mg/L	33	9610147	6.6	9610147	12	1.0	1.0	9610147
Ion Balance (% Difference)	%	2.28	9610148	4.00	9610148	0.00	N/A	N/A	9610148
Langelier Index (@ 20C)	N/A	-0.808	9610151	-3.87	9610151	-3.15			9610151
Langelier Index (@ 4C)	N/A	-1.06	9610152	-4.13	9610152	-3.40			9610152
Nitrate (N)	mg/L	0.053	9610029	<0.050	9610029	<0.050	0.050	N/A	9610029
Saturation pH (@ 20C)	N/A	8.66	9610151	10.4	9610151	9.71			9610151
Saturation pH (@ 4C)	N/A	8.91	9610152	10.7	9610152	9.96			9610152
Inorganics			-						
Total Alkalinity (Total as CaCO3)	mg/L	41	9616598	6.7	9616598	12	2.0	N/A	9616544
Dissolved Chloride (Cl-)	mg/L	4.8	9615525	3.7	9615585	5.7	1.0	N/A	9615585
Colour	TCU	<5.0	9615531	<5.0	9615592	<5.0	5.0	N/A	9615592
Nitrate + Nitrite (N)	mg/L	0.053	9615533	<0.050	9615594	<0.050	0.050	N/A	9615594
Nitrite (N)	mg/L	<0.010	9615534	<0.010	9615597	<0.010	0.010	N/A	9615597
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	9616213	<0.050	9616225	<0.050	0.050	N/A	9616225
Total Organic Carbon (C)	mg/L	0.63	9615401	1.1	9615401	1.3	0.50	N/A	9615401
Orthophosphate (P)	mg/L	0.026	9615532	<0.010	9615593	0.029	0.010	N/A	9615593
рН	рН	7.85	9616578	6.54	9616578	6.56			9616540
Reactive Silica (SiO2)	mg/L	14	9615529	9.9	9615590	9.2	0.50	N/A	9615590
Dissolved Sulphate (SO4)	mg/L	5.3	9615528	<2.0	9615588	2.2	2.0	N/A	9615588
Turbidity	NTU	2.1	9622206	16	9619404	8.7	0.10	0.10	9622206
Conductivity	uS/cm	120	9616596	31	9616596	49	1.0	N/A	9616541
RDI = Reportable Detection Limit			-						

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

RESULTS OF ANALYSES OF GROUND WATER

Bureau Veritas ID		ABLU50				ABLU51	ABLU52			
		2024/08/29				2024/08/29	2024/08/29			
Sampling Date		12:06				13:02	14:06			
COC Number		C#1007056-01-01				C#1007056-01-01	C#1007056-01-01			
	UNITS	MW4	RDL	MDL	QC Batch	MW5	MW6	RDL	MDL	QC Batch
Calculated Parameters										
Anion Sum	me/L	1.06	N/A	N/A	9610149	0.450	0.790	N/A	N/A	9610149
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	42	1.0	0.20	9610145	13	27	1.0	0.20	9610145
Calculated TDS	mg/L	66	1.0	0.20	9610154	32	59	1.0	0.20	9610154
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	0.20	9610145	<1.0	<1.0	1.0	0.20	9610145
Cation Sum	me/L	1.07	N/A	N/A	9610149	0.460	0.990	N/A	N/A	9610149
Hardness (CaCO3)	mg/L	41	1.0	1.0	9610147	14	30	1.0	1.0	9610147
Ion Balance (% Difference)	%	0.470	N/A	N/A	9610148	1.10	11.2	N/A	N/A	9610148
Langelier Index (@ 20C)	N/A	-1.15			9610151	-2.81	-1.69			9610151
Langelier Index (@ 4C)	N/A	-1.40			9610152	-3.06	-1.95			9610152
Nitrate (N)	mg/L	0.066	0.050	N/A	9610029	<0.050	0.056	0.050	N/A	9610029
Saturation pH (@ 20C)	N/A	8.63			9610151	9.61	8.91			9610151
Saturation pH (@ 4C)	N/A	8.88			9610152	9.86	9.16			9610152
Inorganics										
Total Alkalinity (Total as CaCO3)	mg/L	43	2.0	N/A	9616598	13	27	2.0	N/A	9616567
Dissolved Chloride (Cl-)	mg/L	5.1	1.0	N/A	9615585	4.4	6.7	1.0	N/A	9615585
Colour	TCU	<5.0	5.0	N/A	9615592	<5.0	7.0	5.0	N/A	9615592
Nitrate + Nitrite (N)	mg/L	0.066	0.050	N/A	9615594	<0.050	0.056	0.050	N/A	9615594
Nitrite (N)	mg/L	<0.010	0.010	N/A	9615597	<0.010	<0.010	0.010	N/A	9615597
Nitrogen (Ammonia Nitrogen)	mg/L	0.058	0.050	N/A	9616225	0.060	0.19	0.050	N/A	9616225
Total Organic Carbon (C)	mg/L	0.94	0.50	N/A	9615401	<5.0 (1)	6.4 (1)	5.0	N/A	9615679
Orthophosphate (P)	mg/L	<0.010	0.010	N/A	9615593	0.065	<0.010	0.010	N/A	9615593
рН	рН	7.48			9616578	6.80	7.22			9616556
Reactive Silica (SiO2)	mg/L	11	0.50	N/A	9615590	7.3	12	0.50	N/A	9615590
Dissolved Sulphate (SO4)	mg/L	3.2	2.0	N/A	9615588	3.0	2.6	2.0	N/A	9615588
Turbidity	NTU	95	0.10	0.10	9622206	600	370	1.0	1.0	9622206
Conductivity	uS/cm	120	1.0	N/A	9616596	51	87	1.0	N/A	9616565

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Elevated reporting limit due to turbidity.

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

RESULTS OF ANALYSES OF GROUND WATER

Bureau Veritas ID		ABLU53				ABLU53			
Sampling Date		2024/08/29 00:00				2024/08/29 00:00			
COC Number		C#1007056-01-01				C#1007056-01-01			
	UNITS	MWDUP	RDL	MDL	QC Batch	MWDUP Lab-Dup	RDL	MDL	QC Batch
Calculated Parameters									
Anion Sum	me/L	1.74	N/A	N/A	9610149				
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	78	1.0	0.20	9610145				
Calculated TDS	mg/L	87	1.0	0.20	9610154				
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	0.20	9610145				
Cation Sum	me/L	1.22	N/A	N/A	9610149				
Hardness (CaCO3)	mg/L	43	1.0	1.0	9610147				
Ion Balance (% Difference)	%	17.6	N/A	N/A	9610148				
Langelier Index (@ 20C)	N/A	-0.358			9610151				
Langelier Index (@ 4C)	N/A	-0.609			9610152				
Nitrate (N)	mg/L	<0.050	0.050	N/A	9610029				
Saturation pH (@ 20C)	N/A	8.29			9610151				
Saturation pH (@ 4C)	N/A	8.54			9610152				
Inorganics	•								
Total Alkalinity (Total as CaCO3)	mg/L	78	2.0	N/A	9616567				
Dissolved Chloride (Cl-)	mg/L	4.2	1.0	N/A	9615585				
Colour	TCU	<5.0	5.0	N/A	9615592				
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	N/A	9615594				
Nitrite (N)	mg/L	<0.010	0.010	N/A	9615597				
Nitrogen (Ammonia Nitrogen)	mg/L	0.061	0.050	N/A	9616225				
Total Organic Carbon (C)	mg/L	0.69	0.50	N/A	9615686				
Orthophosphate (P)	mg/L	0.022	0.010	N/A	9615593				
рН	рН	7.93			9616556				
Reactive Silica (SiO2)	mg/L	8.2	0.50	N/A	9615590				
Dissolved Sulphate (SO4)	mg/L	2.8	2.0	N/A	9615588				
Turbidity	NTU	280	1.0	1.0	9622195	280	1.0	1.0	9622195
Conductivity	uS/cm	160	1.0	N/A	9616565				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

RESULTS OF ANALYSES OF GROUND WATER

Bureau Veritas ID		ABLU54				ABLU55			
Compline Date		2024/08/29				2024/08/29			
Sampling Date		10:10				11:09			
COC Number		C#1007056-01-01				C#1007056-01-01			
	UNITS	MW8	RDL	MDL	QC Batch	MW9	RDL	MDL	QC Batch
Calculated Parameters									
Anion Sum	me/L	1.53	N/A	N/A	9610149	0.470	N/A	N/A	9610149
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	67	1.0	0.20	9610145	13	1.0	0.20	9610145
Calculated TDS	mg/L	81	1.0	0.20	9610154	36	1.0	0.20	9610154
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	0.20	9610145	<1.0	1.0	0.20	9610145
Cation Sum	me/L	1.23	N/A	N/A	9610149	0.490	N/A	N/A	9610149
Hardness (CaCO3)	mg/L	43	1.0	1.0	9610147	14	1.0	1.0	9610147
Ion Balance (% Difference)	%	10.9	N/A	N/A	9610148	2.08	N/A	N/A	9610148
Langelier Index (@ 20C)	N/A	-0.508			9610151	-2.45			9610151
Langelier Index (@ 4C)	N/A	-0.759			9610152	-2.70			9610152
Nitrate (N)	mg/L	<0.050	0.050	N/A	9610029	0.16	0.050	N/A	9610029
Saturation pH (@ 20C)	N/A	8.35			9610151	9.61			9610151
Saturation pH (@ 4C)	N/A	8.60			9610152	9.86			9610152
Inorganics	•		•	•			•	•	
Total Alkalinity (Total as CaCO3)	mg/L	68	2.0	N/A	9616567	13	2.0	N/A	9616567
Dissolved Chloride (Cl-)	mg/L	4.3	1.0	N/A	9615585	5.1	1.0	N/A	9615585
Colour	TCU	<5.0	5.0	N/A	9615592	<5.0	5.0	N/A	9615592
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	N/A	9615594	0.16	0.050	N/A	9615594
Nitrite (N)	mg/L	<0.010	0.010	N/A	9615597	<0.010	0.010	N/A	9615597
Nitrogen (Ammonia Nitrogen)	mg/L	0.096	0.050	N/A	9616213	0.056	0.050	N/A	9616225
Total Organic Carbon (C)	mg/L	0.69	0.50	N/A	9615686	0.66	0.50	N/A	9615672
Orthophosphate (P)	mg/L	0.021	0.010	N/A	9615593	0.015	0.010	N/A	9615593
рН	рН	7.84			9616556	7.16			9616556
Reactive Silica (SiO2)	mg/L	8.0	0.50	N/A	9615590	10	0.50	N/A	9615590
Dissolved Sulphate (SO4)	mg/L	2.8	2.0	N/A	9615588	2.6	2.0	N/A	9615588
Turbidity	NTU	320	1.0	1.0	9622206	66	0.10	0.10	9619404
Conductivity	uS/cm	160	1.0	N/A	9616565	55	1.0	N/A	9616565
RDI = Reportable Detection Limit			•				-		

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

RESULTS OF ANALYSES OF GROUND WATER

Bureau Veritas ID		ABLU55								
Sampling Date		2024/08/29								
Sampling Date		11:09								
COC Number		C#1007056-01-01								
	UNITS	MW9 Lab-Dup	RDL	MDL	QC Batch					
		Lab-Dup								
Inorganics										
Turbidity	NTU	67	0.10	0.10	9619404					
RDL = Reportable Detection Limit										
RDL = Reportable Detection Limit QC Batch = Quality Control Batch										

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

ELEMENTS BY ICP/MS (GROUND WATER)

Bureau Veritas ID		ABLU47	ABLU48		ABLU49	ABLU50					
Compling Date		2024/08/29	2024/08/29		2024/08/29	2024/08/29					
Sampling Date		15:15	14:53		14:32	12:06					
COC Number		C#1007056-01-01	C#1007056-01-01		C#1007056-01-01	C#1007056-01-01					
	UNITS	MW1	MW2	QC Batch	MW3	MW4	RDL	MDL	QC Batch		
Metals											
Dissolved Aluminum (AI)	ug/L	<5.0	24	9618219	<5.0	<5.0	5.0	N/A	9618235		
Dissolved Antimony (Sb)	ug/L	<1.0	<1.0	9618219	<1.0	<1.0	1.0	N/A	9618235		
Dissolved Arsenic (As)	ug/L	12	<1.0	9618219	<1.0	<1.0	1.0	N/A	9618235		
Dissolved Barium (Ba)	ug/L	9.2	6.8	9618219	3.4	91	1.0	N/A	9618235		
Dissolved Beryllium (Be)	ug/L	<0.10	0.11	9618219	<0.10	<0.10	0.10	N/A	9618235		
Dissolved Bismuth (Bi)	ug/L	<2.0	<2.0	9618219	<2.0	<2.0	2.0	N/A	9618235		
Dissolved Boron (B)	ug/L	<50	<50	9618219	<50	<50	50	N/A	9618235		
Dissolved Cadmium (Cd)	ug/L	0.013	0.024	9618219	0.050	0.024	0.010	N/A	9618235		
Dissolved Calcium (Ca)	ug/L	11000	1100	9618219	3200	12000	100	N/A	9618235		
Dissolved Chromium (Cr)	ug/L	1.3	<1.0	9618219	<1.0	<1.0	1.0	N/A	9618235		
Dissolved Cobalt (Co)	ug/L	<0.40	<0.40	9618219	<0.40	11	0.40	N/A	9618235		
Dissolved Copper (Cu)	ug/L	<0.50	0.92	9618219	1.0	5.8	0.50	N/A	9618235		
Dissolved Iron (Fe)	ug/L	<50	<50	9618219	<50	<50	50	N/A	9618235		
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	9618219	<0.50	<0.50	0.50	N/A	9618235		
Dissolved Magnesium (Mg)	ug/L	1100	920	9618219	890	2800	100	N/A	9618235		
Dissolved Manganese (Mn)	ug/L	<2.0	50	9618219	4.0	260	2.0	N/A	9618235		
Dissolved Molybdenum (Mo)	ug/L	<2.0	<2.0	9618219	<2.0	<2.0	2.0	N/A	9618235		
Dissolved Nickel (Ni)	ug/L	<2.0	<2.0	9618219	<2.0	5.5	2.0	N/A	9618235		
Dissolved Phosphorus (P)	ug/L	<100	<100	9618219	<100	<100	100	N/A	9618235		
Dissolved Potassium (K)	ug/L	390	210	9618219	1000	690	100	N/A	9618235		
Dissolved Selenium (Se)	ug/L	0.51	<0.50	9618219	<0.50	<0.50	0.50	N/A	9618235		
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	9618219	<0.10	<0.10	0.10	N/A	9618235		
Dissolved Sodium (Na)	ug/L	10000	2900	9618219	4100	5600	100	N/A	9618235		
Dissolved Strontium (Sr)	ug/L	22	7.3	9618219	17	69	2.0	N/A	9618235		
Dissolved Thallium (TI)	ug/L	<0.10	<0.10	9618219	<0.10	<0.10	0.10	N/A	9618235		
Dissolved Tin (Sn)	ug/L	<2.0	<2.0	9618219	<2.0	<2.0	2.0	N/A	9618235		
Dissolved Titanium (Ti)	ug/L	<2.0	<2.0	9618219	<2.0	<2.0	2.0	N/A	9618235		
Dissolved Uranium (U)	ug/L	1.0	<0.10	9618219	<0.10	<0.10	0.10	N/A	9618235		
Dissolved Vanadium (V)	ug/L	15	<2.0	9618219	<2.0	<2.0	2.0	N/A	9618235		
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	9618219	8.2	30	5.0	N/A	9618235		
RDI - Reportable Detection Lie	mit										

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

ELEMENTS BY ICP/MS (GROUND WATER)

Bureau Veritas ID		ABLU50	ABLU51		ABLU52	ABLU52			
Sampling Date		2024/08/29	2024/08/29		2024/08/29	2024/08/29			
Sampling Date		12:06	13:02		14:06	14:06			
COC Number		C#1007056-01-01	C#1007056-01-01		C#1007056-01-01	C#1007056-01-01			
	UNITS	MW4 Lab-Dup	MW5	QC Batch	MW6	MW6 Lab-Dup	RDL	MDL	QC Batch
Metals									
Dissolved Aluminum (Al)	ug/L	<5.0	12	9618235	62	69	5.0	N/A	9615523
Dissolved Antimony (Sb)	ug/L	<1.0	<1.0	9618235	<1.0	<1.0	1.0	N/A	9615523
Dissolved Arsenic (As)	ug/L	<1.0	<1.0	9618235	<1.0	<1.0	1.0	N/A	9615523
Dissolved Barium (Ba)	ug/L	92	10	9618235	27	28	1.0	N/A	9615523
Dissolved Beryllium (Be)	ug/L	<0.10	<0.10	9618235	<0.10	<0.10	0.10	N/A	9615523
Dissolved Bismuth (Bi)	ug/L	<2.0	<2.0	9618235	<2.0	<2.0	2.0	N/A	9615523
Dissolved Boron (B)	ug/L	<50	<50	9618235	<50	<50	50	N/A	9615523
Dissolved Cadmium (Cd)	ug/L	0.026	0.018	9618235	0.085	0.085	0.010	N/A	9615523
Dissolved Calcium (Ca)	ug/L	12000	3800	9618235	9300	9100	100	N/A	9615523
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	9618235	<1.0	<1.0	1.0	N/A	9615523
Dissolved Cobalt (Co)	ug/L	11	1.1	9618235	1.3	1.4	0.40	N/A	9615523
Dissolved Copper (Cu)	ug/L	5.8	9.2	9618235	140	140	0.50	N/A	9615523
Dissolved Iron (Fe)	ug/L	<50	<50	9618235	800	820	50	N/A	9615523
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	9618235	<0.50	<0.50	0.50	N/A	9615523
Dissolved Magnesium (Mg)	ug/L	2900	1000	9618235	1600	1700	100	N/A	9615523
Dissolved Manganese (Mn)	ug/L	270	41	9618235	580	570	2.0	N/A	9615523
Dissolved Molybdenum (Mo)	ug/L	<2.0	<2.0	9618235	2.7	2.7	2.0	N/A	9615523
Dissolved Nickel (Ni)	ug/L	5.8	<2.0	9618235	3.8	3.6	2.0	N/A	9615523
Dissolved Phosphorus (P)	ug/L	<100	<100	9618235	<100	<100	100	N/A	9615523
Dissolved Potassium (K)	ug/L	690	920	9618235	2300	2300	100	N/A	9615523
Dissolved Selenium (Se)	ug/L	<0.50	<0.50	9618235	<0.50	<0.50	0.50	N/A	9615523
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	9618235	<0.10	<0.10	0.10	N/A	9615523
Dissolved Sodium (Na)	ug/L	5600	3800	9618235	6600	6400	100	N/A	9615523
Dissolved Strontium (Sr)	ug/L	71	14	9618235	33	34	2.0	N/A	9615523
Dissolved Thallium (TI)	ug/L	<0.10	<0.10	9618235	<0.10	<0.10	0.10	N/A	9615523
Dissolved Tin (Sn)	ug/L	<2.0	<2.0	9618235	6.7	6.7	2.0	N/A	9615523
Dissolved Titanium (Ti)	ug/L	<2.0	<2.0	9618235	<2.0	<2.0	2.0	N/A	9615523
Dissolved Uranium (U)	ug/L	<0.10	0.16	9618235	<0.10	<0.10	0.10	N/A	9615523
Dissolved Vanadium (V)		<2.0	<2.0	9618235	<2.0	<2.0	2.0	N/A	9615523
Dissolved Vanadium (V)	ug/L	<2.0	<2.0	9010233	\2.0	\2.0	2.0	14/ /	3013323

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

ELEMENTS BY ICP/MS (GROUND WATER)

Bureau Veritas ID		ABLU53	ABLU54		ABLU55			
Sampling Date		2024/08/29	2024/08/29		2024/08/29			
Janipinig Date		00:00	10:10		11:09			
COC Number		C#1007056-01-01	C#1007056-01-01		C#1007056-01-01			
	UNITS	MWDUP	MW8	QC Batch	MW9	RDL	MDL	QC Batch
Metals								
Dissolved Aluminum (AI)	ug/L	<5.0	<5.0	9615523	<5.0	5.0	N/A	9618235
Dissolved Antimony (Sb)	ug/L	<1.0	<1.0	9615523	<1.0	1.0	N/A	9618235
Dissolved Arsenic (As)	ug/L	1.5	1.5	9615523	<1.0	1.0	N/A	9618235
Dissolved Barium (Ba)	ug/L	9.1	8.6	9615523	4.4	1.0	N/A	9618235
Dissolved Beryllium (Be)	ug/L	<0.10	<0.10	9615523	<0.10	0.10	N/A	9618235
Dissolved Bismuth (Bi)	ug/L	<2.0	<2.0	9615523	<2.0	2.0	N/A	9618235
Dissolved Boron (B)	ug/L	<50	<50	9615523	<50	50	N/A	9618235
Dissolved Cadmium (Cd)	ug/L	0.023	0.017	9615523	<0.010	0.010	N/A	9618235
Dissolved Calcium (Ca)	ug/L	14000	14000	9615523	3800	100	N/A	9618235
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	9615523	<1.0	1.0	N/A	9618235
Dissolved Cobalt (Co)	ug/L	<0.40	<0.40	9615523	<0.40	0.40	N/A	9618235
Dissolved Copper (Cu)	ug/L	<0.50	<0.50	9615523	<0.50	0.50	N/A	9618235
Dissolved Iron (Fe)	ug/L	<50	<50	9615523	<50	50	N/A	9618235
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	9615523	<0.50	0.50	N/A	9618235
Dissolved Magnesium (Mg)	ug/L	1800	1800	9615523	1100	100	N/A	9618235
Dissolved Manganese (Mn)	ug/L	130	130	9615523	<2.0	2.0	N/A	9618235
Dissolved Molybdenum (Mo)	ug/L	14	14	9615523	<2.0	2.0	N/A	9618235
Dissolved Nickel (Ni)	ug/L	<2.0	<2.0	9615523	<2.0	2.0	N/A	9618235
Dissolved Phosphorus (P)	ug/L	<100	<100	9615523	<100	100	N/A	9618235
Dissolved Potassium (K)	ug/L	1700	1700	9615523	680	100	N/A	9618235
Dissolved Selenium (Se)	ug/L	<0.50	<0.50	9615523	<0.50	0.50	N/A	9618235
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	9615523	<0.10	0.10	N/A	9618235
Dissolved Sodium (Na)	ug/L	7200	7400	9615523	4300	100	N/A	9618235
Dissolved Strontium (Sr)	ug/L	62	62	9615523	20	2.0	N/A	9618235
Dissolved Thallium (TI)	ug/L	<0.10	<0.10	9615523	<0.10	0.10	N/A	9618235
Dissolved Tin (Sn)	ug/L	<2.0	<2.0	9615523	<2.0	2.0	N/A	9618235
Dissolved Titanium (Ti)	ug/L	<2.0	<2.0	9615523	<2.0	2.0	N/A	9618235
Dissolved Uranium (U)	ug/L	0.54	0.54	9615523	<0.10	0.10	N/A	9618235
Dissolved Vanadium (V)	ug/L	<2.0	<2.0	9615523	<2.0	2.0	N/A	9618235
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	9615523	<5.0	5.0	N/A	9618235
RDI - Reportable Detection Lie	mit							

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

RESULTS OF ANALYSES OF SURFACE WATER

Bureau Veritas ID		ABLU44				ABLU44			
Sampling Data		2024/08/29				2024/08/29			
Sampling Date		15:58				15:58			
COC Number		C#1007056-01-01				C#1007056-01-01			
	UNITS	SW1	RDL	MDL	QC Batch	SW1 Lab-Dup	RDL	MDL	QC Batch
Calculated Parameters									
Anion Sum	me/L	0.440	N/A	N/A	9610149				
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	12	1.0	0.20	9610145				
Calculated TDS	mg/L	36	1.0	0.20	9610154				
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	0.20	9610145				
Cation Sum	me/L	0.490	N/A	N/A	9610149				
Hardness (CaCO3)	mg/L	14	1.0	1.0	9610147				
Ion Balance (% Difference)	%	5.38	N/A	N/A	9610148				
Langelier Index (@ 20C)	N/A	-2.59			9610151				
Langelier Index (@ 4C)	N/A	-2.84			9610152				
Nitrate (N)	mg/L	<0.050	0.050	N/A	9610029				
Saturation pH (@ 20C)	N/A	9.70			9610151				
Saturation pH (@ 4C)	N/A	9.96			9610152				
Inorganics	•		•				•		
Total Alkalinity (Total as CaCO3)	mg/L	12	2.0	N/A	9616598				
Dissolved Chloride (Cl-)	mg/L	5.5	1.0	N/A	9615525				
Colour	TCU	8.9	5.0	N/A	9615531				
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	N/A	9615533				
Nitrite (N)	mg/L	<0.010	0.010	N/A	9615534				
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	N/A	9616213				
Total Organic Carbon (C)	mg/L	1.2	0.50	N/A	9615401	1.2	0.50	N/A	9615401
Orthophosphate (P)	mg/L	0.013	0.010	N/A	9615532				
рН	рН	7.12			9616578				
Reactive Silica (SiO2)	mg/L	10	0.50	N/A	9615529				
Total Suspended Solids	mg/L	<1.0	1.0	N/A	9615361				
Dissolved Sulphate (SO4)	mg/L	2.6	2.0	N/A	9615528				
Turbidity	NTU	0.39	0.10	0.10	9625708				
Conductivity	uS/cm	51	1.0	N/A	9616596				
DDI - Donartable Detection Limit	•								

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

RESULTS OF ANALYSES OF SURFACE WATER

Bureau Veritas ID		ABLU45			ABLU46			
Carrallia a Bata		2024/08/29			2024/08/29			
Sampling Date		16:34			00:00			
COC Number		C#1007056-01-01			C#1007056-01-01			
	UNITS	SW2	RDL	QC Batch	SW DUP	RDL	MDL	QC Batch
Calculated Parameters		•			•	•		
Anion Sum	me/L	0.720	N/A	9610149	0.700	N/A	N/A	9610149
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	27	1.0	9610145	26	1.0	0.20	9610145
Calculated TDS	mg/L	53	1.0	9610154	52	1.0	0.20	9610154
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	9610145	<1.0	1.0	0.20	9610145
Cation Sum	me/L	0.800	N/A	9610149	0.810	N/A	N/A	9610149
Hardness (CaCO3)	mg/L	25	1.0	9610147	25	1.0	1.0	9610147
lon Balance (% Difference)	%	5.26	N/A	9610148	7.28	N/A	N/A	9610148
Langelier Index (@ 20C)	N/A	-1.64		9610151	-1.66			9610151
Langelier Index (@ 4C)	N/A	-1.90		9610152	-1.91			9610152
Nitrate (N)	mg/L	<0.050	0.050	9610029	<0.050	0.050	N/A	9610029
Saturation pH (@ 20C)	N/A	9.06		9610151	9.08			9610151
Saturation pH (@ 4C)	N/A	9.32		9610152	9.34			9610152
Inorganics								
Total Alkalinity (Total as CaCO3)	mg/L	27	2.0	9616567	26	2.0	N/A	9616598
Dissolved Chloride (Cl-)	mg/L	4.6	1.0	9615525	4.6	1.0	N/A	9615525
Colour	TCU	9.9	5.0	9615531	10	5.0	N/A	9615531
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	9615533	<0.050	0.050	N/A	9615533
Nitrite (N)	mg/L	<0.010	0.010	9615534	<0.010	0.010	N/A	9615534
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	9616213	<0.050	0.050	N/A	9616213
Total Organic Carbon (C)	mg/L	1.7	0.50	9615401	1.8	0.50	N/A	9615401
Orthophosphate (P)	mg/L	<0.010	0.010	9615532	<0.010	0.010	N/A	9615532
рН	рН	7.42		9616556	7.42			9616578
Reactive Silica (SiO2)	mg/L	13	0.50	9615529	13	0.50	N/A	9615529
Total Suspended Solids	mg/L	<2.0 (1)	2.0	9615361	<5.0 (1)	5.0	N/A	9615361
Dissolved Sulphate (SO4)	mg/L	2.7	2.0	9615528	2.6	2.0	N/A	9615528
Turbidity	NTU	5.3	0.10	9619404	7.7	0.10	0.10	9619404
Conductivity	uS/cm	77	1.0	9616565	76	1.0	N/A	9616596

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Elevated DL due to sample matrix.

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

RESULTS OF ANALYSES OF SURFACE WATER

Bureau Veritas ID		ABLU46			
		2024/08/29			
Sampling Date		00:00			
COC Number		C#1007056-01-01			
	UNITS	SW DUP	DDI	MDI	QC Batch
	UNITS	Lab-Dup	KDL	MDL	QC Batch
Inorganics					
Total Alkalinity (Total as CaCO3)	mg/L	26	2.0	N/A	9616598
рН	рН	7.52			9616578
	uS/cm	77	1.0	N/A	9616596
Conductivity	us/cm	//	1.0	11//	3010330
RDL = Reportable Detection Limit	us/cm	77	1.0	IV/A	3010330

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

ELEMENTS BY ICP/MS (SURFACE WATER)

Bureau Veritas ID		ABLU44	ABLU45		ABLU46			
Campling Date		2024/08/29	2024/08/29		2024/08/29			
Sampling Date		15:58	16:34		00:00			
COC Number		C#1007056-01-01	C#1007056-01-01		C#1007056-01-01			
	UNITS	SW1	SW2	QC Batch	SW DUP	RDL	MDL	QC Batch
Metals								
Total Aluminum (AI)	ug/L	22	200	9613615	210	5.0	N/A	9614016
Total Antimony (Sb)	ug/L	<1.0	<1.0	9613615	<1.0	1.0	N/A	9614016
Total Arsenic (As)	ug/L	<1.0	<1.0	9613615	<1.0	1.0	N/A	9614016
Total Barium (Ba)	ug/L	6.2	5.5	9613615	5.5	1.0	N/A	9614016
Total Beryllium (Be)	ug/L	<0.10	<0.10	9613615	<0.10	0.10	N/A	9614016
Total Bismuth (Bi)	ug/L	<2.0	<2.0	9613615	<2.0	2.0	N/A	9614016
Total Boron (B)	ug/L	<50	<50	9613615	<50	50	N/A	9614016
Total Cadmium (Cd)	ug/L	<0.010	0.011	9613615	0.011	0.010	N/A	9614016
Total Calcium (Ca)	ug/L	3400	6600	9613615	6500	100	N/A	9614016
Total Chromium (Cr)	ug/L	<1.0	<1.0	9613615	1.1	1.0	N/A	9614016
Total Cobalt (Co)	ug/L	<0.40	0.44	9613615	0.47	0.40	N/A	9614016
Total Copper (Cu)	ug/L	<0.50	0.63	9613615	0.69	0.50	N/A	9614016
Total Iron (Fe)	ug/L	120	1400	9613615	1600	50	N/A	9614016
Total Lead (Pb)	ug/L	<0.50	<0.50	9613615	<0.50	0.50	N/A	9614016
Total Magnesium (Mg)	ug/L	1200	2100	9613615	2100	100	N/A	9614016
Total Manganese (Mn)	ug/L	10	59	9613615	63	2.0	N/A	9614016
Total Molybdenum (Mo)	ug/L	<2.0	<2.0	9613615	<2.0	2.0	N/A	9614016
Total Nickel (Ni)	ug/L	<2.0	<2.0	9613615	<2.0	2.0	N/A	9614016
Total Phosphorus (P)	ug/L	<100	<100	9613615	<100	100	N/A	9614016
Total Potassium (K)	ug/L	730	780	9613615	810	100	N/A	9614016
Total Selenium (Se)	ug/L	<0.50	<0.50	9613615	<0.50	0.50	N/A	9614016
Total Silver (Ag)	ug/L	<0.10	<0.10	9613615	<0.10	0.10	N/A	9614016
Total Sodium (Na)	ug/L	4600	5300	9613615	5300	100	N/A	9614016
Total Strontium (Sr)	ug/L	23	34	9613615	36	2.0	N/A	9614016
Total Thallium (TI)	ug/L	<0.10	<0.10	9613615	<0.10	0.10	N/A	9614016
Total Tin (Sn)	ug/L	<2.0	<2.0	9613615	<2.0	2.0	N/A	9614016
Total Titanium (Ti)	ug/L	<2.0	6.4	9613615	6.6	2.0	N/A	9614016
Total Uranium (U)	ug/L	<0.10	<0.10	9613615	<0.10	0.10	N/A	9614016
Total Vanadium (V)	ug/L	<2.0	<2.0	9613615	<2.0	2.0	N/A	9614016
Total Zinc (Zn)	ug/L	<5.0	<5.0	9613615	<5.0	5.0	N/A	9614016
RDI - Reportable Detection	Limit							

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	3.3°C
Package 2	0.0°C

Sample ABLU44 [SW1]: ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent. RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meg/L.

Sample ABLU45 [SW2]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample ABLU46 [SW DUP]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample ABLU47 [MW1]: ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent.

Sample ABLU49 [MW3]: ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent.

Sample ABLU51 [MW5]: ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent.

Sample ABLU52 [MW6]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample ABLU53 [MWDUP] : ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent. Poor RCAp Ion Balance due to sample matrix.

Sample ABLU54 [MW8] : ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent. Poor RCAp Ion Balance due to sample matrix.

Sample ABLU55 [MW9] : ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent.

Results relate only to the items tested.

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

QUALITY ASSURANCE REPORT

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed Value	Recovery	UNITS	QC Limits
9613615	MTZ	Matrix Spike	Total Aluminum (Al)	2024/09/05	NC	%	80 - 120
			Total Antimony (Sb)	2024/09/05	101	%	80 - 120
			Total Arsenic (As)	2024/09/05	95	%	80 - 120
			Total Barium (Ba)	2024/09/05	92	%	80 - 120
			Total Beryllium (Be)	2024/09/05	96	%	80 - 120
			Total Bismuth (Bi)	2024/09/05	91	%	80 - 120
			Total Boron (B)	2024/09/05	90	%	80 - 120
			Total Cadmium (Cd)	2024/09/05	93	%	80 - 120
			Total Calcium (Ca)	2024/09/05	NC	%	80 - 120
			Total Chromium (Cr)	2024/09/05	93	%	80 - 120
			Total Cobalt (Co)	2024/09/05	91	%	80 - 120
			Total Copper (Cu)	2024/09/05	92	%	80 - 120
			Total Iron (Fe)	2024/09/05	NC	%	80 - 120
			Total Lead (Pb)	2024/09/05	91	%	80 - 120
			Total Magnesium (Mg)	2024/09/05	96	%	80 - 120
			Total Manganese (Mn)	2024/09/05	100	%	80 - 120
			Total Molybdenum (Mo)	2024/09/05	97	%	80 - 120
			Total Nickel (Ni)	2024/09/05	94	%	80 - 120
			Total Phosphorus (P)	2024/09/05	99	%	80 - 120
			Total Potassium (K)	2024/09/05	NC	%	80 - 120
			Total Selenium (Se)	2024/09/05	93	%	80 - 120
			Total Silver (Ag)	2024/09/05	91	%	80 - 120
			Total Sodium (Na)	2024/09/05	NC	%	80 - 120
			Total Strontium (Sr)	2024/09/05	NC	%	80 - 120
			Total Thallium (Tl)	2024/09/05	91	%	80 - 120
			Total Tin (Sn)	2024/09/05	95	%	80 - 120
			Total Titanium (Ti)	2024/09/05	97	%	80 - 120
			Total Uranium (U)	2024/09/05	96	%	80 - 120
			Total Vanadium (V)	2024/09/05	99	%	80 - 120
			Total Zinc (Zn)	2024/09/05	95	%	80 - 120
9613615	MTZ	Spiked Blank	Total Aluminum (Al)	2024/09/04	98	%	80 - 120
		•	Total Antimony (Sb)	2024/09/04	101	%	80 - 120
			Total Arsenic (As)	2024/09/04	97	%	80 - 120
			Total Barium (Ba)	2024/09/04	100	%	80 - 120
			Total Beryllium (Be)	2024/09/04	99	%	80 - 120
			Total Bismuth (Bi)	2024/09/04	100	%	80 - 120
			Total Boron (B)	2024/09/04	102	%	80 - 120
			Total Cadmium (Cd)	2024/09/04	102	%	80 - 120
			Total Calcium (Ca)	2024/09/04	99	%	80 - 120
			Total Chromium (Cr)	2024/09/04	98	%	80 - 120
			Total Cobalt (Co)	2024/09/04	98	%	80 - 120
			Total Copper (Cu)	2024/09/04	97	%	80 - 120
			Total Iron (Fe)	2024/09/04	100	%	80 - 120
			Total Lead (Pb)	2024/09/04	103	%	80 - 120
			Total Magnesium (Mg)	2024/09/04	102	%	80 - 120
			Total Manganese (Mn)	2024/09/04	100	%	80 - 120
			Total Molybdenum (Mo)	2024/09/04	103	%	80 - 120
			Total Nickel (Ni)	2024/09/04	98	%	80 - 120
			Total Phosphorus (P)	2024/09/04	101	%	80 - 120
			Total Potassium (K)	2024/09/04	98	%	80 - 120
			Total Selenium (Se)	2024/09/04	98	%	80 - 120
			Total Selemum (Se) Total Silver (Ag)	2024/09/04	98 97	%	80 - 120
			Total Solium (Na)	2024/09/04	99	%	80 - 120 80 - 120
			Page 17	· ·		/0	00 - 120

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Strontium (Sr)	2024/09/04		99	%	80 - 120
			Total Thallium (TI)	2024/09/04		100	%	80 - 120
			Total Tin (Sn)	2024/09/04		101	%	80 - 120
			Total Titanium (Ti)	2024/09/04		99	%	80 - 120
			Total Uranium (U)	2024/09/04		106	%	80 - 120
			Total Vanadium (V)	2024/09/04		101	%	80 - 120
			Total Zinc (Zn)	2024/09/04		99	%	80 - 120
9613615	MTZ	Method Blank	Total Aluminum (Al)	2024/09/04	<5.0		ug/L	
			Total Antimony (Sb)	2024/09/04	<1.0		ug/L	
			Total Arsenic (As)	2024/09/04	<1.0		ug/L	
			Total Barium (Ba)	2024/09/04	<1.0		ug/L	
			Total Beryllium (Be)	2024/09/04	<0.10		ug/L	
			Total Bismuth (Bi)	2024/09/04	<2.0		ug/L	
			Total Boron (B)	2024/09/04	<50		ug/L	
			Total Cadmium (Cd)	2024/09/04	<0.010		ug/L	
			Total Calcium (Ca)	2024/09/04	<100		ug/L	
			Total Chromium (Cr)	2024/09/04	<1.0		ug/L	
			Total Cobalt (Co)	2024/09/04	<0.40		ug/L	
			Total Copper (Cu)	2024/09/04	<0.50		ug/L	
			Total Iron (Fe)	2024/09/04	<50		ug/L	
			Total Lead (Pb)	2024/09/04	<0.50		ug/L	
			Total Magnesium (Mg)	2024/09/04	<100		ug/L	
			Total Manganese (Mn)	2024/09/04	<2.0		ug/L	
			Total Molybdenum (Mo)	2024/09/04	<2.0		ug/L	
			Total Nickel (Ni)	2024/09/04	<2.0		ug/L	
			Total Phosphorus (P)	2024/09/04	<100		ug/L	
			Total Potassium (K)	2024/09/04	<100		ug/L	
			Total Selenium (Se)	2024/09/04	<0.50		ug/L	
			Total Silver (Ag)	2024/09/04	<0.10		ug/L	
			Total Solium (Na)	2024/09/04	<100		ug/L	
			Total Strontium (Sr)	2024/09/04	<2.0			
			Total Strontium (31)	2024/09/04	<0.10		ug/L ug/L	
			Total Tilallidi (11)	2024/09/04	<2.0			
			Total Till (511) Total Titanium (Ti)	2024/09/04	<2.0		ug/L	
			Total Tranium (11) Total Uranium (U)				ug/L	
				2024/09/04 2024/09/04	<0.10		ug/L	
			Total Vanadium (V)	· ·	<2.0		ug/L	
0613615	NATZ	DDD	Total Aluminum (Al)	2024/09/04	<5.0		ug/L	20
9613615	MTZ	RPD	Total Antimorny (Sh.)	2024/09/04	2.0		%	20
			Total Antimony (Sb)	2024/09/04	8.5		%	20
			Total Arsenic (As)	2024/09/04	1.7		%	20
			Total Barium (Ba)	2024/09/04	5.3		%	20
			Total Beryllium (Be)	2024/09/04	NC		%	20
			Total Bismuth (Bi)	2024/09/04	NC		%	20
			Total Boron (B)	2024/09/04	1.8		%	20
			Total Cadmium (Cd)	2024/09/04	2.6		%	20
			Total Calcium (Ca)	2024/09/04	4.2		%	20
			Total Chromium (Cr)	2024/09/04	NC		%	20
			Total Cobalt (Co)	2024/09/04	NC		%	20
			Total Copper (Cu)	2024/09/04	4.6		%	20
			Total Iron (Fe)	2024/09/04	7.7		%	20
			Total Lead (Pb)	2024/09/04	2.6		%	20
			Total Magnesium (Mg)	2024/09/04	2.5		%	20
			Total Manganese (Mn)	2024/09/04	2.7		%	20

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

QA/QC		007			V. I		LINUTS	001
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Molybdenum (Mo)	2024/09/04	3.8		%	20
			Total Nickel (Ni)	2024/09/04	NC		%	20
			Total Phosphorus (P)	2024/09/04	NC		%	20
			Total Potassium (K)	2024/09/04	4.1		%	20
			Total Selenium (Se)	2024/09/04	NC		%	20
			Total Silver (Ag)	2024/09/04	NC		%	20
			Total Sodium (Na)	2024/09/04	4.1		%	20
			Total Strontium (Sr)	2024/09/04	4.1		%	20
			Total Thallium (Tl)	2024/09/04	NC		%	20
			Total Tin (Sn)	2024/09/04	NC		%	20
			Total Titanium (Ti)	2024/09/04	10		%	20
			Total Uranium (U)	2024/09/04	5.8		%	20
			Total Vanadium (V)	2024/09/04	3.7		%	20
			Total Zinc (Zn)	2024/09/04	5.2		%	20
9614016	MOA	Matrix Spike [ABLU46-03]	Total Aluminum (Al)	2024/09/05		101	%	80 - 120
			Total Antimony (Sb)	2024/09/05		99	%	80 - 120
			Total Arsenic (As)	2024/09/05		98	%	80 - 120
			Total Barium (Ba)	2024/09/05		94	%	80 - 120
			Total Beryllium (Be)	2024/09/05		100	%	80 - 120
			Total Bismuth (Bi)	2024/09/05		98	%	80 - 120
			Total Boron (B)	2024/09/05		101	%	80 - 120
			Total Cadmium (Cd)	2024/09/05		98	%	80 - 120
			Total Calcium (Ca)	2024/09/05		99	%	80 - 120
			Total Chromium (Cr)	2024/09/05		97	%	80 - 120
			Total Cobalt (Co)	2024/09/05		98	%	80 - 120
			Total Copper (Cu)	2024/09/05		100	%	80 - 120
						NC		
			Total Iron (Fe)	2024/09/05			%	80 - 120
			Total Lead (Pb)	2024/09/05		97	%	80 - 120
			Total Magnesium (Mg)	2024/09/05		101	%	80 - 120
			Total Manganese (Mn)	2024/09/05		96	%	80 - 120
			Total Molybdenum (Mo)	2024/09/05		104	%	80 - 120
			Total Nickel (Ni)	2024/09/05		101	%	80 - 120
			Total Phosphorus (P)	2024/09/05		101	%	80 - 120
			Total Potassium (K)	2024/09/05		101	%	80 - 120
			Total Selenium (Se)	2024/09/05		99	%	80 - 120
			Total Silver (Ag)	2024/09/05		98	%	80 - 120
			Total Sodium (Na)	2024/09/05		96	%	80 - 120
			Total Strontium (Sr)	2024/09/05		99	%	80 - 120
			Total Thallium (Tl)	2024/09/05		98	%	80 - 120
			Total Tin (Sn)	2024/09/05		100	%	80 - 120
			Total Titanium (Ti)	2024/09/05		100	%	80 - 120
			Total Uranium (U)	2024/09/05		106	%	80 - 120
			Total Vanadium (V)	2024/09/05		99	%	80 - 120
			Total Zinc (Zn)	2024/09/05		100	%	80 - 120
9614016	MOA	Spiked Blank	Total Aluminum (Al)	2024/09/05		96	%	80 - 120
		•	Total Antimony (Sb)	2024/09/05		100	%	80 - 120
			Total Arsenic (As)	2024/09/05		100	%	80 - 120
			Total Barium (Ba)	2024/09/05		97	%	80 - 120
			Total Beryllium (Be)	2024/09/05		102	%	80 - 120
			Total Bismuth (Bi)	2024/09/05		102	%	80 - 120
			Total Boron (B)	2024/09/05		101	%	80 - 120
			, ,	2024/09/05		98		
			Total Calcium (Cd)	· ·			%	80 - 120
			Total Calcium (Ca)	2024/09/05		98	%	80 - 120

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Dateii		~c . , pc	Total Chromium (Cr)	2024/09/05	varue	102	%	80 - 120
			Total Cobalt (Co)	2024/09/05		101	%	80 - 120
			Total Copper (Cu)	2024/09/05		103	%	80 - 120
			Total Iron (Fe)	2024/09/05		103	%	80 - 120
			Total Lead (Pb)	2024/09/05		100	%	80 - 120
			Total Magnesium (Mg)	2024/09/05		102	%	80 - 120
			Total Manganese (Mn)	2024/09/05		102	%	80 - 120
			Total Molybdenum (Mo)	2024/09/05		102	%	80 - 120
			Total Nickel (Ni)	2024/09/05		104	%	80 - 120
			Total Phosphorus (P)	2024/09/05		101	%	80 - 120
			Total Potassium (K)	2024/09/05		103	%	80 - 120
			Total Selenium (Se)	2024/09/05		100	%	80 - 120
			Total Silver (Ag)	2024/09/05		98	%	80 - 120
			Total Sodium (Na)	2024/09/05		101	%	80 - 120
			Total Strontium (Sr)	2024/09/05		103	%	80 - 120
			Total Thallium (TI)	2024/09/05		101	%	80 - 120
			Total Tin (Sn)	2024/09/05		99	%	80 - 120
			Total Titanium (Ti)	2024/09/05		102	%	80 - 120
			Total Uranium (U)	2024/09/05		107	%	80 - 120
			Total Vanadium (V)	2024/09/05		103	%	80 - 120
			Total Zinc (Zn)	2024/09/05		102	%	80 - 120
9614016	MOA	Method Blank	Total Aluminum (Al)	2024/09/05	<5.0		ug/L	
			Total Antimony (Sb)	2024/09/05	<1.0		ug/L	
			Total Arsenic (As)	2024/09/05	<1.0		ug/L	
			Total Barium (Ba)	2024/09/05	<1.0		ug/L	
			Total Beryllium (Be)	2024/09/05	<0.10		ug/L	
			Total Bismuth (Bi)	2024/09/05	<2.0		ug/L	
			Total Boron (B)	2024/09/05	<50		ug/L	
			Total Cadmium (Cd)	2024/09/05	< 0.010		ug/L	
			Total Calcium (Ca)	2024/09/05	<100		ug/L	
			Total Chromium (Cr)	2024/09/05	<1.0		ug/L	
			Total Cobalt (Co)	2024/09/05	< 0.40		ug/L	
			Total Copper (Cu)	2024/09/05	<0.50		ug/L	
			Total Iron (Fe)	2024/09/05	<50		ug/L	
			Total Lead (Pb)	2024/09/05	<0.50		ug/L	
			Total Magnesium (Mg)	2024/09/05	<100		ug/L	
			Total Manganese (Mn)	2024/09/05	<2.0		ug/L	
			Total Molybdenum (Mo)	2024/09/05	<2.0		ug/L	
			Total Nickel (Ni)	2024/09/05	<2.0		ug/L	
			Total Phosphorus (P)	2024/09/05	<100		ug/L	
			Total Potassium (K)	2024/09/05	<100		ug/L	
			Total Selenium (Se)	2024/09/05	<0.50		ug/L	
			Total Silver (Ag)	2024/09/05	< 0.10		ug/L	
			Total Sodium (Na)	2024/09/05	<100		ug/L	
			Total Strontium (Sr)	2024/09/05	<2.0		ug/L	
			Total Thallium (TI)	2024/09/05	<0.10		ug/L	
			Total Tin (Sn)	2024/09/05	<2.0		ug/L	
			Total Titanium (Ti)	2024/09/05	<2.0		ug/L	
			Total Uranium (U)	2024/09/05	<0.10		ug/L	
			Total Vanadium (V)	2024/09/05	<2.0		ug/L	
			Total Zinc (Zn)	2024/09/05	<5.0		ug/L	
9614016	MOA	RPD	Total Aluminum (Al)	2024/09/05	1.5		%	20
			Total Antimony (Sb)	2024/09/05	NC		%	20

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Arsenic (As)	2024/09/05	NC		%	20
			Total Barium (Ba)	2024/09/05	2.6		%	20
			Total Beryllium (Be)	2024/09/05	NC		%	20
			Total Bismuth (Bi)	2024/09/05	NC		%	20
			Total Boron (B)	2024/09/05	NC		%	20
			Total Cadmium (Cd)	2024/09/05	NC		%	20
			Total Calcium (Ca)	2024/09/05	4.6		%	20
			Total Chromium (Cr)	2024/09/05	NC		%	20
			Total Cobalt (Co)	2024/09/05	NC		%	20
			Total Copper (Cu)	2024/09/05	4.2		%	20
			Total Iron (Fe)	2024/09/05	NC		%	20
			Total Lead (Pb)	2024/09/05	5.8		%	20
			Total Magnesium (Mg)	2024/09/05	4.5		%	20
			Total Manganese (Mn)	2024/09/05	NC		%	20
			Total Molybdenum (Mo)	2024/09/05	NC		%	20
			Total Nickel (Ni)	2024/09/05	NC		%	20
			Total Phosphorus (P)	2024/09/05	NC		%	20
			Total Potassium (K)	2024/09/05	2.7		%	20
			Total Selenium (Se)	2024/09/05	NC		%	20
			Total Silver (Ag)	2024/09/05	NC		%	20
			Total Sodium (Na)	2024/09/05	3.6		%	20
			Total Strontium (Sr)	2024/09/05	3.9		%	20
			Total Thallium (TI)	2024/09/05	NC		%	20
			Total Tin (Sn)	2024/09/05	NC		%	20
			Total Titanium (Ti)	2024/09/05	NC		%	20
			Total Uranium (U)	2024/09/05	4.5		%	20
			Total Vanadium (V)	2024/09/05	NC		%	20
			Total Zinc (Zn)	2024/09/05	3.8		%	20
9615361	ZZH	QC Standard	Total Suspended Solids	2024/09/05		97	%	80 - 120
9615361	ZZH	Method Blank	Total Suspended Solids	2024/09/05	<1.0		mg/L	
9615361	ZZH	RPD	Total Suspended Solids	2024/09/05	0		%	20
9615401	SSI	Matrix Spike [ABLU44-04]	Total Organic Carbon (C)	2024/09/04		100	%	85 - 115
9615401	SSI	Spiked Blank	Total Organic Carbon (C)	2024/09/04		99	%	80 - 120
9615401	SSI	Method Blank	Total Organic Carbon (C)	2024/09/04	<0.50		mg/L	
9615401	SSI	RPD [ABLU44-04]	Total Organic Carbon (C)	2024/09/04	1.6		%	15
9615523	MTZ	Matrix Spike [ABLU52-02]	Dissolved Aluminum (Al)	2024/09/04		98	%	80 - 120
			Dissolved Antimony (Sb)	2024/09/04		99	%	80 - 120
			Dissolved Arsenic (As)	2024/09/04		101	%	80 - 120
			Dissolved Barium (Ba)	2024/09/04		99	%	80 - 120
			Dissolved Beryllium (Be)	2024/09/04		102	%	80 - 120
			Dissolved Bismuth (Bi)	2024/09/04		98	%	80 - 120
			Dissolved Boron (B)	2024/09/04		96	%	80 - 120
			Dissolved Cadmium (Cd)	2024/09/04		103	%	80 - 120
			Dissolved Calcium (Ca)	2024/09/04		96	%	80 - 120
			Dissolved Chromium (Cr)	2024/09/04		100	%	80 - 120
			Dissolved Cobalt (Co)	2024/09/04		101	%	80 - 120
			Dissolved Copper (Cu)	2024/09/04		NC	%	80 - 120
			Dissolved Copper (Cu) Dissolved Iron (Fe)	2024/09/04		92	%	80 - 120
			Dissolved Iron (1e)	2024/09/04		102	%	80 - 120
			Dissolved Magnesium (Mg)	2024/09/04		102	%	80 - 120
			Dissolved Manganese (Mn)	2024/09/04		NC	%	80 - 120 80 - 120
			- · · · · · · · · · · · · · · · · · · ·	2024/09/04				
			Dissolved Molybdenum (Mo)			99 102	%	80 - 120 80 - 120
			Dissolved Nickel (Ni)	2024/09/04		102	%	80 - 120

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Phosphorus (P)	2024/09/04		104	%	80 - 120
			Dissolved Potassium (K)	2024/09/04		102	%	80 - 120
			Dissolved Selenium (Se)	2024/09/04		101	%	80 - 120
			Dissolved Silver (Ag)	2024/09/04		77 (1)	%	80 - 120
			Dissolved Sodium (Na)	2024/09/04		101	%	80 - 120
			Dissolved Strontium (Sr)	2024/09/04		98	%	80 - 120
			Dissolved Thallium (TI)	2024/09/04		100	%	80 - 120
			Dissolved Tin (Sn)	2024/09/04		98	%	80 - 120
			Dissolved Titanium (Ti)	2024/09/04		103	%	80 - 120
			Dissolved Uranium (U)	2024/09/04		109	%	80 - 120
			Dissolved Vanadium (V)	2024/09/04		105	%	80 - 120
			Dissolved Zinc (Zn)	2024/09/04		101	%	80 - 120
9615523	MTZ	Spiked Blank	Dissolved Aluminum (Al)	2024/09/04		100	%	80 - 120
			Dissolved Antimony (Sb)	2024/09/04		98	%	80 - 120
			Dissolved Arsenic (As)	2024/09/04		102	%	80 - 120
			Dissolved Barium (Ba)	2024/09/04		101	%	80 - 120
			Dissolved Beryllium (Be)	2024/09/04		98	%	80 - 120
			Dissolved Bismuth (Bi)	2024/09/04		101	%	80 - 120
			Dissolved Boron (B)	2024/09/04		92	%	80 - 120
			Dissolved Cadmium (Cd)	2024/09/04		102	%	80 - 120
			Dissolved Calcium (Ca)	2024/09/04		99	%	80 - 120
			Dissolved Chromium (Cr)	2024/09/04		102	%	80 - 120
			Dissolved Cobalt (Co)	2024/09/04		102	%	80 - 120
			Dissolved Copper (Cu)	2024/09/04		103	%	80 - 120
			Dissolved Iron (Fe)	2024/09/04		102	%	80 - 120
			Dissolved Lead (Pb)	2024/09/04		103	%	80 - 120
			Dissolved Magnesium (Mg)	2024/09/04		102	%	80 - 120
			Dissolved Manganese (Mn)	2024/09/04		106	%	80 - 120
			Dissolved Molybdenum (Mo)	2024/09/04		100	%	80 - 120
			Dissolved Nickel (Ni)	2024/09/04		104	%	80 - 120
			Dissolved Phosphorus (P)	2024/09/04		104	%	80 - 120
			Dissolved Potassium (K)	2024/09/04		102	%	80 - 120
			Dissolved Selenium (Se)	2024/09/04		101	%	80 - 120
			Dissolved Silver (Ag)	2024/09/04		98	%	80 - 120
			Dissolved Sodium (Na)	2024/09/04		101	%	80 - 120
			Dissolved Strontium (Sr)	2024/09/04		104	%	80 - 120
			Dissolved Thallium (TI)	2024/09/04		100	%	80 - 120
			Dissolved Tin (Sn)	2024/09/04		100	%	80 - 120
			Dissolved Titanium (Ti)	2024/09/04		102	%	80 - 120
			Dissolved Uranium (U)	2024/09/04		109	%	80 - 120
			Dissolved Vanadium (V)	2024/09/04		106	%	80 - 120
			Dissolved Zinc (Zn)	2024/09/04		104	%	80 - 120
9615523	MTZ	Method Blank	Dissolved Aluminum (AI)	2024/09/04	<5.0		ug/L	
			Dissolved Antimony (Sb)	2024/09/04	<1.0		ug/L	
			Dissolved Arsenic (As)	2024/09/04	<1.0		ug/L	
			Dissolved Barium (Ba)	2024/09/04	<1.0		ug/L	
			Dissolved Beryllium (Be)	2024/09/04	<0.10		ug/L	
			Dissolved Bismuth (Bi)	2024/09/04	<2.0		ug/L	
			Dissolved Boron (B)	2024/09/04	<50		ug/L	
			Dissolved Cadmium (Cd)	2024/09/04	<0.010		ug/L	
			Dissolved Calcium (Ca)	2024/09/04	<100		ug/L	
			Dissolved Chromium (Cr)	2024/09/04	<1.0		ug/L	
			Dissolved Cobalt (Co)	2024/09/04	<0.40		ug/L	

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Copper (Cu)	2024/09/04	<0.50		ug/L	
			Dissolved Iron (Fe)	2024/09/04	<50		ug/L	
			Dissolved Lead (Pb)	2024/09/04	<0.50		ug/L	
			Dissolved Magnesium (Mg)	2024/09/04	<100		ug/L	
			Dissolved Manganese (Mn)	2024/09/04	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2024/09/04	<2.0		ug/L	
			Dissolved Nickel (Ni)	2024/09/04	<2.0		ug/L	
			Dissolved Phosphorus (P)	2024/09/04	<100		ug/L	
			Dissolved Potassium (K)	2024/09/04	<100		ug/L	
			Dissolved Selenium (Se)	2024/09/04	< 0.50		ug/L	
			Dissolved Silver (Ag)	2024/09/04	< 0.10		ug/L	
			Dissolved Sodium (Na)	2024/09/04	<100		ug/L	
			Dissolved Strontium (Sr)	2024/09/04	<2.0		ug/L	
			Dissolved Thallium (TI)	2024/09/04	<0.10		ug/L	
			Dissolved Tin (Sn)	2024/09/04	<2.0		ug/L	
			Dissolved Titanium (Ti)	2024/09/04	<2.0		ug/L	
			Dissolved Uranium (U)	2024/09/04	<0.10		ug/L	
			Dissolved Vanadium (V)	2024/09/04	<2.0		ug/L	
			Dissolved Zinc (Zn)	2024/09/04	<5.0		ug/L	
9615523	MT7	RPD [ABLU52-02]	Dissolved Aluminum (AI)	2024/09/04	11		%	20
3013323	14112	NI D [ADLO32 02]	Dissolved Antimony (Sb)	2024/09/04	NC		%	20
			Dissolved Arsenic (As)	2024/09/04	NC		%	20
			Dissolved Barium (Ba)	2024/09/04	2.9		%	20
			Dissolved Beryllium (Be)	2024/09/04	NC		%	20
			Dissolved Bismuth (Bi)	2024/09/04	NC		% %	20
			Dissolved Boron (B)	2024/09/04	NC		%	20
				• •			%	
			Dissolved Calaium (Cd)	2024/09/04	0.30			20
			Dissolved Calcium (Ca)	2024/09/04	1.6		%	20
			Dissolved Chromium (Cr)	2024/09/04	NC 1.2		%	20
			Dissolved Cobalt (Co)	2024/09/04	1.3		%	20
			Dissolved Copper (Cu)	2024/09/04	0.27		%	20
			Dissolved Iron (Fe)	2024/09/04	2.4		%	20
			Dissolved Lead (Pb)	2024/09/04	NC		%	20
			Dissolved Magnesium (Mg)	2024/09/04	0.86		%	20
			Dissolved Manganese (Mn)	2024/09/04	1.0		%	20
			Dissolved Molybdenum (Mo)	2024/09/04	0.75		%	20
			Dissolved Nickel (Ni)	2024/09/04	6.0		%	20
			Dissolved Phosphorus (P)	2024/09/04	NC		%	20
			Dissolved Potassium (K)	2024/09/04	0.079		%	20
			Dissolved Selenium (Se)	2024/09/04	NC		%	20
			Dissolved Silver (Ag)	2024/09/04	NC		%	20
			Dissolved Sodium (Na)	2024/09/04	2.8		%	20
			Dissolved Strontium (Sr)	2024/09/04	1.5		%	20
			Dissolved Thallium (TI)	2024/09/04	NC		%	20
			Dissolved Tin (Sn)	2024/09/04	0.96		%	20
			Dissolved Titanium (Ti)	2024/09/04	NC		%	20
			Dissolved Uranium (U)	2024/09/04	NC		%	20
			Dissolved Vanadium (V)	2024/09/04	NC		%	20
			Dissolved Zinc (Zn)	2024/09/04	1.3		%	20
9615525	EMT	Matrix Spike	Dissolved Chloride (CI-)	2024/09/05		89	%	80 - 120
9615525	EMT	Spiked Blank	Dissolved Chloride (Cl-)	2024/09/05		92	%	80 - 120
9615525	EMT	Method Blank	Dissolved Chloride (Cl-)	2024/09/05	<1.0		mg/L	
9615525	EMT	RPD	Dissolved Chloride (Cl-)	2024/09/05	0.10		%	20

Bureau Veritas Job #: C4R0855 GHD Limited
Report Date: 2024/09/09 Client Project

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9615528	EMT	Matrix Spike	Dissolved Sulphate (SO4)	2024/09/05		NC	%	80 - 120
9615528	EMT	Spiked Blank	Dissolved Sulphate (SO4)	2024/09/05		94	%	80 - 120
9615528	EMT	Method Blank	Dissolved Sulphate (SO4)	2024/09/05	<2.0		mg/L	
9615528	EMT	RPD	Dissolved Sulphate (SO4)	2024/09/05	1.0		%	20
9615529	EMT	Matrix Spike	Reactive Silica (SiO2)	2024/09/05		83	%	80 - 120
9615529	EMT	Spiked Blank	Reactive Silica (SiO2)	2024/09/05		89	%	80 - 120
9615529	EMT	Method Blank	Reactive Silica (SiO2)	2024/09/05	<0.50		mg/L	
9615529	EMT	RPD	Reactive Silica (SiO2)	2024/09/05	1.9		%	20
9615531	EMT	Spiked Blank	Colour	2024/09/05		104	%	80 - 120
9615531	EMT	Method Blank	Colour	2024/09/05	<5.0		TCU	
9615531	EMT	RPD	Colour	2024/09/05	NC		%	20
9615532	EMT	Matrix Spike	Orthophosphate (P)	2024/09/05		90	%	80 - 120
9615532	EMT	Spiked Blank	Orthophosphate (P)	2024/09/05		89	%	80 - 120
9615532	EMT	Method Blank	Orthophosphate (P)	2024/09/05	<0.010		mg/L	
9615532	EMT	RPD	Orthophosphate (P)	2024/09/05	NC		%	20
9615533	EMT	Matrix Spike	Nitrate + Nitrite (N)	2024/09/05		97	%	80 - 120
9615533	EMT	Spiked Blank	Nitrate + Nitrite (N)	2024/09/05		99	%	80 - 120
9615533	EMT	Method Blank	Nitrate + Nitrite (N)	2024/09/05	<0.050		mg/L	
9615533	EMT	RPD	Nitrate + Nitrite (N)	2024/09/05	NC		%	20
9615534	EMT	Matrix Spike	Nitrite (N)	2024/09/05		94	%	80 - 120
9615534	EMT	Spiked Blank	Nitrite (N)	2024/09/05		99	%	80 - 120
9615534	EMT	Method Blank	Nitrite (N)	2024/09/05	<0.010		mg/L	
9615534	EMT	RPD	Nitrite (N)	2024/09/05	NC		%	20
9615585	EMT	Matrix Spike	Dissolved Chloride (Cl-)	2024/09/05		90	%	80 - 120
9615585	EMT	Spiked Blank	Dissolved Chloride (Cl-)	2024/09/05		91	%	80 - 120
9615585	EMT	Method Blank	Dissolved Chloride (Cl-)	2024/09/05	<1.0		mg/L	
9615585	EMT	RPD	Dissolved Chloride (Cl-)	2024/09/05	2.4		%	20
9615588	EMT	Matrix Spike	Dissolved Sulphate (SO4)	2024/09/05		NC	%	80 - 120
9615588	EMT	Spiked Blank	Dissolved Sulphate (SO4)	2024/09/05		94	%	80 - 120
9615588	EMT	Method Blank	Dissolved Sulphate (SO4)	2024/09/05	<2.0		mg/L	
9615588	EMT	RPD	Dissolved Sulphate (SO4)	2024/09/05	0.21		%	20
9615590	EMT	Matrix Spike	Reactive Silica (SiO2)	2024/09/05		85	%	80 - 120
9615590	EMT	Spiked Blank	Reactive Silica (SiO2)	2024/09/05		90	%	80 - 120
9615590	EMT	Method Blank	Reactive Silica (SiO2)	2024/09/05	<0.50		mg/L	
9615590	EMT	RPD	Reactive Silica (SiO2)	2024/09/05	3.5		%	20
9615592	EMT	Spiked Blank	Colour	2024/09/05		105	%	80 - 120
9615592	EMT	Method Blank	Colour	2024/09/05	<5.0		TCU	
9615592	EMT	RPD	Colour	2024/09/05	14		%	20
9615593	EMT	Matrix Spike	Orthophosphate (P)	2024/09/05		78 (2)	%	80 - 120
9615593	EMT	Spiked Blank	Orthophosphate (P)	2024/09/05		92	%	80 - 120
9615593	EMT	Method Blank	Orthophosphate (P)	2024/09/05	<0.010		mg/L	
9615593	EMT	RPD	Orthophosphate (P)	2024/09/05	NC		%	20
9615594	EMT	Matrix Spike	Nitrate + Nitrite (N)	2024/09/05		NC	%	80 - 120
9615594	EMT	Spiked Blank	Nitrate + Nitrite (N)	2024/09/05		97	%	80 - 120
9615594	EMT	Method Blank	Nitrate + Nitrite (N)	2024/09/05	<0.050		mg/L	
9615594	EMT	RPD	Nitrate + Nitrite (N)	2024/09/05	0.90		%	20
9615597	EMT	Matrix Spike	Nitrite (N)	2024/09/05		96	%	80 - 120
9615597	EMT	Spiked Blank	Nitrite (N)	2024/09/05		100	%	80 - 120
9615597	EMT	Method Blank	Nitrite (N)	2024/09/05	<0.010		mg/L	
9615597	EMT	RPD	Nitrite (N)	2024/09/05	NC		%	20
9615672	ACK	Matrix Spike	Total Organic Carbon (C)	2024/09/04		100	%	85 - 115
9615672	ACK	Spiked Blank	Total Organic Carbon (C)	2024/09/04		109	%	80 - 120
9615672	ACK	Method Blank	Total Organic Carbon (C)	2024/09/04	<0.50		mg/L	

Bureau Veritas Job #: C4R085! Report Date: 2024/09/09 **GHD** Limited

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9615672	ACK	RPD	Total Organic Carbon (C)	2024/09/04	NC		%	15
9615679	ACK	Matrix Spike	Total Organic Carbon (C)	2024/09/04		98	%	85 - 115
9615679	ACK	Spiked Blank	Total Organic Carbon (C)	2024/09/04		100	%	80 - 120
9615679	ACK	Method Blank	Total Organic Carbon (C)	2024/09/04	<0.50		mg/L	
9615679	ACK	RPD	Total Organic Carbon (C)	2024/09/04	0.33		%	15
9615686	ACK	Matrix Spike	Total Organic Carbon (C)	2024/09/04		99	%	85 - 115
9615686	ACK	Spiked Blank	Total Organic Carbon (C)	2024/09/04		101	%	80 - 120
9615686	ACK	Method Blank	Total Organic Carbon (C)	2024/09/04	<0.50		mg/L	
9615686	ACK	RPD	Total Organic Carbon (C)	2024/09/04	NC		%	15
9616213	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2024/09/04		82	%	80 - 120
9616213	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2024/09/04		96	%	80 - 120
9616213	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2024/09/04	<0.050		mg/L	
9616213	MCN	RPD	Nitrogen (Ammonia Nitrogen)	2024/09/04	16		%	20
9616225	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2024/09/04		90	%	80 - 120
9616225	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2024/09/04		97	%	80 - 120
9616225	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2024/09/04	<0.050		mg/L	
9616225	MCN	RPD	Nitrogen (Ammonia Nitrogen)	2024/09/04	NC		%	20
9616540	KMC	Spiked Blank	рН	2024/09/05		99	%	97 - 103
9616540	KMC	RPD	рН	2024/09/05	0.089		%	N/A
9616541	KMC	Spiked Blank	Conductivity	2024/09/05		95	%	80 - 120
9616541	KMC	Method Blank	Conductivity	2024/09/05	<1.0		uS/cm	
9616541	KMC	RPD	Conductivity	2024/09/05	0.23		%	10
9616544	KMC	Spiked Blank	Total Alkalinity (Total as CaCO3)	2024/09/05		100	%	80 - 120
9616544	KMC	Method Blank	Total Alkalinity (Total as CaCO3)	2024/09/05	<2.0		mg/L	
9616544	KMC	RPD	Total Alkalinity (Total as CaCO3)	2024/09/05	1.9		%	20
9616556	KMC	•	рН	2024/09/05		99	%	97 - 103
9616556	KMC	RPD	рН	2024/09/05	0.31		%	N/A
9616565	KMC	Spiked Blank	Conductivity	2024/09/05		95	%	80 - 120
9616565	KMC	Method Blank	Conductivity	2024/09/05	<1.0		uS/cm	
9616565	KMC	RPD	Conductivity	2024/09/05	2.0		%	10
9616567	KMC	Spiked Blank	Total Alkalinity (Total as CaCO3)	2024/09/05		99	%	80 - 120
9616567	KMC	Method Blank	Total Alkalinity (Total as CaCO3)	2024/09/05	<2.0		mg/L	
9616567	KMC	RPD	Total Alkalinity (Total as CaCO3)	2024/09/05	1.5		%	20
9616578	KMC	Spiked Blank	рН	2024/09/05		99	%	97 - 103
9616578	KMC	RPD [ABLU46-02]	рН	2024/09/05	1.3		%	N/A
9616596	KMC	Spiked Blank	Conductivity	2024/09/05		94	%	80 - 120
9616596	KMC	Method Blank	Conductivity	2024/09/05	<1.0		uS/cm	
9616596	KMC	RPD [ABLU46-02]	Conductivity	2024/09/05	0.65		%	10
9616598	KMC	Spiked Blank	Total Alkalinity (Total as CaCO3)	2024/09/05		99	%	80 - 120
9616598	KMC	Method Blank	Total Alkalinity (Total as CaCO3)	2024/09/05	<2.0		mg/L	
9616598	KMC	RPD [ABLU46-02]	Total Alkalinity (Total as CaCO3)	2024/09/05	1.6		%	20
9618219	JHY	Matrix Spike	Dissolved Aluminum (AI)	2024/09/05		NC	%	80 - 120
			Dissolved Antimony (Sb)	2024/09/05		98	%	80 - 120
			Dissolved Arsenic (As)	2024/09/05		97	%	80 - 120
			Dissolved Barium (Ba)	2024/09/05		90	%	80 - 120
			Dissolved Beryllium (Be)	2024/09/05		98	%	80 - 120
			Dissolved Bismuth (Bi)	2024/09/05		95	%	80 - 120
			Dissolved Boron (B)	2024/09/05		NC	%	80 - 120
			Dissolved Cadmium (Cd)	2024/09/05		100	%	80 - 120
			Dissolved Calcium (Ca)	2024/09/05		NC	%	80 - 120
			Dissolved Chromium (Cr)	2024/09/05		95	%	80 - 120
			Dissolved Cobalt (Co)	2024/09/05		93	%	80 - 120
			Dissolved Copper (Cu)	2024/09/05		92	%	80 - 120

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Iron (Fe)	2024/09/05		100	%	80 - 120
			Dissolved Lead (Pb)	2024/09/05		94	%	80 - 120
			Dissolved Magnesium (Mg)	2024/09/05		NC	%	80 - 120
			Dissolved Manganese (Mn)	2024/09/05		NC	%	80 - 120
			Dissolved Molybdenum (Mo)	2024/09/05		102	%	80 - 120
			Dissolved Nickel (Ni)	2024/09/05		95	%	80 - 120
			Dissolved Phosphorus (P)	2024/09/05		103	%	80 - 120
			Dissolved Potassium (K)	2024/09/05		101	%	80 - 120
			Dissolved Selenium (Se)	2024/09/05		99	%	80 - 120
			Dissolved Silver (Ag)	2024/09/05		87	%	80 - 120
			Dissolved Sodium (Na)	2024/09/05		NC	%	80 - 120
			Dissolved Strontium (Sr)	2024/09/05		NC	%	80 - 120
			Dissolved Thallium (TI)	2024/09/05		96	%	80 - 120
			Dissolved Tin (Sn)	2024/09/05		98	%	80 - 120
			Dissolved Titanium (Ti)	2024/09/05		96	%	80 - 120
			Dissolved Uranium (U)	2024/09/05		101	%	80 - 120
			Dissolved Vanadium (V)	2024/09/05		98	%	80 - 120
			Dissolved Zinc (Zn)	2024/09/05		95	%	80 - 120
9618219	JHY	Spiked Blank	Dissolved Aluminum (AI)	2024/09/05		98	%	80 - 120
			Dissolved Antimony (Sb)	2024/09/05		99	%	80 - 120
			Dissolved Arsenic (As)	2024/09/05		98	%	80 - 120
			Dissolved Barium (Ba)	2024/09/05		99	%	80 - 120
			Dissolved Beryllium (Be)	2024/09/05		97	%	80 - 120
			Dissolved Bismuth (Bi)	2024/09/05		95	%	80 - 120
			Dissolved Boron (B)	2024/09/05		99	%	80 - 120
			Dissolved Cadmium (Cd)	2024/09/05		98	%	80 - 120
			Dissolved Calcium (Ca)	2024/09/05		101	%	80 - 120
			Dissolved Chromium (Cr)	2024/09/05		97	%	80 - 120
			Dissolved Cobalt (Co)	2024/09/05		96	%	80 - 120
			Dissolved Copper (Cu)	2024/09/05		97	%	80 - 120
			Dissolved Iron (Fe)	2024/09/05		103	%	80 - 120
			Dissolved Lead (Pb)	2024/09/05		96	%	80 - 120
			Dissolved Magnesium (Mg)	2024/09/05		104	%	80 - 120
			Dissolved Manganese (Mn)	2024/09/05		99	%	80 - 120
			Dissolved Molybdenum (Mo)	2024/09/05		103	%	80 - 120
			Dissolved Nickel (Ni)	2024/09/05		98	%	80 - 120
			Dissolved Nickel (Ni) Dissolved Phosphorus (P)	2024/09/05		104	%	80 - 120
			Dissolved Priosphorus (F) Dissolved Potassium (K)	2024/09/05		104	%	80 - 120
			Dissolved Fotassium (K) Dissolved Selenium (Se)	2024/09/05		100	%	80 - 120
			Dissolved Seleman (Se) Dissolved Silver (Ag)	2024/09/05		95	%	80 - 120
			Dissolved Silver (Ag) Dissolved Sodium (Na)	2024/09/05		106		80 - 120
			Dissolved Sodium (Na) Dissolved Strontium (Sr)	2024/09/05		96	%	80 - 120
			` '				%	
			Dissolved Thallium (TI)	2024/09/05		96	%	80 - 120
			Dissolved Tin (Sn) Dissolved Titanium (Ti)	2024/09/05		98	%	80 - 120
			Dissolved Titanium (TI) Dissolved Uranium (U)	2024/09/05		99	%	80 - 120
			• •	2024/09/05		99 101	%	80 - 120
			Dissolved Vanadium (V)	2024/09/05		101	%	80 - 120
0640340	11.157	Mathad District	Dissolved Zinc (Zn)	2024/09/05	4F O	100	%	80 - 120
9618219	JHY	Method Blank	Dissolved Autimorny (Sh)	2024/09/05	<5.0		ug/L	
			Dissolved Antimony (Sb)	2024/09/05	<1.0		ug/L	
			Dissolved Arsenic (As)	2024/09/05	<1.0		ug/L	
			Dissolved Barium (Ba)	2024/09/05	<1.0		ug/L	
			Dissolved Beryllium (Be)	2024/09/05	<0.10		ug/L	

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Bismuth (Bi)	2024/09/05	<2.0		ug/L	
			Dissolved Boron (B)	2024/09/05	<50		ug/L	
			Dissolved Cadmium (Cd)	2024/09/05	<0.010		ug/L	
			Dissolved Calcium (Ca)	2024/09/05	<100		ug/L	
			Dissolved Chromium (Cr)	2024/09/05	<1.0		ug/L	
			Dissolved Cobalt (Co)	2024/09/05	<0.40		ug/L	
			Dissolved Copper (Cu)	2024/09/05	<0.50		ug/L	
			Dissolved Iron (Fe)	2024/09/05	<50		ug/L	
			Dissolved Lead (Pb)	2024/09/05	<0.50		ug/L	
			Dissolved Magnesium (Mg)	2024/09/05	<100		ug/L	
			Dissolved Manganese (Mn)	2024/09/05	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2024/09/05	<2.0		ug/L	
			Dissolved Nickel (Ni)	2024/09/05	<2.0		ug/L	
			Dissolved Phosphorus (P)	2024/09/05	<100		ug/L	
			Dissolved Potassium (K)	2024/09/05	<100		ug/L	
			Dissolved Selenium (Se)	2024/09/05	<0.50		ug/L	
			Dissolved Silver (Ag)	2024/09/05	<0.10		ug/L	
			Dissolved Sodium (Na)	2024/09/05	<100		ug/L	
			Dissolved Strontium (Sr)	2024/09/05	<2.0		ug/L	
			Dissolved Thallium (TI)	2024/09/05	<0.10		ug/L	
			Dissolved Tin (Sn)	2024/09/05	<2.0		ug/L	
			Dissolved Titanium (Ti)	2024/09/05	<2.0		ug/L	
			Dissolved Uranium (U)	2024/09/05	<0.10		ug/L	
			Dissolved Vanadium (V)	2024/09/05	<2.0		ug/L	
			Dissolved Zinc (Zn)	2024/09/05	<5.0		ug/L	
9618219	JHY	RPD	Dissolved Aluminum (Al)	2024/09/05	1.2		%	20
			Dissolved Antimony (Sb)	2024/09/05	NC		%	20
			Dissolved Arsenic (As)	2024/09/05	1.3		%	20
			Dissolved Barium (Ba)	2024/09/05	2.1		%	20
			Dissolved Beryllium (Be)	2024/09/05	3.1		%	20
			Dissolved Bismuth (Bi)	2024/09/05	NC		%	20
			Dissolved Boron (B)	2024/09/05	0.78		%	20
			Dissolved Cadmium (Cd)	2024/09/05	0.86		%	20
			Dissolved Calcium (Ca)	2024/09/05	0.45		%	20
			Dissolved Chromium (Cr)	2024/09/05	NC		%	20
			Dissolved Cobalt (Co)	2024/09/05	3.3		%	20
			Dissolved Copper (Cu)	2024/09/05	2.0		%	20
			Dissolved Iron (Fe)	2024/09/05	0.19		%	20
			Dissolved Lead (Pb)	2024/09/05	NC		%	20
			Dissolved Magnesium (Mg)	2024/09/05	0.75		%	20
			Dissolved Manganese (Mn)	2024/09/05	0.83		%	20
			Dissolved Molybdenum (Mo)	2024/09/05	NC		%	20
			Dissolved Nickel (Ni)	2024/09/05	1.7		%	20
			Dissolved Phosphorus (P)	2024/09/05	NC		%	20
			Dissolved Potassium (K)	2024/09/05	0.58		%	20
			Dissolved Selenium (Se)	2024/09/05	NC		%	20
			Dissolved Selver (Ag)	2024/09/05	NC		%	20
			Dissolved Silver (Ag) Dissolved Sodium (Na)	2024/09/05	2.4		%	20
			Dissolved Souldin (Na) Dissolved Strontium (Sr)	2024/09/05	1.2		%	20
			Dissolved Strontium (Sr) Dissolved Thallium (Tl)	2024/09/05	NC		% %	20
			Dissolved Thailidin (Tr) Dissolved Tin (Sn)	2024/09/05	NC		%	20
			Dissolved Titr (Sit) Dissolved Titanium (Ti)	2024/09/05	NC		%	20
			Dissolved Tranium (T) Dissolved Uranium (U)	2024/09/05	6.9		%	20
			Page 27 o		0.5		/0	

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Vanadium (V)	2024/09/05	NC		%	20
			Dissolved Zinc (Zn)	2024/09/05	0.32		%	20
9618235	MOA	Matrix Spike [ABLU50-02]	Dissolved Aluminum (Al)	2024/09/05		96	%	80 - 120
			Dissolved Antimony (Sb)	2024/09/05		101	%	80 - 120
			Dissolved Arsenic (As)	2024/09/05		98	%	80 - 120
			Dissolved Barium (Ba)	2024/09/05		94	%	80 - 120
			Dissolved Beryllium (Be)	2024/09/05		100	%	80 - 120
			Dissolved Bismuth (Bi)	2024/09/05		98	%	80 - 120
			Dissolved Boron (B)	2024/09/05		96	%	80 - 120
			Dissolved Cadmium (Cd)	2024/09/05		99	%	80 - 120
			Dissolved Calcium (Ca)	2024/09/05		98	%	80 - 120
			Dissolved Chromium (Cr)	2024/09/05		96	%	80 - 120
			Dissolved Cobalt (Co)	2024/09/05		96	%	80 - 120
			Dissolved Copper (Cu)	2024/09/05		98	%	80 - 120
			Dissolved Iron (Fe)	2024/09/05		98	%	80 - 120
			Dissolved Lead (Pb)	2024/09/05		97	%	80 - 120
			Dissolved Magnesium (Mg)	2024/09/05		100	%	80 - 120
			Dissolved Manganese (Mn)	2024/09/05		NC	%	80 - 120
			Dissolved Molybdenum (Mo)	2024/09/05		103	%	80 - 120
			Dissolved Nickel (Ni)	2024/09/05		98	%	80 - 120
			Dissolved Phosphorus (P)	2024/09/05		104	%	80 - 120
			Dissolved Potassium (K)	2024/09/05		103	%	80 - 120
			Dissolved Selenium (Se)	2024/09/05		98	%	80 - 120
			Dissolved Silver (Ag)	2024/09/05		98	%	80 - 120
			Dissolved Sodium (Na)	2024/09/05		98	%	80 - 120
			Dissolved Strontium (Sr)	2024/09/05		98	%	80 - 120
			Dissolved Thallium (TI)	2024/09/05		99	%	80 - 120
			Dissolved Tin (Sn)	2024/09/05		99	%	80 - 120
			Dissolved Titanium (Ti)	2024/09/05		98	%	80 - 120
			Dissolved Uranium (U)	2024/09/05		106	%	80 - 120
			Dissolved Vanadium (V)	2024/09/05		99	%	80 - 120
			Dissolved Zinc (Zn)	2024/09/05		102	%	80 - 120
9618235	MOA	Spiked Blank	Dissolved Aluminum (AI)	2024/09/05		99	%	80 - 120
		·	Dissolved Antimony (Sb)	2024/09/05		100	%	80 - 120
			Dissolved Arsenic (As)	2024/09/05		98	%	80 - 120
			Dissolved Barium (Ba)	2024/09/05		97	%	80 - 120
			Dissolved Beryllium (Be)	2024/09/05		98	%	80 - 120
			Dissolved Bismuth (Bi)	2024/09/05		96	%	80 - 120
			Dissolved Boron (B)	2024/09/05		93	%	80 - 120
			Dissolved Cadmium (Cd)	2024/09/05		97	%	80 - 120
			Dissolved Calcium (Ca)	2024/09/05		100	%	80 - 120
			Dissolved Chromium (Cr)	2024/09/05		97	%	80 - 120
			Dissolved Cobalt (Co)	2024/09/05		97	%	80 - 120
			Dissolved Copper (Cu)	2024/09/05		99	%	80 - 120
			Dissolved Iron (Fe)	2024/09/05		103	%	80 - 120
			Dissolved Lead (Pb)	2024/09/05		97	%	80 - 120
			Dissolved Magnesium (Mg)	2024/09/05		103	%	80 - 120
			Dissolved Manganese (Mn)	2024/09/05		99	%	80 - 120
			Dissolved Molybdenum (Mo)	2024/09/05		99	%	80 - 120
			Dissolved Nickel (Ni)	2024/09/05		99	%	80 - 120
			Dissolved Phosphorus (P)	2024/09/05		103	%	80 - 120
			· · · · · ·	2024/09/05				
			Dissolved Potassium (K)			104	%	80 - 120
			Dissolved Selenium (Se)	2024/09/05		97	<u>%</u>	80 - 120

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Silver (Ag)	2024/09/05		97	%	80 - 120
			Dissolved Sodium (Na)	2024/09/05		100	%	80 - 120
			Dissolved Strontium (Sr)	2024/09/05		100	%	80 - 120
			Dissolved Thallium (TI)	2024/09/05		97	%	80 - 120
			Dissolved Tin (Sn)	2024/09/05		99	%	80 - 120
			Dissolved Titanium (Ti)	2024/09/05		103	%	80 - 120
			Dissolved Uranium (U)	2024/09/05		105	%	80 - 120
			Dissolved Vanadium (V)	2024/09/05		100	%	80 - 120
			Dissolved Zinc (Zn)	2024/09/05		100	%	80 - 120
9618235	MOA	Method Blank	Dissolved Aluminum (AI)	2024/09/05	<5.0		ug/L	
			Dissolved Antimony (Sb)	2024/09/05	<1.0		ug/L	
			Dissolved Arsenic (As)	2024/09/05	<1.0		ug/L	
			Dissolved Barium (Ba)	2024/09/05	<1.0		ug/L	
			Dissolved Beryllium (Be)	2024/09/05	<0.10		ug/L	
			Dissolved Bismuth (Bi)	2024/09/05	<2.0		ug/L	
			Dissolved Boron (B)	2024/09/05	<50		ug/L	
			Dissolved Cadmium (Cd)	2024/09/05	<0.010		ug/L	
			Dissolved Calcium (Ca)	2024/09/05	<100		ug/L	
			Dissolved Chromium (Cr)	2024/09/05	<1.0		ug/L	
			Dissolved Cobalt (Co)	2024/09/05	<0.40		ug/L	
			Dissolved Copper (Cu)	2024/09/05	<0.50		ug/L	
			Dissolved Iron (Fe)	2024/09/05	<50		ug/L	
			Dissolved Lead (Pb)	2024/09/05	<0.50		ug/L	
			Dissolved Magnesium (Mg)	2024/09/05	<100		ug/L	
			Dissolved Manganese (Mn)	2024/09/05	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2024/09/05	<2.0		ug/L	
			Dissolved Nickel (Ni)	2024/09/05	<2.0		ug/L	
			Dissolved Phosphorus (P)	2024/09/05	<100		ug/L	
			Dissolved Potassium (K)	2024/09/05	<100		ug/L	
			Dissolved Selenium (Se)	2024/09/05	<0.50		ug/L	
			Dissolved Silver (Ag)	2024/09/05	<0.10		ug/L	
			Dissolved Sodium (Na)	2024/09/05	<100		ug/L	
			Dissolved Strontium (Sr)	2024/09/05	<2.0		ug/L	
			Dissolved Thallium (TI)	2024/09/05	<0.10		ug/L	
			Dissolved Tin (Sn)	2024/09/05	<2.0		ug/L	
			Dissolved Titanium (Ti)	2024/09/05	<2.0		ug/L	
			Dissolved Uranium (U)	2024/09/05	<0.10		ug/L	
			Dissolved Vanadium (V)	2024/09/05	<2.0		ug/L	
			Dissolved Zinc (Zn)	2024/09/05	<5.0		ug/L	
9618235	MOA	RPD [ABLU50-02]	Dissolved Aluminum (Al)	2024/09/05	NC		%	20
			Dissolved Antimony (Sb)	2024/09/05	NC		%	20
			Dissolved Arsenic (As)	2024/09/05	NC		%	20
			Dissolved Barium (Ba)	2024/09/05	0.81		%	20
			Dissolved Beryllium (Be)	2024/09/05	NC		%	20
			Dissolved Bismuth (Bi)	2024/09/05	NC		%	20
			Dissolved Boron (B)	2024/09/05	NC		%	20
			Dissolved Cadmium (Cd)	2024/09/05	7.4		%	20
			Dissolved Calcium (Ca)	2024/09/05	0.81		%	20
			Dissolved Chromium (Cr)	2024/09/05	NC		%	20
			Dissolved Cobalt (Co)	2024/09/05	0.25		%	20
			Dissolved Copper (Cu)	2024/09/05	0.085		%	20
			Dissolved Iron (Fe)	2024/09/05	NC		%	20
			Dissolved Lead (Pb)	2024/09/05	NC		%	20

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Magnesium (Mg)	2024/09/05	1.5		%	20
			Dissolved Manganese (Mn)	2024/09/05	0.66		%	20
			Dissolved Molybdenum (Mo)	2024/09/05	NC		%	20
			Dissolved Nickel (Ni)	2024/09/05	5.2		%	20
			Dissolved Phosphorus (P)	2024/09/05	NC		%	20
			Dissolved Potassium (K)	2024/09/05	0.41		%	20
			Dissolved Selenium (Se)	2024/09/05	NC		%	20
			Dissolved Silver (Ag)	2024/09/05	NC		%	20
			Dissolved Sodium (Na)	2024/09/05	0.62		%	20
			Dissolved Strontium (Sr)	2024/09/05	2.8		%	20
			Dissolved Thallium (TI)	2024/09/05	NC		%	20
			Dissolved Tin (Sn)	2024/09/05	NC		%	20
			Dissolved Titanium (Ti)	2024/09/05	NC		%	20
			Dissolved Uranium (U)	2024/09/05	NC		%	20
			Dissolved Vanadium (V)	2024/09/05	NC		%	20
			Dissolved Zinc (Zn)	2024/09/05	1.1		%	20
9619404	M2C	QC Standard	Turbidity	2024/09/05		99	%	80 - 120
9619404	M2C	Spiked Blank	Turbidity	2024/09/05		104	%	80 - 120
9619404	M2C	Method Blank	Turbidity	2024/09/05	< 0.10		NTU	
9619404	M2C	RPD [ABLU55-01]	Turbidity	2024/09/05	2.3		%	20
9622195	M2C	QC Standard	Turbidity	2024/09/06		98	%	80 - 120
9622195	M2C	Spiked Blank	Turbidity	2024/09/06		102	%	80 - 120
9622195	M2C	Method Blank	Turbidity	2024/09/06	< 0.10		NTU	
9622195	M2C	RPD [ABLU53-01]	Turbidity	2024/09/06	1.1		%	20
9622206	M2C	QC Standard	Turbidity	2024/09/06		95	%	80 - 120
9622206	M2C	Spiked Blank	Turbidity	2024/09/06		104	%	80 - 120
9622206	M2C	Method Blank	Turbidity	2024/09/06	< 0.10		NTU	
9622206	M2C	RPD	Turbidity	2024/09/06	3.3		%	20
9625708	M2C	QC Standard	Turbidity	2024/09/09		109	%	80 - 120
9625708	M2C	Spiked Blank	Turbidity	2024/09/09		106	%	80 - 120
9625708	M2C	Method Blank	Turbidity	2024/09/09	< 0.10		NTU	
9625708	M2C	RPD	Turbidity	2024/09/09	13		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Recovery is within QC acceptance limits. < 10 % of compounds in multi-component analysis in violation.
- (2) Poor spike recovery due to probable sample matrix interference.

Client Project #: 12584960

Site Location: Shaw-Proposed Sandpit Middleton

Your P.O. #: 735-009799

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Ernlie Publicover, Scientific Specialist

Anah M. Bhynw

Janah Rhyno, Scientific Specialist

Automated Statchk

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Suzanne Rogers, General Manager responsible for Nova Scotia Environmental laboratory operations.

1/08/30	0 09:20	Bures, Ventas 200 Bioewater Road: Bedford Nov	va Scota Canada B48 1	169 Je 190	02) 420-0203 160	l-tree 800-56	3-6296 F	ax (9 02) 420	-Et 72 ww	w.byna.com						Chain C	Of Custody Record	Page 1 of 2
IST SEATING		IVOICE TO:				Report In	ormation	1	-	-	1	_	Project Inf	ormation			Laboratory Use	Only
npany Name	#16276 GHD L	mited	Com	pany Name	GI.	HD	4				Quotation	· a	C40091				Bureau Veritas Job #	Bottle Order#:
tacr Name	Accounts Payab	e		act Name	Glen Merkle	ey/Sadle	acobs-	Peters			P 0 #		735-00979	99				1000000000
ress	120 Western Pa		Addr	959							Project#		12584960					1007056
	(902) 468-1248		2207		10001 000	TOP					Project No	ame	Shau	1 Sand1	pit		Chain Of Custody Record	Project Manager
int.	AccountsPayable	Fax: (902) 468 eCDN@ghd.com	Phon Email		(902) 802-4 glen.merkle	1.00		Fax die.jacobs	-peters	@ghd.con	Site # Sampled	By S.	monzo	m B.P	errin	e	C#1007056-01-01	Mane Muse
egulatory (Criteria		100		ristructions					ANALY			ASE BE SPECIFIC				Turnaround Time (TAT) R	tequired:
** Spacity b	Matrix Surface/Ground/Tea	owater/Sewage/Effluent/Séawater	"F"=1	Fiel ilt	ered	1	perved	otal Metals in	olids	lived (FieldFilt) in						Standard TAT	Please provide advance notice for ndard) TAT: of if Rush TAT is not specified): = 5-7 Working days for most tests Standard TAT for cortain tests such as B tyour Project Manager for datate.	
	Potable/Nonpotable/Tiss	ue/Soil/Sludge/Metal OOL (<10°C) FROM TIME OF SAM	MPLING UNTIL DELIVE	RY TO BUI	REAU VERITAS		Filtered & Pres	Atlantic RCAp-MS Total Metals Water	Suspended Solids	RCAp-MS Dissolved						Job Specific	c Rush TAT (if applies to entire submid) Time R Comments / Hazards / Othe	equired:
Sampl	le Barcode Label	Sample (Location) Identification	Date Samp	led	Time Sampled	Matrix	Field	Atla	Total	₹3						Bottles	Continuents (Flaggings / Chile	Required Arialysis
	SID#673497	SW1	29 AU	145	558	SW		X	X							5		
	SID#673498	SW2	29 AU7	24 1	634	SW	П	x	X							5		
	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SW3			,	_		×	x									
	SID#673500	SW4		-	_	_		х	X								回路范围	
	SID#673501	SW5						×	X								33 37 .	EDE 2024
		SW DUP	29A	1924	1515	Sw		x	х							5		EDF-2024-08-15
	SID#673503	MW1		0	1515	BI W	X			x						4		
	SID#673504	MW2		9	453	Ga	X			x								
	SID#673505	MW3			432	GW	X			x								
	SID#673506	MW4	V	1200	202	6Va	X			х						1		
* RELIF	NOUISHED BY: (Signature		9/08/29	Time 843	& au	RECE		(Signature/P	rint)	~	Date: (Y	(Y/MM/DD)	Time	# jars used and not submitted	Time Sensi	live Temp	Lab Use Only erature (*C) on Receipt Custo	ody Seal Intact on Cooler?

ICE YOU

AUCTO 1838

Bureau Veritas Canada (2019) Inc.

VERTON	0 09:20	Bureau Ventas 200 Bluewster Road Bed ind Nova	s Scor a Canada B4B	I IG9 Tel	(902) -20-0203 To	Uree 800-563	-625ā (ax (902) 42	5-8672 www	by a com						Chain	Of Custody Record	Page 2 of
		INVOICE TO:				Report Info	ormatio	n					Project Inf	ormation			Laboratory	Use Only
npany Nam	e #16276 GHD L	imited	Con	mpany Nar	- G1 1	10					Quotation #		C40091				Bureau Veritas Job #	Bottle Order #:
ntact Name	Accounts Payab		Con	Hact Name	Glen Merk	ey/Sadie J	acobs	Peters			P.O #		735-00979					140000000000
tress	120 Western Pa Bedford NS B4E		Add	vess.	1						Project #		12584960		- 1		Chain Of Custody Record	1007056
one	(902) 468-1248		2207 Pho		(902) 802-	4790	-	Paris .	_	_	_ Project Nan			J Sand		-		Project Manage
ail		leCDN@ghd.com	Emi		glen.merkl		m,Sa	faxdie.jacobs	s-peters(ghd.com	Site #	Sm	01200	1 /Gi. Pe	crin	e	C#1007056-02-01	Marie Muise
Regulatory I	Criteria				al Instructions		TI			ANALY			E BE SPECIFIC				Turnaround Time (TA	AT) Required
			"F"=F		1 7.1	teled				2					1		Please provide advance notice	ice for rush projects
** Specify I	Matrix: Surface/Ground/Ta	apwater/Sewage/Effluent/Seawater	1 - 7	101	d III	CCA	rved	Total Metals in	Solids	Dissolved (FieldFilt)					n s	will be appli Standard TA Nease note	andard) TAT: ied if Rush TAT is not specified): AT = 5-7 Working days for most test; Standard TAT for certain tests such ict your Project Manager for details.	
SAI	MPLES MUST BE KEPT (COOL (<10°C) FROM TIME OF SAMP	PLING UNTIL DELIV	ERY TO E		Matrix	Field Filtered & Pr	ntic RC/	Total Suspended	At RCAp-MS D						# of Bottles		ime Required
Samo	le Barcode Label	Sample (Location) Identification	Date Sam	pled	Time Sampled													
010010	le Barcode Label	Sample (Location) Identification MW5	Oate Sam	-	1307			142	-	x						4		
0000	SID#673507	47.0	29Av	724	1302	GIW	X		-		1	-				11		
	SID#673507 SID#673507 SID#673508	MW5	29 Av	-			X	K		×						4		
	SID#673509	MW5 MW6	2940	724	1302	GIW GIW	X	X		x						11		
1000 1000 1000 1000	SID#673509	MW5 MW6 MW7 MWDUP	29 Av	724	1302	GIW	X			x x						4		
	SID#673509	MW5 MW6 MW7	29 Aug	724	1302	GW GW	X	X	-	x x						4		
	SID#673509	MW5 MW6 MW7 MWDUP	29 Aug	724	1302	GW GW GW	X	X	-	× × × × × X						4		
EMETER EMETER EMETER	SID#673509	MW5 MW6 MW7 MWDUP	29 Aug	724	1302	GW GW GW	X	X		× × × × × X						4		
	SID#673509	MW5 MW6 MW7 MWDUP	29 Aug	724	1302	GW GW GW	X	X	-	× × × × × X						4		
EMETER EMETER EMETER	SID#673509	MW5 MW6 MW7 MWDUP	29 Aug	724	1302	GW GW GW	X	X	-	× × × × × X						4		
EMPLO	SID#673509	MW5 MW6 MW7 MWDUP MW8 MW9	29 Aug	724	1302	GW GW GW 11	X	X		× × × × × X	Date: (YY	(MM/DD)	Time	# jers used and		4	Lab Use Only	

Tre-yes

W140636 H26

Bureau Veritas Canada (2019) Inc.

Your P.O. #: 735-009799 Your Project #: 12584960 Your C.O.C. #: C#1015035-01-01

Attention: Glen Merkley

GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2

Report Date: 2024/11/08

Report #: R8396754 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4Y5693 Received: 2024/11/01, 14:52

Sample Matrix: Ground Water # Samples Received: 13

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Carbonate, Bicarbonate and Hydroxide	13	N/A	2024/11/07	N/A	SM 24 4500-CO2 D
Alkalinity	13	N/A	2024/11/06	ATL SOP 00142	SM 24 2320 B
Chloride	13	N/A	2024/11/06	ATL SOP 00014	SM 24 4500-Cl- E m
Colour	13	N/A	2024/11/06	ATL SOP 00020	SM 24 2120C m
Conductance - water	13	N/A	2024/11/06	ATL SOP 00004	SM 24 2510B m
Hardness (calculated as CaCO3)	8	N/A	2024/11/06	ATL SOP 00048	Auto Calc
Hardness (calculated as CaCO3)	4	N/A	2024/11/07	ATL SOP 00048	Auto Calc
Hardness (calculated as CaCO3)	1	N/A	2024/11/08	ATL SOP 00048	Auto Calc
Metals Water Diss. MS- Field Filtered	4	N/A	2024/11/05	ATL SOP 00058	EPA 6020B R2 m
Metals Water Diss. MS- Field Filtered	4	N/A	2024/11/06	ATL SOP 00058	EPA 6020B R2 m
Metals Water Total MS	4	2024/11/05	2024/11/05	ATL SOP 00058	EPA 6020B R2 m
Metals Water Total MS	1	2024/11/07	2024/11/07	ATL SOP 00058	EPA 6020B R2 m
Ion Balance (% Difference)	13	N/A	2024/11/08	N/A	Auto Calc.
Anion and Cation Sum	13	N/A	2024/11/08	N/A	Auto Calc.
Nitrogen Ammonia - water	12	N/A	2024/11/07	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen Ammonia - water	1	N/A	2024/11/08	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	13	N/A	2024/11/06	ATL SOP 00016	USGS I-2547-11m
Nitrogen - Nitrite	13	N/A	2024/11/06	ATL SOP 00017	SM 24 4500-NO2- B m
Nitrogen - Nitrate (as N)	13	N/A	2024/11/07	ATL SOP 00018	ASTM D3867-16
pH (1)	13	N/A	2024/11/06	ATL SOP 00003	SM 24 4500-H+ B m
Phosphorus - ortho	13	N/A	2024/11/06	ATL SOP 00021	SM 24 4500-P E m
Sat. pH and Langelier Index (@ 20C)	13	N/A	2024/11/08	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	13	N/A	2024/11/08	ATL SOP 00049	Auto Calc.
Reactive Silica	13	N/A	2024/11/06	ATL SOP 00022	EPA 366.0 m
Sulphate	13	N/A	2024/11/06	ATL SOP 00023	ASTM D516-16 m
Total Dissolved Solids (TDS calc)	13	N/A	2024/11/08	N/A	Auto Calc.
Organic carbon - Total (TOC) (2)	6	N/A	2024/11/06	ATL SOP 00203	SM 24 5310B m
Organic carbon - Total (TOC) (2)	7	N/A	2024/11/07	ATL SOP 00203	SM 24 5310B m
Total Suspended Solids	5	2024/11/05	2024/11/06	ATL SOP 00007	SM 24 2540D m
Turbidity	13	N/A	2024/11/07	ATL SOP 00011	EPA 180.1 R2 m

Remarks:

Your P.O. #: 735-009799 Your Project #: 12584960 Your C.O.C. #: C#1015035-01-01

Attention: Glen Merkley

GHD Limited 120 Western Parkway Bedford, NS CANADA B4B 0V2

Report Date: 2024/11/08

Report #: R8396754 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4Y5693

Received: 2024/11/01. 14:52

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) The APHA Standard Method requires pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.
- (2) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Encryption Key

08 Nov 2024 15:54:19

Please direct all questions regarding this Certificate of Analysis to:

Marie Muise, Key Account Specialist Email: Marie.MUISE@bureauveritas.com Phone# (902)420-0203 Ext:253

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor

validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Suzanne Rogers, General Manager

responsible for Nova Scotia Environmental laboratory operations.

Client Project #: 12584960 Your P.O. #: 735-009799

RESULTS OF ANALYSES OF GROUND WATER

Bureau Veritas ID		AHTH99				AHTH99			
Sampling Date		2024/10/31 12:56				2024/10/31 12:56			
COC Number		C#1015035-01-01				C#1015035-01-01			
	UNITS	SW1	RDL	MDL	QC Batch	SW1 Lab-Dup	RDL	MDL	QC Batch
Calculated Parameters									
Anion Sum	me/L	0.610	N/A	N/A	9743283				
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	20	1.0	0.20	9743276				
Calculated TDS	mg/L	44	1.0	0.20	9743290				
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	0.20	9743276				
Cation Sum	me/L	0.710	N/A	N/A	9743283				
Hardness (CaCO3)	mg/L	23	1.0	1.0	9743280				
Ion Balance (% Difference)	%	7.58	N/A	N/A	9743282				
Langelier Index (@ 20C)	N/A	-1.96			9743286				
Langelier Index (@ 4C)	N/A	-2.21			9743289				
Nitrate (N)	mg/L	<0.050	0.050	N/A	9743284				
Saturation pH (@ 20C)	N/A	9.24			9743286				
Saturation pH (@ 4C)	N/A	9.49			9743289				
Inorganics									
Total Alkalinity (Total as CaCO3)	mg/L	20	2.0	N/A	9748420	21	2.0	N/A	9748420
Dissolved Chloride (Cl-)	mg/L	4.4	1.0	N/A	9748090				
Colour	TCU	40	5.0	N/A	9748134				
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	N/A	9748136				
Nitrite (N)	mg/L	<0.010	0.010	N/A	9748137				
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	N/A	9751132				
Total Organic Carbon (C)	mg/L	5.3	0.50	N/A	9751321	4.9	0.50	N/A	9751321
Orthophosphate (P)	mg/L	0.015	0.010	N/A	9748135				
рН	рН	7.28			9748412	7.38			9748412
Reactive Silica (SiO2)	mg/L	9.2	0.50	N/A	9748133				
Total Suspended Solids	mg/L	1.8	1.0	N/A	9746030				
Dissolved Sulphate (SO4)	mg/L	3.9	2.0	N/A	9748132				
Turbidity	NTU	1.0	0.10	0.10	9751110				
Conductivity	uS/cm	70	1.0	N/A	9748418	70	1.0	N/A	9748418

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

reau Veritas Job #: C4Y5693 GHD Lir port Date: 2024/11/08 Client P

GHD Limited Client Project #: 12584960 Your P.O. #: 735-009799

RESULTS OF ANALYSES OF GROUND WATER

	-								
Bureau Veritas ID		AHTI00		AHTI01		AHTI02			
Sampling Date		2024/10/31		2024/10/31		2024/10/31			
		13:18		13:52		14:33			
COC Number		C#1015035-01-01		C#1015035-01-01		C#1015035-01-01			
	UNITS	SW2	QC Batch	SW3	QC Batch	SW4	RDL	MDL	QC Batch
Calculated Parameters									
Anion Sum	me/L	0.840	9743283	0.600	9743283	0.770	N/A	N/A	9743283
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	33	9743276	20	9743276	29	1.0	0.20	9743276
Calculated TDS	mg/L	57	9743290	44	9743290	57	1.0	0.20	9743290
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	9743276	<1.0	9743276	<1.0	1.0	0.20	9743276
Cation Sum	me/L	0.850	9743283	0.670	9743283	0.920	N/A	N/A	9743283
Hardness (CaCO3)	mg/L	28	9743280	21	9743280	31	1.0	1.0	9743280
Ion Balance (% Difference)	%	0.590	9743282	5.51	9743282	8.88	N/A	N/A	9743282
Langelier Index (@ 20C)	N/A	-1.45	9743286	-1.97	9743286	-1.60			9743286
Langelier Index (@ 4C)	N/A	-1.70	9743289	-2.22	9743289	-1.85			9743289
Nitrate (N)	mg/L	<0.050	9743284	<0.050	9743284	<0.050	0.050	N/A	9743337
Saturation pH (@ 20C)	N/A	8.93	9743286	9.22	9743286	8.94			9743286
Saturation pH (@ 4C)	N/A	9.18	9743289	9.48	9743289	9.19			9743289
Inorganics									
Total Alkalinity (Total as CaCO3)	mg/L	33	9748420	20	9748420	29	2.0	N/A	9748420
Dissolved Chloride (Cl-)	mg/L	3.9	9748090	4.0	9748090	4.6	1.0	N/A	9748090
Colour	TCU	17	9748134	18	9748134	21	5.0	N/A	9748134
Nitrate + Nitrite (N)	mg/L	<0.050	9748136	<0.050	9748136	<0.050	0.050	N/A	9748136
Nitrite (N)	mg/L	<0.010	9748137	<0.010	9748137	<0.010	0.010	N/A	9748137
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	9751132	<0.050	9751128	0.17	0.050	N/A	9751128
Total Organic Carbon (C)	mg/L	2.1	9749031	2.4	9749039	2.8	0.50	N/A	9749031
Orthophosphate (P)	mg/L	<0.010	9748135	<0.010	9748135	<0.010	0.010	N/A	9748135
рН	рН	7.48	9748412	7.25	9748412	7.34			9748412
Reactive Silica (SiO2)	mg/L	13	9748133	10	9748133	14	0.50	N/A	9748133
Total Suspended Solids	mg/L	<1.0 (1)	9746030	1.4	9746030	<1.0	1.0	N/A	9746030
Dissolved Sulphate (SO4)	mg/L	3.3	9748132	4.0	9748132	2.4	2.0	N/A	9748132
Turbidity	NTU	1.9	9751094	1.7	9751110	0.87	0.10	0.10	9751110
Conductivity	uS/cm	81	9748418	66	9748418	86	1.0	N/A	9748418

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Non-homogenous material excluded from sample.

Client Project #: 12584960 Your P.O. #: 735-009799

RESULTS OF ANALYSES OF GROUND WATER

Bureau Veritas ID		AHTI03				AHTI04			
Sampling Date		2024/10/31				2024/10/31 12:33			
COC Number		C#1015035-01-01				C#1015035-01-01			
	UNITS	SW DUP	RDL	MDL	QC Batch	MW1	RDL	MDL	QC Batch
Calculated Parameters									
Anion Sum	me/L	0.730	N/A	N/A	9743283	1.04	N/A	N/A	9743283
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	28	1.0	0.20	9743276	39	1.0	0.20	9743276
Calculated TDS	mg/L	52	1.0	0.20	9743290	73	1.0	0.20	9743290
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	0.20	9743276	<1.0	1.0	0.20	9743276
Cation Sum	me/L	0.820	N/A	N/A	9743283	1.17	N/A	N/A	9743283
Hardness (CaCO3)	mg/L	28	1.0	1.0	9743336	35	1.0	1.0	9743280
Ion Balance (% Difference)	%	5.81	N/A	N/A	9743282	5.88	N/A	N/A	9743282
Langelier Index (@ 20C)	N/A	-1.49			9743286	-0.695			9743286
Langelier Index (@ 4C)	N/A	-1.74			9743289	-0.946			9743289
Nitrate (N)	mg/L	<0.050	0.050	N/A	9743337	0.069	0.050	N/A	9743284
Saturation pH (@ 20C)	N/A	9.00			9743286	8.65			9743286
Saturation pH (@ 4C)	N/A	9.25			9743289	8.90			9743289
Inorganics									
Total Alkalinity (Total as CaCO3)	mg/L	28	2.0	N/A	9748420	40	2.0	N/A	9748420
Dissolved Chloride (Cl-)	mg/L	4.0	1.0	N/A	9748090	3.9	1.0	N/A	9748090
Colour	TCU	12	5.0	N/A	9748134	<5.0	5.0	N/A	9748134
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	N/A	9748136	0.069	0.050	N/A	9748136
Nitrite (N)	mg/L	<0.010	0.010	N/A	9748137	<0.010	0.010	N/A	9748137
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	N/A	9751132	<0.050	0.050	N/A	9751132
Total Organic Carbon (C)	mg/L	2.1	0.50	N/A	9749039	<0.50	0.50	N/A	9749039
Orthophosphate (P)	mg/L	<0.010	0.010	N/A	9748135	0.035	0.010	N/A	9748135
рН	рН	7.51			9748412	7.96			9748412
Reactive Silica (SiO2)	mg/L	13	0.50	N/A	9748133	14	0.50	N/A	9748133
Total Suspended Solids	mg/L	<1.0	1.0	N/A	9746030				
Dissolved Sulphate (SO4)	mg/L	2.7	2.0	N/A	9748132	6.2	2.0	N/A	9748132
Turbidity	NTU	1.6	0.10	0.10	9751110	5.4	0.10	0.10	9751094
Conductivity	uS/cm	82	1.0	N/A	9748418	120	1.0	N/A	9748418
RDL = Reportable Detection Limit						•			

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Client Project #: 12584960 Your P.O. #: 735-009799

RESULTS OF ANALYSES OF GROUND WATER

Bureau Veritas ID		AHTI05		AHTI06		AHTI07			
Sampling Date		2024/10/31		2024/10/31		2024/10/31			
Sampling Date		12:16		11:31		10:38			
COC Number		C#1015035-01-01		C#1015035-01-01		C#1015035-01-01			
	UNITS	MW2	QC Batch	MW3	QC Batch	MW4	RDL	MDL	QC Batch
Calculated Parameters									
Anion Sum	me/L	0.330	9743283	0.360	9743283	1.23	N/A	N/A	9743283
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	7.7	9743276	7.5	9743276	51	1.0	0.20	9743276
Calculated TDS	mg/L	30	9743290	31	9743290	77	1.0	0.20	9743290
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	9743276	<1.0	9743276	<1.0	1.0	0.20	9743276
Cation Sum	me/L	0.340	9743283	0.410	9743283	1.34	N/A	N/A	9743283
Hardness (CaCO3)	mg/L	9.0	9743280	11	9743280	52	1.0	1.0	9743280
Ion Balance (% Difference)	%	1.49	9743282	6.49	9743282	4.28	N/A	N/A	9743282
Langelier Index (@ 20C)	N/A	-3.69	9743286	-3.09	9743286	-0.898			9743286
Langelier Index (@ 4C)	N/A	-3.95	9743289	-3.34	9743289	-1.15			9743289
Nitrate (N)	mg/L	<0.050	9743284	<0.050	9743284	0.070	0.050	N/A	9743284
Saturation pH (@ 20C)	N/A	10.2	9743286	9.96	9743286	8.44			9743286
Saturation pH (@ 4C)	N/A	10.4	9743289	10.2	9743289	8.70			9743289
Inorganics									
Total Alkalinity (Total as CaCO3)	mg/L	7.7	9748420	7.5	9748420	51	2.0	N/A	9748420
Dissolved Chloride (Cl-)	mg/L	3.9	9748090	4.9	9748090	4.7	1.0	N/A	9748090
Colour	TCU	<5.0	9748134	<5.0	9748134	<5.0	5.0	N/A	9748134
Nitrate + Nitrite (N)	mg/L	<0.050	9748136	<0.050	9748136	0.070	0.050	N/A	9748136
Nitrite (N)	mg/L	< 0.010	9748137	<0.010	9748137	<0.010	0.010	N/A	9748137
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	9751132	<0.050	9751132	<0.050	0.050	N/A	9751132
Total Organic Carbon (C)	mg/L	0.80	9749039	1.4	9749031	0.75	0.50	N/A	9749039
Orthophosphate (P)	mg/L	0.010	9748135	0.025	9748135	0.015	0.010	N/A	9748135
рН	рН	6.50	9748412	6.87	9748412	7.55			9748412
Reactive Silica (SiO2)	mg/L	11	9748133	9.5	9748133	12	0.50	N/A	9748133
Dissolved Sulphate (SO4)	mg/L	3.4	9748132	3.5	9748132	3.7	2.0	N/A	9748132
Turbidity	NTU	13	9751110	20	9751094	21	0.10	0.10	9751104
Conductivity	uS/cm	41	9748418	46	9748418	130	1.0	N/A	9748418

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Client Project #: 12584960 Your P.O. #: 735-009799

RESULTS OF ANALYSES OF GROUND WATER

Bureau Veritas ID		AHTI08				AHTI08			
Sampling Date		2024/10/31 11:08				2024/10/31 11:08			
COC Number		C#1015035-01-01				C#1015035-01-01			
	UNITS	MW5	RDL	MDL	QC Batch	MW5 Lab-Dup	RDL	MDL	QC Batch
Calculated Parameters	-		•	<u> </u>		•			
Anion Sum	me/L	0.270	N/A	N/A	9743283				
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	4.1	1.0	0.20	9743276				
Calculated TDS	mg/L	23	1.0	0.20	9743290				
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	0.20	9743276				
Cation Sum	me/L	0.290	N/A	N/A	9743283				
Hardness (CaCO3)	mg/L	6.0	1.0	1.0	9743280				
Ion Balance (% Difference)	%	3.57	N/A	N/A	9743282				
Langelier Index (@ 20C)	N/A	-4.20			9743286				
Langelier Index (@ 4C)	N/A	-4.45			9743289				
Nitrate (N)	mg/L	<0.050	0.050	N/A	9743284				
Saturation pH (@ 20C)	N/A	10.6			9743286				
Saturation pH (@ 4C)	N/A	10.8			9743289				
Inorganics	_								
Total Alkalinity (Total as CaCO3)	mg/L	4.1	2.0	N/A	9748433				
Dissolved Chloride (Cl-)	mg/L	4.4	1.0	N/A	9748090				
Colour	TCU	<5.0	5.0	N/A	9748134				
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	N/A	9748136				
Nitrite (N)	mg/L	<0.010	0.010	N/A	9748137				
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	N/A	9751132				
Total Organic Carbon (C)	mg/L	0.81	0.50	N/A	9749031	0.86	0.50	N/A	9749031
Orthophosphate (P)	mg/L	0.10	0.010	N/A	9748135				
рН	рН	6.39			9748423				
Reactive Silica (SiO2)	mg/L	6.4	0.50	N/A	9748133				
Dissolved Sulphate (SO4)	mg/L	2.9	2.0	N/A	9748132				
Turbidity	NTU	14	0.10	0.10	9751094				
Conductivity	uS/cm	36	1.0	N/A	9748427				
PDI - Papartable Detection Limit	_								

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 12584960 Your P.O. #: 735-009799

RESULTS OF ANALYSES OF GROUND WATER

Bureau Veritas ID		AHTI09				AHTI10			
Course Posts		2024/40/24				2024/10/31			
Sampling Date		2024/10/31				09:44			
COC Number		C#1015035-01-01				C#1015035-01-01			
	UNITS	MWDUP	RDL	MDL	QC Batch	MW9	RDL	MDL	QC Batch
Calculated Parameters									
Anion Sum	me/L	0.280	N/A	N/A	9743283	0.480	N/A	N/A	9743283
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	4.8	1.0	0.20	9743276	12	1.0	0.20	9743276
Calculated TDS	mg/L	28	1.0	0.20	9743290	38	1.0	0.20	9743290
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	0.20	9743276	<1.0	1.0	0.20	9743276
Cation Sum	me/L	0.410	N/A	N/A	9743283	0.510	N/A	N/A	9743283
Hardness (CaCO3)	mg/L	11	1.0	1.0	9743280	15	1.0	1.0	9743280
Ion Balance (% Difference)	%	18.8	N/A	N/A	9743282	3.03	N/A	N/A	9743282
Langelier Index (@ 20C)	N/A	-3.27			9743286	-2.55			9743286
Langelier Index (@ 4C)	N/A	-3.52			9743289	-2.80			9743289
Nitrate (N)	mg/L	<0.050	0.050	N/A	9743284	0.16	0.050	N/A	9743284
Saturation pH (@ 20C)	N/A	10.2			9743286	9.60			9743286
Saturation pH (@ 4C)	N/A	10.4			9743289	9.85			9743289
Inorganics	_								
Total Alkalinity (Total as CaCO3)	mg/L	4.8	2.0	N/A	9748420	12	2.0	N/A	9748420
Dissolved Chloride (Cl-)	mg/L	4.9	1.0	N/A	9748090	5.2	1.0	N/A	9748090
Colour	TCU	<5.0	5.0	N/A	9748134	<5.0	5.0	N/A	9748134
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	N/A	9748136	0.16	0.050	N/A	9748136
Nitrite (N)	mg/L	<0.010	0.010	N/A	9748137	<0.010	0.010	N/A	9748137
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	N/A	9751132	<0.050	0.050	N/A	9751132
Total Organic Carbon (C)	mg/L	1.2	0.50	N/A	9749039	<5.0 (1)	5.0	N/A	9749031
Orthophosphate (P)	mg/L	0.026	0.010	N/A	9748135	0.016	0.010	N/A	9748135
рН	рН	6.91			9748412	7.05			9748412
Reactive Silica (SiO2)	mg/L	9.3	0.50	N/A	9748133	10	0.50	N/A	9748133
Dissolved Sulphate (SO4)	mg/L	2.2	2.0	N/A	9748132	3.7	2.0	N/A	9748132
Turbidity	NTU	14	0.10	0.10	9751094	350	1.0	1.0	9751110
Conductivity	uS/cm	46	1.0	N/A	9748418	54	1.0	N/A	9748418
DDI Demontoble Detection Lineit									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Elevated reporting limit due to turbidity.

Client Project #: 12584960 Your P.O. #: 735-009799

RESULTS OF ANALYSES OF GROUND WATER

Bureau Veritas ID		AHTI11			
Sampling Date		2024/10/31			
Sampling Date		10:10			
COC Number		C#1015035-01-01			
	UNITS	MW8	RDL	MDL	QC Batch
Calculated Parameters					
Anion Sum	me/L	1.02	N/A	N/A	9743283
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	41	1.0	0.20	9743276
Calculated TDS	mg/L	62	1.0	0.20	9743290
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	0.20	9743276
Cation Sum	me/L	1.02	N/A	N/A	9743283
Hardness (CaCO3)	mg/L	37	1.0	1.0	9743280
Ion Balance (% Difference)	%	0.00	N/A	N/A	9743282
Langelier Index (@ 20C)	N/A	-0.959			9743286
Langelier Index (@ 4C)	N/A	-1.21			9743289
Nitrate (N)	mg/L	<0.050	0.050	N/A	9743284
Saturation pH (@ 20C)	N/A	8.62			9743286
Saturation pH (@ 4C)	N/A	8.87			9743289
Inorganics	_				
Total Alkalinity (Total as CaCO3)	mg/L	41	2.0	N/A	9748420
Dissolved Chloride (Cl-)	mg/L	4.8	1.0	N/A	9748090
Colour	TCU	<5.0	5.0	N/A	9748134
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	N/A	9748136
Nitrite (N)	mg/L	<0.010	0.010	N/A	9748137
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	N/A	9751132
Total Organic Carbon (C)	mg/L	0.76	0.50	N/A	9749031
Orthophosphate (P)	mg/L	0.023	0.010	N/A	9748135
рН	рН	7.66			9748412
Reactive Silica (SiO2)	mg/L	8.8	0.50	N/A	9748133
Dissolved Sulphate (SO4)	mg/L	2.7	2.0	N/A	9748132
Turbidity	NTU	11	0.10	0.10	9751110
Conductivity	uS/cm	110	1.0	N/A	9748418
RDL = Reportable Detection Limit					
QC Batch = Quality Control Batch					
N/A = Not Applicable					

Client Project #: 12584960 Your P.O. #: 735-009799

ELEMENTS BY ICP/MS (GROUND WATER)

B W 11 15		A 1 1 T 1 1 C C		A 1 1=100		A 1 17:04			
Bureau Veritas ID		AHTH99		AHTI00		AHTI01			
Sampling Date		2024/10/31		2024/10/31 13:18		2024/10/31 13:52			
COC Number		12:56							
COC Number	LINUTC	C#1015035-01-01	OC Datab	C#1015035-01-01	OC Datab	C#1015035-01-01	DDI	NADI	OC Datab
	UNITS	SW1	QC Batch	SW2	QC Batch	SW3	RDL	MDL	QC Batch
Metals	,		,				1		
Total Aluminum (AI)	ug/L	71	9745214	22	9751057	27	5.0	N/A	9745543
Total Antimony (Sb)	ug/L	<1.0	9745214	<1.0	9751057	<1.0	1.0	N/A	9745543
Total Arsenic (As)	ug/L	<1.0	9745214	<1.0	9751057	<1.0	1.0	N/A	9745543
Total Barium (Ba)	ug/L	8.2	9745214	5.7	9751057	3.9	1.0	N/A	9745543
Total Beryllium (Be)	ug/L	<0.10	9745214	<0.10	9751057	<0.10	0.10	N/A	9745543
Total Bismuth (Bi)	ug/L	<2.0	9745214	<2.0	9751057	<2.0	2.0	N/A	9745543
Total Boron (B)	ug/L	<50	9745214	<50	9751057	<50	50	N/A	9745543
Total Cadmium (Cd)	ug/L	0.011	9745214	<0.010	9751057	<0.010	0.010	N/A	9745543
Total Calcium (Ca)	ug/L	5800	9745214	7400	9751057	5900	100	N/A	9745543
Total Chromium (Cr)	ug/L	<1.0	9745214	<1.0	9751057	<1.0	1.0	N/A	9745543
Total Cobalt (Co)	ug/L	<0.40	9745214	<0.40	9751057	<0.40	0.40	N/A	9745543
Total Copper (Cu)	ug/L	<0.50	9745214	<0.50	9751057	<0.50	0.50	N/A	9745543
Total Iron (Fe)	ug/L	110	9745214	340	9751057	500	50	N/A	9745543
Total Lead (Pb)	ug/L	<0.50	9745214	<0.50	9751057	<0.50	0.50	N/A	9745543
Total Magnesium (Mg)	ug/L	2100	9745214	2400	9751057	1600	100	N/A	9745543
Total Manganese (Mn)	ug/L	4.9	9745214	90	9751057	62	2.0	N/A	9745543
Total Molybdenum (Mo)	ug/L	<2.0	9745214	<2.0	9751057	<2.0	2.0	N/A	9745543
Total Nickel (Ni)	ug/L	<2.0	9745214	<2.0	9751057	<2.0	2.0	N/A	9745543
Total Phosphorus (P)	ug/L	<100	9745214	<100	9751057	<100	100	N/A	9745543
Total Potassium (K)	ug/L	810	9745214	760	9751057	1200	100	N/A	9745543
Total Selenium (Se)	ug/L	<0.50	9745214	<0.50	9751057	<0.50	0.50	N/A	9745543
Total Silver (Ag)	ug/L	<0.10	9745214	<0.10	9751057	<0.10	0.10	N/A	9745543
Total Sodium (Na)	ug/L	5200	9745214	5700	9751057	4600	100	N/A	9745543
Total Strontium (Sr)	ug/L	35	9745214	40	9751057	25	2.0	N/A	9745543
Total Thallium (TI)	ug/L	<0.10	9745214	<0.10	9751057	<0.10	0.10	N/A	9745543
Total Tin (Sn)	ug/L	<2.0	9745214	<2.0	9751057	<2.0	2.0	N/A	9745543
Total Titanium (Ti)	ug/L	2.1	9745214	<2.0	9751057	4.2	2.0	N/A	9745543
Total Uranium (U)	ug/L	<0.10	9745214	<0.10	9751057	<0.10	0.10	N/A	9745543
Total Vanadium (V)	ug/L	<2.0	9745214	<2.0	9751057	<2.0	2.0	N/A	9745543
Total Zinc (Zn)	ug/L	<5.0	9745214	<5.0	9751057	<5.0	5.0	N/A	9745543

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Client Project #: 12584960 Your P.O. #: 735-009799

ELEMENTS BY ICP/MS (GROUND WATER)

Bureau Veritas ID		AHTI02		AHTI03			
		2024/10/31					
Sampling Date		14:33		2024/10/31			
COC Number		C#1015035-01-01		C#1015035-01-01			
	UNITS	SW4	QC Batch	SW DUP	RDL	MDL	QC Batch
Metals							
Total Aluminum (Al)	ug/L	20	9745214	21	5.0	N/A	9745543
Total Antimony (Sb)	ug/L	<1.0	9745214	<1.0	1.0	N/A	9745543
Total Arsenic (As)	ug/L	<1.0	9745214	<1.0	1.0	N/A	9745543
Total Barium (Ba)	ug/L	6.7	9745214	5.4	1.0	N/A	9745543
Total Beryllium (Be)	ug/L	<0.10	9745214	<0.10	0.10	N/A	9745543
Total Bismuth (Bi)	ug/L	<2.0	9745214	<2.0	2.0	N/A	9745543
Total Boron (B)	ug/L	<50	9745214	<50	50	N/A	9745543
Total Cadmium (Cd)	ug/L	<0.010	9745214	<0.010	0.010	N/A	9745543
Total Calcium (Ca)	ug/L	8100	9745214	7300	100	N/A	9745543
Total Chromium (Cr)	ug/L	<1.0	9745214	<1.0	1.0	N/A	9745543
Total Cobalt (Co)	ug/L	<0.40	9745214	<0.40	0.40	N/A	9745543
Total Copper (Cu)	ug/L	<0.50	9745214	<0.50	0.50	N/A	9745543
Total Iron (Fe)	ug/L	250	9745214	300	50	N/A	9745543
Total Lead (Pb)	ug/L	<0.50	9745214	<0.50	0.50	N/A	9745543
Total Magnesium (Mg)	ug/L	2700	9745214	2300	100	N/A	9745543
Total Manganese (Mn)	ug/L	61	9745214	79	2.0	N/A	9745543
Total Molybdenum (Mo)	ug/L	<2.0	9745214	<2.0	2.0	N/A	9745543
Total Nickel (Ni)	ug/L	<2.0	9745214	<2.0	2.0	N/A	9745543
Total Phosphorus (P)	ug/L	<100	9745214	<100	100	N/A	9745543
Total Potassium (K)	ug/L	810	9745214	740	100	N/A	9745543
Total Selenium (Se)	ug/L	<0.50	9745214	<0.50	0.50	N/A	9745543
Total Silver (Ag)	ug/L	<0.10	9745214	<0.10	0.10	N/A	9745543
Total Sodium (Na)	ug/L	5700	9745214	5400	100	N/A	9745543
Total Strontium (Sr)	ug/L	42	9745214	39	2.0	N/A	9745543
Total Thallium (TI)	ug/L	<0.10	9745214	<0.10	0.10	N/A	9745543
Total Tin (Sn)	ug/L	<2.0	9745214	<2.0	2.0	N/A	9745543
Total Titanium (Ti)	ug/L	<2.0	9745214	<2.0	2.0	N/A	9745543
Total Uranium (U)	ug/L	<0.10	9745214	<0.10	0.10	N/A	9745543
Total Vanadium (V)	ug/L	<2.0	9745214	<2.0	2.0	N/A	9745543
Total Zinc (Zn)	ug/L	<5.0	9745214	<5.0	5.0	N/A	9745543
RDL = Reportable Detection I	imit	-		-			

QC Batch = Quality Control Batch

Client Project #: 12584960 Your P.O. #: 735-009799

ELEMENTS BY ICP/MS (GROUND WATER)

Bureau Veritas ID		AHTI04	AHTI05	AHTI06	AHTI07			
Sampling Date		2024/10/31	2024/10/31	2024/10/31	2024/10/31			
. 0		12:33	12:16	11:31	10:38			
COC Number		C#1015035-01-01	C#1015035-01-01	C#1015035-01-01	C#1015035-01-01			
	UNITS	MW1	MW2	MW3	MW4	RDL	MDL	QC Batch
Metals								
Dissolved Aluminum (AI)	ug/L	<5.0	18	<5.0	<5.0	5.0	N/A	9745551
Dissolved Antimony (Sb)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	N/A	9745551
Dissolved Arsenic (As)	ug/L	13	<1.0	<1.0	<1.0	1.0	N/A	9745551
Dissolved Barium (Ba)	ug/L	9.3	7.7	3.3	140	1.0	N/A	9745551
Dissolved Beryllium (Be)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	N/A	9745551
Dissolved Bismuth (Bi)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	N/A	9745551
Dissolved Boron (B)	ug/L	<50	<50	<50	<50	50	N/A	9745551
Dissolved Cadmium (Cd)	ug/L	<0.010	0.018	0.022	0.017	0.010	N/A	9745551
Dissolved Calcium (Ca)	ug/L	12000	1600	2800	15000	100	N/A	9745551
Dissolved Chromium (Cr)	ug/L	1.3	<1.0	<1.0	<1.0	1.0	N/A	9745551
Dissolved Cobalt (Co)	ug/L	<0.40	<0.40	<0.40	3.1	0.40	N/A	9745551
Dissolved Copper (Cu)	ug/L	<0.50	0.72	0.96	3.3	0.50	N/A	9745551
Dissolved Iron (Fe)	ug/L	<50	89	<50	<50	50	N/A	9745551
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	N/A	9745551
Dissolved Magnesium (Mg)	ug/L	1200	1200	970	3600	100	N/A	9745551
Dissolved Manganese (Mn)	ug/L	<2.0	32	3.5	160	2.0	N/A	9745551
Dissolved Molybdenum (Mo)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	N/A	9745551
Dissolved Nickel (Ni)	ug/L	<2.0	<2.0	<2.0	2.2	2.0	N/A	9745551
Dissolved Phosphorus (P)	ug/L	<100	<100	<100	<100	100	N/A	9745551
Dissolved Potassium (K)	ug/L	340	500	890	940	100	N/A	9745551
Dissolved Selenium (Se)	ug/L	0.52	<0.50	<0.50	<0.50	0.50	N/A	9745551
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	N/A	9745551
Dissolved Sodium (Na)	ug/L	11000	3300	3800	6200	100	N/A	9745551
Dissolved Strontium (Sr)	ug/L	23	10	14	91	2.0	N/A	9745551
Dissolved Thallium (TI)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	N/A	9745551
Dissolved Tin (Sn)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	N/A	9745551
Dissolved Titanium (Ti)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	N/A	9745551
Dissolved Uranium (U)	ug/L	1.0	<0.10	<0.10	<0.10	0.10	N/A	9745551
Dissolved Vanadium (V)	ug/L	16	<2.0	<2.0	<2.0	2.0	N/A	9745551
Dissolved Zinc (Zn)	ug/L	<5.0	6.7	<5.0	12	5.0	N/A	9745551
PDI - Papartable Detection Lie	٠.			•	•	•		

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Client Project #: 12584960 Your P.O. #: 735-009799

ELEMENTS BY ICP/MS (GROUND WATER)

	_				_			
Bureau Veritas ID		AHTI08	AHTI09	AHTI10	AHTI11			
Sampling Date		2024/10/31 11:08	2024/10/31	2024/10/31 09:44	2024/10/31 10:10			
COC Number		C#1015035-01-01	C#1015035-01-01	C#1015035-01-01	C#1015035-01-01			
	UNITS	MW5	MWDUP	MW9	MW8	RDL	MDL	QC Batch
Metals				1	1			
Dissolved Aluminum (AI)	ug/L	11	<5.0	<5.0	<5.0	5.0	N/A	9748292
Dissolved Antimony (Sb)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	N/A	9748292
Dissolved Arsenic (As)	ug/L	<1.0	<1.0	<1.0	1.1	1.0	N/A	9748292
Dissolved Barium (Ba)	ug/L	11	3.3	4.3	6.9	1.0	N/A	9748292
Dissolved Beryllium (Be)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	N/A	9748292
Dissolved Bismuth (Bi)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	N/A	9748292
Dissolved Boron (B)	ug/L	<50	<50	<50	<50	50	N/A	9748292
Dissolved Cadmium (Cd)	ug/L	0.012	0.032	<0.010	<0.010	0.010	N/A	9748292
Dissolved Calcium (Ca)	ug/L	1200	2700	4200	12000	100	N/A	9748292
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	N/A	9748292
Dissolved Cobalt (Co)	ug/L	<0.40	<0.40	<0.40	<0.40	0.40	N/A	9748292
Dissolved Copper (Cu)	ug/L	2.6	1.1	<0.50	<0.50	0.50	N/A	9748292
Dissolved Iron (Fe)	ug/L	<50	<50	<50	<50	50	N/A	9748292
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	N/A	9748292
Dissolved Magnesium (Mg)	ug/L	750	950	1200	1600	100	N/A	9748292
Dissolved Manganese (Mn)	ug/L	3.2	4.2	<2.0	71	2.0	N/A	9748292
Dissolved Molybdenum (Mo)	ug/L	<2.0	<2.0	<2.0	9.8	2.0	N/A	9748292
Dissolved Nickel (Ni)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	N/A	9748292
Dissolved Phosphorus (P)	ug/L	<100	<100	<100	<100	100	N/A	9748292
Dissolved Potassium (K)	ug/L	660	920	720	1600	100	N/A	9748292
Dissolved Selenium (Se)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	N/A	9748292
Dissolved Silver (Ag)	ug/L	0.15	<0.10	<0.10	<0.10	0.10	N/A	9748292
Dissolved Sodium (Na)	ug/L	3600	3900	4400	5700	100	N/A	9748292
Dissolved Strontium (Sr)	ug/L	7.0	15	20	58	2.0	N/A	9748292
Dissolved Thallium (TI)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	N/A	9748292
Dissolved Tin (Sn)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	N/A	9748292
Dissolved Titanium (Ti)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	N/A	9748292
Dissolved Uranium (U)	ug/L	<0.10	<0.10	<0.10	0.44	0.10	N/A	9748292
Dissolved Vanadium (V)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	N/A	9748292
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	6.8	<5.0	5.0	N/A	9748292
RDI = Reportable Detection Li	mit		-					. —

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Client Project #: 12584960 Your P.O. #: 735-009799

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	4.0°C
Package 2	2.3°C

Sample AHTH99 [SW1]: ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent. RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meg/L.

Sample AHTI01 [SW3]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meg/L.

Sample AHTI02 [SW4]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample AHTI03 [SW DUP]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meg/L.

Sample AHTI04 [MW1]: ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent. RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample AHTIO5 [MW2]: ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent.

Sample AHTI06 [MW3]: ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent. RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meg/L.

Sample AHTIO7 [MW4]: ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent.

Sample AHTIO8 [MW5]: ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent.

Sample AHTI09 [MWDUP] : ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent. RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample AHTI10 [MW9]: ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent.

Sample AHTI11 [MW8]: ortho-Phosphate > Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent.

Results relate only to the items tested.

Bureau Veritas Job #: C4Y5693 GHD Limited
Report Date: 2024/11/08 Client Project

Client Project #: 12584960 Your P.O. #: 735-009799

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9745214	MTZ	Matrix Spike	Total Aluminum (Al)	2024/11/05		101	%	80 - 120
			Total Antimony (Sb)	2024/11/05		100	%	80 - 120
			Total Arsenic (As)	2024/11/05		100	%	80 - 120
			Total Barium (Ba)	2024/11/05		94	%	80 - 120
			Total Beryllium (Be)	2024/11/05		94	%	80 - 120
			Total Bismuth (Bi)	2024/11/05		99	%	80 - 120
			Total Boron (B)	2024/11/05		93	%	80 - 120
			Total Cadmium (Cd)	2024/11/05		95	%	80 - 120
			Total Calcium (Ca)	2024/11/05		102	%	80 - 120
			Total Chromium (Cr)	2024/11/05		94	%	80 - 120
			Total Cobalt (Co)	2024/11/05		96	%	80 - 120
			Total Copper (Cu)	2024/11/05		95	%	80 - 120
			Total Iron (Fe)	2024/11/05		105	%	80 - 120
			Total Lead (Pb)	2024/11/05		NC	%	80 - 120
			Total Magnesium (Mg)	2024/11/05		110	%	80 - 120
			Total Manganese (Mn)	2024/11/05		100	%	80 - 120
			Total Molybdenum (Mo)	2024/11/05		101	%	80 - 120
			Total Nickel (Ni)	2024/11/05		100	%	80 - 120
			Total Phosphorus (P)	2024/11/05		108	%	80 - 120
			Total Potassium (K)	2024/11/05		98	%	80 - 120
			Total Selenium (Se)	2024/11/05		103	%	80 - 120
			Total Silver (Ag)	2024/11/05		99	%	80 - 120
			Total Solium (Na)	2024/11/05		105	%	80 - 120
			Total Strontium (Sr)	2024/11/05		101	%	80 - 120
			Total Thallium (TI)	2024/11/05		101	%	80 - 120
			Total Tin (Sn)	2024/11/05		102	%	80 - 120
			Total Till (311) Total Titanium (Ti)	2024/11/05		94	% %	80 - 120
				·				
			Total Vanadium (U)	2024/11/05		101	%	80 - 120
			Total Vanadium (V)	2024/11/05		101	%	80 - 120
0745214	N 4T7	Cuilinal Dlamb	Total Alumaiaum (Al)	2024/11/05		96	%	80 - 120
9745214	IVITZ	Spiked Blank	Total Autimory (Sh)	2024/11/05		103	%	80 - 120
			Total Antimony (Sb)	2024/11/05		102	%	80 - 120
			Total Arsenic (As)	2024/11/05		100	%	80 - 120
			Total Barium (Ba)	2024/11/05		97	%	80 - 120
			Total Beryllium (Be)	2024/11/05		97	%	80 - 120
			Total Bismuth (Bi)	2024/11/05		104	%	80 - 120
			Total Boron (B)	2024/11/05		96	%	80 - 120
			Total Cadmium (Cd)	2024/11/05		95	%	80 - 120
			Total Calcium (Ca)	2024/11/05		102	%	80 - 120
			Total Chromium (Cr)	2024/11/05		96	%	80 - 120
			Total Cobalt (Co)	2024/11/05		96	%	80 - 120
			Total Copper (Cu)	2024/11/05		98	%	80 - 120
			Total Iron (Fe)	2024/11/05		107	%	80 - 120
			Total Lead (Pb)	2024/11/05		98	%	80 - 120
			Total Magnesium (Mg)	2024/11/05		111	%	80 - 120
			Total Manganese (Mn)	2024/11/05		102	%	80 - 120
			Total Molybdenum (Mo)	2024/11/05		102	%	80 - 120
			Total Nickel (Ni)	2024/11/05		102	%	80 - 120
			Total Phosphorus (P)	2024/11/05		108	%	80 - 120
			Total Potassium (K)	2024/11/05		98	%	80 - 120
			Total Selenium (Se)	2024/11/05		101	%	80 - 120
			Total Silver (Ag)	2024/11/05		97	%	80 - 120
			Total Sodium (Na)	2024/11/05		106	%	80 - 120
			Total Strontium (Sr)	2024/11/05		100	%	80 - 120

Client Project #: 12584960 Your P.O. #: 735-009799

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Thallium (TI)	2024/11/05		104	%	80 - 120
			Total Tin (Sn)	2024/11/05		103	%	80 - 120
			Total Titanium (Ti)	2024/11/05		99	%	80 - 120
			Total Uranium (U)	2024/11/05		104	%	80 - 120
			Total Vanadium (V)	2024/11/05		103	%	80 - 120
			Total Zinc (Zn)	2024/11/05		100	%	80 - 120
9745214	MTZ	Method Blank	Total Aluminum (AI)	2024/11/05	<5.0		ug/L	
			Total Antimony (Sb)	2024/11/05	<1.0		ug/L	
			Total Arsenic (As)	2024/11/05	<1.0		ug/L	
			Total Barium (Ba)	2024/11/05	<1.0		ug/L	
			Total Beryllium (Be)	2024/11/05	<0.10		ug/L	
			Total Bismuth (Bi)	2024/11/05	<2.0		ug/L	
			Total Boron (B)	2024/11/05	<50		ug/L	
			Total Cadmium (Cd)	2024/11/05	< 0.010		ug/L	
			Total Calcium (Ca)	2024/11/05	<100		ug/L	
			Total Chromium (Cr)	2024/11/05	<1.0		ug/L	
			Total Cobalt (Co)	2024/11/05	<0.40		ug/L	
			Total Copper (Cu)	2024/11/05	<0.50		ug/L	
			Total Iron (Fe)	2024/11/05	<50		ug/L	
			Total Lead (Pb)	2024/11/05	<0.50		ug/L	
			Total Magnesium (Mg)	2024/11/05	<100		ug/L	
			Total Manganese (Mn)	2024/11/05	<2.0		ug/L	
			Total Molybdenum (Mo)	2024/11/05	<2.0		ug/L	
			Total Nickel (Ni)	2024/11/05	<2.0		ug/L	
			Total Phosphorus (P)	2024/11/05	<100		ug/L	
			Total Potassium (K)	2024/11/05	<100		ug/L	
			Total Selenium (Se)	2024/11/05	<0.50		ug/L	
			Total Silver (Ag)	2024/11/05	<0.10		ug/L	
			Total Sodium (Na)	2024/11/05	<100		ug/L	
			Total Strontium (Sr)	2024/11/05	<2.0		ug/L	
			Total Thallium (TI)	2024/11/05	<0.10		ug/L	
			Total Tin (Sn)	2024/11/05	<2.0		ug/L	
			Total Titanium (Ti)	2024/11/05	<2.0		ug/L	
			Total Uranium (U)	2024/11/05	<0.10		ug/L	
			Total Vanadium (V)	2024/11/05	<2.0		ug/L	
			Total Zinc (Zn)	2024/11/05	<5.0		ug/L	
9745214		RPD	Total Lead (Pb)	2024/11/05	0.21		%	20
9745543	MTZ	Matrix Spike	Total Aluminum (Al)	2024/11/05		NC	%	80 - 120
			Total Antimony (Sb)	2024/11/05		104	%	80 - 120
			Total Arsenic (As)	2024/11/05		100	%	80 - 120
			Total Barium (Ba)	2024/11/05		98	%	80 - 120
			Total Beryllium (Be)	2024/11/05		93	%	80 - 120
			Total Bismuth (Bi)	2024/11/05		100	%	80 - 120
			Total Boron (B)	2024/11/05		95	%	80 - 120
			Total Cadmium (Cd)	2024/11/05		100	%	80 - 120
			Total Calcium (Ca)	2024/11/05		101	%	80 - 120
			Total Chromium (Cr)	2024/11/05		118	%	80 - 120
			Total Cobalt (Co)	2024/11/05		99	%	80 - 120
			Total Copper (Cu)	2024/11/05		100 NG	%	80 - 120
			Total Iron (Fe)	2024/11/05		NC	%	80 - 120
			Total Magnesium (Mg)	2024/11/05		97	%	80 - 120
			Total Magnesium (Mg)	2024/11/05		122 (1)	%	80 - 120
			Total Markin days (Max)	2024/11/05		127 (1)	%	80 - 120
			Total Molybdenum (Mo)	2024/11/05		109	%	80 - 120

Client Project #: 12584960 Your P.O. #: 735-009799

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		••	Total Nickel (Ni)	2024/11/05		103	%	80 - 120
			Total Phosphorus (P)	2024/11/05		105	%	80 - 120
			Total Potassium (K)	2024/11/05		101	%	80 - 120
			Total Selenium (Se)	2024/11/05		100	%	80 - 120
			Total Silver (Ag)	2024/11/05		99	%	80 - 120
			Total Sodium (Na)	2024/11/05		NC	%	80 - 120
			Total Strontium (Sr)	2024/11/05		101	%	80 - 120
			Total Thallium (Tl)	2024/11/05		100	%	80 - 120
			Total Tin (Sn)	2024/11/05		111	%	80 - 120
			Total Titanium (Ti)	2024/11/05		133 (1)	%	80 - 120
			Total Uranium (U)	2024/11/05		107	%	80 - 120
			Total Vanadium (V)	2024/11/05		106	%	80 - 120
			Total Zinc (Zn)	2024/11/05		101	%	80 - 120
9745543	MTZ	Spiked Blank	Total Aluminum (Al)	2024/11/05		102	%	80 - 120
			Total Antimony (Sb)	2024/11/05		101	%	80 - 120
			Total Arsenic (As)	2024/11/05		99	%	80 - 120
			Total Barium (Ba)	2024/11/05		97	%	80 - 120
			Total Beryllium (Be)	2024/11/05		93	%	80 - 120
			Total Bismuth (Bi)	2024/11/05		100	%	80 - 120
			Total Boron (B)	2024/11/05		94	%	80 - 120
			Total Cadmium (Cd)	2024/11/05		101	%	80 - 120
			Total Calcium (Ca)	2024/11/05		101	%	80 - 120
			Total Chromium (Cr)	2024/11/05		98	%	80 - 120
			Total Cobalt (Co)	2024/11/05		100	%	80 - 120
			Total Copper (Cu)	2024/11/05		100	%	80 - 120
			Total Iron (Fe)	2024/11/05		105	%	80 - 120
			Total Lead (Pb)	2024/11/05		98	%	80 - 120
			Total Magnesium (Mg)	2024/11/05		107	%	80 - 120
			Total Manganese (Mn)	2024/11/05		99	%	80 - 120
			Total Molybdenum (Mo)	2024/11/05		103	%	80 - 120
			Total Nickel (Ni)	2024/11/05		101	%	80 - 120
			Total Phosphorus (P)	2024/11/05		105	%	80 - 120
			Total Potassium (K)	2024/11/05		101	%	80 - 120
			Total Selenium (Se)	2024/11/05		100	%	80 - 120
			Total Silver (Ag)	2024/11/05		100	%	80 - 120
			Total Sodium (Na)	2024/11/05		101	%	80 - 120
			Total Strontium (Sr)	2024/11/05		101	%	80 - 120
			Total Thallium (TI)	2024/11/05		100	%	80 - 120
			Total Tin (Sn)	2024/11/05		102	%	80 - 120
			Total Titanium (Ti)	2024/11/05		97	%	80 - 120
			Total Uranium (U)	2024/11/05		107	%	80 - 120
			Total Vanadium (V)	2024/11/05		101	%	80 - 120
			Total Zinc (Zn)	2024/11/05		100	%	80 - 120
9745543	MTZ	Method Blank	Total Aluminum (Al)	2024/11/05	<5.0		ug/L	
			Total Antimony (Sb)	2024/11/05	<1.0		ug/L	
			Total Arsenic (As)	2024/11/05	<1.0		ug/L	
			Total Barium (Ba)	2024/11/05	<1.0		ug/L	
			Total Beryllium (Be)	2024/11/05	<0.10		ug/L	
			Total Bismuth (Bi)	2024/11/05	<2.0		ug/L	
			Total Boron (B)	2024/11/05	<50		ug/L	
			Total Cadmium (Cd)	2024/11/05	<0.010		ug/L	
			Total Calcium (Ca)	2024/11/05	<100		ug/L	
			Total Chromium (Cr)	2024/11/05	<1.0		ug/L	
			Total Cobalt (Co)	2024/11/05	< 0.40		ug/L	

Client Project #: 12584960 Your P.O. #: 735-009799

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Copper (Cu)	2024/11/05	<0.50		ug/L	
			Total Iron (Fe)	2024/11/05	<50		ug/L	
			Total Lead (Pb)	2024/11/05	< 0.50		ug/L	
			Total Magnesium (Mg)	2024/11/05	<100		ug/L	
			Total Manganese (Mn)	2024/11/05	<2.0		ug/L	
			Total Molybdenum (Mo)	2024/11/05	<2.0		ug/L	
			Total Nickel (Ni)	2024/11/05	<2.0		ug/L	
			Total Phosphorus (P)	2024/11/05	<100		ug/L	
			Total Potassium (K)	2024/11/05	<100		ug/L	
			Total Selenium (Se)	2024/11/05	<0.50		ug/L	
			Total Silver (Ag)	2024/11/05	<0.10		ug/L	
			Total Sodium (Na)	2024/11/05	<100		ug/L	
			Total Strontium (Sr)	2024/11/05	<2.0		ug/L	
			Total Thallium (TI)	2024/11/05	<0.10		ug/L	
			Total Trialium (Tr)	2024/11/05	<2.0		ug/L	
					<2.0			
			Total Titanium (Ti) Total Uranium (U)	2024/11/05 2024/11/05	<0.10		ug/L	
			` '	• •			ug/L	
			Total Vanadium (V)	2024/11/05	<2.0		ug/L	
0745540		222	Total Zinc (Zn)	2024/11/05	<5.0		ug/L	20
9745543	IVITZ	RPD	Total Antimony (Sb)	2024/11/06	NC		%	20
			Total Arsenic (As)	2024/11/06	NC		%	20
			Total Barium (Ba)	2024/11/06	4.0		%	20
			Total Beryllium (Be)	2024/11/06	NC		%	20
			Total Bismuth (Bi)	2024/11/06	NC		%	20
			Total Boron (B)	2024/11/06	NC		%	20
			Total Cadmium (Cd)	2024/11/06	NC		%	20
			Total Calcium (Ca)	2024/11/06	0.96		%	20
			Total Chromium (Cr)	2024/11/06	NC		%	20
			Total Cobalt (Co)	2024/11/06	NC		%	20
			Total Copper (Cu)	2024/11/06	NC		%	20
			Total Lead (Pb)	2024/11/06	0.15		%	20
			Total Magnesium (Mg)	2024/11/06	3.7		%	20
			Total Manganese (Mn)	2024/11/06	2.2		%	20
			Total Molybdenum (Mo)	2024/11/06	2.4		%	20
			Total Nickel (Ni)	2024/11/06	NC		%	20
			Total Phosphorus (P)	2024/11/06	NC		%	20
			Total Potassium (K)	2024/11/06	2.1		%	20
			Total Selenium (Se)	2024/11/06	4.5		%	20
			Total Silver (Ag)	2024/11/06	NC		%	20
			Total Sodium (Na)	2024/11/06	1.6		%	20
			Total Strontium (Sr)	2024/11/06	4.0		%	20
			Total Thallium (TI)	2024/11/06	NC		%	20
			Total Tin (Sn)	2024/11/06	NC		%	20
			Total Uranium (U)	2024/11/06	5.0		%	20
			Total Gramum (0)	2024/11/06	NC		%	20
0745554	N 4T7	Matrix Coile	Total Zinc (Zn)	2024/11/06	0.51	100	%	20
9745551	IVIIZ	Matrix Spike	Dissolved Aluminum (Al)	2024/11/05		106	%	80 - 120
			Dissolved Antimony (Sb)	2024/11/05		98	%	80 - 120
			Dissolved Arsenic (As)	2024/11/05		101	%	80 - 120
			Dissolved Barium (Ba)	2024/11/05		98	%	80 - 120
			Dissolved Beryllium (Be)	2024/11/05		101	%	80 - 120
			Dissolved Bismuth (Bi)	2024/11/05		97	%	80 - 120
			Dissolved Boron (B)	2024/11/05		95	%	80 - 120
			Dissolved Cadmium (Cd)	2024/11/05		99	%	80 - 120

Client Project #: 12584960 Your P.O. #: 735-009799

Init QC Type MTZ Spiked Blank	Parameter Dissolved Calcium (Ca) Dissolved Chromium (Cr) Dissolved Cobalt (Co) Dissolved Copper (Cu) Dissolved Iron (Fe) Dissolved Lead (Pb) Dissolved Magnesium (Mg) Dissolved Manganese (Mn) Dissolved Molybdenum (Mo) Dissolved Phosphorus (P) Dissolved Potassium (K) Dissolved Selenium (Se) Dissolved Silver (Ag) Dissolved Strontium (Sr) Dissolved Thallium (TI) Dissolved Titanium (Ti) Dissolved Uranium (U) Dissolved Vanadium (V)	Date Analyzed Value 2024/11/05	Recovery NC 95 96 95 105 98 108 96 100 99 110 99 102 88 100 NC 100 101 92 108 100	WINITS % % % % % % % % % % % % % % % % % %	80 - 120 80 - 120
MT7 Sniked Blank	Dissolved Chromium (Cr) Dissolved Cobalt (Co) Dissolved Copper (Cu) Dissolved Iron (Fe) Dissolved Lead (Pb) Dissolved Magnesium (Mg) Dissolved Magnese (Mn) Dissolved Molybdenum (Mo) Dissolved Nickel (Ni) Dissolved Phosphorus (P) Dissolved Potassium (K) Dissolved Selenium (Se) Dissolved Silver (Ag) Dissolved Strontium (Sr) Dissolved Thallium (Tl) Dissolved Titanium (Ti) Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05	95 96 95 105 98 108 96 100 99 110 99 102 88 100 NC 100 101 92 108	% % % % % % % % % % % % % % % %	80 - 120 80 - 120
MT7 Sniked Blank	Dissolved Cobalt (Co) Dissolved Copper (Cu) Dissolved Iron (Fe) Dissolved Lead (Pb) Dissolved Magnesium (Mg) Dissolved Manganese (Mn) Dissolved Molybdenum (Mo) Dissolved Nickel (Ni) Dissolved Phosphorus (P) Dissolved Potassium (K) Dissolved Selenium (Se) Dissolved Silver (Ag) Dissolved Strontium (Sr) Dissolved Thallium (Tl) Dissolved Titanium (Ti) Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05	96 95 105 98 108 96 100 99 110 99 102 88 100 NC 100 101 92	% % % % % % % % % % % % % % %	80 - 120 80 - 120
MT7 Sniked Blank	Dissolved Copper (Cu) Dissolved Iron (Fe) Dissolved Lead (Pb) Dissolved Magnesium (Mg) Dissolved Manganese (Mn) Dissolved Molybdenum (Mo) Dissolved Nickel (Ni) Dissolved Phosphorus (P) Dissolved Potassium (K) Dissolved Selenium (Se) Dissolved Silver (Ag) Dissolved Sodium (Na) Dissolved Strontium (Sr) Dissolved Thallium (Tl) Dissolved Titanium (Ti) Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05	95 105 98 108 96 100 99 110 99 102 88 100 NC 100 101 92	% % % % % % % % % % % % %	80 - 120 80 - 120
MT7 Sniked Blank	Dissolved Iron (Fe) Dissolved Lead (Pb) Dissolved Magnesium (Mg) Dissolved Manganese (Mn) Dissolved Molybdenum (Mo) Dissolved Nickel (Ni) Dissolved Phosphorus (P) Dissolved Potassium (K) Dissolved Selenium (Se) Dissolved Silver (Ag) Dissolved Sodium (Na) Dissolved Strontium (Sr) Dissolved Thallium (Tl) Dissolved Titanium (Ti) Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05	105 98 108 96 100 99 110 99 102 88 100 NC 100 101 92	% % % % % % % % % % % %	80 - 120 80 - 120
MT7 Sniked Blank	Dissolved Lead (Pb) Dissolved Magnesium (Mg) Dissolved Manganese (Mn) Dissolved Molybdenum (Mo) Dissolved Nickel (Ni) Dissolved Phosphorus (P) Dissolved Potassium (K) Dissolved Selenium (Se) Dissolved Silver (Ag) Dissolved Sodium (Na) Dissolved Strontium (Sr) Dissolved Thallium (Tl) Dissolved Tin (Sn) Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05	98 108 96 100 99 110 99 102 88 100 NC 100 101 92	% % % % % % % %	80 - 120 80 - 120
MT7 Sniked Blank	Dissolved Magnesium (Mg) Dissolved Manganese (Mn) Dissolved Molybdenum (Mo) Dissolved Nickel (Ni) Dissolved Phosphorus (P) Dissolved Potassium (K) Dissolved Selenium (Se) Dissolved Silver (Ag) Dissolved Sodium (Na) Dissolved Strontium (Sr) Dissolved Thallium (TI) Dissolved Titanium (Ti) Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05	108 96 100 99 110 99 102 88 100 NC 100 101 92	% % % % % % % %	80 - 120 80 - 120
MT7 Sniked Blank	Dissolved Manganese (Mn) Dissolved Molybdenum (Mo) Dissolved Nickel (Ni) Dissolved Phosphorus (P) Dissolved Potassium (K) Dissolved Selenium (Se) Dissolved Silver (Ag) Dissolved Sodium (Na) Dissolved Strontium (Sr) Dissolved Thallium (Tl) Dissolved Titanium (Ti) Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05	96 100 99 110 99 102 88 100 NC 100 101 92	% % % % % % %	80 - 120 80 - 120
MT7 Sniked Blank	Dissolved Molybdenum (Mo) Dissolved Nickel (Ni) Dissolved Phosphorus (P) Dissolved Potassium (K) Dissolved Selenium (Se) Dissolved Silver (Ag) Dissolved Sodium (Na) Dissolved Strontium (Sr) Dissolved Thallium (TI) Dissolved Tin (Sn) Dissolved Titanium (Ti) Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05	100 99 110 99 102 88 100 NC 100 101 92	% % % % % % %	80 - 120 80 - 120
MT7 Sniked Blank	Dissolved Nickel (Ni) Dissolved Phosphorus (P) Dissolved Potassium (K) Dissolved Selenium (Se) Dissolved Silver (Ag) Dissolved Sodium (Na) Dissolved Strontium (Sr) Dissolved Thallium (TI) Dissolved Tin (Sn) Dissolved Titanium (Ti) Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05	99 110 99 102 88 100 NC 100 101 92	% % % % % % %	80 - 120 80 - 120
MT7 Sniked Blank	Dissolved Phosphorus (P) Dissolved Potassium (K) Dissolved Selenium (Se) Dissolved Silver (Ag) Dissolved Sodium (Na) Dissolved Strontium (Sr) Dissolved Thallium (TI) Dissolved Tin (Sn) Dissolved Titanium (Ti) Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05	110 99 102 88 100 NC 100 101 92	% % % % % %	80 - 120 80 - 120
MT7 Sniked Blank	Dissolved Potassium (K) Dissolved Selenium (Se) Dissolved Silver (Ag) Dissolved Sodium (Na) Dissolved Strontium (Sr) Dissolved Thallium (TI) Dissolved Tin (Sn) Dissolved Titanium (Ti) Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05	99 102 88 100 NC 100 101 92	% % % % %	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120
MT7 Sniked Blank	Dissolved Potassium (K) Dissolved Selenium (Se) Dissolved Silver (Ag) Dissolved Sodium (Na) Dissolved Strontium (Sr) Dissolved Thallium (TI) Dissolved Tin (Sn) Dissolved Titanium (Ti) Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05	102 88 100 NC 100 101 92	% % % % %	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120
MT7 Sniked Blank	Dissolved Selenium (Se) Dissolved Silver (Ag) Dissolved Sodium (Na) Dissolved Strontium (Sr) Dissolved Thallium (Tl) Dissolved Tin (Sn) Dissolved Titanium (Ti) Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05	102 88 100 NC 100 101 92	% % % % %	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120
MT7 Sniked Blank	Dissolved Silver (Ag) Dissolved Sodium (Na) Dissolved Strontium (Sr) Dissolved Thallium (Tl) Dissolved Tin (Sn) Dissolved Titanium (Ti) Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05	88 100 NC 100 101 92 108	% % % % %	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120
MT7 Sniked Blank	Dissolved Sodium (Na) Dissolved Strontium (Sr) Dissolved Thallium (Tl) Dissolved Tin (Sn) Dissolved Titanium (Ti) Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05	100 NC 100 101 92 108	% % % %	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120
MT7 Sniked Blank	Dissolved Strontium (Sr) Dissolved Thallium (Tl) Dissolved Tin (Sn) Dissolved Titanium (Ti) Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05	NC 100 101 92 108	% % % %	80 - 120 80 - 120 80 - 120 80 - 120
MT7 Sniked Blank	Dissolved Thallium (Tl) Dissolved Tin (Sn) Dissolved Titanium (Ti) Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05 2024/11/05 2024/11/05 2024/11/05	100 101 92 108	% % %	80 - 120 80 - 120 80 - 120
MT7 Sniked Blank	Dissolved Tin (Sn) Dissolved Titanium (Ti) Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05 2024/11/05 2024/11/05	101 92 108	% %	80 - 120 80 - 120
MT7 Sniked Blank	Dissolved Titanium (Ti) Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05 2024/11/05	92 108	%	80 - 120
MT7 Sniked Blank	Dissolved Uranium (U) Dissolved Vanadium (V)	2024/11/05 2024/11/05	108		
MT7 Snikad Blank	Dissolved Vanadium (V)	2024/11/05		%	80 - 120
MT7 Sniked Blank	()		100		
MT7 Snikad Blank	Dissolved Zing (Zn)			%	80 - 120
MT7 Snikad Blank	Dissolved Zinc (Zn)	2024/11/05	97	%	80 - 120
WITZ Spiked blank	Dissolved Aluminum (Al)	2024/11/05	104	%	80 - 120
	Dissolved Antimony (Sb)	2024/11/05	98	%	80 - 120
	Dissolved Arsenic (As)	2024/11/05	101	%	80 - 120
	Dissolved Barium (Ba)	2024/11/05	96	%	80 - 120
	Dissolved Beryllium (Be)	2024/11/05	99	%	80 - 120
	Dissolved Bismuth (Bi)	2024/11/05	101	%	80 - 120
	Dissolved Boron (B)	2024/11/05	94	%	80 - 120
	Dissolved Cadmium (Cd)	2024/11/05	97	%	80 - 120
	Dissolved Calcium (Ca)	2024/11/05	102	%	80 - 120
					80 - 120
	• •	·			80 - 120
		·			80 - 120
		· ·			80 - 120
					80 - 120
	• •	·			80 - 120
					80 - 120
					80 - 120
					80 - 120
					80 - 120
	Dissolved Potassium (K)	2024/11/05	100	%	80 - 120
	Dissolved Selenium (Se)	2024/11/05	101	%	80 - 120
	Dissolved Silver (Ag)	2024/11/05	98	%	80 - 120
	Dissolved Sodium (Na)	2024/11/05	106	%	80 - 120
	Dissolved Strontium (Sr)	2024/11/05	99	%	80 - 120
	Dissolved Thallium (TI)	2024/11/05	99	%	80 - 120
	Dissolved Tin (Sn)	2024/11/05	96	%	80 - 120
	Dissolved Titanium (Ti)	2024/11/05	102	%	80 - 120
	• •				80 - 120
	• •				80 - 120
	• •	· ·			80 - 120
MT7 Method Blank			101		00 - 120
WILL INICUIOU DIAIR				_	
M	TZ Method Blank	Dissolved Beryllium (Be) Dissolved Bismuth (Bi) Dissolved Boron (B) Dissolved Cadmium (Cd) Dissolved Calcium (Ca) Dissolved Chromium (Cr) Dissolved Copper (Cu) Dissolved Iron (Fe) Dissolved Iron (Fe) Dissolved Magnesium (Mg) Dissolved Magnesium (Mg) Dissolved Molybdenum (Mo) Dissolved Nickel (Ni) Dissolved Phosphorus (P) Dissolved Potassium (K) Dissolved Selenium (Se) Dissolved Silver (Ag) Dissolved Strontium (Sr) Dissolved Tin (Sn) Dissolved Titanium (Ti) Dissolved Vanadium (V) Dissolved Vanadium (V) Dissolved Zinc (Zn)	Dissolved Beryllium (Be) 2024/11/05 Dissolved Bismuth (Bi) 2024/11/05 Dissolved Boron (B) 2024/11/05 Dissolved Cadmium (Cd) 2024/11/05 Dissolved Calcium (Ca) 2024/11/05 Dissolved Calcium (Ca) 2024/11/05 Dissolved Chromium (Cr) 2024/11/05 Dissolved Cobalt (Co) 2024/11/05 Dissolved Copper (Cu) 2024/11/05 Dissolved Iron (Fe) 2024/11/05 Dissolved Magnesium (Mg) 2024/11/05 Dissolved Magnesium (Mg) 2024/11/05 Dissolved Magnese (Mn) 2024/11/05 Dissolved Molybdenum (Mo) 2024/11/05 Dissolved Nickel (Ni) 2024/11/05 Dissolved Phosphorus (P) 2024/11/05 Dissolved Selenium (Se) 2024/11/05 Dissolved Silver (Ag) 2024/11/05 Dissolved Sodium (Na) 2024/11/05 Dissolved Strontium (Sr) 2024/11/05 Dissolved Thallium (Ti) 2024/11/05 Dissolved Tin (Sn) 2024/11/05 Dissolved Tinalium (Ti) 2024/11/05 Dissolved Vanadium (U) 2024/11/05 Dissolved Vanadium (V) 2024/11/05 Dissolved Zinc (Zn) 2024/11/05 Dissolved Zinc (Zn) 2024/11/05 Solved Zinc (Zn) 2024/11/05	Dissolved Beryllium (Be) 2024/11/05 99 Dissolved Bismuth (Bi) 2024/11/05 101 Dissolved Boron (B) 2024/11/05 94 Dissolved Cadmium (Cd) 2024/11/05 102 Dissolved Cadmium (Ca) 2024/11/05 102 Dissolved Chromium (Cr) 2024/11/05 96 Dissolved Cobalt (Co) 2024/11/05 97 Dissolved Copper (Cu) 2024/11/05 98 Dissolved Lead (Pb) 2024/11/05 97 Dissolved Lead (Pb) 2024/11/05 97 Dissolved Magnesium (Mg) 2024/11/05 97 Dissolved Magnesium (Mg) 2024/11/05 97 Dissolved Magnesium (Mg) 2024/11/05 97 Dissolved Molybdenum (Mo) 2024/11/05 110 Dissolved Mickel (Ni) 2024/11/05 99 Dissolved Potassium (K) 2024/11/05 101 Dissolved Potassium (K) 2024/11/05 109 Dissolved Selenium (Se) 2024/11/05 100 Dissolved Silver (Ag) 2024/11/05 98 Dissolved Sodium (Na) 2024/11/05 99 Dissolved Sodium (Na) 2024/11/05 99 Dissolved Sodium (Na) 2024/11/05 99 Dissolved Thallium (Ti) 2024/11/05 99 Dissolved Trailium (Ti) 2024/11/05 99 Dissolved Trailium (Ti) 2024/11/05 99 Dissolved Uranium (U) 2024/11/05 102 Dissolved Uranium (U) 2024/11/05 105 Dissolved Vanadium (V) 2024/11/05 101 Dissolved Zinc (Zn) 2024/11/05 101	Dissolved Beryllium (Be) 2024/11/05 99 % 0 0 0 0 0 0 0 0 0

Client Project #: 12584960 Your P.O. #: 735-009799

QA/QC	Danasakas	Date A. J. J.	1/-1	D	
Batch Init QC Type	Parameter	Date Analyzed	Value	Recovery UNIT	
	Dissolved Arsenic (As)	2024/11/05	<1.0	ug/	
	Dissolved Barium (Ba)	2024/11/05	<1.0	ug/	
	Dissolved Beryllium (Be)	2024/11/05	<0.10	ug/	
	Dissolved Bismuth (Bi)	2024/11/05	<2.0	ug/	L
	Dissolved Boron (B)	2024/11/05	<50	ug/	
	Dissolved Cadmium (Cd)	2024/11/05	<0.010	ug/	
	Dissolved Calcium (Ca)	2024/11/05	<100	ug/	L
	Dissolved Chromium (Cr)	2024/11/05	<1.0	ug/	L
	Dissolved Cobalt (Co)	2024/11/05	< 0.40	ug/	L
	Dissolved Copper (Cu)	2024/11/05	< 0.50	ug/	L
	Dissolved Iron (Fe)	2024/11/05	<50	ug/	L
	Dissolved Lead (Pb)	2024/11/05	< 0.50	ug/	L
	Dissolved Magnesium (Mg)	2024/11/05	<100	ug/	
	Dissolved Manganese (Mn)	2024/11/05	<2.0	ug/	
	Dissolved Molybdenum (Mo)	2024/11/05	<2.0	ug/	
	Dissolved Nickel (Ni)	2024/11/05	<2.0	ug/	
	Dissolved Phosphorus (P)	2024/11/05	<100	ug/	
	Dissolved Potassium (K)	2024/11/05	<100	ug/	
	Dissolved Foldssluff (K) Dissolved Selenium (Se)	2024/11/05	<0.50	<u>-</u>	
	, ,			ug/	
	Dissolved Silver (Ag)	2024/11/05	<0.10	ug/	
	Dissolved Sodium (Na)	2024/11/05	<100	ug/	
	Dissolved Strontium (Sr)	2024/11/05	<2.0	ug/	
	Dissolved Thallium (TI)	2024/11/05	<0.10	ug/	
	Dissolved Tin (Sn)	2024/11/05	<2.0	ug/	
	Dissolved Titanium (Ti)	2024/11/05	<2.0	ug/	L
	Dissolved Uranium (U)	2024/11/05	< 0.10	ug/	L
	Dissolved Vanadium (V)	2024/11/05	<2.0	ug/	L
	Dissolved Zinc (Zn)	2024/11/05	<5.0	ug/	L
15551 MTZ RPD	Dissolved Aluminum (Al)	2024/11/05	NC	%	20
	Dissolved Antimony (Sb)	2024/11/05	NC	%	20
	Dissolved Arsenic (As)	2024/11/05	NC	%	20
	Dissolved Barium (Ba)	2024/11/05	10	%	20
	Dissolved Beryllium (Be)	2024/11/05	NC	%	20
	Dissolved Bismuth (Bi)	2024/11/05	NC	%	20
	Dissolved Boron (B)	2024/11/05	NC	%	20
	Dissolved Boron (B) Dissolved Cadmium (Cd)	2024/11/05	NC	%	20
	Dissolved Calcium (Ca)	2024/11/05	1.8	%	20
	• •				
	Dissolved Chromium (Cr)	2024/11/05	NC	%	20
	Dissolved Cobalt (Co)	2024/11/05	NC	%	20
	Dissolved Copper (Cu)	2024/11/05	NC	%	20
	Dissolved Iron (Fe)	2024/11/05	1.7	%	20
	Dissolved Lead (Pb)	2024/11/05	NC	%	20
	Dissolved Magnesium (Mg)	2024/11/05	2.0	%	20
	Dissolved Manganese (Mn)	2024/11/05	1.2	%	20
	Dissolved Molybdenum (Mo)	2024/11/05	4.6	%	20
	Dissolved Nickel (Ni)	2024/11/05	NC	%	20
	Dissolved Phosphorus (P)	2024/11/05	NC	%	20
	Dissolved Potassium (K)	2024/11/05	3.4	%	20
	Dissolved Selenium (Se)	2024/11/05	NC	%	20
	Dissolved Silver (Ag)	2024/11/05	NC	%	20
	Dissolved Sodium (Na)	2024/11/05	1.5	%	20
	Dissolved Strontium (Sr)	2024/11/05	1.8	% %	20
	Dissolved Thallium (TI)	2024/11/05	NC	%	20
	Dissolved Tin (Sn)	2024/11/05	NC	%	2

Client Project #: 12584960 Your P.O. #: 735-009799

h			QUALITY ASSURANCE					
QA/QC						_	=	
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Titanium (Ti)	2024/11/05	NC		%	20
			Dissolved Variation (V)	2024/11/05	0.93		%	20
			Dissolved Vanadium (V)	2024/11/05	NC		%	20
0746020	DNAF	000	Dissolved Zinc (Zn)	2024/11/05	NC	00	%	20
9746030	DME	•	Total Suspended Solids	2024/11/06	-1.0	99	%	80 - 120
9746030	DME	Method Blank	Total Suspended Solids	2024/11/06	<1.0		mg/L	20
9746030	DME	RPD	Total Suspended Solids	2024/11/06	4.0	NO	%	20
9748090	EMT	Matrix Spike	Dissolved Chloride (CI-)	2024/11/06		NC	%	80 - 120
9748090	EMT	Spiked Blank	Dissolved Chloride (Cl-)	2024/11/06		91	%	80 - 120
9748090	EMT	Method Blank	Dissolved Chloride (CI-)	2024/11/06	<1.0		mg/L	
9748090	EMT	RPD	Dissolved Chloride (Cl-)	2024/11/06	0.024		%	20
9748132	EMT	Matrix Spike	Dissolved Sulphate (SO4)	2024/11/06		93	%	80 - 120
9748132	EMT	Spiked Blank	Dissolved Sulphate (SO4)	2024/11/06		95	%	80 - 120
9748132	EMT	Method Blank	Dissolved Sulphate (SO4)	2024/11/06	<2.0		mg/L	
9748132	EMT	RPD	Dissolved Sulphate (SO4)	2024/11/06	NC		%	20
9748133	EMT	Matrix Spike	Reactive Silica (SiO2)	2024/11/06		NC	%	80 - 120
9748133	EMT	Spiked Blank	Reactive Silica (SiO2)	2024/11/06		89	%	80 - 120
9748133	EMT	Method Blank	Reactive Silica (SiO2)	2024/11/06	<0.50		mg/L	
9748133	EMT	RPD	Reactive Silica (SiO2)	2024/11/06	0.76		%	20
9748134	EMT	Spiked Blank	Colour	2024/11/06		97	%	80 - 120
9748134	EMT	Method Blank	Colour	2024/11/06	<5.0		TCU	
9748134	EMT	RPD	Colour	2024/11/06	1.9		%	20
9748135	EMT	Matrix Spike	Orthophosphate (P)	2024/11/06		85	%	80 - 120
9748135	EMT	Spiked Blank	Orthophosphate (P)	2024/11/06		96	%	80 - 120
9748135	EMT	Method Blank	Orthophosphate (P)	2024/11/06	< 0.010		mg/L	
9748135	EMT	RPD	Orthophosphate (P)	2024/11/06	NC		%	20
9748136	EMT	Matrix Spike	Nitrate + Nitrite (N)	2024/11/06		89	%	80 - 120
9748136	EMT	Spiked Blank	Nitrate + Nitrite (N)	2024/11/06		97	%	80 - 120
9748136	EMT	Method Blank	Nitrate + Nitrite (N)	2024/11/06	< 0.050		mg/L	
9748136	EMT	RPD	Nitrate + Nitrite (N)	2024/11/06	NC		%	20
9748137	EMT	Matrix Spike	Nitrite (N)	2024/11/06		101	%	80 - 120
9748137	EMT	Spiked Blank	Nitrite (N)	2024/11/06		98	%	80 - 120
9748137	EMT	Method Blank	Nitrite (N)	2024/11/06	< 0.010		mg/L	
9748137	EMT	RPD	Nitrite (N)	2024/11/06	NC		%	20
9748292	MTZ	Matrix Spike	Dissolved Aluminum (AI)	2024/11/06		103	%	80 - 120
			Dissolved Antimony (Sb)	2024/11/06		102	%	80 - 120
			Dissolved Arsenic (As)	2024/11/06		101	%	80 - 120
			Dissolved Barium (Ba)	2024/11/06		97	%	80 - 120
			Dissolved Beryllium (Be)	2024/11/06		104	%	80 - 120
			Dissolved Bismuth (Bi)	2024/11/06		97	%	80 - 120
			Dissolved Boron (B)	2024/11/06		103	%	80 - 120
			Dissolved Cadmium (Cd)	2024/11/06		106	%	80 - 120
			Dissolved Calcium (Ca)	2024/11/06		NC	%	80 - 120
			Dissolved Chromium (Cr)	2024/11/06		100	%	80 - 120
			Dissolved Cobalt (Co)	2024/11/06		95	%	80 - 120
			Dissolved Copper (Cu)	2024/11/06		93	%	80 - 120
			Dissolved Iron (Fe)	2024/11/06		101	%	80 - 120
			Dissolved Lead (Pb)	2024/11/06		97	%	80 - 120
			Dissolved Magnesium (Mg)	2024/11/06		NC	%	80 - 120
			Dissolved Manganese (Mn)	2024/11/06		NC	%	80 - 120
			Dissolved Molybdenum (Mo)	2024/11/06		107	%	80 - 120
			Dissolved Nickel (Ni)	2024/11/06		97	%	80 - 120
			Dissolved Phosphorus (P)	2024/11/06		107	%	80 - 120
			Dissolved Potassium (K)	2024/11/06		103	%	80 - 120
				===:/==/00				

Client Project #: 12584960 Your P.O. #: 735-009799

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Selenium (Se)	2024/11/06		102	%	80 - 120
			Dissolved Silver (Ag)	2024/11/06		100	%	80 - 120
			Dissolved Sodium (Na)	2024/11/06		NC	%	80 - 120
			Dissolved Strontium (Sr)	2024/11/06		NC	%	80 - 120
			Dissolved Thallium (TI)	2024/11/06		99	%	80 - 120
			Dissolved Tin (Sn)	2024/11/06		103	%	80 - 120
			Dissolved Titanium (Ti)	2024/11/06		101	%	80 - 120
			Dissolved Uranium (U)	2024/11/06		107	%	80 - 120
			Dissolved Vanadium (V)	2024/11/06		104	%	80 - 120
			Dissolved Zinc (Zn)	2024/11/06		97	%	80 - 120
9748292	MTZ	Spiked Blank	Dissolved Aluminum (AI)	2024/11/06		105	%	80 - 120
			Dissolved Antimony (Sb)	2024/11/06		97	%	80 - 120
			Dissolved Arsenic (As)	2024/11/06		100	%	80 - 120
			Dissolved Barium (Ba)	2024/11/06		98	%	80 - 120
			Dissolved Beryllium (Be)	2024/11/06		101	%	80 - 120
			Dissolved Bismuth (Bi)	2024/11/06		99	%	80 - 120
			Dissolved Boron (B)	2024/11/06		101	%	80 - 120
			Dissolved Cadmium (Cd)	2024/11/06		105	%	80 - 120
			Dissolved Calcium (Ca)	2024/11/06		105	%	80 - 120
			Dissolved Chromium (Cr)	2024/11/06		101	%	80 - 120
			Dissolved Cobalt (Co)	2024/11/06		100	%	80 - 120
			Dissolved Copper (Cu)	2024/11/06		99	%	80 - 120
			Dissolved Copper (Cd) Dissolved Iron (Fe)	2024/11/06		102	%	80 - 120
			Dissolved from (Fe) Dissolved Lead (Pb)	2024/11/06		99	%	80 - 120
			Dissolved Lead (FB) Dissolved Magnesium (Mg)	2024/11/06		108	%	80 - 120
			Dissolved Magnesium (Mg) Dissolved Manganese (Mn)	2024/11/06		103	% %	80 - 120
			Dissolved Mangariese (Min) Dissolved Molybdenum (Mo)			101	% %	80 - 120
				2024/11/06			% %	
			Dissolved Nickel (Ni)	2024/11/06		101		80 - 120
			Dissolved Phosphorus (P)	2024/11/06		106	%	80 - 120
			Dissolved Potassium (K)	2024/11/06		102	%	80 - 120
			Dissolved Selenium (Se)	2024/11/06		101	%	80 - 120
			Dissolved Silver (Ag)	2024/11/06		98	%	80 - 120
			Dissolved Sodium (Na)	2024/11/06		103	%	80 - 120
			Dissolved Strontium (Sr)	2024/11/06		101	%	80 - 120
			Dissolved Thallium (TI)	2024/11/06		99	%	80 - 120
			Dissolved Tin (Sn)	2024/11/06		101	%	80 - 120
			Dissolved Titanium (Ti)	2024/11/06		101	%	80 - 120
			Dissolved Uranium (U)	2024/11/06		104	%	80 - 120
			Dissolved Vanadium (V)	2024/11/06		103	%	80 - 120
			Dissolved Zinc (Zn)	2024/11/06		101	%	80 - 120
9748292	MTZ	Method Blank	Dissolved Aluminum (AI)	2024/11/06	<5.0		ug/L	
			Dissolved Antimony (Sb)	2024/11/06	<1.0		ug/L	
			Dissolved Arsenic (As)	2024/11/06	<1.0		ug/L	
			Dissolved Barium (Ba)	2024/11/06	<1.0		ug/L	
			Dissolved Beryllium (Be)	2024/11/06	<0.10		ug/L	
			Dissolved Bismuth (Bi)	2024/11/06	<2.0		ug/L	
			Dissolved Boron (B)	2024/11/06	<50		ug/L	
			Dissolved Cadmium (Cd)	2024/11/06	<0.010		ug/L	
			Dissolved Calcium (Ca)	2024/11/06	<100		ug/L	
			Dissolved Chromium (Cr)	2024/11/06	<1.0		ug/L	
			Dissolved Cobalt (Co)	2024/11/06	< 0.40		ug/L	
			Dissolved Copper (Cu)	2024/11/06	<0.50		ug/L	
			Dissolved Iron (Fe)	2024/11/06	<50		ug/L	
			Dissolved Lead (Pb)	2024/11/06	<0.50		ug/L	

Client Project #: 12584960 Your P.O. #: 735-009799

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Magnesium (Mg)	2024/11/06	<100		ug/L	
			Dissolved Manganese (Mn)	2024/11/06	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2024/11/06	<2.0		ug/L	
			Dissolved Nickel (Ni)	2024/11/06	<2.0		ug/L	
			Dissolved Phosphorus (P)	2024/11/06	<100		ug/L	
			Dissolved Potassium (K)	2024/11/06	<100		ug/L	
			Dissolved Selenium (Se)	2024/11/06	< 0.50		ug/L	
			Dissolved Silver (Ag)	2024/11/06	< 0.10		ug/L	
			Dissolved Sodium (Na)	2024/11/06	<100		ug/L	
			Dissolved Strontium (Sr)	2024/11/06	<2.0		ug/L	
			Dissolved Thallium (TI)	2024/11/06	< 0.10		ug/L	
			Dissolved Tin (Sn)	2024/11/06	<2.0		ug/L	
			Dissolved Titanium (Ti)	2024/11/06	<2.0		ug/L	
			Dissolved Uranium (U)	2024/11/06	<0.10		ug/L	
			Dissolved Vanadium (V)	2024/11/06	<2.0		ug/L	
			Dissolved Zinc (Zn)	2024/11/06	<5.0		ug/L	
9748292	MTZ	PDD	Dissolved Aluminum (AI)	2024/11/06	NC		wg/L %	20
7740232	IVIIZ	KFD	Dissolved Antimony (Sb)	2024/11/06	NC		%	20
			Dissolved Antimony (5b) Dissolved Arsenic (As)	2024/11/06	NC		% %	20
			Dissolved Barium (Ba)	2024/11/06	0.22		%	20
			Dissolved Beryllium (Be)	2024/11/06	NC		%	20
			Dissolved Bismuth (Bi)	2024/11/06	NC		%	20
			Dissolved Boron (B)	2024/11/06	NC		%	20
			Dissolved Cadmium (Cd)	2024/11/06	NC		%	20
			Dissolved Calcium (Ca)	2024/11/06	0.59		%	20
			Dissolved Chromium (Cr)	2024/11/06	NC		%	20
			Dissolved Cobalt (Co)	2024/11/06	NC		%	20
			Dissolved Copper (Cu)	2024/11/06	NC		%	20
			Dissolved Iron (Fe)	2024/11/06	NC		%	20
			Dissolved Lead (Pb)	2024/11/06	NC		%	20
			Dissolved Magnesium (Mg)	2024/11/06	0.032		%	20
			Dissolved Manganese (Mn)	2024/11/06	0.25		%	20
			Dissolved Molybdenum (Mo)	2024/11/06	NC		%	20
			Dissolved Nickel (Ni)	2024/11/06	NC		%	20
			Dissolved Phosphorus (P)	2024/11/06	NC		%	20
			Dissolved Potassium (K)	2024/11/06	2.2		%	20
			Dissolved Selenium (Se)	2024/11/06	NC		%	20
			Dissolved Silver (Ag)	2024/11/06	NC		%	20
			Dissolved Sodium (Na)	2024/11/06	0.0094		%	20
			Dissolved Strontium (Sr)	2024/11/06	0.45		%	20
			Dissolved Thallium (TI)	2024/11/06	NC		%	20
			Dissolved Tin (Sn)	2024/11/06	NC		%	20
			Dissolved Titanium (Ti)	2024/11/06	NC		%	20
			Dissolved Uranium (U)	2024/11/06	4.2		%	20
			Dissolved Vanadium (V)	2024/11/06	NC		%	20
			Dissolved Zinc (Zn)	2024/11/06	NC		%	20
748412	M2C	Spiked Blank	pH	2024/11/06		100	%	97 - 103
748412	M2C	RPD [AHTH99-02]	рН	2024/11/06	1.5	100	%	97 - 103 N/A
748418	M2C		Conductivity	2024/11/06	1.5	95	%	80 - 120
		•	•		~1 O	93		JU - 120
748418	M2C	Method Blank	Conductivity	2024/11/06	<1.0		uS/cm	10
748418	M2C	RPD [AHTH99-02]	Conductivity	2024/11/06	0.15	0.0	%	10
9748420	M2C	Spiked Blank	Total Alkalinity (Total as CaCO3)	2024/11/06	2.2	96	%	80 - 120
9748420	M2C	Method Blank	Total Alkalinity (Total as CaCO3)	2024/11/06	<2.0		mg/L	
9748420	M2C	RPD [AHTH99-02]	Total Alkalinity (Total as CaCO3)	2024/11/06	1.5		%	20

Report Date: 2024/11/08

GHD Limited

Client Project #: 12584960 Your P.O. #: 735-009799

04/06			`					
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9748423	M2C	Spiked Blank	pH	2024/11/06	Value	101	%	97 - 103
9748423	M2C	RPD	рH	2024/11/06	0.97	101	%	N/A
9748427		Spiked Blank	Conductivity	2024/11/06	0.57	94	%	80 - 120
9748427		Method Blank	Conductivity	2024/11/06	<1.0	3.	uS/cm	00 120
9748427	M2C		Conductivity	2024/11/06	1.1		%	10
9748433		Spiked Blank	Total Alkalinity (Total as CaCO3)	2024/11/06		96	%	80 - 120
9748433		Method Blank	Total Alkalinity (Total as CaCO3)	2024/11/06	<2.0	30	mg/L	00 120
9748433	M2C	RPD	Total Alkalinity (Total as CaCO3)	2024/11/06	1.4		%	20
9749031	ACK	Matrix Spike [AHTI08-02]	Total Organic Carbon (C)	2024/11/06		100	%	85 - 115
9749031	ACK	Spiked Blank	Total Organic Carbon (C)	2024/11/06		101	%	80 - 120
9749031	ACK	Method Blank	Total Organic Carbon (C)	2024/11/06	<0.50		mg/L	
9749031	ACK	RPD [AHTI08-02]	Total Organic Carbon (C)	2024/11/06	6.5		%	15
9749039	ACK	Matrix Spike	Total Organic Carbon (C)	2024/11/07	0.5	101	%	85 - 115
9749039	ACK	Spiked Blank	Total Organic Carbon (C)	2024/11/06		101	%	80 - 120
9749039	ACK	Method Blank	Total Organic Carbon (C)	2024/11/06	<0.50	101	mg/L	80 - 120
9749039	ACK	RPD	Total Organic Carbon (C)	2024/11/06	0.097		/// // // // // // // // // // // // //	15
9751057	MTZ	Matrix Spike [AHTI00-04]	Total Aluminum (Al)	2024/11/07	0.037	96	%	80 - 120
3/3103/	IVIIZ	Matrix Spike [An 1100-04]	` '	2024/11/07				
			Total Antimony (Sb) Total Arsenic (As)	2024/11/07		100 98	% %	80 - 120 80 - 120
				2024/11/07				
			Total Barium (Ba) Total Beryllium (Be)	2024/11/07		96 98	%	80 - 120 80 - 120
							%	
			Total Baron (B)	2024/11/07		99	%	80 - 120
			Total Boron (B)	2024/11/07		96	%	80 - 120
			Total Calairum (Cd)	2024/11/07		100	%	80 - 120
			Total Calcium (Ca)	2024/11/07		98	%	80 - 120
			Total Chromium (Cr)	2024/11/07		98	%	80 - 120
			Total Cobalt (Co)	2024/11/07		99	%	80 - 120
			Total Copper (Cu)	2024/11/07		98	%	80 - 120
			Total Iron (Fe)	2024/11/07		102	%	80 - 120
			Total Lead (Pb)	2024/11/07		97	%	80 - 120
			Total Magnesium (Mg)	2024/11/07		103	%	80 - 120
			Total Manganese (Mn)	2024/11/07		94	%	80 - 120
			Total Molybdenum (Mo)	2024/11/07		102	%	80 - 120
			Total Nickel (Ni)	2024/11/07		99	%	80 - 120
			Total Phosphorus (P)	2024/11/07		101	%	80 - 120
			Total Potassium (K)	2024/11/07		100	%	80 - 120
			Total Selenium (Se)	2024/11/07		99	%	80 - 120
			Total Silver (Ag)	2024/11/07		98	%	80 - 120
			Total Sodium (Na)	2024/11/07		98	%	80 - 120
			Total Strontium (Sr)	2024/11/07		98	%	80 - 120
			Total Thallium (Tl)	2024/11/07		99	%	80 - 120
			Total Tin (Sn)	2024/11/07		100	%	80 - 120
			Total Titanium (Ti)	2024/11/07		97	%	80 - 120
			Total Uranium (U)	2024/11/07		105	%	80 - 120
			Total Vanadium (V)	2024/11/07		101	%	80 - 120
			Total Zinc (Zn)	2024/11/07		99	%	80 - 120
9751057	MTZ	Spiked Blank	Total Aluminum (Al)	2024/11/07		99	%	80 - 120
			Total Antimony (Sb)	2024/11/07		102	%	80 - 120
			Total Arsenic (As)	2024/11/07		101	%	80 - 120
			Total Barium (Ba)	2024/11/07		100	%	80 - 120
			Total Beryllium (Be)	2024/11/07		100	%	80 - 120
			Total Bismuth (Bi)	2024/11/07		102	%	80 - 120
			Total Boron (B)	2024/11/07		98	%	80 - 120
			Total Cadmium (Cd)	2024/11/07		103	%	80 - 120

Client Project #: 12584960 Your P.O. #: 735-009799

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Calcium (Ca)	2024/11/07		102	%	80 - 120
			Total Chromium (Cr)	2024/11/07		103	%	80 - 120
			Total Cobalt (Co)	2024/11/07		102	%	80 - 120
			Total Copper (Cu)	2024/11/07		102	%	80 - 120
			Total Iron (Fe)	2024/11/07		106	%	80 - 120
			Total Lead (Pb)	2024/11/07		100	%	80 - 120
			Total Magnesium (Mg)	2024/11/07		106	%	80 - 120
			Total Manganese (Mn)	2024/11/07		102	%	80 - 120
			Total Molybdenum (Mo)	2024/11/07		106	%	80 - 120
			Total Nickel (Ni)	2024/11/07		103	%	80 - 120
			Total Phosphorus (P)	2024/11/07		102	%	80 - 120
			Total Potassium (K)	2024/11/07		103	%	80 - 120
			Total Selenium (Se)	2024/11/07		99	%	80 - 120
			Total Silver (Ag)	2024/11/07		100	%	80 - 120
			Total Sodium (Na)	2024/11/07		103	%	80 - 120
			Total Strontium (Sr)	2024/11/07		102	%	80 - 120
			Total Thallium (TI)	2024/11/07		102	%	80 - 120
			Total Tin (Sn)	2024/11/07		104	%	80 - 120
			Total Titanium (Ti)	2024/11/07		98	%	80 - 120
			Total Uranium (U)	2024/11/07		109	%	80 - 120
			Total Vanadium (V)	2024/11/07		103	%	80 - 120
			Total Zinc (Zn)	2024/11/07		102	%	80 - 120
51057	MTZ	Method Blank	Total Aluminum (Al)	2024/11/07	<5.0		ug/L	
			Total Antimony (Sb)	2024/11/07	<1.0		ug/L	
			Total Arsenic (As)	2024/11/07	<1.0		ug/L	
			Total Barium (Ba)	2024/11/07	<1.0		ug/L	
			Total Beryllium (Be)	2024/11/07	<0.10		ug/L	
			Total Bismuth (Bi)	2024/11/07	<2.0		ug/L	
			Total Boron (B)	2024/11/07	<50		ug/L	
			Total Cadmium (Cd)	2024/11/07	<0.010		ug/L	
			Total Calcium (Ca)	2024/11/07	<100		ug/L ug/L	
			Total Calcidit (Ca) Total Chromium (Cr)	2024/11/07	<1.0			
					<0.40		ug/L	
			Total Copper (Cu)	2024/11/07	<0.40		ug/L	
			Total Iron (Eq.)	2024/11/07			ug/L	
			Total Iron (Fe)	2024/11/07	<50		ug/L	
			Total Magnesium (Mg)	2024/11/07	<0.50		ug/L	
			Total Magnesium (Mg)	2024/11/07	<100		ug/L	
			Total Malyhdanym (Ma)	2024/11/07	<2.0		ug/L	
			Total Migled (Ni)	2024/11/07	<2.0		ug/L	
			Total Nickel (Ni)	2024/11/07	<2.0		ug/L	
			Total Phosphorus (P)	2024/11/07	<100		ug/L	
			Total Potassium (K)	2024/11/07	<100		ug/L	
			Total Selenium (Se)	2024/11/07	<0.50		ug/L	
			Total Silver (Ag)	2024/11/07	<0.10		ug/L	
			Total Sodium (Na)	2024/11/07	<100		ug/L	
			Total Strontium (Sr)	2024/11/07	<2.0		ug/L	
			Total Thallium (TI)	2024/11/07	<0.10		ug/L	
			Total Tin (Sn)	2024/11/07	<2.0		ug/L	
			Total Titanium (Ti)	2024/11/07	<2.0		ug/L	
			Total Uranium (U)	2024/11/07	<0.10		ug/L	
			Total Vanadium (V)	2024/11/07	<2.0		ug/L	
			Total Zinc (Zn)	2024/11/07	<5.0		ug/L	
751057	MTZ	RPD	Total Lead (Pb)	2024/11/07	1.4		%	20
751094	S6S	QC Standard	Turbidity	2024/11/07		107	%	80 - 120

Bureau Veritas Job #: C4Y5693 Report Date: 2024/11/08 **GHD Limited**

Client Project #: 12584960 Your P.O. #: 735-009799

QUALITY ASSURANCE REPORT(CONT'D)

								ĺ
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9751094	S6S	Spiked Blank	Turbidity	2024/11/07	value	101	%	80 - 120
9751094	S6S	Method Blank	Turbidity	2024/11/07	<0.10	101	NTU	00 120
9751094	S6S	RPD	Turbidity	2024/11/07	2.2		%	20
9751104	S6S	QC Standard	Turbidity	2024/11/07	2.2	108	%	80 - 120
9751104	S6S	Spiked Blank	Turbidity	2024/11/07		100	%	80 - 120
9751104	S6S	Method Blank	Turbidity	2024/11/07	<0.10	100	NTU	00 120
9751104	S6S	RPD	Turbidity	2024/11/07	1.3		%	20
9751110	M2C	QC Standard	Turbidity	2024/11/07	1.5	106	%	80 - 120
9751110	M2C	Spiked Blank	Turbidity	2024/11/07		100	%	80 - 120
9751110	M2C	Method Blank	Turbidity	2024/11/07	<0.10	100	NTU	00 - 120
9751110	M2C	RPD	Turbidity	2024/11/07	0.62		%	20
9751128	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2024/11/07	0.02	99	%	80 - 120
9751128	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2024/11/07		93	%	80 - 120
9751128	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2024/11/07	<0.050	93	, -	80 - 120
9751128	MCN	RPD	0 (2024/11/07	6.6		mg/L %	20
			Nitrogen (Ammonia Nitrogen)		0.0	93	% %	
9751132	EMT	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2024/11/07				80 - 120
		'	0 (97		80 - 120
			0 ,					
			· · · · · · · · · · · · · · · · · · ·		4.1			
9751321	ACK	Matrix Spike [AHTH99-03]	Total Organic Carbon (C)	2024/11/07		99	%	85 - 115
9751321	ACK	Spiked Blank	Total Organic Carbon (C)	2024/11/07		99	%	80 - 120
9751321	ACK	Method Blank	Total Organic Carbon (C)	2024/11/07	<0.50		mg/L	
9751321	ACK	RPD [AHTH99-03]	Total Organic Carbon (C)	2024/11/07	8.4		%	15
9751321	ACK	Spiked Blank Method Blank	Total Organic Carbon (C)	2024/11/07		97 99 99	mg/L	80 - 12

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Matrix Spike exceeds acceptance limits, probable matrix interference.

Client Project #: 12584960 Your P.O. #: 735-009799

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

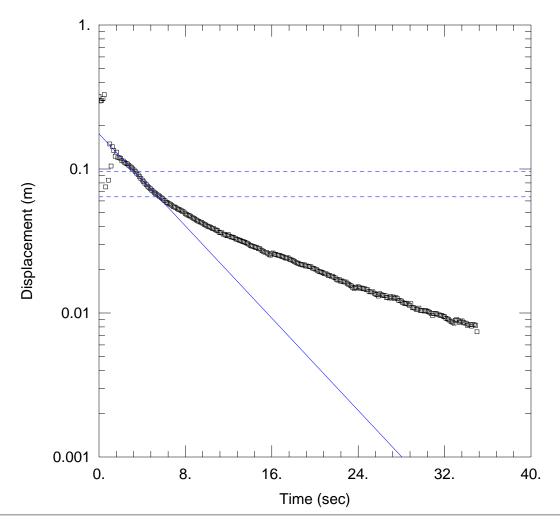
Ernlie Publicover, Scientific Specialist

Janah M. Bhyno

Bureau Veritas Certified by Janah Rhyno, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Suzanne Rogers, General Manager responsible for Nova Scotia Environmental laboratory operations.

INVOICE TO: Report											Pro	ject Information	6	Laboratory Use Only				
npany Name	Accounts Payable 762			me						Quotation#	C40	091				Bureau Veritas Job#	Bottle Order#:	
act Name				Glen Merkle	Jacobs-Peters				P.O.#	_	735-009799							
dress 120 Western Parkway Bedford NS B4B 0V2			Address	-						Project # Project Name	1258	12584960				Chain Of Custody Record		
10	(902) 468-1248 Fax (902) 468-2207			(902) 802-4	(902) 802-4790			Fax			-				-		Project Manage	
AccountsPayableCDN@ghd.com			Email												10010	C#1015035-01-01	Marie Muise	
Regulatory Criteria: Special Instructions							Sampled By ANALYSIS REQUESTED (PLEASE BE SPECIFIC)									Turnaround Time (TAT) Red	T 1000	
			c: Surface/Ground/Tapwater/Sewage/Effluent/Seawater			rved	Total Metals in	Solids	Dissolved (FieldFilt) in					Please provide advance notice for Regular (Standard) TAT; (will be applied if Rush TAT is not specified); Standard TAT = 5-7 Working days for most tests Please note: Standard TAT for certain tests such as B days -contact your Project Manager for details.				
Polabie/Nonpotable/Tissue/Soil/Studge/Metal SAMPLES MUST BE KEPT COOL (< 10°C) FROM TIME OF SAMPLING UNTI		ING UNTIL DELIVERY TO	BUREAU VERITAS	EAU VERITAS		Atlantic RCAp-MS Water	Total Suspended S	RCAp-MS					# pf Comments / Hazards / C		The second secon	e Required		
Sample	Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	Field Filte	1		₹3	-	-	_	-	-	Bottles			
		SW1	()ct 31,204	12,56	SW		X	Х						1	5			
		SW2	at 31,2024	13118	SW		X	Х							5		DE 1334	
		SW3	Oct 31, 204	13:52.	sw		×	Х						3	5			
		SW4	Oct 31,2024	14:33	sw		×	X							5	BE		
		SW5	Not suppled	-	sw		X	X							0		DF2024-11-0	
		SW DUP	1	/	sw		X	X							5	5 02572		
		MW1	Qt31,2024	12:33	GW				х						4			
		MW2	Oct 31, 2014	12 116.	GW				x						4			
		MW3	Oct 31,2024	11:31	GW				x						H			
		MW4	Oct 31,2024	10:38	GW				x						4			
RELIN	QUISHED BY: (Signatu		(YY/MM/DD) Time			VED BY:	Signature/P	int)		Date: (YY/MM/D	(00		s used and submitted	Time Sensitiv	Temperat	Lab Use Only ture (°C) on Receipt Custod	Seal Intact on Cooler	


Bureau Veritas Canada (2019) Inc.

		INVOICE TO:			Report Inf	ormation	n						Project In	formation		1	Laboratory Use C	Only	
npany Nam	#16276 GHD	Limited	Company N	Company Name							Quotati	on #	C40091				Bureau Veritas Job # Bot		
entact Name Accounts Payable 762			- A 2011 C 34 C 3	Contact Name Glen Merkley/Sadie Jacobs-Peters								Dite	735-009799						
ress		20 Western Parkway			Address				1			P.O.# Project#	12584960					1015035	
	Bedford NS B									Project	Project Name	_				Chain Of Custody Record	Project Manage		
16	(902) 468-124	8 Fax: (902) 468-220 bbleCDN@ghd.com	77.00.10							Site #		-				Marie Muise			
rii		iolec Di4@gird.com	Email		ey@gna.cc	m,5ac	T T	cobs-pe	eters@		2000	75. 15 4 4 4	ne pe epecie	m)			C#1015035-02-01	W0.5 No.	
Regulatory Criteria:		Sper	ial Instructions			-			ANALY	SIS REQUI	ESTED (PLEA	ASE BE SPECIF	(c)			Turnaround Time (TAT) Req Please provide advance notice for ru			
** Specify Matrix: Surface/Ground/Tapwater/Sewage/Effluen//Seawater			EM) werk Sansverker			Metals in	led Solids Dissolved (FieldFilt) in					(will be Standa Please		Regular (Standard) TAT: (will be applied if Rush TAT is not specified): Standard TAT = 5-7 Working days for most tests. Please note: Standard TAT for cardain tests such as BOD and Dioxins/ days-contact your Project Manager for defails.					
	Potable/Nonpotable/	Tissue/Soil/Sludge/Metal				tered & Prese	RCAD-MS	Water	Spended S	RCAp-MS Diss						Job Spec Date Requi	ific Rush TAT (if applies to entire submiss red: Time Req		
	MPLES MUST BE KEP	T GOOL (< 10°C) FROM TIME OF SAMPLIN Sample (Location) Identification	Date Sampled	BUREAU VERITAS Time Sampled	Matrix	Field Filt	Atlantic	Nater	Total S	At. RC.						# of Bottles	Comments / Hazards / Other R	equired Analysis	
		MW5	Oct 31,2024	11:08	GW					x						4			
		MW6	Not sumple	1-1	GW					x						0			
		MW7	Not sam	rled	GW					X						0			
		MWDUP	1	1	GW					х						4			
		MW9	Oct 31,2024	9:44	BW			-1								4			
		mw8	Det 31,2014	10:10	gw											4			
					8														
				LC_															
			1 2 0																
	NQUISHED BY: (Signat	ure/Print) Date: (YY/MM/DD) /Tin		RECEI	VED BY:	(Signa	ature/Print	1)	3	Date	(YY/MM/DD)	Time	# jars used an	d		Lab Use Only		

Bureau Veritas Canada (2019) Inc.

Appendix D

Hydraulic Conductivity Test Results

MW-05 FALLING HEAD

Data Set: C:\Alans Files\Shaw\MW05 FH1.aqt

Date: 12/06/24 Time: 08:49:21

PROJECT INFORMATION

Company: GHD Client: Shaw Project: 12584960 Location: Middleton Test Well: MW-05 Test Date: 11/08/2024

AQUIFER DATA

Saturated Thickness: 5.9 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-05)

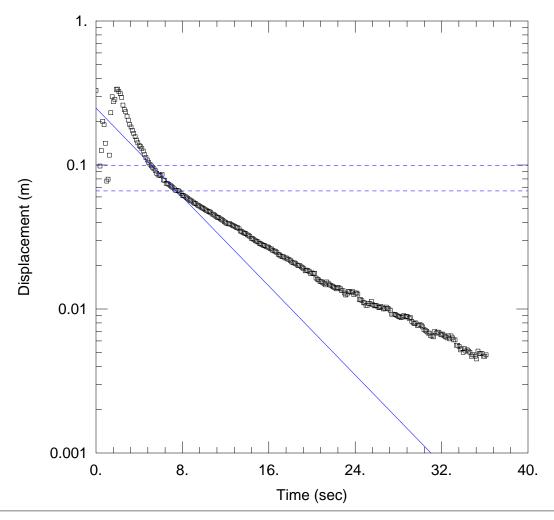
Initial Displacement: 0.32 m

Total Well Penetration Depth: 5.9 m

Casing Radius: 0.025 m

Static Water Column Height: 5.9 m

Screen Length: 5.9 m Well Radius: 0.025 m


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.004179 cm/sec

y0 = 0.1754 m

MW-05 RISING HEAD #1

Data Set: C:\Alans Files\Shaw\MW05 RH1.aqt

Date: <u>12/06/24</u> Time: <u>08:</u>49:05

PROJECT INFORMATION

Company: GHD
Client: Shaw
Project: 12584960
Location: Middleton
Test Well: MW-05
Test Date: 11/08/2024

AQUIFER DATA

Saturated Thickness: 5.9 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-05)

Initial Displacement: 0.33 m

Total Well Penetration Depth: 5.9 m

Casing Radius: 0.025 m

Static Water Column Height: 5.9 m

Screen Length: 5.9 m Well Radius: 0.025 m

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.004033 cm/sec

y0 = 0.2483 m

→ The Power of Commitment