

Inspiring Minds

Nova Scotia Automated Water Quality Monitoring Program

May 2007

Nova Scotia's Automated Surface Water Quality Monitoring Network

Data Analysis and Interpretation

Prepared by

R. Scott¹, C. MacMichael², G. Fenton³, W. Hart¹, and J. Boxall²

for

Nova Scotia Department of Environment & Labour Water and Wastewater Branch

May 2007

¹Centre for Water Resources Studies, ²GIS Centre, ³Engineering Mathematics and Internetworking, Dalhousie University, Halifax, Nova Scotia

TABLE OF CONTENTS

EXECUTIVE SUMMARY	xiii
ACKNOWLEDGEMENTS	xvi
1.0 PROGRAM BACKGROUND	1
2.0 PARAMETERS	3
3.0 METHODS	5
3.1 STATION SET-UP	5
3.2 STATION IDENTIFICATION	5
3.3 DATA COLLECTION, MANAGEMENT AND STATISTICAL REVIEW	5
3.4 SUPPLEMENTAL CLIMATE INFORMATION	
3.5 LAND USE INFORMATION	6
3.6 Grab Sample Water Quality	
3.7 QA/QC	
4.0 AUTOMATED WATER QUALITY MONITORING STATION SU	
-	
4.1 POCKWOCK LAKE	
4.1.1 Background Information	
4.1.1.1 Location of Station	
4.1.1.2 Geographic Setting	
4.1.1.3 Geology and Geomorphology	
4.1.1.5 Climate	
4.1.1.6 Wildlife and Habitat	
4.1.1.7 Human Settlement and Industrial Development	
4.1.2 Land Use and Forest Type Summary Information	
4.1.2.1 Land Use	
4.1.2.2 Forest Type	12
4.1.3 Water Quality Summary Information	
4.1.3.1 Temperature	
4.1.3.2 Turbidity	18
4.1.3.3 Conductivity	22
4.1.3.4 Dissolved Oxygen	
4.1.3.5 pH	
4.1.4 Overview of Pockwock Lake Water Quality	
4.2 North East Margaree River	
4.2.1 Background Information	
4.2.1.1 Location of Station	
4.2.1.2 Geographical Setting	
4.2.1.3 Geology and Geomorphology	
4.2.1.4 Forest Cover and Land Use	38

4.2.1.5 Climate	38
4.2.1.6 Wildlife and Habitat	38
4.2.1.7 Human Settlement and Industrial Development	39
4.2.2 Land Use and Forest Type Summary Information	40
4.2.2.1 Land Use	
4.2.3 Water Quality Summary Information	42
.4.2.3.1 Temperature	
4.2.3.2 Turbidity	47
4.2.3.3 Conductivity	51
4.2.3.4 Dissolved Oxygen	55
4.2.3.5 pH	
4.2.4 Overview of North East Margaree River Water Quality	63
4.3 SHELBURNE RIVER	65
4.3.1 Background Information	65
4.3.1.1 Location of Station	
4.3.1.2 Geographical Setting	65
4.3.1.3 Geology and Geomorphology	65
4.3.1.4 Forest Cover and Land Use	66
4.3.1.5 Climate	66
4.3.1.6 Wildlife and Habitat	66
4.3.1.7 Human Settlement and Industrial Development	66
4.3.2 Land Use and Forest Type Summary Information	67
4.3.2.1 Land Use	
4.3.2.2 Forest Type	68
4.3.3 Water Quality Summary Information	69
4.3.3.1 Temperature	
4.3.3.2 Turbidity	
4.3.3.3 Conductivity	
4.3.3.4 Dissolved Oxygen	
4.3.3.5 pH	
4.3.4 Overview of Shelburne River Water Quality	
4.4 Kelley River	91
4.4.1 Background Information	91
4.4.1.1 Location of Station	91
4.4.1.2 Geographical Setting	
4.4.1.3 Geology and Geomorphology	
4.4.1.4 Forest Cover and Land Use	
4.4.1.5 Climate	
4.4.1.6 Wildlife and Habitat	
4.4.1.7 Human Settlement and Industrial Development	
4.4.2 Land Use and Forest Type Summary Information	
4.4.2.1 Land Use	
4.4.2.2 Forest Type	
4.4.3 Water Quality Summary Information	
4.4.3.1 Temperature	
4.4.3.2 Turbidity	
4.4.3.3 Conductivity	
4.4.3.4 Dissolved Oxygen	106

4.4.3.5 pH	
4.4.4 Overview of Kelley River Water Quality	112
5.0 CONCLUSIONS AND RECOMMENDATIONS	115
6.0 REFERENCES	118
APPENDIX I – DATA COLLECTION	119
USGS METHODS (WAGNER ET AL. 2000)	119
HYDROLAB ADVANCED MAINTENANCE WORKSHOP MANUAL (CAMPBELL S	
CANADA CORP. 2005)	
APPENDIX II – DATA QUALITY ASSURANCE/QUALITY CONTROL	127
II.1 DATA COLLECTION AND DATA HANDLING	
II.2 NORMALIZATION OF DATA RECORDS	
II.3 DATA OMISSION	
II.4 Annual Reporting	
MONITORING STATION DESCRIPTION	
Pockwock Lake - 2002	
Pockwock Lake - 2003	
Pockwock Lake - 2004	
Pockwock Lake - 2005	138
North East Margaree - 2002	140
North East Margaree - 2003	
North East Margaree - 2004	144
North East Margaree - 2005	
Shelburne River - 2002	
Shelburne River - 2003	
Shelburne River - 2004	
Shelburne River - 2005	
Kelley River	
DATA QUALITY ANALYSIS	
Pockwock Lake - 2002	
Pockwock Lake - 2003	
Pockwock Lake - 2004 Pockwock Lake - 2005	
North East Margaree River— 2002	
North East Margaree River – 2003	
North East Margaree River - 2004	
North East Margaree River - 2005	
Shelburne River - 2002.	
Shelburne River - 2003	
Shelburne River - 2004	178
Shelburne River - 2005	180
Kelley River – 2005	182
APPENDIX III – WATER QUALITY DATASET (FINAL VALIDATED)	185
REAL TIME WATER QUALITY DATASET	185

GRAB SAMPLE WATER QUALITY DATA	185
APPENDIX IV – LAND USE	193
DETAILED BREAKDOWN OF LAND USE CATEGORIES	193
APPENDIX V – EQUIPMENT, DEPLOYMENT, MAINTENANCE, CHEMICAL STANDARD SOLUTIONS	
Equipment	197
DEPLOYMENT, AND MAINTENANCE	197
CHEMICAL STANDARD SOLUTIONS	

LIST OF FIGURES

Figure 1.0-1.	Nova Scotia Automated Surface Water Quality Monitoring Network	-
station lo	ocations	1
Figure 4.1-1.	Location of Pockwock Lake	9
Figure 4.1-2.	Aerial view of Pockwock Lake.	10
Figure 4.1-3.	Land use mapping of Pockwock Lake Watershed	11
Figure 4.1-4.	Forest type mapping of Pockwock Lake Watershed	12
Figure 4.1-5.	Water temperature from August 2002 through December 2005 for th	ie
	ck Lake using <u>hourly values</u> . Gaps in the plot indicate missing data Water temperature from August 2002 through December 2005 for th	
	ck Lake using daily mean values. Gaps in the plot indicate missing da	
Figure 4.1-7.	Air and water temperature from August 2002 through December 200)5 for
Pockwoc	ck Lake using monthly mean values. Gaps in the plot indicate missing	-
Figure 4.1-8.	Turbidity levels from August 2002 to December 2005 for the Pockw	ock '
Lake base	sed on hourly values. Gaps in the plot indicate missing data	18
Figure 4.1-9.	Turbidity levels from August 2002 to December 2005 for the Pockw	ock ′
Lake base	sed on daily mean values. Gaps in the plot indicate missing data	18
Figure 4.1-10.	. Turbidity levels from August 2002 to December 2005 for the Pocky	wock
Lake base	sed on monthly mean values. Gaps in the plot indicate missing data	19
Figure 4.1-11.	. Conductivity from August 2002 to December 2005 for the Pockwood	ck
Lake base	sed on hourly values. Gaps in the plot indicate missing data	22
Figure 4.1-12.	. Conductivity from August 2002 to December 2005 for the Pockwood	ck
Lake base	sed on daily mean values. Gaps in the plot indicate missing data	22
Figure 4.1-13.	. Conductivity from August 2002 to December 2005 for the Pockwood	ck
Lake base	sed on monthly mean values. Gaps in the plot indicate missing data	23
Figure 4.1-15.	. Dissolved oxygen concentration from August 2002 to December 20	005 for
the Pocky	wock Lake based on hourly values. Gaps in the plot indicate missing	g data.
		26
-	. Dissolved oxygen concentration from August 2002 to December 20	
	wock Lake based on daily mean values. Gaps in the plot indicate mis	ssing
Figure 4.1.17.	. Dissolved oxygen concentration from August 2002 to December 20)05 for
Pockwoc	ck Lake based on monthly mean values. Gaps in the plot indicate mis	ssing
Figure 4.1-18.	. pH from August 2002 through December 2005 for the Pockwock L	ake
	hourly values. Gaps in the plot indicate missing data	
	. pH from August 2002 through December 2005 for the Pockwock L	
	daily mean values. Gaps in the plot indicate missing data	
	. pH from August 2002 through December 2005 for the Pockwock L	
	monthly mean values. Gaps in the plot indicate missing data	
Figure 4.2-1.	Location of North East Margaree River (map is courtesy of the Cana	ıdian
Heritage	Rivers System).	37

Figure 4.2-2. NE Margaree River looking upstream (monitoring station is located just
out of view on left side of photo)
Figure 4.2-3. North East Margaree River monitoring station
Figure 4.2-4. Land use mapping of North East Margaree River Watershed
Figure 4.2-5. Forest type mapping of North East Margaree River Watershed41
Figure 4.2-6. Water temperature from June 2002 through November 2005 for the NE
Margaree River using hourly values. Gaps in the plot indicate missing data 43
Figure 4.2-7. Water temperature from June 2002 through November 2005 for the NE
Margaree River using daily mean values. Gaps in the plot indicate missing data 43
Figure 4.2-8. Air and water temperature from June 2002 through November 2005 for the
NE Margaree River using monthly mean values. Gaps in the plot indicate missing
data44
Figure 4.2-9. Turbidity levels from June 2002 to November 2005 for the NE Margaree
River based on hourly values. Gaps in the plot indicate missing data
Figure 4.2-10. Turbidity levels from June 2002 to November 2005 for the NE Margaree
River based on daily mean values. Gaps in the plot indicate missing data 47
Figure 4.2-11. Turbidity levels and stream stage from June 2002 to November 2005 for
the NE Margaree River based on monthly mean values. Gaps in the plot indicate
missing data
Figure 4.2-12. Conductivity from June 2002 to November 2005 for the NE Margaree
River based on <u>hourly values</u> . Gaps in the plot indicate missing data 51
Figure 4.2-13. Conductivity from June 2002 to November 2005 for the NE Margaree
River based on <u>daily mean values</u> . Gaps in the plot indicate missing data 51
Figure 4.2-14. Conductivity and stream stage from June 2002 to November 2005 for the
NE Margaree River based on monthly mean values. Gaps in the plot indicate
missing data
Figure 4.2-15. Dissolved oxygen concentration from June 2002 to November 2005 for
the NE Margaree River based on <u>hourly values</u> . Gaps in the plot indicate missing
data55
Figure 4.2-16. Dissolved oxygen concentration from June 2002 to November 2005 for
the NE Margaree River based on daily mean values. Gaps in the plot indicate
missing data
Figure 4.2-17. Dissolved oxygen concentration and stream stage from June 2002 to
November 2005 for the NE Margaree River based on monthly mean values. Gaps in
the plot indicate missing data
Figure 4.2-18. pH from June 2002 to November 2005 for the NE Margaree River based
on <u>hourly values</u> . Gaps in the plot indicate missing data
Figure 4.2-19. pH from June 2002 to November 2005 for the NE Margaree River based
on <u>daily mean values</u> . Gaps in the plot indicate missing data
Figure 4.2-20. pH and stream stage from June 2002 to November 2005 for the NE
Margaree River based on monthly mean values. Gaps in the plot indicate missing
data
Figure 4.3-1. Location of Shelburne River (map courtesy of Canadian Heritage Rivers
System)
Figure 4.3-2. Shelburne River Automated Water Quality Monitoring Station

Figure 4.3-3. Land Use Mapping of Shelburne River Watershed.	. 67
Figure 4.3-5. Water temperature from August 2002 through November 2005 for the	
Shelburne River using <u>hourly values</u> . Gaps in the plot indicate missing data	. 70
Figure 4.3-6. Water temperature from August 2002 through November 2005 for the	
Shelburne River using <u>daily mean values</u> . Gaps in the plot indicate missing data.	
Figure 4.3-7. Air and water temperature from August 2002 through November 2005 f	
the Shelburne River using monthly mean values. Gaps in the plot indicate missin	_
data	. / 1
Shelburne River based on hourly values. Gaps in the plot indicate missing data	71
Figure 4.3-9. Turbidity levels from August 2002 through November 2005 for the	. /4
Shelburne River based on <u>daily mean values</u> . Gaps in the plot indicate missing da	ata
Shelburne River bused on <u>darry mean values</u> . Sups in the plot indicate missing da	
Figure 4.3-10. Turbidity levels and stream stage from August 2002 through Novembe	
2005 for the Shelburne River based on <u>monthly mean values</u> . Gaps in the plot	
indicate missing data	. 75
Figure 4.3-11. Conductivity from August 2002 through November 2005 for the	
Shelburne River based on hourly values. Gaps in the plot indicate missing data	. 78
Figure 4.3-12. Conductivity from August 2002 through November 2005 for the	
Shelburne River based on <u>daily mean values</u> . Gaps in the plot indicate missing da	
Figure 4.3-13. Conductivity and stream stage from August 2002 through November 2	
for the Shelburne River based on <u>monthly mean values</u> . Gaps in the plot indicate	
missing data.	. 79
Figure 4.3-14 Dissolved oxygen concentration from August 2002 through November	
2005 for the Shelburne River based on <u>hourly values</u> . Gaps in the plot indicate missing data.	82
Figure 4.3-15 Dissolved oxygen concentration from August 2002 through November	. 02
2005 for the Shelburne River based on <u>daily mean values</u> . Gaps in the plot indica	ate
missing data.	. 82
Figure 4.3-16 Dissolved oxygen concentration and stream stage from August 2002	. 02
through November 2005 for the Shelburne River based on monthly mean values.	
Gaps in the plot indicate missing data.	. 83
Figure 4.3-17. pH from August 2002 through November 2005 for the Shelburne River	
based on hourly values. Gaps in the plot indicate missing data	. 86
Figure 4.3-18. pH from August 2002 through November 2005 for the Shelburne River	r
based on daily mean values. Gaps in the plot indicate missing data	
Figure 4.3-19. pH and stream stage from August 2002 through November 2005 for the	
Shelburne River based on monthly mean values. Gaps in the plot indicate missing	_
data	
Figure 4.4-1. Location of Kelley River	. 91
Figure 4.4-2. Kelley River looking upstream (left) and downstream (right) from the	0.2
monitoring station.	
Figure 4.4-3. Kelley River monitoring station.	
Figure 4.4-4. Land use mapping of Kelley River Watershed.	. 94

Figure 4.4-5. Forest type mapping of Kelley River Watershed	95
Figure 4.4-6. Water temperature from December 2004 through December 2005 for the	
Kelley River using <u>hourly values</u> . Gaps in the plot indicate missing data	97
Figure 4.4-7. Water temperature from December 2004 through December 2005 for the	;
Kelley River using daily mean values. Gaps in the plot indicate missing data	97
Figure 4.4-8. Air and water temperature from December 2004 through December 2005	5
for the Kelley River using monthly mean values. Gaps in the plot indicate missing	g
data	98
Figure 4.4-9. Turbidity levels from December 2004 through December 2005 for the	
Kelley River using <u>hourly values</u> . Gaps in the plot indicate missing data 1	00
Figure 4.4-10. Turbidity levels from December 2004 through December 2005 for the	
Kelley River using <u>daily mean values</u> . Gaps in the plot indicate missing data 1	
Figure 4.4-11. Turbidity levels and stream stage from December 2004 through December	ber
2005 for the Kelley River using monthly mean values. Gaps in the plot indicate	
missing data	
Figure 4.4-12. Conductivity from December 2004 through December 2005 for the Kel	
River using <u>hourly values</u> . Gaps in the plot indicate missing data 1	
Figure 4.4-13. Conductivity from December 2004 through December 2005 for the Kel	•
River using <u>daily mean values</u> . Gaps in the plot indicate missing data 1	
Figure 4.4-14. Conductivity and stream stage from December 2004 through December	•
2005 for the Kelley River using <u>monthly mean values</u> . Gaps in the plot indicate	
missing data	
Figure 4.4-15. Dissolved oxygen concentration from December 2004 through Decemb	er
2005 for the Kelley River using <u>hourly values</u> . Gaps in the plot indicate missing	
data	
Figure 4.4-16. Dissolved oxygen concentration from December 2004 through Decemb	er
2005 for the Kelley River using <u>daily mean values</u> . Gaps in the plot indicate	
missing data.	.06
Figure 4.4-17. Dissolved oxygen and stream stage from December 2004 through	
December 2005 for the Kelley River using <u>monthly mean values</u> . Gaps in the plot	
indicate missing data	ι Ο /
Figure 4.4-18. pH from December 2004 through December 2005 for the Kelley River	100
using hourly values. Gaps in the plot indicate missing data	.09
Figure 4.4-19. pH from December 2004 through December 2005 for the Kelley River	00
using <u>daily mean values</u> . Gaps in the plot indicate missing data	
Figure 4.4-20. pH and stream stage from December 2004 through December 2005 for	
Kelley River using monthly mean values. Gaps in the plot indicate missing data.1	. 10

LIST OF TABLES

Table 3.2-1. Automated Surface Water Quality Network Monitoring Station Locator
Information
Table 3.4-1. Supplemental climate information sources
Table 4.1-1. Hourly statistics of minimum, maximum, mean, and standard deviation and
exceedences as per established water quality guidelines for hourly real time data for
Pockwock Lake for the period 2002 –2005.
Table 4.1-2. Mean monthly water temperature for Pockwock Lake during 2002-2005
based on mean daily data
Table 4.1-3. Mean seasonal water temperature for Pockwock Lake during 2002-2005
based on mean daily data
Table 4.1-4. Mean annual water temperature for Pockwock Lake during 2002-2005
based on mean daily data
Table 4.1-5. Mean monthly turbidity for Pockwock Lake during 2002-2005 based on
mean daily data
Table 4.1-6. Mean seasonal turbidity for Pockwock Lake during 2002-2005 based on
mean daily data
Table 4.1-7. Mean annual turbidity for Pockwock Lake during 2002-2005 based on mean
daily data
Table 4.1-8. Mean monthly conductivity for Pockwock Lake during 2002-2005 based on
mean daily data
Table 4.1-8. Mean seasonal conductivity for Pockwock Lake during 2002-2005 based on
mean daily data
mean daily data
2002-2005 based on mean daily data
Table 4.1-11. Mean seasonal dissolved oxygen concentrations for Pockwock Lake
during 2002-2005 based on mean daily data
Table 4.1-12. Mean annual dissolved oxygen concentrations for Pockwock Lake during
2002-2005 based on mean daily data
Table 4.1-13. Mean monthly pH for Pockwock Lake during 2002-2005 based on mean
daily data
Table 4.1-14. Mean seasonal pH for Pockwock Lake during 2002-2005 based on mean
daily data32
Table 4.1-14. Mean annual pH for Pockwock Lake during 2002-2005 based on mean
daily data33
Table 4.2-1. Hourly statistics of minimum, maximum, mean, and standard deviation and
exceedences as per established water quality guidelines for hourly real time data for
North East Margaree River for the period 2002 –2005
Table 4.2-2. Mean monthly water temperature for North East Margaree River during
2002-2005 based on mean daily data

Table 4.2-3. Mean seasonal water temperature for North East Margaree River during 2002-2005 based on mean daily data	15
Table 4.2-4. Mean annual water temperature for North East Margaree River during 2002-2005 based on mean daily data	16
	·U
Table 4.2-5 Mean monthly turbidity for North East Margaree River during 2002-2005 based on mean daily data	8
Table 4.2-6 Mean seasonal turbidity for North East Margaree River during 2002-2005	
based on mean daily data4	9
Table 4.2-7 Mean seasonal turbidity for North East Margaree River during 2002-2005	_
based on mean daily data	'n
	U
Table 4.2-8. Mean monthly conductivity for North East Margaree River during 2002-	- ~
2005 based on mean daily data	12
Table 4.2-9. Mean seasonal conductivity for North East Margaree River during 2002-	
2005 based on mean daily data5	3
Table 4.2-10. Mean seasonal conductivity for North East Margaree River during 2002-	
2005 based on mean daily data5	4
Table 4.2-11. Mean monthly dissolved oxygen for North East Margaree River during	
2002-2005 based on mean daily data 5	6
Table 4.2-12. Mean seasonal dissolved oxygen for North East Margaree River during	
2002-2005 based on mean daily data5	7
Table 4.2-13. Mean annual dissolved oxygen for North East Margaree River during	
2002-2005 based on mean daily data5	8
Table 4.2-14. Mean monthly pH for North East Margaree River during 2002-2005 based	ď
on mean daily data	in
Table 4.2-15. Mean seasonal pH for North East Margaree River during 2002-2005 based	
on mean daily data	
Table 4.2-16. Mean annual pH for North East Margaree River during 2002-2005 based	' 1
	3
on mean daily data	
Table 4.3-1. Hourly statistics of minimum, maximum, mean, and standard deviation and	
exceedences as per established water quality guidelines for hourly real time data for	
Shelburne River for the period 2002 –2005	19
Table 4.3-2. Mean monthly water temperature for Shelburne River during 2002-2005	
based on mean daily data	1
Table 4.3-3. Mean seasonal water temperature for Shelburne River during 2002-2005	
based on mean daily data	2
Table 4.3-4. Mean annual water temperature for Shelburne River during 2002-2005	
based on mean daily data7	'3
Table 4.3-5. Mean monthly turbidity for Shelburne River during 2002-2005 based on	
mean daily data	15
Table 4.3-6. Mean seasonal turbidity for Shelburne River during 2002-2005 based on	
mean daily data	16
Table 4.3-7. Mean annual turbidity for Shelburne River during 2002-2005 based on	J
mean daily data	7
Table 4.3-8. Mean monthly conductivity for Shelburne River during 2002-2005 based o	
mean daily data	
IIICAII UAIIV UATA/	ソ

Table 4.3-9. Mean seasonal conductivity for Shelburne River during 2002-2005 based on
mean daily data
Table 4.3-10. Mean annual conductivity for Shelburne River during 2002-2005 based on mean daily data.
Table 4.3-11. Mean monthly dissolved oxygen for Shelburne River during 2002-2005
based on mean daily data83
Table 4.3-12. Mean seasonal dissolved oxygen for Shelburne River during 2002-2005
based on mean daily data
Table 4.3-13. Mean annual dissolved oxygen for Shelburne River during 2002-2005
based on mean daily data
Table 4.3-14. Mean monthly pH for Shelburne River during 2002-2005 based on mean
daily data
Table 4.3-15. Mean seasonal pH for Shelburne River during 2002-2005 based on mean
daily data
Table 4.3-16. Mean annual pH for Shelburne River during 2002-2005 based on mean
daily data
Table 4.4-1. Hourly statistics of minimum, maximum, mean, and standard deviation and
exceedences as per established water quality guidelines for hourly real time data for
Kelley River for 2005
Table 4.4-2. Mean monthly water temperature for Kelley River from December 2004
through December 2005 based on mean daily data
Table 4.4-3. Mean seasonal water temperature for Kelley River for 2005 based on mean
daily data99
Table 4.4-4 Mean annual water temperature for Kelley River for 2005 based on mean
daily data99
Table 4.4-5. Mean monthly turbidity for Kelley River from December 2004 through
December 2005 based on mean daily data
Table 4.4-6. Mean seasonal turbidity for Kelley River for 2005 based on mean daily
data
Table 4.4-7. Mean annual turbidity for Kelley River for 2005 based on mean daily data.
Table 4.4-8. Mean monthly conductivity for Kelley River from December 2004 through
December 2005 based on mean daily data
Table 4.4-9. Mean seasonal conductivity for Kelley River for 2005 based on mean daily
data
Table 4.4-10. Mean annual conductivity for Kelley River for 2005 based on mean daily
data
Table 4.4-11. Mean monthly dissolved oxygen for Kelley River from December 2004
through December 2005 based on mean daily data
Table 4.4-12. Mean seasonal dissolved oxygen for Kelley River for 2005 based on mean
daily data
Table 4.4-13. Mean annual dissolved oxygen for Kelley River for 2005 based on mean
· · · · · · · · · · · · · · · · · · ·
daily data
Table 4.4-14. Mean monthly pH for Kelley River from December 2004 through
December 2005 based on mean daily data

Table 4.4-15. Mean seasonal pH for Kelley River for 2005 based on mean daily data. 111
Table 4.4-16. Mean annual pH for Kelley River for 2005 based on mean daily data 111
Table 5.0-1. A summary of water quality annual mean values for the four monitoring
stations for the parameters measured between 2002 and 2005
Table 5.0-2. A summary of the ranges of real time hourly data coverage for all stations
as a percent of total available hours for each year of operation
Table II-1. Water Quality Data Rating System (adopted from USGS WRI Report 00-
4252)
TableII-2. Data Rejection Criteria (adapted from USGS 2000). Maximum allowable
limits for continuous water-quality monitoring sensors (+/-, plus or minus value
shown; °C, degree Celsius; mg/L, milligrams per litre; pH unit, standard pH unit).
Table III-1. Grab sample water quality data
Table IV-1. Pockwock Lake Watershed land classification conditions
Table IV-2. North East Margaree River Watershed land classification conditions 194
Table IV-3. Shelburne River Watershed land classification conditions
Table IV-4. Kelley River Watershed land classification conditions

EXECUTIVE SUMMARY

This report describes the water quality of Kelley River (Cumberland County), North East Margaree River (Inverness/Victoria County), Pockwock Lake (Halifax/Hants County) and Shelburne River (Queens/Shelburne/Digby County) watersheds based on hourly real time data generated by the Nova Scotia Automated Water Quality Monitoring Program between 2002 and 2005.

This report presents individual watershed water quality assessments which utilize a series of tables and plots which have been generated using validated hourly data and daily, monthly and annual data resulting from statistical analyses. Water quality parameters examined include temperature, turbidity, conductivity, dissolved oxygen, and pH.

This report also contains:

- products of a detailed land use investigation,
- reference documentation used in the design, deployment and operation/maintenance/calibration of network instrumentation,
- monitoring program QA/QC documentation, and
- grab sample water quality data.

The dominant land use category in each of the four watersheds is forest, comprising between 61 and 88 percent of individual total watershed areas. The second most abundant feature is a combination of water and wetland areas (8-23 percent).

As expected, water temperature was observed to vary with air temperature. Although minimum water temperatures were similar between monitoring stations, maximums and number of hours exceeding permissible limits for salmon and trout species were not. For the operational years 2003-2005, Pockwock Lake on average had 1000 hours per year when recorded water temperatures were above the 21°C limit. For the North East Margaree River the average number of hours per year was approximately 25; Shelburne River 1460 hours; and Kelley River, 440 hours.

As expected, elevated turbidity levels for the three river systems (North East Margaree, Shelburne, and Kelley) occurred at a higher frequency and magnitude than for the single lake location (Pockwock Lake). For Pockwock Lake, hourly turbidity values were typically less than 5 NTU. On one occasion only during the entire 4 years of record were hourly measurements observed to rise for a short period of time above this limit when levels were observed to peak at 36 NTU. Lake dampening effects were absent in the flowing systems which experienced several episodes of consecutive hourly readings greater than 10 NTU, for which event peaks reached as high as 160 NTU (Kelley River 2005). North East Margaree River experienced several episodes in which turbidity levels were maintained in the range of 10 to 100 NTU. Shelburne River experienced less frequent events of 10 NTU or greater, three of which peaked at between 70 and 106 NTU.

For three of the four monitoring stations, water conductivity is reflective of dilute water with average annual values for Pockwock Lake, Shelburne River, and Kelley River of 39, 33, and 26 uS/cm, respectively. Very little deviation from these means was observed to occur. For the North East Margaree River, much higher values were recorded, ranging from 161 – 172 uS/cm. Surficial geology, and not road de-icing activities, was considered to be the major reason for the elevated levels, relative to the other three sites.

Water conductivity in Pockwock Lake, Shelburne River and Kelley River is reflective of dilute waters with mean annual ranges of 38 - 40, 32 - 35, and 26 (2005 only) uS/cm, respectively. Conductivity levels were observed to remain fairly constant on a daily basis throughout the period of record with only minor shifts outside annual mean ranges. North East Margaree River mean annual conductivity was much higher, ranging from 161 – 172 uS/cm which indicates a much greater dissolved solids content. With the exception of Pockwock Lake, the effects of precipitation and snowmelt runoff, assumed to contain low concentrations of dissolved solids, were observed for the river systems and were inversely related to quantity of flow. During higher flow periods, conductivity levels were lower compared to low flow periods when the effects of groundwater seepage, assumed to contain higher concentrations of dissolved solids, played a more significant role.

Well-oxygenated water was the norm at all four sites. At no time did dissolved oxygen levels fall below the 5.0 mg/L guideline established for the protection of aquatic life. An inverse annual trend to that of water temperature was observed at all sites, explainable by the fact that the solubility of oxygen in water decreases as water temperature rises.

Although not examined on an individual basis for this review, the observed spatial variation in water quality is assumed to be a reflection of differences in relative impacts of precipitation, geology, land use and forest composition, percent of water/wetland areas, and human influence. For example, the watersheds of Pockwock Lake, Shelburne River and Kelley River contain surface water/wetland areas that make up more than 10 percent of the total area in each watershed with an annual pH of 5.3, 4.4, and 5.5, respectively. It is likely that these watersheds possess a surficial geology with low buffering capacity. The low pH of Shelburne River is punctuated by high water colour (102-226 True Colour Units), a trait of water containing elevated levels of organic carbon. Sphagnum bogs are known to be major sources of colour and organic acid. Contrary to this, the North East Margaree River has an annual mean pH of 7.2, a sign of a greater abundance of carbonate minerals in the watershed. Water/wetland areas are limited to 8 percent of the total watershed area.

The report concludes that the water quality monitoring network provides valuable information that is essential when attempting to examine trends. The data generated by the network should also be of value when comparing trends in other provinces for these parameters.

The report recommends that efforts be initiated to improve the program's ability to generate more complete hourly datasets. At the present time, efficacy varies between parameters and was observed in 2005 to range from 47 to 92 percent coverage. More frequent field visits were suggested.

ACKNOWLEDGEMENTS

A considerable amount of time and effort went into the design and implementation of the automated water quality monitoring program associated with this study. The lead investigator responsible for the program was Mr. Darrell Taylor of the Nova Scotia Department of Environment & Labour (NSEL).

Mr. Alan Tattrie of NSEL was responsible for all field operations, including data collection, maintenance and operation of instrumentation, and QA/QC. Environment Canada (EC) contributed data retrieval services to the program and were important in integrating the water quality equipment with existing hydrometric equipment at the colocated sites. The description of the procedure used to download water quality data from field instrumentation used in the report was provided by Mr. Guy Leger of the Water Survey of Canada.

Raw real time data used in the report was compiled by Mr. Alan Tattrie (NSEL).

Ms. Nerissa Mulligan of NSEL generated program and monitoring station background text sections for the report. Figure 1 in the Program Background section was generated by Mr. Charlie Williams of NSEL.

Photographs used in the report were provided by Mr. Denis Parent and Mr. Todd Smith of EC and Mr. Alan Tattrie of NSEL.

1.0 PROGRAM BACKGROUND

The Nova Scotia Automated Surface Water Quality Monitoring Network (Figure 1) consists of a series of stations located throughout the province where automated equipment monitor water quality in support of water management decisions. It is part of a long term comprehensive water resource monitoring program for the province.

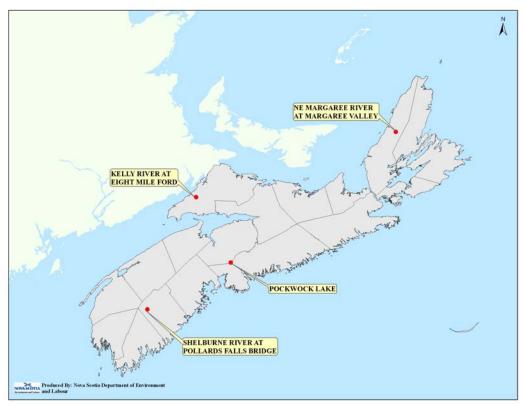


Figure 1.0-1. Nova Scotia Automated Surface Water Quality Monitoring Network station locations.

This program is intended to determine baseline water quality in lakes and streams throughout the province, and assess impacts on both a local and regional scale, as part of water resource management activities. Long term trends in water quality are measured in both relatively pristine watersheds as well as more impacted sites. Monitoring stations include areas of provincial significance such as Heritage River sites, Provincial Parks and Sanctuaries and Municipal Drinking Water Supplies. Monitoring stations are typically co-located with hydrometric (stream flow) monitoring stations to allow 1) program delivery efficiencies, 2) capabilities for real-time reporting, and 3) calculations of loadings of contaminants or other water quality constituents.

Site locations have been selected based on meeting one or more of the following criteria:

- Heritage River status or nomination
- Protected Area status (provincial /federal park, sanctuary, or public drinking water supply watershed)
- hydrometric station
- geographical coverage
- important fish habitat (eg salmon)
- largely unimpacted site
- Water Quality Index potential
- historical long term water quality dataset.

In addition to contributing to provincial water resource management activities, this program supports both the Canadian Heritage River Program and the national Canadian Environmental Sustainability Indicators (CESI) reporting initiative.

Automated equipment was first introduced at Pockwock Lake in 1999 as a pilot program, then expanded to the Shelburne River, North East Margaree River, and Kelley River stations in 2000, 2001, and 2004, respectively.

2.0 PARAMETERS

Five water quality characteristics were and continue to be monitored through this program. They are:

Water Temperature (°C)- a constituent of concern because it affects fish and fish habitat.

Water temperature varies on a diurnal (during the day), seasonal and annual basis and even within the water column itself. Water temperature is known to affect a number of fish characteristics including feeding rates and metabolism, migration, spawning, incubation, and emergence. Tolerance to temperature varies among fish species and life stage. Higher water temperatures can result in an increase in the incidence of disease. A maximum permissible limit for salmon and trout is 20-21°C (Alabaster and Lloyd 1982).

Specific conductance (*conductivity*)(*uS/cm*) – refers to the ability of a substance to conduct electric current and is an indirect indicator of dissolved minerals, acids, and metals in the water. Conductivity is also affected by temperature: the warmer the water, the higher the conductivity.

The conductivity of natural fresh waters varies greatly and may range from less than 20 uS/cm in dilute waters to over several hundred or more in waters influenced by limestone or salt deposits. Road-salting activity is one example of a human influence on conductivity levels in surface and groundwater resources.

Turbidity (NTU) - an indicator of water transparency, is caused by the presence of suspended matter.

The major source of suspended matter is watershed soil transported to surface waters through the process of erosion. A general description of matter contributing to turbidity includes clay, silt, finely divided organic and inorganic matter and plankton and other microscopic organisms. Turbidity is measured in nephelometric turbidity units (NTU). The Canadian Council of Ministers of the Environment (CCME) lists limits of 1 NTU entering a water distribution system for drinking water and 50 NTU for recreational uses. A maximum limit of 5 NTU is permitted if it can be demonstrated that the efficacy of disinfection is not compromised. An aesthetic objective of 5 NTU at the point of consumption has been set.

pH (pH Units) – the logarithm of the reciprocal of the concentration of free hydrogen ions. The pH scale ranges from 0-14, 7 being neutral. Values below 7 indicate increasing levels of acidity; above 7 indicate increasing levels of alkalinity.

Water quality guidelines established for recreational uses and the protection of aquatic life recommends a pH range of 5.0 - 9.0. Values below pH 5.0, for example, are harmful to the eggs and fry of salmonids. For drinking water, a range of 6.5 - 8.5 is

recommended mainly for reasons of corrosion and encrustation of piped system components and the disinfection effectiveness of chlorination.

Dissolved Oxygen (mg/L) – varies seasonally and geographically and is in part the result of variations in temperature, turbulence, atmospheric pressure, photosynthetic activity and organic decomposition.

Adequate levels of dissolved oxygen are essential for a healthy aquatic ecosystem. The minimum tolerable concentration is known to vary among aquatic species and life stage. Concentrations at or above 5.0 mg/L will provide safe conditions for these organisms in the aquatic ecosystem.

3.0 METHODS

3.1 STATION SET-UP

Supporting infrastructure and design specifications employed for each of the automated water quality monitoring stations in the network adhered to guidelines and standards established by the U.S. Geological Survey and the manufacturers of data gathering equipment and instrumentation, Hydrolab® and Campbell Scientific (Canada) Corporation. Cover pages and Table of Contents for pertinent documents are contained in Appendix I. Nova Scotia Department of Environment & Labour (NSEL) Water and Wastewater Branch can be contacted by telephone at (902) 424-2553 or electronically via the NSEL Water Line at delwater@gov.ns.ca for information on how to obtain a complete version of these documents.

3.2 STATION IDENTIFICATION

Each station, whether stream site or lake, has been located based on geographic location. As part of a unique identification system used by Environment Canada for its stream gauging network, an assigned locator code accompanies each of the three stream sites. This code is unique in that it applies specifically to a given station. The code is usually assigned when a station is first established and is retained for that station indefinitely. Station locator information for the NSEL network is presented in Table 1.

Table 3.2-1. Automated Surface Water Quality Network Monitoring Station Locator Information.

Station Name	Description	EC Station Code*	Geographic Location Longitude Latitude
Kelley River	Mill Creek @ 8-Mile Foord	01DL001	64° 27' 05"W 45° 35' 10"N
North East Margaree River	@ Margaree Valley	01FB001	60° 58' 36"W 46° 22' 10"N
Pockwock Lake	@ Pumphouse	na	63° 50' 43"W 44° 46' 56"N
Shelburne River	@ Pollard's Fall Bridge	01ED013	65° 14' 32"W 44° 12' 59"N

^{*}Environment Canada Hydrometric Network Station Code; na: not applicable

3.3 DATA COLLECTION, MANAGEMENT AND STATISTICAL REVIEW

Field instrumentation at each of the automated monitoring sites included Hydrolab® datasondes equipped with temperature, pH, conductivity, dissolved oxygen, and turbidity sensors that gathered information which were subsequently stored on a datalogger. These data are downloaded at regular intervals and in turn verified by NSEL staff. A detailed description of these procedures is contained in Appendix II.

Under the Terms of Reference of this report, CWRS staff applied professional judgement to further scrutinize the verified datasets. Data were deleted and recorded (see Data Omission section, Appendix II). Following this review, the datasets were deemed to be of high quality and suitable for release by NSEL.

Statistics were computed from these final datasets of hourly data for each site and expressed in a series of tables and/or plots as hourly, monthly, seasonal and annual minimum/maximum/mean/standard deviation values for each year on record for each station for each measured quantity. Results of the analyses are presented in this report with each station summary.

In addition to the above, individual exceedence tables have been generated using validated hourly datasets that are based on guidelines published by the Canadian Council of the Ministers of the Environment (CCME) for the Protection of Freshwater Aquatic Life, Drinking Water, and Recreational Use. The more sensitive water temperature criteria published by Alabaster and Lloyd (1982) for salmon and trout have been adopted for this exercise instead of that published by the CCME for drinking water. The CCME limit is an aesthetic objective that is considered to have little bearing on this review.

3.4 SUPPLEMENTAL CLIMATE INFORMATION

For each station and period of record, precipitation and air temperature data from The Green LaneTM, Environment Canada's (EC) National Climate Data and Information Archive, has been combined with information generated through the automated water quality (WQ) monitoring program. This information is considered an added benefit when attempting to interpret the water quality data. The archive is accessible at http://climate.weatheroffice.ec.gc.ca/Welcome_e.html. Climate stations used for each of the automated WQ sites are listed in Table 2. Sites were chosen based on proximity to the target watershed and completeness of record.

Table 3.4-1. Supplemental climate information sources.

Real Time Station Name	EC Climate Station EC ID		Geographic Location
			Longitude Latitude
Kelley River	Nappan CDA	8203700	64° 15' W 45° 46' N
North East Margaree River	Cheticamp CS	8200827	60° 57' W 46° 39' N
Pockwock Lake	Pockwock Lake	8204453	63° 49' W 44° 46' N
Shelburne River	Kejimkjik 1	8202592	65° 12' W 44° 25' N

3.5 LAND USE INFORMATION

A generalized land use classification was developed for this review. Using forest cover maps obtained from the Nova Scotia Department of Natural Resources (NSDNR) in digital format, each watershed was sub-divided into the following categories: agriculture, barren, cleared, forest, urban, and wetland/water. This information is presented in tabular and map form that is contained in each of the station summaries. As well a detailed breakdown of land use and forest type is contained in Appendix IV. As with the supplemental climate data, inclusion of the land use information provide a valuable

detailed description of watershed features that are essential when attempting to understand observed changes in water quality.

3.6 GRAB SAMPLE WATER QUALITY

In addition to the automated measurements, periodic water samples are collected manually from each of the automated monitoring sites and analyzed for common water quality parameters. These data are not only used for instrument calibration, but to more fully characterize water quality. These data are available to calculate loads and yields in support of water management activities. For the purpose of this report the grab sample data were limited to QA/QC use only.

These data are presented in Appendix III.

3.7 QA/QC

Monitoring stations were established and instrumentation calibrated according to standard methods published by the United States Geological Survey (USGS) and HydrolabTM as reported by Campbell Scientific Canada Corporation (CSCC). The size of these documents prohibits their inclusion in this report. For reference, document Title pages and Table of Contents are provided in Appendix I. A slightly modified version of the USGS data rating system was adopted for this monitoring program (see Table II-1). For instrument calibration, HydrolabTM sensors were calibrated during regular field visits using a portable hand held water quality meter that had been calibrated using commercially available liquid standards. During the early phases of the program, both grab sample results from laboratory analyses and liquid standards were used. Refer to Appendix V for details.

Raw real time data undergoes a series of verification steps prior to it being considered suitable for release by NSEL. The first step in the procedure is to examine and reject any data that are considered faulty due to probe and/or logger malfunction or probe interference due to submerged debris. Data are also screened from the dataset if they are found to exceed maximum allowable limits based on a slightly modified version of those published by the USGS (Appendix II, Table II-2). For this report, individual data sets provided by NSEL have undergone further scrutiny by CWRS staff prior to carrying out statistical analysis and based on professional judgement, some additional data were deleted.

Station descriptions, field maintenance and operational procedures, and data verification procedures are compiled in annual reports. This information can be found in Appendix II.

4.0 AUTOMATED WATER QUALITY MONITORING STATION SUMMARY

4.1 POCKWOCK LAKE 2002-2005

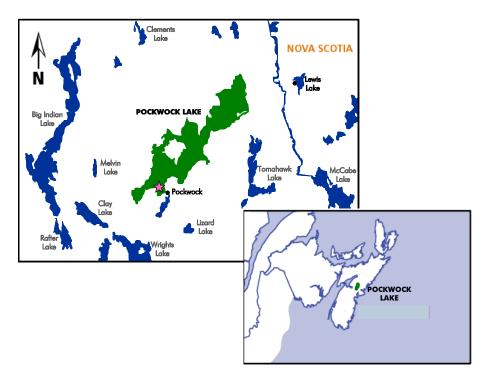


Figure 4.1-1. Location of Pockwock Lake.

4.1.1 Background Information

4.1.1.1 Location of Station

The geographic location, in longitude and latitude, of the Automated Network Station on Pockwock Lake is 63°50'43" W, 44° 46'56"N and is denoted in Figure 4-1 by a star.

4.1.1.2 Geographic Setting

Pockwock Lake is located on the border between Halifax and Hants Counties and is the drinking water supply for Halifax, Bedford, Sackville, Timberlea, Fall River and Waverley. The watershed is 56.61 km², is protected by provincial designation and is jointly managed by the Halifax Regional Water Commission (HRWC) and the Nova Scotia Department of Natural Resources.

4.1.1.3 Geology and Geomorphology

The bedrock geology in the Pockwock watershed is made up of two main rock types. Pockwock Lake represents the contact between the South Mountain Batholith (SMB), granitic rocks, which dominate the central and western regions of Nova Scotia and the Goldenville Formation of the Meguma Group, found in the southern mainland of the province.

The surficial geology of the area developed as a result of the numerous glaciations. The southern portion of the Pockwock watershed is characterized by the presence of several till units with varying textures, compositions, age and places of origin. In areas north of Pockwock Lake, less till was deposited by retreating glaciers and as a result, exposed granite bedrock structures are frequently visible. Tills on the west side of the lake are derived from the underlying granites and tills on the eastern side of the lake are derived from the underlying Goldenville Formation.

The dominant landform in the watershed is the undulating to moderately rolling plain with a thin mantle of stony till and peat bogs.

4.1.1.4 Forest Cover and Land Use

The watershed is under forest management by HRWC and contract to Elmsdale Lumber Ltd., with goals of water quality protection and sustainable forestry. About 61% of the land within the watershed is forested, 13% is clear-cut, and 23% of it is covered by water

and/or wetlands. 2.7 % of the watershed is considered as urban land use.

4.1.1.5 Climate

Normal (1971-2000) precipitation in the Pockwock Lake watershed, as recorded at the Environment Canada Climate Station at Pockwock Lake is 1529 mm, comprised of 1335 mm of rainfall and 190 cm of snowfall. The mean annual temperature is 6.4°C with a mean monthly high of 18.4°C in July and a low of –5.9°C in January.

Figure 4.1-2. Aerial view of Pockwock Lake.

4.1.1.6 Wildlife and Habitat

The Pockwock Lake watershed provides habitat for many species of plants and animals, including deer, beaver, and muskrat. Such wildlife species are important to water use in this context, due to the potential for fecal contamination and the lake water use as a drinking water supply. Treatment technologies are employed which address such issues prior to final water use.

4.1.1.7 Human Settlement and Industrial Development

The name Pockwock comes from the Mi'kmaq word Paakwaak, meaning "must stop here". Early European settlement occurred slowly in the area, with a recent increase in residential development during the late 1990s and early in the following decade. Industrial development in the watershed is restricted and includes only limited forestry overseen by the HRWC. This watershed became a protected drinking water supply area as designated under the Environment Act in 1994.

4.1.2 Land Use and Forest Type Summary Information

4.1.2.1 Land Use

Land Type	Area	% of		
	km ²	Total Area		
Agriculture	0.00	0.0		
Barren	0.3	0.6		
Clearcut	7.0	12.9		
Forested	32.7	60.6		
Urban	1.5	2.7		
Wetland/Water	<u>12.5</u>	<u>23.1</u>		
Total	54.0	100.0		

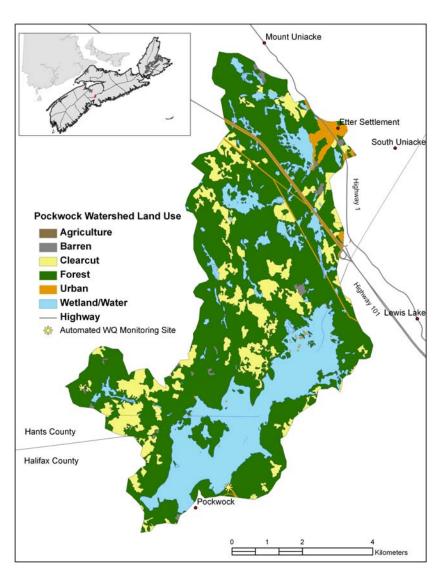


Figure 4.1-3. Land use mapping of Pockwock Lake Watershed.

4.1.2.2 Forest Type

Forest Type	Area	% of
	km^2	Total Area
Forested	32.7	100.0
Hardwood	1.6	4.9
Mixed Wood	5.3	16.2
Softwood	25.8	78.9
Unknown	0.0	0.0

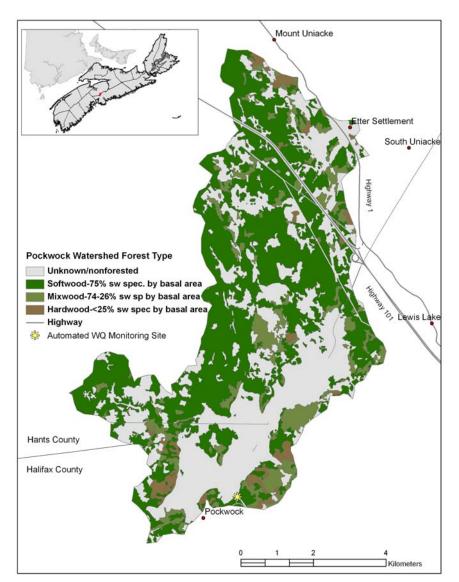


Figure 4.1-4. Forest type mapping of Pockwock Lake Watershed.

4.1.3 Water Quality Summary Information

Table 4.1-1. Hourly statistics of minimum, maximum, mean, and standard deviation and exceedences as per established water quality guidelines for hourly real time data for Pockwock Lake for the period 2002 –2005.

Parameter	Year	Min	Max	Mean	SD		WQ Guideli		Readings ⁵		# of		Ez	xceedences	
						FWAL ¹	DW ¹	REC ¹		E	xceedences		As %	of Readin	gs
Temperature, °C	2002	9.4	24.5	18.2	3.6				2132		494			23	
Temperature, C	2003	0.8	23.3	10.8	7.6	$20-21^2$			7922		1072			14	
	2004	0.3	23.3	9.9	7.4	1			8158		867			11	
	2005	6.4	23.3	16.4	4.8				4102		1022			25	
Turbidity, NTU										DW <1 ³	DW ≤5 ⁴	REC	DW <1 ³	DW ≤5 ⁴	REC
Turbianty, 1 (10	2002	_	_	_	_				_	-	-	-	-	-	-
	2003	0.0	1.8	0.3	0.3		$<1^3, \le 5^4$	≤50	5383	38	0	0	1	51	52
	2004	0.0	7.6	1.2	0.8	-	, _3	_50	4817	2468	1	0	0	0	1
	2005	0.0	35.9	1.0	1.5				4102	2130	41	0	0	0	0
Conductivity, uS/cm	2002	38.8	40.2	39.4	0.7										
	2003	34.7	39.8	37.7	1.4										
	2004	35.7	43.4	39.9	1.7										
	2005	35.5	42.4	37.9	1.2										
Dissolved Oxygen, mg/L	2002	6.6	10.7	8.7	0.7				2128		0			0	
Dissolved Onjgon, mg/L	2003	7.6	14.2	10.8	2.2	≥5.0			7922		0			0	
	2004	7.7	13.4	10.8	1.9				8155		0			0	
	2005	7.5	10.9	8.8	0.8				4102		0			0	-
										EXXIAI	DW	DEC	TYYLAT	DW	DEC
pH, Units	2002	<i>5</i> 2		5.4	0.0				2121	FWAL	DW	REC	FWAL	DW	REC
	2002	5.3	5.5	5.4	0.0	6500	6505	6505	2131	2131	2131	2131	100	100	100
	2003	4.9	5.8	5.3	0.2	6.5-9.0	6.5-8.5	6.5-9.5	7921	7921	7921	7921	100	100	100
	2004	4.9	5.6 5.4	5.3 5.1	0.1	_			8157 4100	8157 4100	8157 4100	8157 4100	100 100	100	100
¹ FWAL: Freshwater Aqu						l Hage	l		4100	4100	4100	4100	100	100	100
 PWAL: Freshwater Aqu. Upper permissible limit: Maximum Acceptable C 	for salmor	and trout	(Alabaste	er and Lloy	d. 1982).	CCME DW 8	guideline deen	ned to be inap	propriate.						
⁴ Aesthetic Objective. 5N							od is not com	oromised.							
⁵ The number of hourly re									8784 The num	her recorded	in the table r	efers to th	ne actual num	her of appro	ved

⁵ The number of hourly readings possible in each of the years 2002, 2003 and 2005 is 8760. For 2004 the number is 8784. The number recorded in the table refers to the actual number of approved measurements.

4.1.3.1 Temperature

Figure 4.1-5. Water temperature from August 2002 through December 2005 for the Pockwock Lake using <u>hourly values</u>. Gaps in the plot indicate missing data.

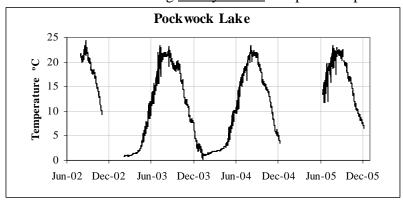


Figure 4.1-6. Water temperature from August 2002 through December 2005 for the Pockwock Lake using <u>daily mean values</u>. Gaps in the plot indicate missing data.

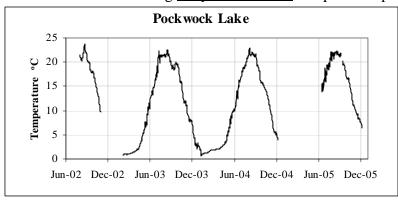


Figure 4.1-7. Air and water temperature from August 2002 through December 2005 for Pockwock Lake using monthly mean values. Gaps in the plot indicate missing data.

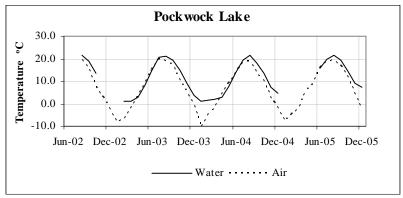


Table 4.1-2. Mean monthly water temperature for Pockwock Lake during 2002-2005 based on mean daily data.

Month	Year	Mean	Minimum		SD
			°C		
August	2002	21.7	20.4	23.8	1.0
September	2002	18.8	16.9	20.5	1.1
October	2002	13.7	9.7	16.9	2.2
November	2002				
December	2002				
January	2003				
February	2003	0.9	0.8	1.0	0.0
March	2003	1.3	1.0	1.6	0.2
April	2003	2.9	1.7	5.3	1.0
May	2003	8.2	5.2	11.6	2.1
June	2003	14.8	11.7	18.0	1.7
July	2003	20.9	17.8	22.3	1.0
August	2003	21.2	19.6	22.6	0.7
September	2003	19.1	18.4	19.9	0.4
October	2003	14.7	11.7	19.1	2.4
November	2003	9.0	7.4	12.0	1.5
December	2003	3.7	2.1	7.3	1.4
January	2004	1.3	0.7	2.3	0.4
February	2004	1.6	1.3	1.8	0.2
March	2004	2.0	1.8	2.3	0.1
April	2004	3.1	2.4	4.9	0.6
May	2004	7.9	4.7	10.2	1.9
June	2004	13.8	9.8	16.9	2.4
July	2004	19.3	17.1	21.2	1.2

Table 4.1-2, continued

Month	Year	Mean		Maximum	SD
			°C		
August	2004	21.7	21.1	22.9	0.4
September	2004	18.1	15.5	21.6	1.9
October	2004	13.7	11.1	15.6	1.4
November	2004	7.2	5.0	10.9	1.9
December	2004	4.5	3.9	5.0	0.4
January	2005				
February	2005				
March	2005				
April	2005				
May	2005				
June	2005	15.6	13.9	18.8	1.2
July	2005	19.6	15.9	22.2	1.5
August	2005	21.7	20.7	22.2	0.4
September	2005	19.5	16.7	22.0	1.6
October	2005	14.4	11.0	16.8	2.1
November	2005	9.1	7.6	11.1	1.0
December	2005	7.1	6.5	7.6	0.5

Table 4.1-3. Mean seasonal water temperature for Pockwock Lake during 2002-2005 based on mean daily data.

Winter = {Dec, Jan, Feb}, Spring = {Mar, Apr, May}

Summer = {Jun, Jul, Aug}, Fall = {Sept, Oct, Nov}

Season	Year	Mean	Minimum	Maximum	SD
			°C		
Summer	2002	21.7	20.4	23.8	1.0
Fall	2002	16.3	9.7	20.5	3.1
Winter	2003	0.9	0.8	1.0	0.0
Spring	2003	4.1	1.0	11.6	3.3
Summer	2003	19.0	11.7	22.6	3.2
Fall	2003	14.3	7.4	19.9	4.4
Winter	2004	2.2	0.7	7.3	1.4
Spring	2004	4.3	1.8	10.2	2.8
Summer	2004	18.3	9.8	22.9	3.6
Fall	2004	13.0	5.0	21.6	4.8
Winter	2005	4.5	3.9	5.0	0.4
Spring	2005				
Summer	2005	19.5	13.9	22.2	2.5
Fall	2005	14.1	7.6	22.0	4.5

Table 4.1-4. Mean annual water temperature for Pockwock Lake during 2002-2005 based on mean daily data.

Year	Mean	Minimum	Maximum	SD
		°C		
2002	18.1	9.7	23.8	3.7
2003	10.8	0.8	22.6	7.6
2004	9.9	0.7	22.9	7.4
2005	16.4	6.5	22.2	4.8

Missing value implies insufficient data to compute the statistic.

4.1.3.2 Turbidity

Figure 4.1-8. Turbidity levels from August 2002 to December 2005 for the Pockwock Lake based on <u>hourly values</u>. Gaps in the plot indicate missing data.

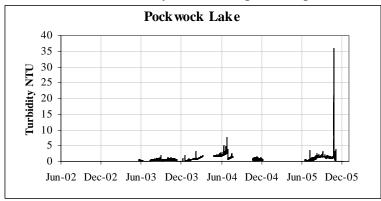


Figure 4.1-9. Turbidity levels from August 2002 to December 2005 for the Pockwock Lake based on <u>daily mean values</u>. Gaps in the plot indicate missing data.

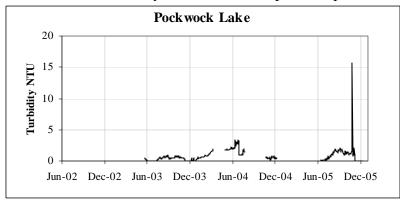


Figure 4.1-10. Turbidity levels from August 2002 to December 2005 for the Pockwock Lake based on monthly mean values. Gaps in the plot indicate missing data.

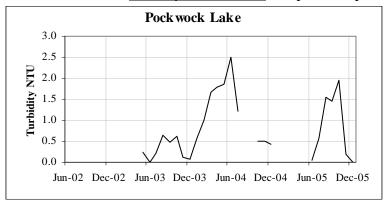


Table 4.1-5. Mean monthly turbidity for Pockwock Lake during 2002-2005 based on mean daily data.

Month	Year	Mean		Maximum	SD
			NTU		
August	2002				
September	2002				
October	2002				
November	2002				
December	2002				
January	2003				
February	2003				
March	2003				
April	2003				
May	2003	0.2	0.1	0.4	0.1
June	2003	0.0	0.0	0.1	0.0
July	2003	0.2	0.0	0.6	0.2
August	2003	0.7	0.4	1.0	0.1
September	2003	0.5	0.3	0.9	0.1
October	2003	0.6	0.5	0.8	0.1
November	2003	0.1	0.0	0.5	0.2
December	2003	0.1	0.0	0.5	0.1
January	2004	0.6	0.3	0.7	0.1
February	2004	1.0	0.7	1.5	0.2
March	2004	1.7	1.5	1.9	0.1
April	2004	1.8	1.8	1.8	0.0
May	2004	1.9	1.7	2.2	0.1
June	2004	2.5	0.9	3.4	0.6
July	2004	1.2	0.9	1.9	0.3

Table 4.1-5, continued

Month	Year	Mean	Minimum	Maximum	SD
			NTU		
August	2004				
September	2004				
October	2004	0.5	0.3	0.6	0.1
November	2004	0.5	0.1	0.8	0.2
December	2004	0.4	0.4	0.5	0.0
January	2005				
February	2005				
March	2005				
April	2005				
May	2005				
June	2005	0.1	0.0	0.2	0.1
July	2005	0.6	0.1	1.1	0.3
August	2005	1.6	1.0	1.9	0.2
September	2005	1.5	1.0	2.1	0.3
October	2005	2.0	0.8	15.7	2.7
November	2005	0.2	0.0	2.1	0.5
December	2005	0.0	0.0	0.0	0.0

Table 4.1-6. Mean seasonal turbidity for Pockwock Lake during 2002-2005 based on mean daily data.

Winter = {Dec, Jan, Feb}, Spring = {Mar, Apr, May} Summer = {Jun, Jul, Aug}, Fall = {Sept, Oct, Nov}

Season	Year	Mean	Minimum	Maximum	SD
			NTU		
Summer	2002				
Fall	2002				
Winter	2003				
Spring	2003	0.2	0.1	0.4	0.1
Summer	2003	0.3	0.0	1.0	0.3
Fall	2003	0.4	0.0	0.9	0.3
Winter	2004	0.5	0.0	1.5	0.4
Spring	2004	1.8	1.5	2.2	0.1
Summer	2004	2.0	0.9	3.4	0.8
Fall	2004	0.5	0.1	0.8	0.2
Winter	2005	0.4	0.4	0.5	0.0
Spring	2005				
Summer	2005	0.8	0.0	1.9	0.7
Fall	2005	1.2	0.0	15.7	1.8

Table 4.1-7. Mean annual turbidity for Pockwock Lake during 2002-2005 based on mean daily data.

Year	Mean	Minimum	Maximum	SD
	NTU			
2002				
2003	0.3	0.0	1.0	0.3
2004	1.2	0.1	3.4	0.8
2005	1.0	0.0	15.7	1.4

4.1.3.3 Conductivity

Figure 4.1-11. Conductivity from August 2002 to December 2005 for the Pockwock Lake based on <u>hourly values</u>. Gaps in the plot indicate missing data.

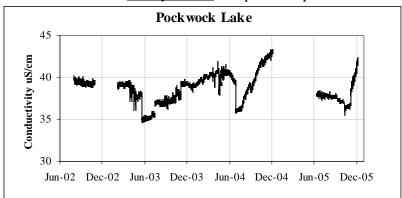


Figure 4.1-12. Conductivity from August 2002 to December 2005 for the Pockwock Lake based on <u>daily mean values</u>. Gaps in the plot indicate missing data.

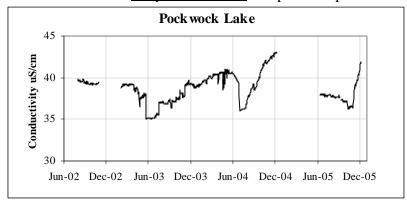


Figure 4.1-13. Conductivity from August 2002 to December 2005 for the Pockwock Lake based on <u>monthly mean values</u>. Gaps in the plot indicate missing data.

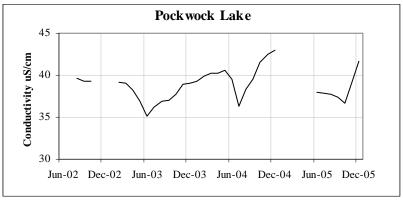


Table 4.1-8. Mean monthly conductivity for Pockwock Lake during 2002-2005 based on mean daily data.

Month	Year	Mean	Minimum	Maximum	SD
			uS/cm		
August	2002	39.6	39.4	39.9	0.1
September	2002	39.3	39.1	39.6	0.1
October	2002	39.3	39.1	39.5	0.1
November	2002				
December	2002				
January	2003				
February	2003	39.1	38.8	39.3	0.1
March	2003	39.1	38.5	39.2	0.1
April	2003	38.2	36.5	38.9	0.7
May	2003	36.9	35.0	38.1	1.3
June	2003	35.1	35.0	35.3	0.1
July	2003	36.2	35.3	37.1	0.8
August	2003	37.0	36.8	37.3	0.2
September	2003	37.1	36.4	37.7	0.3
October	2003	37.8	37.3	38.5	0.3
November	2003	39.0	37.7	39.7	0.6
December	2003	39.0	38.8	39.3	0.2
January	2004	39.3	38.9	39.7	0.3
February	2004	39.9	39.3	40.2	0.3
March	2004	40.2	39.3	40.4	0.2
April	2004	40.2	38.5	41.0	0.7
May	2004	40.6	40.0	41.0	0.2
June	2004	39.6	36.0	40.5	1.1
July	2004	36.3	36.0	37.1	0.3

Table 4.1-8, continued

Month	Year	Mean	Minimum	Maximum	SD
			uS/cm		
August	2004	38.3	37.3	39.2	0.6
September	2004	39.6	38.5	40.7	0.7
October	2004	41.6	40.9	42.1	0.3
November	2004	42.5	42.0	43.0	0.3
December	2004	43.0	43.0	43.1	0.1
January	2005				
February	2005				
March	2005				
April	2005				
May	2005				
June	2005	37.9	37.8	38.0	0.1
July	2005	37.8	37.7	38.0	0.1
August	2005	37.7	37.6	37.9	0.1
September	2005	37.3	37.1	37.9	0.3
October	2005	36.6	36.2	37.2	0.3
November	2005	39.2	36.4	40.9	1.2
December	2005	41.6	41.3	41.9	0.2

Table 4.1-8. Mean seasonal conductivity for Pockwock Lake during 2002-2005 based on mean daily data.

Winter = {Dec, Jan, Feb}, Spring = {Mar, Apr, May} Summer = {Jun, Jul, Aug}, Fall = {Sept, Oct, Nov}

Season	Year	Mean	Minimum	Maximum	SD
			uS/cm		
Summer	2002	39.6	39.4	39.9	0.1
Fall	2002	39.3	39.1	39.6	0.1
Winter	2003	39.1	38.8	39.3	0.1
Spring	2003	38.0	35.0	39.2	1.2
Summer	2003	36.1	35.0	37.3	0.9
Fall	2003	37.9	36.4	39.7	0.9
Winter	2004	39.4	38.8	40.2	0.4
Spring	2004	40.4	38.5	41.0	0.5
Summer	2004	38.1	36.0	40.5	1.5
Fall	2004	41.2	38.5	43.0	1.3
Winter	2005	43.0	43.0	43.1	0.1
Spring	2005				
Summer	2005	37.8	37.6	38.0	0.1
Fall	2005	37.7	36.2	40.9	1.3

Table 4.1-9. Mean annual conductivity for Pockwock Lake during 2002-2005 based on mean daily data.

Year	Mean	Minimum	Maximum	SD
	uS/cm			
2002	39.4	39.1	39.9	0.2
2003	37.7	35.0	39.7	1.4
2004	39.9	36.0	43.1	1.7
2005	37.9	36.2	41.9	1.2

4.1.3.4 Dissolved Oxygen

Figure 4.1-15. Dissolved oxygen concentration from August 2002 to December 2005 for the Pockwock Lake based on <u>hourly values</u>. Gaps in the plot indicate missing data.

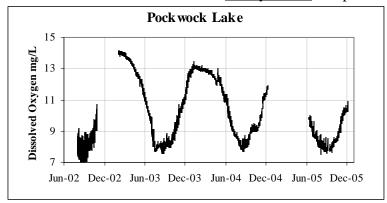


Figure 4.1-16. Dissolved oxygen concentration from August 2002 to December 2005 for the Pockwock Lake based on <u>daily mean values</u>. Gaps in the plot indicate missing data.

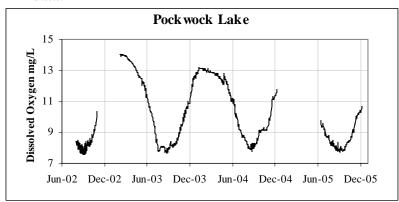


Figure 4.1.17. Dissolved oxygen concentration from August 2002 to December 2005 for Pockwock Lake based on <u>monthly mean values</u>. Gaps in the plot indicate missing data.

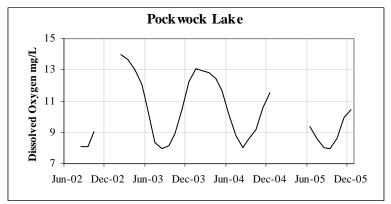


Table 4.1-10. Mean monthly dissolved oxygen concentrations for Pockwock Lake during 2002-2005 based on mean daily data.

Month	Year	Mean	Minimum	Maximum	SD
			mg/L		
August	2002	8.1	7.6	8.5	0.3
September	2002	8.1	7.6	8.6	0.3
October	2002	9.1	8.3	10.4	0.6
November	2002				
December	2002				
January	2003				
February	2003	14.0	13.9	14.1	0.0
March	2003	13.7	13.4	13.9	0.2
April	2003	13.0	12.6	13.4	0.3
May	2003	12.0	11.3	12.6	0.4
June	2003	10.4	9.7	11.3	0.5
July	2003	8.3	7.8	9.5	0.5
August	2003	7.9	7.7	8.1	0.1
September	2003	8.2	7.9	8.4	0.1
October	2003	8.9	8.2	9.6	0.4
November	2003	10.5	9.6	11.0	0.4
December	2003	12.2	11.0	12.9	0.5
January	2004	13.1	12.8	13.2	0.1
February	2004	13.0	12.9	13.1	0.1
March	2004	12.8	12.6	12.9	0.1
April	2004	12.4	12.1	12.8	0.2
May	2004	11.7	11.0	12.4	0.5
June	2004	10.1	9.2	11.1	0.6

Table 4.1-10, continued

Month	Year	Mean	Minimum	Maximum	SD
			mg/L		
July	2004	8.8	8.4	9.2	0.2
August	2004	8.1	7.8	8.3	0.1
September	2004	8.6	8.1	9.1	0.4
October	2004	9.2	9.1	9.4	0.1
November	2004	10.6	9.5	11.4	0.7
December	2004	11.6	11.4	11.8	0.1
January	2005				
February	2005				
March	2005				
April	2005				
May	2005				
June	2005	9.4	8.8	9.8	0.2
July	2005	8.6	8.2	9.1	0.2
August	2005	8.0	7.8	8.5	0.2
September	2005	7.9	7.7	8.3	0.1
October	2005	8.6	8.2	9.2	0.3
November	2005	10.0	9.0	10.4	0.4
December	2005	10.5	10.3	10.7	0.1

Table 4.1-11. Mean seasonal dissolved oxygen concentrations for Pockwock Lake during 2002-2005 based on mean daily data.

Winter = {Dec, Jan, Feb}, Spring = {Mar, Apr, May}

Summer = {Jun, Jul, Aug}, Fall = {Sept, Oct, Nov}

Season	Year	Mean	Minimum	Maximum	SD
			mg/L		
Summer	2002	8.1	7.6	8.5	0.3
Fall	2002	8.6	7.6	10.4	0.7
Winter	2003	14.0	13.9	14.1	0.0
Spring	2003	12.9	11.3	13.9	0.7
Summer	2003	8.9	7.7	11.3	1.1
Fall	2003	9.2	7.9	11.0	1.0
Winter	2004	12.7	11.0	13.2	0.5
Spring	2004	12.3	11.0	12.9	0.6
Summer	2004	9.0	7.8	11.1	0.9
Fall	2004	9.5	8.1	11.4	0.9

Table 4.1-11, continued

Season	Year	Mean		Maximum	SD
			mg/L		
Winter	2005	11.6	11.4	11.8	0.1
Spring	2005				
Summer	2005	8.5	7.8	9.8	0.5
Fall	2005	8.9	7.7	10.4	0.9

Table 4.1-12. Mean annual dissolved oxygen concentrations for Pockwock Lake during 2002-2005 based on mean daily data.

Year	Mean	Minimum	Maximum	SD
		mg/L		
2002	8.4	7.6	10.4	0.6
2003	10.8	7.7	14.1	2.2
2004	10.8	7.8	13.2	1.9
2005	8.8	7.7	10.7	0.8

4.1.3.5 pH

Figure 4.1-18. pH from August 2002 through December 2005 for the Pockwock Lake based on <u>hourly values</u>. Gaps in the plot indicate missing data.

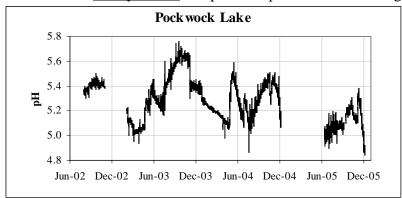


Figure 4.1-19. pH from August 2002 through December 2005 for the Pockwock Lake based on <u>daily mean values</u>. Gaps in the plot indicate missing data.

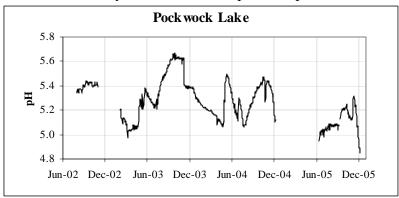


Figure 4.1-20. pH from August 2002 through December 2005 for the Pockwock Lake based on monthly mean values. Gaps in the plot indicate missing data.

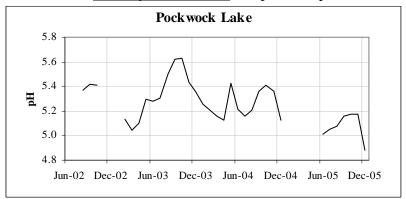


Table 4.1-13. Mean monthly pH for Pockwock Lake during 2002-2005 based on mean daily data.

Month	Year	Mean	Minimum	Maximum	SD
August	2002	5.37	5.34	5.41	0.02
September	2002	5.42	5.39	5.44	0.02
October	2002	5.41	5.39	5.43	0.01
November	2002				
December	2002				
January	2003				
February	2003	5.13	5.08	5.21	0.04
March	2003	5.04	4.97	5.09	0.02
April	2003	5.10	5.04	5.28	0.08
May	2003	5.29	5.21	5.38	0.05
June	2003	5.28	5.22	5.34	0.03
July	2003	5.31	5.21	5.43	0.07
August	2003	5.50	5.44	5.57	0.04
September	2003	5.62	5.56	5.67	0.03
October	2003	5.63	5.58	5.65	0.01
November	2003	5.44	5.37	5.63	0.09
December	2003	5.36	5.29	5.39	0.03
January	2004	5.26	5.22	5.30	0.02
February	2004	5.21	5.19	5.23	0.01
March	2004	5.16	5.08	5.20	0.03
April	2004	5.12	5.06	5.30	0.06
May	2004	5.42	5.33	5.50	0.05
June	2004	5.21	5.11	5.32	0.06
July	2004	5.15	5.06	5.29	0.08

Table 4.1-13, continued

Month	Year	Mean	Minimum	Maximum	SD
August	2004	5.21	5.11	5.28	0.05
September	2004	5.36	5.30	5.41	0.03
October	2004	5.41	5.27	5.47	0.05
November	2004	5.36	5.16	5.44	0.07
December	2004	5.13	5.10	5.15	0.02
January	2005				
February	2005				
March	2005				
April	2005				
May	2005				
June	2005	5.01	4.95	5.05	0.02
July	2005	5.05	4.98	5.09	0.02
August	2005	5.08	5.06	5.09	0.01
September	2005	5.16	5.04	5.22	0.06
October	2005	5.18	5.12	5.25	0.04
November	2005	5.18	4.96	5.32	0.11
December	2005	4.88	4.85	4.91	0.02

Table 4.1-14. Mean seasonal pH for Pockwock Lake during 2002-2005 based on mean daily data.

Winter = {Dec, Jan, Feb}, Spring = {Mar, Apr, May} Summer = {Jun, Jul, Aug}, Fall = {Sept, Oct, Nov}

Season	Year	Mean	Minimum	Maximum	SD
Summer	2002	5.37	5.34	5.41	0.02
Fall	2002	5.41	5.39	5.44	0.01
Winter	2003	5.13	5.08	5.21	0.04
Spring	2003	5.15	4.97	5.38	0.12
Summer	2003	5.36	5.21	5.57	0.11
Fall	2003	5.56	5.37	5.67	0.10
Winter	2004	5.27	5.19	5.39	0.07
Spring	2004	5.24	5.06	5.50	0.14
Summer	2004	5.19	5.06	5.32	0.07
Fall	2004	5.38	5.16	5.47	0.06
Winter	2005	5.13	5.10	5.15	0.02
Spring	2005				
Summer	2005	5.05	4.95	5.09	0.03
Fall	2005	5.17	4.96	5.32	0.07

Table 4.1-14. Mean annual pH for Pockwock Lake during 2002-2005 based on mean daily data.

Year	Mean	Minimum	Maximum	SD
2002	5.40	5.34	5.44	0.03
2003	5.34	4.97	5.67	0.20
2004	5.26	5.06	5.50	0.12
2005	5.11	4.85	5.32	0.09

4.1.4 Overview of Pockwock Lake Water Quality

Water quality data for the period of record are typical of a predominantly forested watershed (61% of total area) with a significant surface water component (23% of total area) of which a large portion exists as lake area. Igneous bedrock dominates the watershed geology. Small areas of metamorphic bedrock are also present.

It should be noted that the water quality data gathered at this monitoring station represents conditions at a depth of approximately 5m.

Variation in water temperature follows a seasonal pattern very similar to that of air temperature. It is interesting to note that during the Fall cooling phase of the annual heat cycle a slight lag between air and water temperature exists. A simple explanation for this phenomenon is that the rate at which stored thermal energy in the lake is lost to the atmosphere is less than is necessary for the lake water to match decreasing air temperatures. Seasonal minimum and maximum mean water temperatures ranged from 0.9 and 4.5°C for Winter (December to February) and 18.3 and 21.7°C for Summer (June to August).

Turbidity values were relatively low for most of the period of record with less than 1 percent of all hourly measurements (2003-2005) greater than 5 NTU. Mean annual concentrations ranged between 0.3 and 1.2 NTU. There appears to be a repeating turbidity peak during the growing season that is most likely associated with algal growth, the magnitude of which is dependent on ambient conditions. Also of note for hourly turbidity measurements was an episode of elevated readings over a 24-hour period between October 25 and 26, 2005 that saw readings reach upwards of 36 NTU. On October 23, 25 mm of rainfall occurred which may have played a minor role in the increase, but because other rainfall events of similar and greater amounts triggered only minor turbidity responses, it is more likely that some other factor was the main cause.

Variation in conductivity levels in Pockwock Lake was minor during the period of record, fluctuating between a mean daily low of 35 uS/cm and a high of 43 uS/cm. No temporal trend was observed. Annual means remained steady at between 38 and 40 uS/cm.

Dissolved oxygen concentrations show a pattern that is essentially the inverse of temperature. Mean daily concentrations ranged between 7.6 and 14.1mg/L. Minimum dissolved oxygen concentrations occurred during the warmer months, typically July and August when water temperature peaks, while maximum concentrations occurred during the colder months of January and February. This annual trend was consistent throughout the 4-year period of record.

Pockwock Lake is slightly acidic with daily mean pH values ranging from 4.8 to 5.7. Between 2002 and 2005, annual mean pH varied between 5.4 and 5.1. Given the slightly acidic nature of the lake, acceptable ranges of values published by the CCME for

Drinking Water use and the Protection of Aquatic Life of 6.5 to 8.5 and 6.5 to 9.0, respectively, were exceeded for the entire monitoring period. The data suggests a downward pH trend may be occurring in the lake. Because of the length of data record, however, uncertainty exists as to whether this is indeed taking place. It is possible that what has been observed, particularly in 2005 when pH levels were reduced to near 4.8 in December, simply expands our understanding of normal variation in lake pH.

Margaree Harbour Margaree Harbour Margaree Harbour Margaree Portree RIVER Margaree Forks South West Margaree Valley Morth East Margaree Valley Morth East Margaree Valley North East Margaree North East Margaree Valley North East Margaree

4.2 NORTH EAST MARGAREE RIVER 2002-2005

Figure 4.2-1. Location of North East Margaree River (map is courtesy of the Canadian Heritage Rivers System).

4.2.1 Background Information

4.2.1.1 Location of Station

The geographic location, in longitude and latitude, of the Automated Network Station on the North East Margaree River is 60°58'36"W, 46°22'10"N and is denoted in Figure 4.2-1 by a star.

4.2.1.2 Geographical Setting

The North East Margaree River is located on Cape Breton Island in the Margaree River watershed. Its drainage area is 368 km² and it flows through the Aspy Fault as a steep valley stream and then widens to join the South East Margaree River, which traces its headwaters to Lake Ainslie, at Margaree Forks and then flows north through a wide tidal estuary to empty into the Gulf of Saint Lawrence at Margaree Harbour.

4.2.1.3 Geology and Geomorphology

The complex geology of Cape Breton is well displayed in the Margaree-Lake Ainslie system. As the North East Margaree flows along the Aspy Fault, it cuts through Precambrian, Cambrian, Ordovician and Silurian sedimentary and metamorphic rocks, visible as rhyolites and crystalline branded schists and gneisses in the upper reaches of the North East Margaree.

Classic examples of river erosion, ice erosion and deposition from the Wisconsin glaciation, including V-shaped valleys in the upper reaches and U-shaped valleys in the lower reaches dominate the landscape of the North East Margaree. The geomorphology of the system is made up of: braided channels of coarse sand and gravels; river terraces; point bars; cut banks; meanders; pools and riffles; natural levees; and finally river deltas in the broad tidal estuary where the Margaree enters the Gulf of St. Lawrence.

The dominant landform in the watershed is a gently to strongly rolling plateau, with boggy depressions.

4.2.1.4 Forest Cover and Land Use

The Margaree valley has the greatest proportion of forested floodplain of any river in Nova Scotia, including spruce-fir forests, mixed hardwoods and remnant stands of maple-elm climax forest. 88% of the land within the watershed is forested, 8% covered by wetlands, and less than 0.5 % characterized as urban land use.

Figure 4.2-2. NE Margaree River looking upstream (monitoring station is located just out of view on left side of photo).

4.2.1.5 *Climate*

Normal (1971-2000) precipitation in the North East Margaree River watershed, as recorded at the Environment Canada Climate Station at Cheticamp is 1391 mm, comprised of 1054 mm of rainfall and 338 cm of snowfall. The mean annual temperature is 6.2°C with a mean monthly high of 18.3 °C in July and a low of -6.7 °C in February.

4.2.1.6 Wildlife and Habitat

Gravel bars in the upper reaches provide safe haven for spawning salmon, which return to spawn. Young salmon, gaspereau and sea (speckled) trout run heavy in the spring. The watershed also provides habitat to striped bass, bald eagles, osprey, ringnecked ducks, the rare Gaspé shrew, rock voles, pine martens, lynx, and moose.

Figure 4.2-3. North East Margaree River monitoring station.

4.2.1.7 Human Settlement and Industrial Development

The Mi'kmaq called the river "Weekuch". Early French settlers gave the river the name St. Marguerite in the 18th century. The 19th century saw many Scottish, English and Irish immigrants settle in the Margaree river valley to farm, fish and log. Industrial development in the watershed includes forestry, commercial and recreational fishing (e.g. salmon and gaspereau), and tourism. The river system is popular with outdoor enthusiasts for such activities as fishing, hiking and canoeing. The Margaree River system was nominated to the Canadian Heritage River System in 1991 and was designated a Canadian Heritage River in 1998.

4.2.2 Land Use and Forest Type Summary Information

4.2.2.1 Land Use

Land Type	Area km²	% of Total Area
	12111	
Agriculture	2.8	0.8
Barren	9.6	2.6
Clearcut	0.8	0.2
Forested	323.0	88.1
Urban	1.2	0.3
Wetland/Water	<u>29.3</u>	<u>8.0</u>
Total	366.7	100.0

Figure 4.2-4. Land use mapping of North East Margaree River Watershed.

4.2.2.2 Forest Type

Forest Type	Area	% of
	km^2	Total Area
Forested	323.0	100.0
Hardwood	54.2	14.8
Mixed Wood	82.4	22.5
Softwood	167.6	45.7
Unknown	18.8	17.0

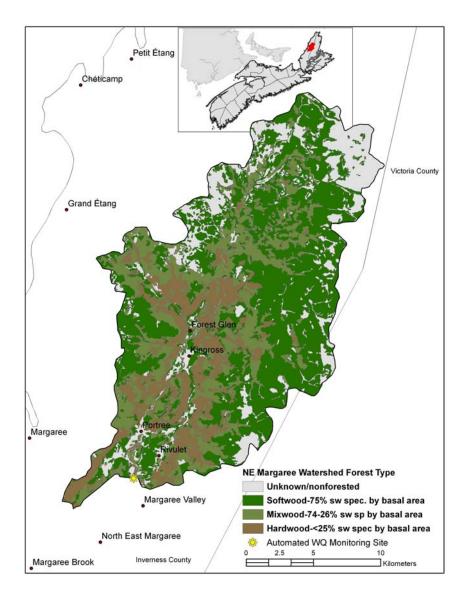


Figure 4.2-5. Forest type mapping of North East Margaree River Watershed.

4.2.3 Water Quality Summary Information

Table 4.2-1. Hourly statistics of minimum, maximum, mean, and standard deviation and exceedences as per established water quality guidelines for hourly real time data for North East Margaree River for the period 2002 –2005.

Parameter	Year	Min	Max	Mean	SD	C	WQ Guidelii	ne	Readings ⁵		# of		E	xceedences	
						FWAL ¹	DW ¹	REC ¹		Ex	ceedences		As %	6 of Readin	gs
Temperature, °C	2002	-0.3	23.3	9.8	6.3				4841		87			2	
Tomporator, C	2003	-0.2	21.7	8.8	6.3	$20-21^2$			6889		29			<1	
	2004	-0.3	21.8	6.3	6.1				8401		23			<1	
	2005	-0.1	22.0	8.1	6.4				8031		25			<1	
Turbidity, NTU										DW <1 ³	DW ≤5 ⁴	REC	DW <1 ³	DW ≤5 ⁴	REC
Turbianty, 1410	2002	0.0	10.6	1.0	1.4				654	239	2 DW ≤3	0	36	0 ±3	0
	2002	0.0	96.4	1.8	5.6	1	$<1^3, \le 5^4$	≤50	3986	1540	228	14	39	6	<1
	2004	0.0	80.5	1.5	3.9		\1 , <u>\</u> 3		7616	3240	365	0	42	5	0
	2005	0.0	57.4	0.8	3.9				4841	590	163	5	12	3	<1
											•	•			ı
Conductivity, uS/cm	2002	48.6	329.0	158.8	71.5										
	2003	28.9	366.0	165.4	68.6										
	2004	42.6	380.0	172.6	74.8										
	2005	36.0	344.7	161.2	78.8										
Dissaland Omnes and I	2002	7.7	147	11.0	1.0				4941		0			0	
Dissolved Oxygen, mg/L	2002	7.7 7.4	14.7 15.8	11.0	1.9 2.4	≥5.0			4841 6001		0			0	
	2003	7.4	15.5	12.3	2.4	≥3.0			8361		0			0	
	2005	6.7	15.1	11.3	2.3				8028		0			0	
pH, Units										FWAL	DW	REC	FWAL	DW	REC
	2002	6.3	7.7	7.2	0.2				4841	40	40	40	<1	<1	<1
	2003	6.2	8.2	7.1	0.2	6.5-9.0	6.5-8.5	6.5-9.5	6885	32	32	32	<1	<1	<1
	2004	6.4	8.0	7.2	0.2				8401	11	11	11	<1	<1	<1
	2005	6.2	8.0	7.2	0.3				8031	94	94	94	3	3	3
 FWAL: Freshwater Aqua Upper permissible limit to Maximum Acceptable C Aesthetic Objective. 5N The number of hourly respective. 	for salmon oncentration TU may be	and trout on for wat e permitte	(Alabaste er entering ed if demon	er and Lloy g a distribu nstrated th	d. 1982). ition syste at the disi	CCME DW g m. nfection methor	od is not comp	romised.							

⁵ The number of hourly readings possible in each of the years 2002, 2003 and 2005 is 8760. For 2004 the number is 8784. The number recorded in the table refers to the actual number of approved measurements.

.4.2.3.1 Temperature

Figure 4.2-6. Water temperature from June 2002 through November 2005 for the NE Margaree River using <u>hourly values</u>. Gaps in the plot indicate missing data.

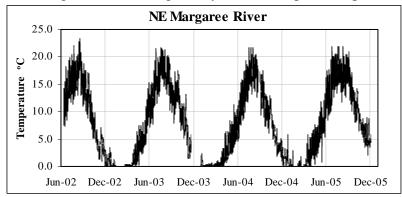


Figure 4.2-7. Water temperature from June 2002 through November 2005 for the NE Margaree River using <u>daily mean values</u>. Gaps in the plot indicate missing data.

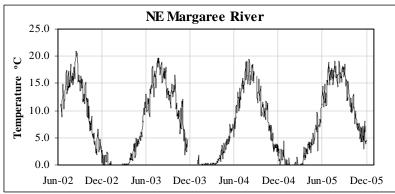


Figure 4.2-8. Air and water temperature from June 2002 through November 2005 for the NE Margaree River using monthly mean values. Gaps in the plot indicate missing data.

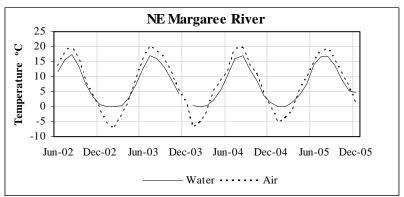


Table 4.2-2. Mean monthly water temperature for North East Margaree River during 2002-2005 based on mean daily data.

Month	Year	Mean	Minimum	Maximum	SD
			°C		
June	2002	11.7	8.9	15.0	1.6
July	2002	15.6	13.1	18.5	1.3
August	2002	17.5	14.4	20.9	2.0
September	2002	13.4	9.0	16.3	1.8
October	2002	7.2	3.7	12.1	2.1
November	2002	3.4	0.4	6.6	1.5
December	2002	0.8	-0.2	2.8	0.9
January	2003	0.1	0.0	0.7	0.2
February	2003	0.1	0.0	0.2	0.1
March	2003	0.4	0.0	2.2	0.5
April	2003	2.9	0.8	5.0	1.3
May	2003	7.3	3.8	12.6	2.7
June	2003	12.8	8.8	18.3	2.7
July	2003	17.1	12.4	19.8	1.9
August	2003	16.0	12.3	18.9	1.9
September	2003	13.2	10.4	16.6	1.4
October	2003	9.4	5.7	13.1	1.8
November	2003	4.3	1.8	7.6	1.7
December	2003				
January	2004	0.2	0.0	1.8	0.4
February	2004	0.1	0.0	0.3	0.1
March	2004	0.5	0.1	1.2	0.3
April	2004	2.5	0.6	4.9	1.1

Table 4.2-2, continued

Month	Year	Mean	Minimum °C	Maximum	SD
May	2004	5.7	3.6	7.6	1.3
June	2004	10.7	6.7	14.2	2.1
July	2004	15.9	13.3	19.0	1.6
August	2004	17.0	14.8	19.4	1.3
September	2004	12.2	9.0	16.4	2.0
October	2004	8.6	4.6	11.8	1.9
November	2004	3.8	1.6	7.3	1.3
December	2004	1.3	-0.2	4.4	1.1
January	2005	0.1	-0.1	1.4	0.4
February	2005	0.1	-0.1	1.4	0.3
March	2005	1.2	-0.1	3.4	1.2
April	2005	4.0	2.1	6.0	0.8
May	2005	7.8	2.6	11.5	2.0
June	2005	13.9	10.6	19.0	2.3
July	2005	16.8	14.6	19.1	1.1
August	2005	16.7	14.4	19.1	1.2
September	2005	13.6	9.7	18.6	2.2
October	2005	8.9	6.3	13.1	1.8
November	2005	5.3	2.9	8.1	1.3
December	2005	4.7	4.7	4.7	

Table 4.2-3. Mean seasonal water temperature for North East Margaree River during 2002-2005 based on mean daily data.

Winter = {Dec, Jan, Feb}, Spring = {Mar, Apr, May}

Summer = {Jun, Jul, Aug}, Fall = {Sept, Oct, Nov}

Season	Year	Mean	Minimum	Maximum	SD
			°C		
Summer	2002	15.4	8.9	20.9	2.8
Fall	2002	8.0	0.4	16.3	4.5
Winter	2003	0.5	-0.2	2.8	0.8
Spring	2003	3.5	0.0	12.6	3.3
Summer	2003	15.3	8.8	19.8	2.8
Fall	2003	9.6	1.8	16.6	3.8
Winter	2004	0.2	0.0	1.8	0.3
Spring	2004	2.9	0.1	7.6	2.4
Summer	2004	14.4	6.7	19.4	3.2
Fall	2004	8.2	1.6	16.4	3.9

Table 4.2-3, continued

Season	Year	Mean	Minimum	Maximum	SD			
			°C					
Winter	2005	0.5	-0.2	4.4	0.9			
Spring	2005	4.3	-0.1	11.5	3.0			
Summer	2005	15.8	10.6	19.1	2.1			
Fall	2005	9.2	2.9	18.6	3.8			

Table 4.2-4. Mean annual water temperature for North East Margaree River during 2002-2005 based on mean daily data.

Year	Mean	Minimum	Maximum	SD
		°C		
2002	9.9	-0.2	20.9	6.2
2003	8.7	0.0	19.8	6.2
2004	6.4	-0.2	19.4	6.0
2005	8.1	-0.1	19.1	6.3

4.2.3.2 Turbidity

Figure 4.2-9. Turbidity levels from June 2002 to November 2005 for the NE Margaree River based on <u>hourly values</u>. Gaps in the plot indicate missing data.

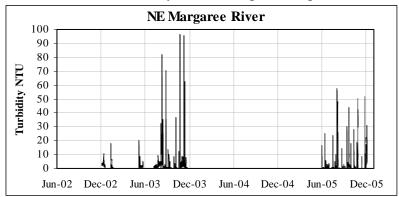


Figure 4.2-10. Turbidity levels from June 2002 to November 2005 for the NE Margaree River based on <u>daily mean values</u>. Gaps in the plot indicate missing data.

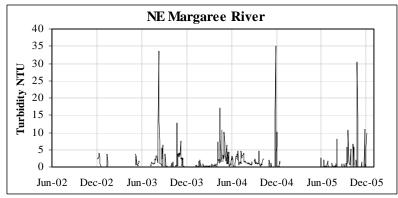


Figure 4.2-11. Turbidity levels and stream stage from June 2002 to November 2005 for the NE Margaree River based on <u>monthly mean values</u>. Gaps in the plot indicate missing data.

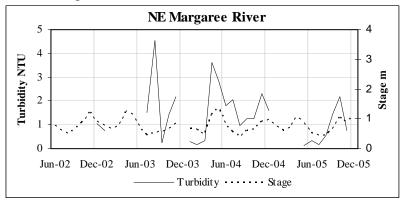


Table 4.2-5 Mean monthly turbidity for North East Margaree River during 2002-2005 based on mean daily data.

Month	Year	Mean	Minimum	Maximum	SD
			NTU		
December	2002	1.0	0.0	4.0	1.4
January	2003	0.8	0.0	3.8	1.2
February	2003				
March	2003				
April	2003				
May	2003	1.3	0.4	3.7	1.1
June	2003				
July	2003	1.5	0.2	3.3	0.9
August	2003	4.5	0.0	33.6	7.1
September	2003	0.3	0.0	3.8	0.7
October	2003	1.4	0.0	12.8	2.8
November	2003	2.2	0.0	7.6	2.0
December	2003				
January	2004	0.3	0.0	1.9	0.5
February	2004	0.2	0.0	0.8	0.2
March	2004	0.3	0.0	1.0	0.2
April	2004	3.6	0.4	17.1	3.8
May	2004	2.8	0.2	10.0	2.7
June	2004	1.8	0.0	4.7	1.4
July	2004	2.1	0.9	4.6	1.1
August	2004	1.0	0.6	1.6	0.2
September	2004	1.2	0.4	4.5	0.9
October	2004	1.3	0.0	2.4	1.0

Table 4.2-5, continued

Month	Year	Mean	Minimum	Maximum	SD
			NTU		
November	2004	2.3	0.0	35.2	6.9
December	2004	1.6	0.0	10.2	3.2
January	2005				
February	2005				
March	2005				
April	2005				
May	2005	0.1	0.0	2.5	0.6
June	2005	0.3	0.0	2.0	0.5
July	2005	0.2	0.0	1.0	0.3
August	2005	0.6	0.0	8.2	2.0
September	2005	1.5	0.0	10.7	2.2
October	2005	2.2	0.0	30.4	6.0
November	2005	0.8	0.0	11.1	2.3
December	2005	•			

Table 4.2-6 Mean seasonal turbidity for North East Margaree River during 2002-2005 based on mean daily data.

Winter = {Dec, Jan, Feb}, Spring = {Mar, Apr, May}

Summer = {Jun, Jul, Aug}, Fall = {Sept, Oct, Nov}

Season	Year	Mean	Minimum	Maximum	SD
			NTU		
Winter	2003	0.9	0.0	4.0	1.3
Spring	2003	1.3	0.4	3.7	1.1
Summer	2003	3.2	0.0	33.6	5.5
Fall	2003	1.2	0.0	12.8	2.2
Winter	2004	0.2	0.0	1.9	0.4
Spring	2004	2.2	0.0	17.1	3.0
Summer	2004	1.7	0.0	4.7	1.1
Fall	2004	1.7	0.0	35.2	4.4
Winter	2005	1.6	0.0	10.2	3.2
Spring	2005	0.1	0.0	2.5	0.6
Summer	2005	0.3	0.0	8.2	1.2
Fall	2005	1.5	0.0	30.4	4.0

Table 4.2-7 Mean seasonal turbidity for North East Margaree River during 2002-2005 based on mean daily data.

Year	Mean	Minimum	Maximum	SD		
		NTU				
2002	1.0	0.0	4.0	1.4		
2003	1.8	0.0	33.6	3.6		
2004	1.6	0.0	35.2	2.8		
2005	0.9	0.0	30.4	2.9		

4.2.3.3 Conductivity

Figure 4.2-12. Conductivity from June 2002 to November 2005 for the NE Margaree River based on <u>hourly values</u>. Gaps in the plot indicate missing data.

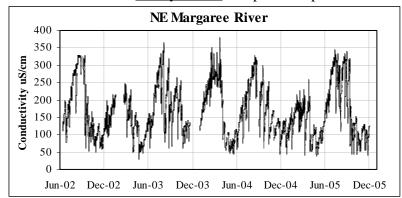


Figure 4.2-13. Conductivity from June 2002 to November 2005 for the NE Margaree River based on <u>daily mean values</u>. Gaps in the plot indicate missing data.

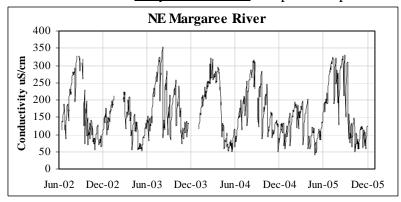


Figure 4.2-14. Conductivity and stream stage from June 2002 to November 2005 for the NE Margaree River based on monthly mean values. Gaps in the plot indicate missing data.

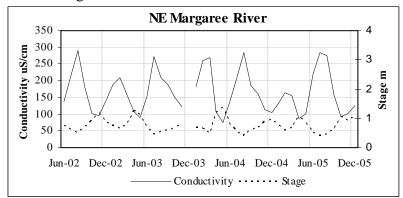


Table 4.2-8. Mean monthly conductivity for North East Margaree River during 2002-2005 based on mean daily data.

Month	Year	Mean	Minimum	Maximum	SD
			uS/cm		
June	2002	139.0	88.4	189.3	26.9
July	2002	214.5	138.6	282.3	44.6
August	2002	289.5	194.9	326.9	36.8
September	2002	179.7	70.8	318.2	77.9
October	2002	102.7	56.4	142.0	22.7
November	2002	94.2	62.5	128.2	18.7
December	2002	141.3	99.9	176.5	19.9
January	2003	188.5	166.8	212.0	12.6
February	2003	208.4	193.6	224.3	11.2
March	2003	159.3	54.3	222.7	39.7
April	2003	107.4	54.3	158.8	36.1
May	2003	89.4	50.8	133.8	24.7
June	2003	153.6	82.4	235.2	38.8
July	2003	270.9	196.2	324.3	36.2
August	2003	209.3	90.1	353.6	82.3
September	2003	189.1	82.7	257.0	47.7
October	2003	150.1	72.2	240.7	51.5
November	2003	121.3	92.9	139.0	13.3
December	2003				
January	2004	183.6	116.0	239.0	34.3
February	2004	260.8	219.3	321.4	26.3
March	2004	268.1	230.4	296.5	18.7
April	2004	106.7	57.7	209.3	41.6
May	2004	75.9	50.3	114.8	19.8

Table 4.2-8, continued

Month	Year	Mean		Maximum	SD
			uS/cm		
June	2004	137.0	78.7	199.4	35.7
July	2004	208.1	125.8	270.0	36.6
August	2004	284.3	230.9	316.5	22.7
September	2004	184.2	88.0	284.8	58.0
October	2004	161.7	92.2	245.9	45.7
November	2004	112.3	49.8	142.7	22.8
December	2004	106.0	57.7	134.3	20.6
January	2005	135.1	65.3	172.7	26.8
February	2005	165.6	116.5	195.0	21.4
March	2005	154.7	58.8	202.4	40.8
April	2005	87.3	42.0	122.5	22.4
May	2005	103.0	46.0	157.4	26.9
June	2005	217.7	163.6	287.9	41.2
July	2005	283.4	187.9	324.3	39.5
August	2005	274.0	128.6	330.7	55.1
September	2005	158.8	62.6	311.5	79.7
October	2005	92.0	49.2	148.6	28.3
November	2005	100.5	59.0	125.3	20.9
December	2005	125.7	125.7	125.7	

Table 4.2-9. Mean seasonal conductivity for North East Margaree River during 2002-2005 based on mean daily data.

Winter = {Dec, Jan, Feb}, Spring = {Mar, Apr, May}

Summer = {Jun, Jul, Aug}, Fall = {Sept, Oct, Nov}

Season	Year	Mean	Minimum	Maximum	SD
			uS/cm		
Summer	2002	217.5	88.4	326.9	68.4
Fall	2002	122.1	56.4	318.2	58.3
Winter	2003	164.0	99.9	224.3	32.0
Spring	2003	118.8	50.8	222.7	45.1
Summer	2003	211.9	82.4	353.6	73.8
Fall	2003	157.4	72.2	257.0	50.8
Winter	2004	220.9	116.0	321.4	49.4
Spring	2004	151.7	50.3	296.5	90.2
Summer	2004	203.6	78.7	316.5	66.9
Fall	2004	152.8	49.8	284.8	53.4
Winter	2005	134.5	57.7	195.0	33.3
Spring	2005	115.3	42.0	202.4	42.3
Summer	2005	258.8	128.6	330.7	53.8
Fall	2005	116.8	49.2	311.5	57.8

Table 4.2-10. Mean seasonal conductivity for North East Margaree River during 2002-2005 based on mean daily data.

Year	Mean	Minimum	Maximum	SD		
		uS/cm				
2002	161.6	56.4	326.9	73.1		
2003	165.4	50.8	353.6	67.7		
2004	171.9	49.8	321.4	74.0		
2005	161.2	42.0	330.7	78.0		

4.2.3.4 Dissolved Oxygen

Figure 4.2-15. Dissolved oxygen concentration from June 2002 to November 2005 for the NE Margaree River based on <u>hourly values</u>. Gaps in the plot indicate missing data.

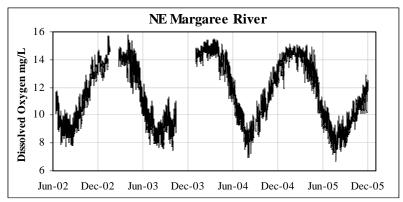


Figure 4.2-16. Dissolved oxygen concentration from June 2002 to November 2005 for the NE Margaree River based on <u>daily mean values</u>. Gaps in the plot indicate missing data.

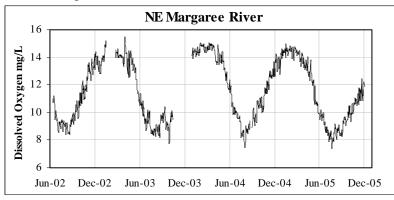


Figure 4.2-17. Dissolved oxygen concentration and stream stage from June 2002 to November 2005 for the NE Margaree River based on monthly mean values. Gaps in the plot indicate missing data.

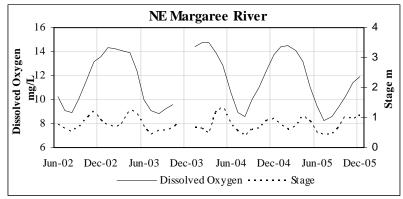


Table 4.2-11. Mean monthly dissolved oxygen for North East Margaree River during 2002-2005 based on mean daily data.

Month	Year	Mean	Minimum	Maximum	SD
			mg/L		
June	2002	10.2	9.4	11.3	0.6
July	2002	9.1	8.6	9.5	0.3
August	2002	8.9	8.4	9.6	0.4
September	2002	10.1	9.1	11.4	0.5
October	2002	11.5	10.5	12.6	0.5
November	2002	13.2	12.3	14.3	0.5
December	2002	13.6	12.8	14.4	0.4
January	2003	14.4	13.7	15.2	0.5
February	2003	14.3	14.0	14.5	0.2
March	2003	14.1	13.3	15.2	0.3
April	2003	13.9	12.5	15.5	0.8
May	2003	12.4	10.6	13.9	1.0
June	2003	10.0	8.7	11.4	0.8
July	2003	9.1	8.4	10.2	0.6
August	2003	8.9	8.2	9.9	0.5
September	2003	9.3	7.8	10.4	0.7
October	2003	9.6	8.8	10.1	0.4
November	2003				
December	2003				
January	2004	14.4	13.9	14.8	0.2
February	2004	14.8	14.3	15.1	0.2
March	2004	14.8	14.5	15.0	0.2
April	2004	13.9	13.5	14.9	0.4

Table 4.2-11, continued

Month	Year	Mean		Maximum	SD
			mg/L		
May	2004	12.8	11.6	14.4	0.9
June	2004	10.6	9.8	12.0	0.7
July	2004	9.0	7.6	10.0	0.6
August	2004	8.6	7.4	9.4	0.5
September	2004	10.0	8.9	10.9	0.6
October	2004	11.0	10.0	12.3	0.6
November	2004	12.5	11.4	13.7	0.5
December	2004	13.8	12.6	14.6	0.5
January	2005	14.4	13.9	15.0	0.2
February	2005	14.5	13.7	14.8	0.3
March	2005	14.1	13.3	14.5	0.4
April	2005	13.2	12.3	14.1	0.4
May	2005	11.1	9.9	12.6	0.9
June	2005	9.5	8.5	10.2	0.5
July	2005	8.3	7.4	9.0	0.4
August	2005	8.6	8.0	9.2	0.3
September	2005	9.4	8.2	10.5	0.5
October	2005	10.4	9.3	11.0	0.4
November	2005	11.5	10.5	12.4	0.6
December	2005	11.9	11.9	11.9	

Table 4.2-12. Mean seasonal dissolved oxygen for North East Margaree River during 2002-2005 based on mean daily data.

Winter = {Dec, Jan, Feb}, Spring = {Mar, Apr, May}

Summer = {Jun, Jul, Aug}, Fall = {Sept, Oct, Nov}

Season	Year	Mean	Minimum	Maximum	SD
			mg/L		
Summer	2002	9.3	8.4	11.3	0.7
Fall	2002	11.6	9.1	14.3	1.4
Winter	2003	13.9	12.8	15.2	0.6
Spring	2003	13.5	10.6	15.5	1.1
Summer	2003	9.3	8.2	11.4	0.8
Fall	2003	9.4	7.8	10.4	0.6
Winter	2004	14.6	13.9	15.1	0.3
Spring	2004	13.8	11.6	15.0	1.0
Summer	2004	9.4	7.4	12.0	1.1
Fall	2004	11.2	8.9	13.7	1.2

Table 4.2-12, continued

	,				
Season	Year	Mean	Minimum	Maximum	SD
			mg/L		
Winter	2005	14.2	12.6	15.0	0.5
Spring	2005	12.8	9.9	14.5	1.4
Summer	2005	8.8	7.4	10.2	0.7
Fall	2005	10.4	8.2	12.4	1.0

Table 4.2-13. Mean annual dissolved oxygen for North East Margaree River during 2002-2005 based on mean daily data.

Year	Mean	Minimum	Maximum	SD
		mg L ⁻¹		
2002	11.0	8.4	14.4	1.8
2003	11.3	7.8	15.5	2.3
2004	12.2	7.4	15.1	2.2
2005	11.3	7.4	15.0	2.3

4.2.3.5 pH

Figure 4.2-18. pH from June 2002 to November 2005 for the NE Margaree River based on <u>hourly values</u>. Gaps in the plot indicate missing data.

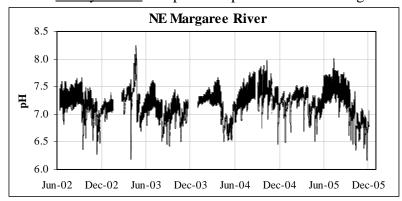


Figure 4.2-19. pH from June 2002 to November 2005 for the NE Margaree River based on <u>daily mean values</u>. Gaps in the plot indicate missing data.

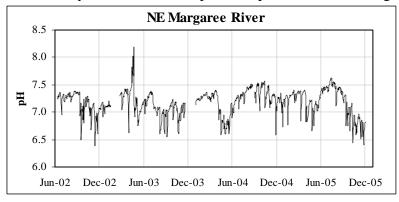


Figure 4.2-20. pH and stream stage from June 2002 to November 2005 for the NE Margaree River based on monthly mean values. Gaps in the plot indicate missing data.

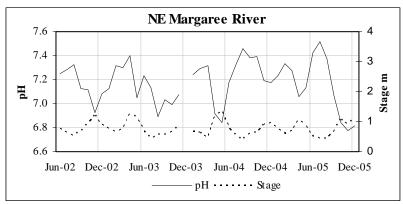


Table 4.2-14. Mean monthly pH for North East Margaree River during 2002-2005 based on mean daily data.

Month	Year	Mean	Minimum	Maximum	SD
June	2002	7.25	6.95	7.37	0.10
July	2002	7.29	7.19	7.35	0.04
August	2002	7.32	7.18	7.38	0.05
September	2002	7.13	6.50	7.37	0.23
October	2002	7.12	6.67	7.30	0.15
November	2002	6.93	6.39	7.16	0.21
December	2002	7.08	6.92	7.19	0.06
January	2003	7.13	7.09	7.21	0.03
February	2003	7.32	7.29	7.35	0.02
March	2003	7.30	6.62	7.43	0.16
April	2003	7.40	6.75	8.19	0.36
May	2003	7.05	6.74	7.27	0.13
June	2003	7.23	6.96	7.38	0.10
July	2003	7.13	6.93	7.37	0.14
August	2003	6.89	6.61	7.09	0.16
September	2003	7.03	6.54	7.24	0.16
October	2003	6.99	6.60	7.18	0.17
November	2003	7.08	6.90	7.17	0.08
December	2003				
January	2004	7.24	7.14	7.29	0.03
February	2004	7.29	7.23	7.36	0.04
March	2004	7.32	7.19	7.40	0.05
April	2004	6.92	6.58	7.28	0.19

Table 4.2-14, continued

Month	Year	Mean	Minimum	Maximum	SD
May	2004	6.84	6.60	7.16	0.18
June	2004	7.17	6.98	7.32	0.10
July	2004	7.32	7.15	7.44	0.06
August	2004	7.46	7.41	7.51	0.03
September	2004	7.38	7.02	7.55	0.14
October	2004	7.39	7.07	7.57	0.14
November	2004	7.19	6.59	7.33	0.15
December	2004	7.18	6.73	7.35	0.13
January	2005	7.24	6.77	7.32	0.12
February	2005	7.33	7.17	7.40	0.05
March	2005	7.28	6.83	7.40	0.17
April	2005	7.06	6.65	7.23	0.14
May	2005	7.13	6.75	7.32	0.13
June	2005	7.42	7.33	7.47	0.04
July	2005	7.51	7.38	7.63	0.06
August	2005	7.38	7.12	7.47	0.09
September	2005	7.07	6.66	7.32	0.19
October	2005	6.84	6.43	7.16	0.19
November	2005	6.77	6.40	6.97	0.15
December	2005	6.82	6.82	6.82	

Table 4.2-15. Mean seasonal pH for North East Margaree River during 2002-2005 based on mean daily data.

Winter = {Dec, Jan, Feb}, Spring = {Mar, Apr, May} Summer = {Jun, Jul, Aug}, Fall = {Sept, Oct, Nov}

Season	Year	Mean	Minimum	Maximum	SD
Summer	2002	7.29	6.95	7.38	0.07
Fall	2002	7.06	6.39	7.37	0.21
Winter	2003	7.13	6.92	7.35	0.09
Spring	2003	7.25	6.62	8.19	0.28
Summer	2003	7.08	6.61	7.38	0.20
Fall	2003	7.03	6.54	7.24	0.15
Winter	2004	7.27	7.14	7.36	0.05
Spring	2004	7.03	6.58	7.40	0.26
Summer	2004	7.31	6.98	7.51	0.13
Fall	2004	7.32	6.59	7.57	0.17

Table 4.2-15, continued

Season	Year	Mean	Minimum	Maximum	SD
Winter	2005	7.25	6.73	7.40	0.12
Spring	2005	7.16	6.65	7.40	0.17
Summer	2005	7.44	7.12	7.63	0.09
Fall	2005	6.90	6.40	7.32	0.22

Table 4.2-16. Mean annual pH for North East Margaree River during 2002-2005 based on mean daily data.

Year	Mean	Minimum	Maximum	SD
2002	7.16	6.39	7.38	0.19
2003	7.13	6.54	8.19	0.23
2004	7.22	6.58	7.57	0.21
2005	7.18	6.40	7.63	0.26

4.2.4 Overview of North East Margaree River Water Quality

Water quality data for the period of record are fairly typical of a predominantly forested watershed (88% of total area) located on a combination of areas of sedimentary and metamorphic bedrock.

Variation in water temperature follows a seasonal pattern very similar to that of air temperature, which is to be expected of a shallow flowing river. Seasonal minimum and maximum mean water temperatures ranged from 0.2 and 0.5°C for Winter (December to February) and 14.4 and 15.8°C for Summer (June to August).

Turbidity values are relatively low for most of the period of record, although there are periods when values were relatively higher for short periods of time. The time of year when peak values were more often observed was during periods of increased flows occurring in the Fall. Environmental conditions (soil moisture, evapotransporation rates, etc.) are such that more of the rainfall landing on the terrestrial escosystem at this time of year is available as runoff, therefore increasing runoff velocities and erosion potential.

Conductivity appears to follow a pattern that is inverse to stage. This is reasonable assuming that increased stage is the result of precipitation events and/or snowmelt that are diluting the concentration of ions in the river and lowering conductivity. Conductivity levels were observed to peak at between 257 and 353 uS/cm during the low flow months of July and August and bottom out at between 42 and 58 uS/cm during the typically higher flow months of October/November and April/May. It appears that the potential effect on water conductivity due to increased chloride content due to road-deicing activities is negligible.

Dissolved oxygen concentrations show a pattern that is essentially the inverse of temperature, which is also typical of shallow surface waters with low biological productivity since the solubility of oxygen in water decreases as water temperature rises. At no time during the period of record did concentrations dip below 7.4 mg/L, remaining well above a CCME published threshold for the protection of aquatic life of 5.0 mg/L.

Based on the period of record, the North East Margaree River appears to be relatively well buffered in that pH values are relatively high compared to most surface waters in the province, which is certainly related to the bedrock and soils in the watershed. Less than 1 percent of all pH measurements fell outside the ranges of values published by the CCME for Drinking Water use and the Protection of Aquatic Life of 6.5 to 8.5 and 6.5 to 9.0, respectively. pH appears to have a weak inverse relationship to flow in that during periods of increased flow, pH levels are depressed.

4.3 SHELBURNE RIVER 2002-2005

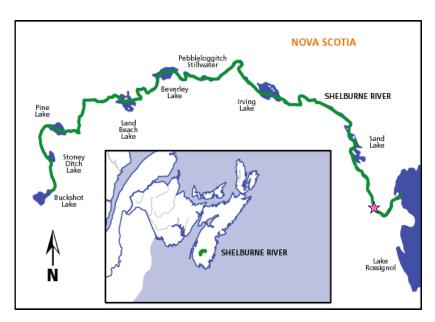


Figure 4.3-1. Location of Shelburne River (map courtesy of Canadian Heritage Rivers System).

4.3.1 Background Information

4.3.1.1 Location of Station

The geographic location, in longitude and latitude, of the Automated Network Station on the Shelburne River is 65°14'32" W, 44° 12'59"N and is denoted in Figure 4.3-1 by a star.

4.3.1.2 Geographical Setting

The Shelburne River begins at Buckshot Lake in the Tobeatic Wilderness Area and empties into Lake Rossignol. It is 53 km long, its drainage area is 277.4 km² and it flows through many shallow, rocky lakes and rapids as well as wetlands and undisturbed forests. 5% of the watershed lies within Kejimkujik National Park.

4.3.1.3 Geology and Geomorphology

For the upper two-thirds of its length, the Shelburne flows over plutonic granites and granitoids, which lie under a large portion of southwestern Nova Scotia. It is covered by a thin layer of loose, stony, granite till. The lower portion of the river, east of Irving Lake, flows over more easily erodable quartzites and slates.

The dominant landscape features of the Shelburne have resulted from exposed underlying bedrock and glacial action. Exceptional examples of erratics, eskers, and outwash plains

are characteristic of the Shelburne River. Drainage is poor, with peat bogs forming in the shallow depressions.

The dominant landform in the watershed is the undulating to moderately rolling plain with a thin mantle of stony till and peat bogs.

4.3.1.4 Forest Cover and Land Use

The river corridor is heavily forested and has some of the last old-growth stands of white pine, red spruce and hemlock in Nova Scotia, while the barren land surrounding it consists primarily of heath vegetation and bogs. About 75% of the watershed is Provincial Crown Land in wilderness condition. 75% of the land within the watershed is forested, 18% of it is covered by a combination of wetlands and water, and less than 0.5% characterized as urban land use.

4.3.1.5 Climate

Normal (1971-2000) precipitation in the Shelburne River watershed, as recorded at the Environment Canada Climate Station in Kejimkujik National Park, is 1399 mm, comprised of 1154 mm of rainfall and 244 cm of snowfall. The mean annual temperature is 6.3°C with a mean monthly high of 18.4°C in July and a low of -6.1°C in January.

Figure 4.3-2. Shelburne River Automated Water Quality Monitoring Station.

4.3.1.6 Wildlife and Habitat

The area supports large black bear and moose populations and other species which prefer remote areas. There are numerous wetlands in the watershed which provide habitat for nesting ducks, beaver, otter and muskrat.

4.3.1.7 Human Settlement and Industrial Development

Centuries ago, the Shelburne was used by the Mi'kmaq as a travel route as part of an important web of lakes and rivers. European settlers followed these Mi'kmaq canoe routes to hunt, fish, trap and explore. Industrial development in the watershed includes a limited amount of forestry, recreational fishing (e.g. salmon and brook trout), and tourism. The undisturbed riverbanks make the entire river corridor a popular wilderness canoeing destination. The undisturbed barrens and eskers also provide scenic views for hikers. The Shelburne River system was designated a Canadian Heritage River in 1997.

4.3.2 Land Use and Forest Type Summary Information

4.3.2.1 Land Use

Land Type	Area	% of
	km^2	Total Area
Barren	15.9	5.9
Clearcut	1.0	0.4
Forested	202.3	75.4
Urban	0.7	0.3
Wetland/Water	<u>48.4</u>	<u>18.0</u>
Total	268.3	100.0

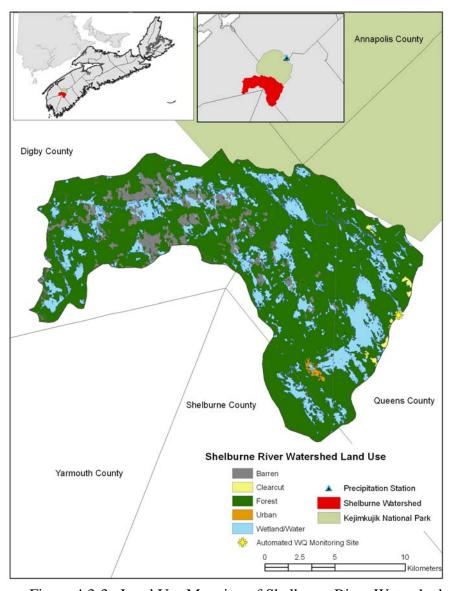


Figure 4.3-3. Land Use Mapping of Shelburne River Watershed.

4.3.2.2 Forest Type

Forest Type	Area	% of
	km ²	Total Area
Forested	202.3	100.0
Hardwood	2.5	1.2
Mixed Wood	29.2	14.4
Softwood	169.2	83.7
Unknown	1.4	0.7

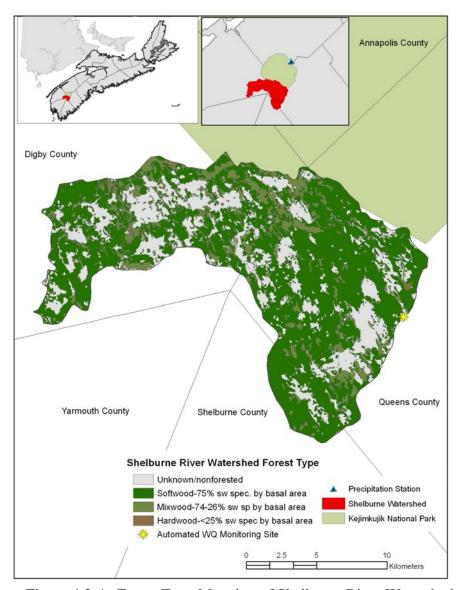


Figure 4.3-4. Forest Type Mapping of Shelburne River Watershed.

4.3.3 Water Quality Summary Information

Table 4.3-1. Hourly statistics of minimum, maximum, mean, and standard deviation and exceedences as per established water quality guidelines for hourly real time data for Shelburne River for the period 2002 –2005.

Parameter	Year	Min	Max	Mean	SD	C	WQ Guidelii		Readings ⁵		# of		E	xceedences	
						FWAL ¹	DW ¹	REC ¹		Ex	ceedences		As 9	6 of Readin	gs
T0C	2002	0.0	20.2	10.8	0.2				3278		422			13	
Temperature, °C	2002	0.0	30.3		8.3	20.212					433				
	2003	0.0	28.7	10.4	8.8	20-21 ²			8434		1345			16	
	2004	-0.2	27.9	9.7	8.8	1			8447		1351			16	
	2005	-0.1	29.6	11.6	8.8				7961		1684			21	
Turbidity, NTU										DW <1 ³	DW ≤5 ⁴	REC	DW <1 ³	DW ≤5 ⁴	REC
•	2002	0.0	74.6	1.4	2.5				2382	1372	22	2	58	<1	<1
	2003	0.0	6.4	0.4	0.6	1	$<1^3, \le 5^4$	≤50	1246	114	2	0	9	<1	0
	2004	0.0	19.6	0.8	0.8	1	, ,		6538	2395	23	0	37	<1	0
	2005	0.0	106.4	1.3	3.2				7620	3171	146	5	42	2	<1
Conductivity, uS/cm	2002	24.2	44.6	34.2	4.7										
	2003	24.2	45.3	34.6	5.6										
	2004	21.3	46.9	34.2	7.0										
	2005	24.2	41.7	32.2	5.3										
				10.0											
Dissolved Oxygen, mg/L	2002	5.4	14.2	10.0	2.5				3278		0			0	
	2003	5.4	14.3	10.5	2.8	≥5.0			8434		0			0	
	2004	5.0	13.2	10.0	2.4	4			8447		0			0	
	2005	5.9	13.6	9.9	2.4				7961		0			0	
pH, Units										FWAL	DW	REC	FWAL	DW	REC
,	2002	4.2	4.8	4.4	0.2				2474	2474	2474	2474	100	100	100
	2003	4.2	4.7	4.4	0.1	6.5-9.0	6.5-8.5	6.5-9.5	4186	4186	4186	4186	100	100	100
	2004	4.2	4.7	4.4	0.1	1			8447	8447	8447	8447	100	100	100
	2005	4.1	4.7	4.4	0.1	1			7961	7961	7961	7961	100	100	100
¹ FWAL: Freshwater Aqua	tic Life; D	W: Drink	king Water	r; REC: Re	creationa	l Uses.					ı		ı	1	
² Upper permissible limit f	or salmon	and trout	(Alabaste	r and Lloy	d. 1982).	CCME DW g	uideline deem	ed to be inapp	propriate.						
Maximum Acceptable Co															
⁴ Aesthetic Objective. 5N ⁵ The number of hourly re-									0704 771			C	1	1	

⁵ The number of hourly readings possible in each of the years 2002, 2003 and 2005 is 8760. For 2004 the number is 8784. The number recorded in the table refers to the actual number of approved measurements.

4.3.3.1 Temperature

Figure 4.3-5. Water temperature from August 2002 through November 2005 for the Shelburne River using <u>hourly values</u>. Gaps in the plot indicate missing data.

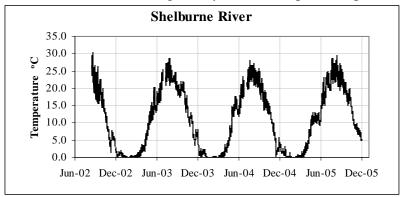


Figure 4.3-6. Water temperature from August 2002 through November 2005 for the Shelburne River using <u>daily mean values</u>. Gaps in the plot indicate missing data.

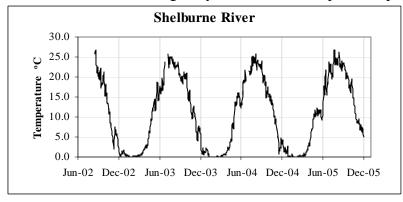


Figure 4.3-7. Air and water temperature from August 2002 through November 2005 for the Shelburne River using monthly mean values. Gaps in the plot indicate missing data.

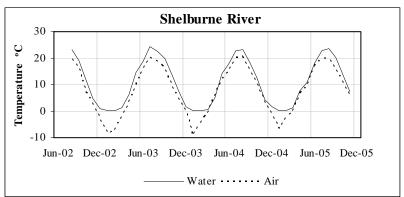


Table 4.3-2. Mean monthly water temperature for Shelburne River during 2002-2005 based on mean daily data.

Month	Year	Mean		Maximum	SD
			°C		
August	2002	23.3	20.3	26.8	2.2
September	2002	19.2	15.4	22.2	1.7
October	2002	11.8	5.9	18.1	3.5
November	2002	4.7	2.1	7.6	1.6
December	2002	0.9	0.2	2.2	0.5
January	2003	0.2	0.1	0.8	0.2
February	2003	0.2	0.1	0.5	0.1
March	2003	1.3	0.3	3.0	0.8
April	2003	6.1	2.2	12.2	3.1
May	2003	14.4	11.4	18.7	2.2
June	2003	18.7	15.9	23.9	2.5
July	2003	24.2	22.1	25.8	1.0
August	2003	22.4	20.4	24.6	1.1
September	2003	19.8	18.4	21.2	0.8
October	2003	13.7	9.6	19.5	2.7
November	2003	7.3	4.0	12.1	2.4
December	2003	1.6	0.4	5.7	1.1
January	2004	0.1	-0.1	1.5	0.4
February	2004	0.0	-0.2	0.2	0.1
March	2004	0.7	0.0	2.1	0.5
April	2004	5.0	1.8	9.7	2.5
May	2004	14.1	11.9	16.0	1.3

Table 4.3-2, continued

Month	Year	Mean		Maximum	SD
			°C		
June	2004	17.7	13.0	21.8	2.7
July	2004	23.0	20.5	25.1	1.5
August	2004	23.3	21.8	25.8	0.9
September	2004	18.2	14.9	22.9	2.1
October	2004	12.7	8.2	15.8	2.2
November	2004	4.3	0.6	9.5	2.4
December	2004	1.6	-0.1	4.1	1.1
January	2005	0.1	-0.1	0.7	0.2
February	2005	0.2	0.0	0.4	0.1
March	2005	1.3	0.2	3.4	1.0
April	2005	7.8	2.7	11.6	2.9
May	2005	10.9	9.3	12.2	0.8
June	2005	18.5	12.1	23.8	3.0
July	2005	22.9	19.6	26.8	2.1
August	2005	23.5	21.5	26.3	1.2
September	2005	20.1	16.8	23.6	2.0
October	2005	13.9	8.6	19.5	3.6
November	2005	7.4	5.0	9.4	1.2

Table 4.3-3. Mean seasonal water temperature for Shelburne River during 2002-2005 based on mean daily data.

 $Winter = \{Dec, Jan, Feb\}, Spring = \{Mar, Apr, May\}$

Summer = {Jun, Jul, Aug}, Fall = {Sept, Oct, Nov}

Season	Year	Mean	Minimum	Maximum	SD
			°C		
Summer	2002	23.3	20.3	26.8	2.2
Fall	2002	11.9	2.1	22.2	6.4
Winter	2003	0.5	0.1	2.2	0.5
Spring	2003	7.3	0.3	18.7	5.9
Summer	2003	21.7	15.9	25.8	2.8
Fall	2003	13.6	4.0	21.2	5.5
Winter	2004	0.6	-0.2	5.7	1.0
Spring	2004	6.6	0.0	16.0	5.9
Summer	2004	21.6	13.0	25.8	3.0
Fall	2004	11.8	0.6	22.9	6.1
Winter	2005	0.6	-0.1	4.1	1.0
Spring	2005	6.6	0.2	12.2	4.4
Summer	2005	21.7	12.1	26.8	3.1
Fall	2005	13.9	5.0	23.6	5.7

Table 4.3-4. Mean annual water temperature for Shelburne River during 2002-2005 based on mean daily data.

Year	Mean	Minimum	Maximum	SD
		°C		
2002	10.8	0.2	26.8	8.3
2003	10.5	0.1	25.8	8.8
2004	9.7	-0.2	25.8	8.8
2005	11.6	-0.1	26.8	8.8

4.3.3.2 Turbidity

Figure 4.3-8. Turbidity levels from August 2002 through November 2005 for the Shelburne River based on <u>hourly values</u>. Gaps in the plot indicate missing data.

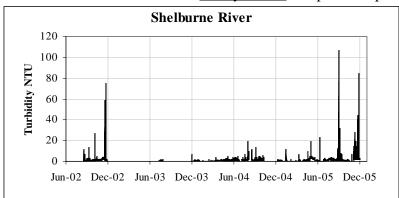


Figure 4.3-9. Turbidity levels from August 2002 through November 2005 for the Shelburne River based on <u>daily mean values</u>. Gaps in the plot indicate missing data.

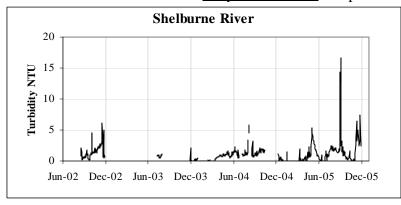


Figure 4.3-10. Turbidity levels and stream stage from August 2002 through November 2005 for the Shelburne River based on monthly mean values. Gaps in the plot indicate missing data.

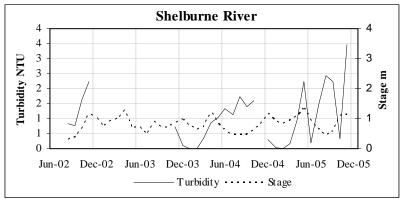


Table 4.3-5. Mean monthly turbidity for Shelburne River during 2002-2005 based on mean daily data.

Month	Year	Mean	Minimum	Maximum	SD
			NTU		
August	2002	0.8	0.1	2.1	0.6
September	2002	0.8	0.1	1.8	0.4
October	2002	1.6	1.1	4.6	0.6
November	2002	2.2	0.6	6.2	1.3
December	2002				
January	2003				
February	2003				
March	2003				
April	2003				
May	2003				
June	2003				
July	2003	0.8	0.5	1.2	0.2
August	2003				
September	2003				
October	2003				
November	2003	0.7	0.0	2.1	1.2
December	2003	0.1	0.0	0.5	0.2
January	2004	0.0	0.0	0.1	0.0
February	2004	0.0	0.0	0.1	0.0
March	2004	0.4	0.0	0.9	0.3
April	2004	0.9	0.7	1.1	0.1
May	2004	1.0	0.5	1.6	0.3
June	2004	1.3	0.5	2.3	0.5

Table 4.3-5, continued

Month	Year	Mean	Minimum	Maximum	SD
			NTU		
July	2004	1.1	0.8	1.8	0.3
August	2004	1.7	0.7	5.9	1.5
September	2004	1.4	0.8	2.1	0.4
October	2004	1.6	1.3	1.9	0.2
November	2004				
December	2004	0.3	0.0	1.1	0.3
January	2005	0.0	0.0	1.4	0.3
February	2005	0.0	0.0	0.1	0.0
March	2005	0.2	0.0	1.9	0.4
April	2005	0.9	0.0	3.9	0.9
May	2005	2.2	0.6	5.4	1.3
June	2005	0.2	0.0	1.3	0.4
July	2005	1.5	0.0	2.4	0.7
August	2005	2.4	1.2	14.4	2.7
September	2005	2.2	0.3	16.7	3.6
October	2005	0.3	0.0	1.6	0.4
November	2005	3.5	0.0	7.5	1.7

Table 4.3-6. Mean seasonal turbidity for Shelburne River during 2002-2005 based on mean daily data.

Winter = {Dec, Jan, Feb}, Spring = {Mar, Apr, May} Summer = {Jun, Jul, Aug}, Fall = {Sept, Oct, Nov}

Season	Year	Mean	Minimum	Maximum	SD	
			NTU			
Summer	2002	0.8	0.1	2.1	0.6	
Fall	2002	1.5	0.1	6.2	1.0	
Winter	2003					
Spring	2003					
Summer	2003	0.8	0.5	1.2	0.2	
Fall	2003	0.7	0.0	2.1	1.2	
Winter	2004	0.0	0.0	0.5	0.1	
Spring	2004	0.8	0.0	1.6	0.4	
Summer	2004	1.4	0.5	5.9	0.9	
Fall	2004	1.5	0.8	2.1	0.3	
Winter	2005	0.1	0.0	1.4	0.3	
Spring	2005	1.1	0.0	5.4	1.3	
Summer	2005	1.4	0.0	14.4	1.9	
Fall	2005	2.0	0.0	16.7	2.6	

Table 4.3-7. Mean annual turbidity for Shelburne River during 2002-2005 based on mean daily data.

<u> </u>				
Year	Mean	Minimum	Maximum	SD
		NTU		
2002	1.4	0.1	6.2	1.0
2003	0.4	0.0	2.1	0.4
2004	0.8	0.0	5.9	0.7
2005	1.2	0.0	16.7	1.9

4.3.3.3 Conductivity

Figure 4.3-11. Conductivity from August 2002 through November 2005 for the Shelburne River based on <u>hourly values</u>. Gaps in the plot indicate missing data.



Figure 4.3-12. Conductivity from August 2002 through November 2005 for the Shelburne River based on <u>daily mean values</u>. Gaps in the plot indicate missing data.

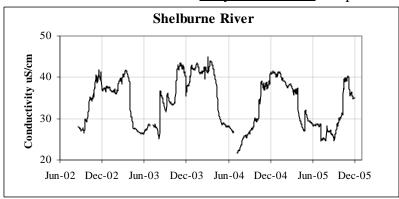


Figure 4.3-13. Conductivity and stream stage from August 2002 through November 2005 for the Shelburne River based on <u>monthly mean values</u>. Gaps in the plot indicate missing data.

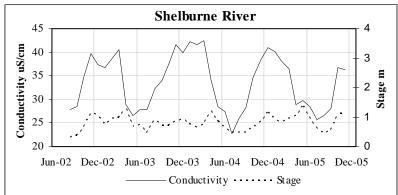


Table 4.3-8. Mean monthly conductivity for Shelburne River during 2002-2005 based on mean daily data.

Month	Year	Mean	Minimum	Maximum	SD
			uS/cm		
August	2002	27.8	27.0	28.0	0.3
September	2002	28.4	26.6	31.0	1.3
October	2002	34.8	31.4	37.7	1.5
November	2002	39.6	37.1	41.8	1.1
December	2002	37.3	36.5	37.9	0.3
January	2003	36.7	36.0	37.6	0.4
February	2003	38.6	36.2	40.2	1.2
March	2003	40.5	35.8	41.8	1.3
April	2003	28.8	27.2	33.2	1.7
May	2003	26.6	26.4	27.3	0.2
June	2003	27.7	26.6	28.7	0.6
July	2003	27.8	26.2	28.7	0.6
August	2003	32.3	25.1	36.8	3.7
September	2003	33.9	31.6	36.2	1.2
October	2003	37.7	33.2	43.0	4.0
November	2003	41.7	35.5	43.5	2.0
December	2003	39.8	36.4	43.0	2.1
January	2004	42.2	40.9	43.5	0.8
February	2004	41.6	39.6	42.6	0.6
March	2004	42.5	40.6	44.8	1.1
April	2004	34.2	29.2	40.6	4.1
May	2004	28.5	28.0	28.9	0.3
June	2004	27.4	26.6	28.3	0.6

Table 4.3-8, continued

Month	Year	Mean	Minimum	Maximum	SD
			uS/cm		
July	2004	22.8	21.6	25.1	1.0
August	2004	25.9	25.3	26.8	0.5
September	2004	28.3	26.3	30.1	1.1
October	2004	34.6	29.5	39.0	3.8
November	2004	38.4	36.9	41.2	1.2
December	2004	40.9	40.0	41.6	0.4
January	2005	40.2	38.8	41.3	0.9
February	2005	38.1	37.5	38.8	0.3
March	2005	36.4	31.1	37.7	1.4
April	2005	29.0	27.0	32.1	1.5
May	2005	29.7	28.6	31.7	0.9
June	2005	28.4	28.0	28.8	0.2
July	2005	25.7	24.6	28.6	1.3
August	2005	26.5	25.1	28.2	0.7
September	2005	28.1	24.7	30.4	1.8
October	2005	36.7	30.5	40.3	3.8
November	2005	36.3	34.7	40.2	1.4

Table 4.3-9. Mean seasonal conductivity for Shelburne River during 2002-2005 based on mean daily data.

Winter = {Dec, Jan, Feb}, Spring = {Mar, Apr, May} Summer = {Jun, Jul, Aug}, Fall = {Sept, Oct, Nov}

Season	Year	Average	Minimum	Maximum	SD
			uS/cm		
Summer	2002	27.8	27.0	28.0	0.3
Fall	2002	34.3	26.6	41.8	4.8
Winter	2003	37.5	36.0	40.2	1.1
Spring	2003	32.0	26.4	41.8	6.3
Summer	2003	29.6	25.1	36.8	3.3
Fall	2003	37.8	31.6	43.5	4.1
Winter	2004	41.2	36.4	43.5	1.7
Spring	2004	35.1	28.0	44.8	6.3
Summer	2004	25.3	21.6	28.3	2.0
Fall	2004	33.7	26.3	41.2	4.8
Winter	2005	39.8	37.5	41.6	1.3
Spring	2005	31.7	27.0	37.7	3.6
Summer	2005	26.9	24.6	28.8	1.4
Fall	2005	33.7	24.7	40.3	4.7

Table 4.3-10. Mean annual conductivity for Shelburne River during 2002-2005 based on mean daily data.

Year	Average	Minimum	Maximum	SD
		uS/cm		
2002	34.2	26.6	41.8	4.7
2003	34.6	25.1	43.5	5.6
2004	34.2	21.6	44.8	7.0
2005	32.2	24.6	41.3	5.3

4.3.3.4 Dissolved Oxygen

Figure 4.3-14 Dissolved oxygen concentration from August 2002 through November 2005 for the Shelburne River based on <u>hourly values</u>. Gaps in the plot indicate missing data.

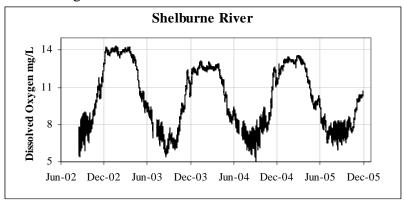


Figure 4.3-15 Dissolved oxygen concentration from August 2002 through November 2005 for the Shelburne River based on <u>daily mean values</u>. Gaps in the plot indicate missing data.

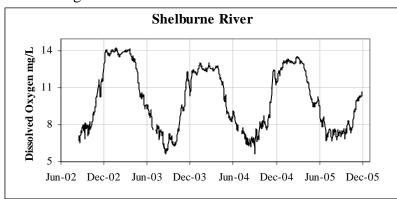


Figure 4.3-16 Dissolved oxygen concentration and stream stage from August 2002 through November 2005 for the Shelburne River based on monthly mean values. Gaps in the plot indicate missing data.

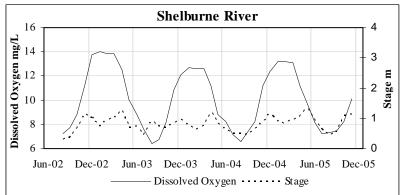


Table 4.3-11. Mean monthly dissolved oxygen for Shelburne River during 2002-2005 based on mean daily data.

Month	Year	Mean	Minimum	Maximum	SD
August	2002	7.2	6.6	8.0	0.4
September	2002	7.7	6.9	8.2	0.3
October	2002	8.8	7.6	10.4	0.8
November	2002	11.3	10.3	12.9	0.8
December	2002	13.8	12.9	14.1	0.3
January	2003	14.0	13.7	14.2	0.1
February	2003	13.8	13.5	14.1	0.2
March	2003	13.9	13.2	14.2	0.3
April	2003	12.5	10.6	13.6	0.9
May	2003	10.0	9.3	10.6	0.4
June	2003	8.8	7.6	9.6	0.6
July	2003	7.5	6.8	8.0	0.3
August	2003	6.4	5.7	7.4	0.6
September	2003	6.7	6.3	7.3	0.3
October	2003	8.2	6.5	9.6	1.0
November	2003	10.9	9.1	12.3	1.0
December	2003	12.1	10.6	12.5	0.5
January	2004	12.7	12.3	13.1	0.2
February	2004	12.6	12.3	13.0	0.2
March	2004	12.6	12.4	12.8	0.1
April	2004	11.2	9.9	12.4	0.7
May	2004	8.8	8.3	9.9	0.4

Table 4.3-11, continued

Month	Year	Mean	Minimum	Maximum	SD
			mg/L		
June	2004	8.3	7.5	9.1	0.5
July	2004	7.2	6.4	7.8	0.4
August	2004	6.6	5.7	7.1	0.3
September	2004	7.4	6.2	8.2	0.6
October	2004	8.2	7.6	8.8	0.4
November	2004	11.2	8.6	12.5	1.2
December	2004	12.3	11.4	13.2	0.5
January	2005	13.2	13.0	13.4	0.1
February	2005	13.2	12.9	13.5	0.2
March	2005	13.1	12.5	13.5	0.3
April	2005	11.2	9.9	12.4	0.8
May	2005	9.8	9.5	10.3	0.2
June	2005	8.2	6.7	9.5	0.6
July	2005	7.3	6.7	7.7	0.3
August	2005	7.3	6.8	7.7	0.2
September	2005	7.5	6.9	8.3	0.3
October	2005	8.2	7.4	9.3	0.6
November	2005	10.1	9.3	10.7	0.3

Table 4.3-12. Mean seasonal dissolved oxygen for Shelburne River during 2002-2005 based on mean daily data.

Winter = {Dec, Jan, Feb}, Spring = {Mar, Apr, May}

Summer = {Jun, Jul, Aug}, Fall = {Sept, Oct, Nov}

Season	Year	Mean	Minimum	Maximum	SD
			mg/L		
Summer	2002	7.2	6.6	8.0	0.4
Fall	2002	9.3	6.9	12.9	1.6
Winter	2003	13.9	12.9	14.2	0.2
Spring	2003	12.1	9.3	14.2	1.7
Summer	2003	7.5	5.7	9.6	1.1
Fall	2003	8.6	6.3	12.3	1.9
Winter	2004	12.5	10.6	13.1	0.4
Spring	2004	10.9	8.3	12.8	1.7
Summer	2004	7.2	5.7	9.1	0.8
Fall	2004	8.9	6.2	12.5	1.8
Winter	2005	12.9	11.4	13.5	0.5
Spring	2005	11.3	9.5	13.5	1.5
Summer	2005	7.6	6.7	9.5	0.6
Fall	2005	8.6	6.9	10.7	1.2

Table 4.3-13. Mean annual dissolved oxygen for Shelburne River during 2002-2005 based on mean daily data.

Year	Mean	Minimum		SD
		mg L ⁻¹		
2002	10.0	6.6	14.1	2.5
2003	10.5	5.7	14.2	2.8
2004	10.0	5.7	13.2	2.4
2005	9.9	6.7	13.5	2.4

4.3.3.5 pH

Figure 4.3-17. pH from August 2002 through November 2005 for the Shelburne River based on <u>hourly values</u>. Gaps in the plot indicate missing data.

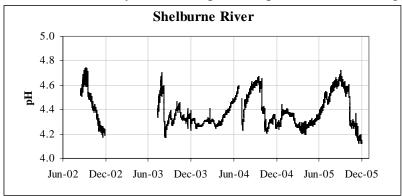


Figure 4.3-18. pH from August 2002 through November 2005 for the Shelburne River based on <u>daily mean values</u>. Gaps in the plot indicate missing data.

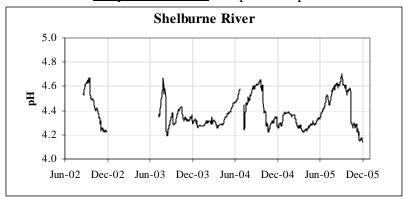


Figure 4.3-19. pH and stream stage from August 2002 through November 2005 for the Shelburne River based on <u>monthly mean values</u>. Gaps in the plot indicate missing data.

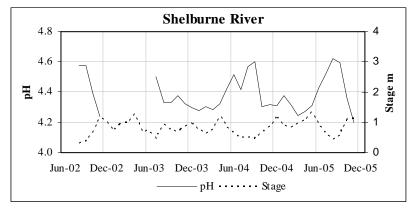


Table 4.3-14. Mean monthly pH for Shelburne River during 2002-2005 based on mean daily data.

Month	Year	Mean	Minimum	Maximum	SD
August	2002	4.58	4.53	4.63	0.04
September	2002	4.58	4.49	4.67	0.07
October	2002	4.39	4.29	4.48	0.05
November	2002	4.24	4.22	4.28	0.02
December	2002				
January	2003				
February	2003				
March	2003				
April	2003				
May	2003				
June	2003				
July	2003	4.50	4.35	4.67	0.10
August	2003	4.33	4.19	4.58	0.12
September	2003	4.33	4.28	4.40	0.04
October	2003	4.38	4.31	4.43	0.04
November	2003	4.33	4.29	4.36	0.02
December	2003	4.30	4.26	4.33	0.02
January	2004	4.28	4.27	4.31	0.01
February	2004	4.31	4.29	4.35	0.01
March	2004	4.29	4.26	4.32	0.02
April	2004	4.33	4.28	4.38	0.03
May	2004	4.42	4.37	4.47	0.03

Table 4.3-14, continued

Month	Year	Mean	Minimum	Maximum	SD
June	2004	4.52	4.47	4.58	0.04
July	2004	4.42	4.24	4.51	0.08
August	2004	4.57	4.49	4.62	0.03
September	2004	4.60	4.41	4.65	0.05
October	2004	4.31	4.22	4.40	0.07
November	2004	4.32	4.26	4.35	0.03
December	2004	4.31	4.26	4.39	0.04
January	2005	4.38	4.35	4.39	0.01
February	2005	4.32	4.26	4.36	0.04
March	2005	4.25	4.22	4.28	0.02
April	2005	4.27	4.23	4.31	0.02
May	2005	4.31	4.28	4.34	0.02
June	2005	4.43	4.35	4.53	0.06
July	2005	4.52	4.45	4.60	0.05
August	2005	4.62	4.57	4.69	0.03
September	2005	4.60	4.53	4.70	0.04
October	2005	4.37	4.26	4.59	0.13
November	2005	4.20	4.14	4.29	0.04

Table 4.3-15. Mean seasonal pH for Shelburne River during 2002-2005 based on mean daily data.

 $Winter = \{Dec, Jan, Feb\}, Spring = \{Mar, Apr, May\}$

Summer = {Jun, Jul, Aug}, Fall = {Sept, Oct, Nov}

Season	Year	Mean	Minimum	Maximum	SD
Summer	2002	4.58	4.53	4.63	0.04
Fall	2002	4.41	4.22	4.67	0.15
Winter	2003				
Spring	2003				
Summer	2003	4.40	4.19	4.67	0.14
Fall	2003	4.35	4.28	4.43	0.04
Winter	2004	4.29	4.26	4.35	0.02
Spring	2004	4.34	4.26	4.47	0.07
Summer	2004	4.51	4.24	4.62	0.09
Fall	2004	4.41	4.22	4.65	0.15
Winter	2005	4.34	4.26	4.39	0.04
Spring	2005	4.28	4.22	4.34	0.03
Summer	2005	4.53	4.35	4.69	0.09
Fall	2005	4.39	4.14	4.70	0.18

Table 4.3-16. Mean annual pH for Shelburne River during 2002-2005 based on mean daily data.

<u> </u>	Year]	Mean M	inimum Ma	aximum	SD
-					
2	2002	4.43	4.22	4.67	0.15
2	2003	4.36	4.19	4.67	0.09
2	2004	4.39	4.22	4.65	0.12
2	2005	4.39	4.14	4.70	0.15

4.3.4 Overview of Shelburne River Water Quality

Water quality data for the period of record are typical of a predominantly forested watershed (75% of total area) with a significant surface water component (18% of total area) of which a potion exists as peat bog. Bedrock geology is a combination of areas of igneous and metamorphic bedrock.

Variation in water temperature follows a seasonal pattern very similar to that of air temperature, which is to be expected of a shallow flowing river. Seasonal minimum and maximum mean water temperatures ranged from lows of 0.5 and 0.6°C for Winter (December to February) and highs of 21.6 and 23.3°C for Summer (June to August).

Turbidity values are relatively low for most of the period of record with only 1 percent of all hourly measurements (2002-2005) greater than 5 NTU. There were three notable periods of increased turbidity readings. Multiple rain events over a 2-week period in November 2002 amounting to a total of 190 mm of rain resulted in turbidity levels raising to 75 NTU. A 4-day 53.6mm rainfall event in August 2005 resulted in turbidity levels reaching 106 NTU, remaining elevated throughout the 4-day event. In November of the same year, a 3-day event totalling 65 mm yielded maximum turbidity concentrations of 84 NTU.

On an annual basis, only minor fluctuations in conductivity levels were observed to occur. The variation appears to be repetitive and the trend somewhat resembles that of stage in that peak periods occur during the Winter season and lows during late-Spring and Summer months. Hourly conductivity readings during 2002-05 ranged from 21.6 to 44.8 uS/cm.

Dissolved oxygen concentrations show a pattern that is essentially the inverse of temperature, which is also typical of shallow surface waters with low biological productivity since the solubility of oxygen in water decreases as water temperature rises. Minimum concentrations occurred during the warmer months and at no time dipped below 5.7 mg/L.

The poorly drained and bog littered Shelburne River watershed produces runoff that is acidic and highly stained (colour 104-226 TCU, see Appendix III) which is typical of many areas in the Province. Hourly pH ranged from 4.2 to 4.7. Between 2002 and 2005, annual mean pH remained steady at 4.4. Given the more acidic aquatic environment, acceptable ranges of values published by the CCME for Drinking Water use and the Protection of Aquatic Life of 6.5 to 8.5 and 6.5 to 9.0, respectively, were exceeded for the entire monitoring period.

CHIGNECTO BAY River Herbert KELLEY RIVER Chignechs Game Sancturary NOVA SCOTIA

4.4 KELLEY RIVER 2005

Figure 4.4-1. Location of Kelley River.

BAY OF FUNDY

4.4.1 Background Information

4.4.1.1 Location of Station

The geographic location, in longitude and latitude, of the Automated Network Station on the Kelley River is 64°27'05" W, 45° 35'10"N and is denoted in Figure 4.4-1 by a star.

4.4.1.2 Geographical Setting

The Kelley River is located in Cumberland County, within the Chignecto Game Sanctuary. It flows northeast where it meets the River Herbert, which has its outlet in Cumberland Basin. The drainage area of the Kelley River is 64.5 km².

4.4.1.3 Geology and Geomorphology

The bedrock geology of the Kelley River watershed is dominated by sandstones, conglomerates and shales of varying grain size. The surficial geology is made up of a thin mantle of sandy till. The main river channel is characterized by glaciofluvial sands and gravels.

The dominant landform in the watershed is the undulating to moderately rolling plain with a thin mantle of stony till and peat bogs.

4.4.1.4 Forest Cover and Land Use

The vegetation in the Kelley River watershed includes barrens, wetlands, bogs, and conifer-dominated forests. The upper reaches of the Kelley River watershed contain salmon spawning areas, sensitive wetlands and patches of old growth forest. 80% of the land within the watershed is forested, 12% is covered by wetlands and or water, and about 1 % characterized as under urban land use.

Figure 4.4-2. Kelley River looking upstream (left) and downstream (right) from the monitoring station.

4.4.1.5 Climate

Normal (1971-2000) precipitation in the Kelley River watershed, as recorded at the Environment Canada Climate Station at Nappan is 1175 mm, comprised of 916 mm of

rainfall and 265 cm of snowfall. The mean annual temperature is 5.8°C with a mean monthly high of 18.4 °C in July and a low of –7.3 °C in January.

4.4.1.6 Wildlife and Habitat

The Kelley River watershed provides habitat for many species of plants and animals, including moose, which was recently declared endangered on mainland Nova Scotia by the provincial government and black bear.

Figure 4.4-3. Kelley River monitoring station.

4.4.1.7 Human Settlement and Industrial Development

Centuries before the arrival of Europeans, the First Nations People travelled through and encamped in the area, which is now Cumberland County, following the annual migration of great herds of caribou into the province. The Cobequid Mountain Pass was used by native people and early European explorers. Industrial activities n the watershed include forestry, tourism and coal-mining. There are many kilometres of undeveloped riverbanks and coastlines which are popular with birders and hikers. The Chignecto Game Sanctuary, which the Kelley River flows through, was created in 1937, in part to protect native moose populations.

4.4.2 Land Use and Forest Type Summary Information

4.4.2.1 Land Use

Land Type	Area km²	% of Total Area
Agriculture	0.04	0.1
Barren	0.1	0.2
Clearcut	4.3	6.7
Forested	51.8	80.3
Urban	0.8	1.2
Wetland/Water	<u>7.4</u>	<u>11.5</u>
Total	64.5	100.0

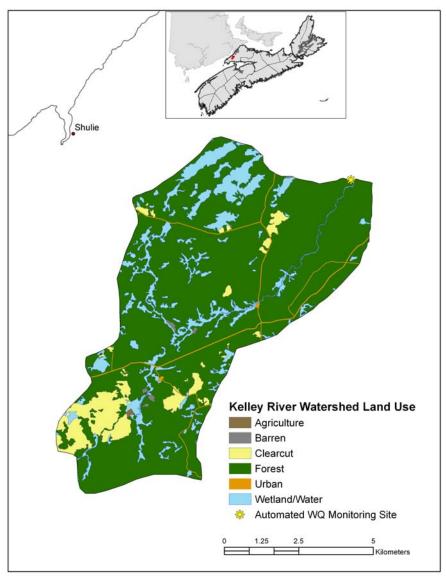


Figure 4.4-4. Land use mapping of Kelley River Watershed.

4.4.2.2 Forest Type

Forest Type	Area	% of
	km^2	Total Area
Forested	51.8	100.0
Hardwood	9.8	18.9
Mixed Wood	4.3	8.3
Softwood	31.5	60.8
Unknown	6.2	12.0

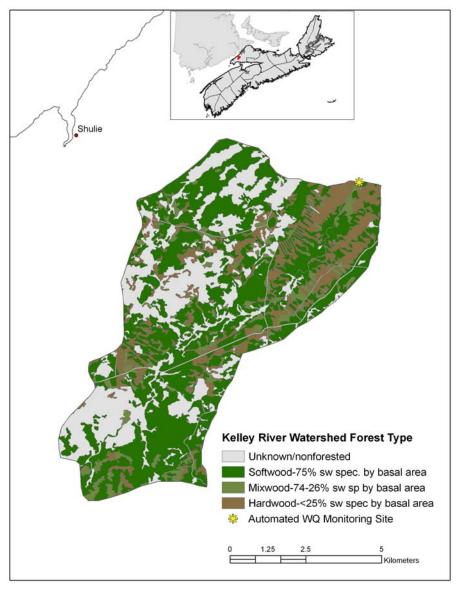


Figure 4.4-5. Forest type mapping of Kelley River Watershed.

4.4.3 Water Quality Summary Information

Table 4.4-1. Hourly statistics of minimum, maximum, mean, and standard deviation and exceedences as per established water quality guidelines for hourly real time data for Kelley River for 2005.

Parameter	Year	Min	Max	Mean	SD	C	WQ Guidelii	ne	Readings ⁵		# of		Ez	xceedences	
						FWAL ¹	DW ¹	REC ¹		Ex	ceedences		As %	of Readin	gs
Temperature, °C	2005	-0.3	28.1	9.6	7.8	20-21 ²			6910		441			6	
Turbidity, NTU										$DW < 1^3$	DW ≤5 ⁴	REC	$DW < 1^3$	DW ≤5 ⁴	REC
	2005	0.0	161.3	1.9	5.3		$<1^3, \le 5^4$	≤50	5293	3091	256	5	58	5	<1
Conductivity, uS/cm	2005	16.4	43.7	25.6	5.6										
Dissolved Oxygen, mg/L	2005	5.8	15.2	10.8	2.5	≥5.0			7026		0			0	
TT TT '										EXXIAI	DW	DEC	TXX/AT	DW	DEC
pH, Units										FWAL	DW	REC	FWAL	DW	REC
	2005	4.4	6.9	5.5	0.6	6.5-9.0	6.5-8.5	6.5-9.5	6910	6568	6568	6568	95	95	95

FWAL: Freshwater Aquatic Life; DW: Drinking Water; REC: Recreational Uses.

Upper permissible limit for salmon and trout (Alabaster and Lloyd. 1982). CCME DW guideline deemed to be inappropriate.

Maximum Acceptable Concentration for water entering a distribution system.

Aesthetic Objective. 5NTU may be permitted if demonstrated that the disinfection method is not compromised.

The number of hourly readings possible in each of the years 2002, 2003 and 2005 is 8760. For 2004 the number is 8784. The number recorded in the table refers to the actual number of approved measurements.

4.4.3.1 Temperature

Figure 4.4-6. Water temperature from December 2004 through December 2005 for the Kelley River using <u>hourly values</u>. Gaps in the plot indicate missing data.

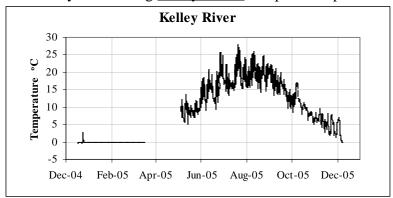


Figure 4.4-7. Water temperature from December 2004 through December 2005 for the Kelley River using <u>daily mean values</u>. Gaps in the plot indicate missing data.

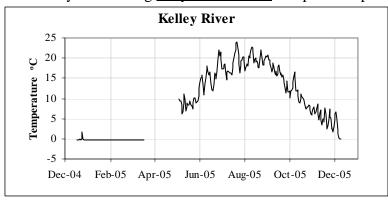


Figure 4.4-8. Air and water temperature from December 2004 through December 2005 for the Kelley River using monthly mean values. Gaps in the plot indicate missing data.

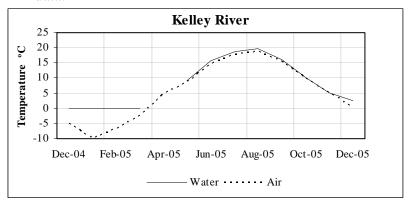


Table 4.4-2. Mean monthly water temperature for Kelley River from December 2004 through December 2005 based on mean daily data.

through Becomeer 2003 bused on mean dury duta.							
Month	Year	Mean		Maximum	SD		
			°C				
December	2004	-0.1	-0.3	1.8	0.5		
January	2005	-0.2	-0.3	-0.2	0.0		
February	2005	-0.2	-0.3	-0.2	0.0		
March	2005	-0.2	-0.3	-0.2	0.0		
April	2005						
May	2005	9.0	6.2	12.6	1.4		
June	2005	15.9	10.9	22.1	3.1		
July	2005	18.7	14.7	24.1	2.4		
August	2005	19.7	16.8	22.8	1.6		
September	2005	16.0	11.5	20.7	2.5		
October	2005	10.2	6.0	16.5	2.8		
November	2005	5.2	1.8	8.7	1.9		
December	2005	2.6	-0.2	6.6	2.9		

Table 4.4-3. Mean seasonal water temperature for Kelley River for 2005 based on mean daily data.

Winter = {Dec, Jan, Feb}, Spring = {Mar, Apr, May} Summer = {Jun, Jul, Aug}, Fall = {Sept, Oct, Nov}

Season	Year	Mean	Minimum	Maximum	SD
			°C		
Winter	2005	-0.2	-0.3	1.8	0.2
Spring	2005	5.5	-0.3	12.6	4.7
Summer	2005	18.1	10.9	24.1	2.9
Fall	2005	10.5	1.8	20.7	5.0

Table 4.4-4 Mean annual water temperature for Kelley River for 2005 based on mean daily data.

Year	Mean	Minimum	Maximum	SD
		°C		
2005	9.7	-0.3	24.1	7.7

Missing value implies insufficient data to compute the statistic.

4.4.3.2 Turbidity

Figure 4.4-9. Turbidity levels from December 2004 through December 2005 for the Kelley River using <u>hourly values</u>. Gaps in the plot indicate missing data.

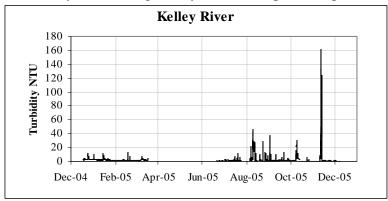


Figure 4.4-10. Turbidity levels from December 2004 through December 2005 for the Kelley River using <u>daily mean values</u>. Gaps in the plot indicate missing data.

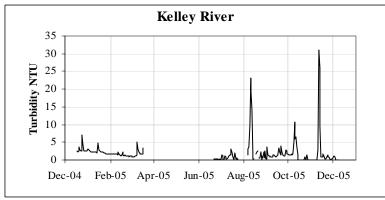


Figure 4.4-11. Turbidity levels and stream stage from December 2004 through December 2005 for the Kelley River using monthly mean values. Gaps in the plot indicate missing data.

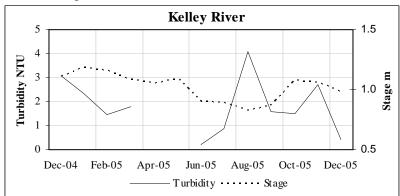


Table 4.4-5. Mean monthly turbidity for Kelley River from December 2004 through December 2005 based on mean daily data.

Month	Year	Mean	Minimum	Maximum	SD
			NTU		
December	2004	3.1	2.2	7.0	1.2
January	2005	2.3	1.6	4.7	0.7
February	2005	1.5	1.0	2.3	0.4
March	2005	1.8	0.9	5.0	1.1
April	2005				
May	2005				
June	2005	0.2	0.1	0.4	0.1
July	2005	0.9	0.1	3.2	0.8
August	2005	4.1	0.1	23.1	6.4
September	2005	1.6	0.2	3.9	0.9
October	2005	1.5	0.0	10.9	2.5
November	2005	2.7	0.0	31.0	7.3
December	2005	0.4	0.0	1.2	0.5

Table 4.4-6. Mean seasonal turbidity for Kelley River for 2005 based on mean daily data.

Winter = {Dec, Jan, Feb}, Spring = {Mar, Apr, May}

 $Summer = \{Jun, Jul, Aug\}, Fall = \{Sept, Oct, Nov\}$

Season	Year	Mean	Minimum	Maximum	SD
			NTU		
Winter	2005	2.1	1.0	7.0	0.9
Spring	2005	1.8	0.9	5.0	1.1
Summer	2005	2.1	0.1	23.1	4.4
Fall	2005	1.9	0.0	31.0	4.4

Table 4.4-7. Mean annual turbidity for Kelley River for 2005 based on mean daily data.

Year	Mean	Minimum	Maximum	SD		
		NTU				
2005	1.9	0.0	31.0	3.6		

Missing value implies insufficient data to compute the statistic.

4.4.3.3 Conductivity

Figure 4.4-12. Conductivity from December 2004 through December 2005 for the Kelley River using <u>hourly values</u>. Gaps in the plot indicate missing data.

Figure 4.4-13. Conductivity from December 2004 through December 2005 for the Kelley River using <u>daily mean values</u>. Gaps in the plot indicate missing data.

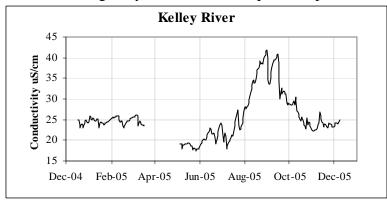


Figure 4.4-14. Conductivity and stream stage from December 2004 through December 2005 for the Kelley River using monthly mean values. Gaps in the plot indicate missing data.

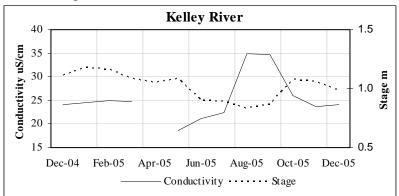


Table 4.4-8. Mean monthly conductivity for Kelley River from December 2004 through December 2005 based on mean daily data.

Month	Year	Mean	Minimum	Maximum	SD
			uS/cm		
December	2004	24.1	23.0	25.0	0.6
January	2005	24.6	23.0	25.9	0.6
February	2005	24.9	23.0	26.0	0.8
March	2005	24.8	23.4	26.2	1.1
April	2005				
May	2005	18.6	17.5	19.4	0.6
June	2005	21.2	18.6	24.3	1.6
July	2005	22.4	18.0	27.3	2.6
August	2005	34.9	27.6	41.8	4.6
September	2005	34.7	28.6	41.0	4.1
October	2005	26.0	22.5	30.5	2.4
November	2005	23.6	22.2	26.8	1.1
December	2005	24.2	23.4	25.0	0.5

Table 4.4-9. Mean seasonal conductivity for Kelley River for 2005 based on mean daily data.

Winter = {Dec, Jan, Feb}, Spring = {Mar, Apr, May} Summer = {Jun, Jul, Aug}, Fall = {Sept, Oct, Nov}

Season	Year	Mean	Minimum	Maximum	SD		
			uS/cm				
Winter	2005	24.6	23.0	26.0	0.8		
Spring	2005	20.9	17.5	26.2	3.2		
Summer	2005	26.2	18.0	41.8	7.0		
Fall	2005	28.1	22.2	41.0	5.5		

Table 4.4-10. Mean annual conductivity for Kelley River for 2005 based on mean daily data.

Year	Mean	Minimum Maximum	SD			
		uS/cm				
2005	25.6	17.5 41.8	5.6			

Missing value implies insufficient data to compute the statistic.

4.4.3.4 Dissolved Oxygen

Figure 4.4-15. Dissolved oxygen concentration from December 2004 through December 2005 for the Kelley River using <u>hourly values</u>. Gaps in the plot indicate missing data.

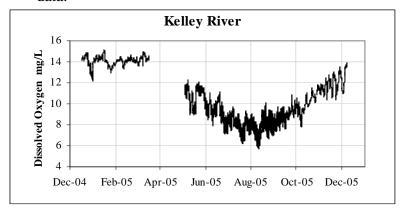


Figure 4.4-16. Dissolved oxygen concentration from December 2004 through December 2005 for the Kelley River using <u>daily mean values</u>. Gaps in the plot indicate missing data.

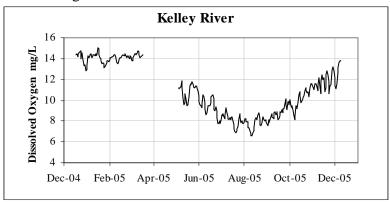


Figure 4.4-17. Dissolved oxygen and stream stage from December 2004 through December 2005 for the Kelley River using monthly mean values. Gaps in the plot indicate missing data.

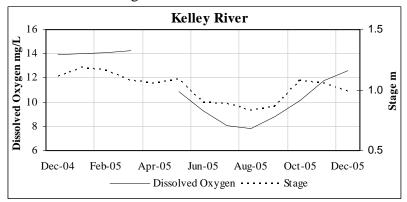


Table 4.4-11. Mean monthly dissolved oxygen for Kelley River from December 2004 through December 2005 based on mean daily data.

Month Year Mean Minimum Maximum SD ----- mg/L -------------2004 12.9 December 14.0 14.7 0.6 January 2005 14.0 13.1 15.1 0.5 February 2005 14.1 13.6 14.4 0.2 March 14.3 13.8 14.8 2005 0.2 April 2005 0.7 May 10.9 9.5 11.9 2005 June 9.3 7.8 10.5 0.8 2005 July 2005 8.1 6.9 9.3 0.6 August 2005 7.8 6.6 8.8 0.6 September 2005 8.8 7.6 10.2 0.6 October 2005 10.1 8.2 11.6 0.9 November 13.2 2005 11.8 10.6 0.7 December 2005 12.6 11.1 13.8 1.1

Table 4.4-12. Mean seasonal dissolved oxygen for Kelley River for 2005 based on mean daily data.

Winter = {Dec, Jan, Feb}, Spring = {Mar, Apr, May}

 $Summer = \{Jun, Jul, Aug\}, Fall = \{Sept, Oct, Nov\}$

Season	Year	Mean	Minimum	Maximum	SD
			mg/L		
Winter	2005	14.1	12.9	15.1	0.4
Spring	2005	12.2	9.5	14.8	1.8
Summer	2005	8.4	6.6	10.5	0.9
Fall	2005	10.2	7.6	13.2	1.4

Table 4.4-13. Mean annual dissolved oxygen for Kelley River for 2005 based on mean daily data.

Year	Mean	Minimum Maximum	SD
		mg/L	
2005	10.8	6.6 15.1	2.4

Missing value implies insufficient data to compute the statistic.

4.4.3.5 pH

Figure 4.4-18. pH from December 2004 through December 2005 for the Kelley River using <u>hourly values</u>. Gaps in the plot indicate missing data.

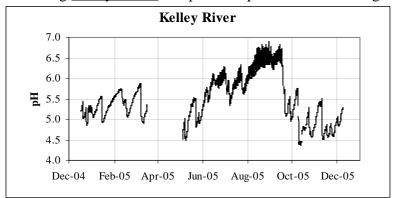


Figure 4.4-19. pH from December 2004 through December 2005 for the Kelley River using <u>daily mean values</u>. Gaps in the plot indicate missing data.

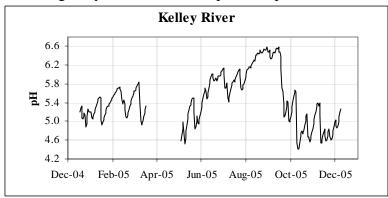


Figure 4.4-20. pH and stream stage from December 2004 through December 2005 for the Kelley River using monthly mean values. Gaps in the plot indicate missing data.

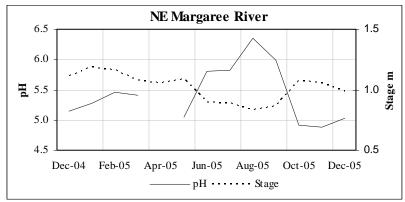


Table 4.4-14. Mean monthly pH for Kelley River from December 2004 through December 2005 based on mean daily data.

Month	Year	Mean	Minimum	Maximum	SD
December	2004	5.15	4.89	5.33	0.12
January	2005	5.27	4.93	5.53	0.18
February	2005	5.47	5.08	5.73	0.20
March	2005	5.41	4.93	5.84	0.34
April	2005				
May	2005	5.04	4.53	5.50	0.28
June	2005	5.81	5.30	6.11	0.22
July	2005	5.83	5.41	6.13	0.18
August	2005	6.36	5.98	6.58	0.17
September	2005	5.98	4.99	6.59	0.61
October	2005	4.91	4.41	5.67	0.38
November	2005	4.88	4.54	5.40	0.28
December	2005	5.03	4.86	5.26	0.14

Table 4.4-15. Mean seasonal pH for Kelley River for 2005 based on mean daily data. Winter = {Dec, Jan, Feb}, Spring = {Mar, Apr, May}

Summer = {Jun, Jul, Aug}, Fall = {Sept, Oct, Nov}

Season	Year	Mean	Minimum	Maximum	SD
Winter	2005	5.32	4.89	5.73	0.22
Spring	2005	5.18	4.53	5.84	0.35
Summer	2005	6.00	5.30	6.58	0.32
Fall	2005	5.25	4.41	6.59	0.68

Table 4.4-16. Mean annual pH for Kelley River for 2005 based on mean daily data.

Year	Mean	Minimum N	Maximum	SD
2005	5.49	4.41	6.59	0.57

Missing value implies insufficient data to compute the statistic.

4.4.4 Overview of Kelley River Water Quality

Water quality data for the period of record are fairly typical of a predominantly forested watershed (80% of total area) located on sedimentary bedrock.

Variation in water temperature followed a seasonal pattern very similar to that of air temperature, which is to be expected of a shallow flowing river. For 2005 (the only year for which data were gathered), seasonal minimum and maximum water temperatures were -0.2°C for Winter (December to February) and 18.1°C for Summer (June to August). Based on hourly records, 6 percent of the 6910 temperature measurements exceeded the permissible temperature limit of 20-21 °C for salmon and trout, all of which occurring in the months of July and August.

Turbidity values were relatively low for most of the period of record, although there were three main events during which concentrations were markedly higher. Between August 6 and 13, hourly concentrations reached 46 NTU, remaining in a range of 15-46 NTU for roughly 72 hours. However, there was no supporting rainfall or rise in river stage to justify the increase. There were two other major events during 2005. Between October 7 and 13, roughly 122mm of rainfall fell over a 5-day period, resulting in hourly turbidity levels peaking at 30 NTU and remaining between 10 and 30 NTU for 13 hours. From November 10 to 14, 38mm of rainfall resulted in the most dramatic rise in turbidity levels. During this period, a maximum reading of 160 NTU was recorded, while sustaining a range of 35-160 NTU for 5 hours. Overall, less than 1 percent of hourly turbidity measurements were greater than 50 NTU, the CCME limit for recreational use.

Water conductivity of Kelley River is characteristic of dilute waters ranging from 18 to 42 uS/cm. Peak measurements occurred during the low flow summer period which is indicative of the dominant influence of groundwater seepage. The annual mean for 2005 was 25.6 uS/cm.

Dissolved oxygen concentrations followed a trend that is essentially the inverse of temperature which is also typical of shallow surface waters with low biological productivity since the solubility of oxygen in water decreases as water temperature rises. At no time during 2005 did hourly concentrations dip below 6.6 mg/L, remaining well above a suggested threshold for the protection of aquatic life of 5.0 mg/L.

pH varied throughout 2005 from an hourly low of 4.4 to a high of 6.6. The Kelley River watershed contains massive wetland areas (11.5 % of total area) which are known sources of organic acids that play a role in lowering pH. These acids are typically released into downstream receiving water during periods of high flow. pH was observed to increase as stage decreased, indicating a less dominant effect of acidic wetland runoff. During periods of low flow, higher pH groundwater is suspected as playing a more significant role. The more acidic conditions of Kelley River saw an annual mean pH of 5.5 and over 95 percent of the 6910 hourly readings taken during 2005 falling outside the acceptable

ranges of values published by the CCME for Drinking Water use and the Protection of Aquatic Life of 6.5 to 8.5 and 6.5 to 9.0, respectively.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Information generated by this monitoring program clearly demonstrates the variation in water quality that exists for natural or near natural surface water resources in Nova Scotia. As such, the water quality network will be able to provide valuable information on the future trends in the parameters measured. The data generated by the network should also be of value when comparing trends in other provinces for these parameters.

In an ideal world, regular analysis of other physical and chemical parameters would provide valuable information and possibly greater insight into ecosystem and hydrologic changes that may occur due to human activities, climate change, etc.. However, the present suite of analysis, the fact that they are automated and therefore relatively inexpensive do provide information that can be used to make statements about some environmental changes and can be used for State of Environment Reporting, for example.

Factors playing major roles in the quality of runoff for the three river and single lake systems are considered to be geology, vegetative cover and presence of wetland areas.

Table 5.0-1 consolidates annual mean data for each of the four monitoring sites to aid in the comparison of water quality between watersheds. However, caution must be applied when doing so since mean values are based on incomplete datasets.

All stations experienced trends in water temperature which for the most part mimicked that of air temperature. Although maximum and minimum water temperatures did not match air temperature extremes, river waters more quickly responded to changes in air temperature than was the case for Pockwock Lake. The response time lag observed for Pockwock Lake can be explained by the fact that the time required to heat the body of water down to the depth at which the temperature sensor was located (5 m) was much longer compared to the much shallower river systems.

With the exception of Pockwock Lake, an aquatic environment where the effects of surface runoff are significantly dampened by dilution effects, all of the flowing systems experienced episodes of increased water turbidity in varying degrees during and following some precipitation events. Eroded soil particles and stream bed-load were considered to be the main contributors. For Pockwock Lake, it is suggested that algal production is the main cause of summertime losses in water transparency, a water body which rarely saw turbidity measurements exceed 5 NTU. The North East Margaree River experienced several episodes in which hourly turbidity levels for short periods of time remained in the range of 10 to 100 NTU. The Shelburne River experienced fewer events of this nature, but still recorded turbidity peaks between 70 and 106 NTU.

Water conductivity in Pockwock Lake, Shelburne River and Kelley River is reflective of dilute waters with mean annual ranges of 38 - 40, 32 - 35, and 26 (2005 only) uS/cm, respectively. Conductivity levels were observed to remain fairly constant on a daily basis throughout the period of record with only minor shifts outside annual mean ranges.

North East Margaree River mean annual conductivity was much higher, ranging from 161 – 172 uS/cm which indicates a much greater dissolved solids content. With the exception of Pockwock Lake, the effects of precipitation and snowmelt runoff containing low concentrations of dissolved solids were observed for the river systems through pronounced inverse trends with water stage. During higher flow periods, conductivity levels were lower compared to low flow periods when the effects of groundwater seepage, assumed to contain higher concentrations of dissolved solids, played a more significant role.

All four systems remained well-oxygenated throughout the monitoring period with daily mean concentrations ranging from 5.7 - 15.5 mg/L. Trends illustrated patterns which were essentially the inverse of water temperature explainable by the fact that the solubility of oxygen in water decreases with the rise in temperature. The levels of dissolved oxygen were also characteristic of low biological productivity.

Table 5.0-1. A summary of water quality annual mean values for the four monitoring stations for the parameters measured between 2002 and 2005

	Temperature	Turbidity	Conductivity	Dissolved	pН
	°C	NTU	uS/cm	Oxygen	
				mg/L	
				•	
Pockwock Lake					
2002	18.1	-	39.4	8.4	5.4
2003	10.8	0.3	37.7	10.8	5.3
2004	9.9	1.2	39.9	10.8	5.3
2005	16.4	1.0	37.8	8.8	5.1
NE Margaree River					
2002	9.9	1.0	161.6	11.0	7.2
2003	8.7	1.8	165.4	11.3	7.1
2004	6.4	1.6	171.9	12.2	7.2
2005	8.1	0.9	161.2	11.3	7.2
Shelburne River					
2002	10.8	1.4	34.2	10.0	4.4
2003	10.5	0.4	34.6	10.5	4.4
2004	9.7	0.8	34.2	10.0	4.4
2005	11.6	1.2	32.2	9.9	4.4
Kelley River					
2005	9.7	1.9	25.6	10.8	5.5

Acidity of surface waters in the four areas represented by the watersheds being monitored is a reflection of the surficial geology, vegetative landscape and likely the quality of precipitation. The lower pH of Shelburne River (pH 4.4) is characteristic of poorly

buffered and organic acids associated with highly coloured water. A major source of these acids and colour is sphagnum bogs, which are assumed to constitute a significant portion of the 48 km² of wetland/water area identified for this watershed. Pockwock Lake and Kelley River watersheds produced a slightly less acidic runoff with annual mean pH ranging from 5.1 to 5.4 and 5.5 (2005 only), respectively. Water colour is less prominent in both watersheds indicating a reduced influence of wetland areas as compared to runoff in the Shelburne River watershed. A reduced soil buffering capacity and the effects of acid precipitation are in evidence for these two watersheds. The North East Margaree River, on the other hand, appears to be well-buffered with an annual mean pH ranging from 7.1 to 7.2. Only 8 percent of this watershed is made up of water/wetland areas.

A critical component that maximizes the effectiveness and allows for more accurate interpretation of the results for any type of monitoring program is data coverage or completeness. Table 5.0-2 describes the completeness of the Network's four hourly datasets by year and by parameter. The table provides ranges of hourly data coverage using results from individual monitoring stations. For example, the range of coverage in 2002 for temperature was 24 to 55 percent, indicating that for one of the four monitoring stations hourly measurements were recorded for 24 percent of all available hours, while another of the four stations saw measurements recorded for 55 percent of those hours. Two of the four stations had percentages falling between these two extremes. It is obvious from the information provided that although a general increase in the percent of hours for which reliable data were collected since 2002 has occurred, there is still room for improvement. The inability of the current program to detect and address equipment malfunctions in a timely manner appears to be the principle cause resulting in data record voids. The most logical approach and recommendation to overcome this inadequacy is to increase the frequency of field visits. During the winter months when access at times is a problem, alternate forms of off-road transportation (i.e. all-terrain vehicle, snowmobile) may be a solution.

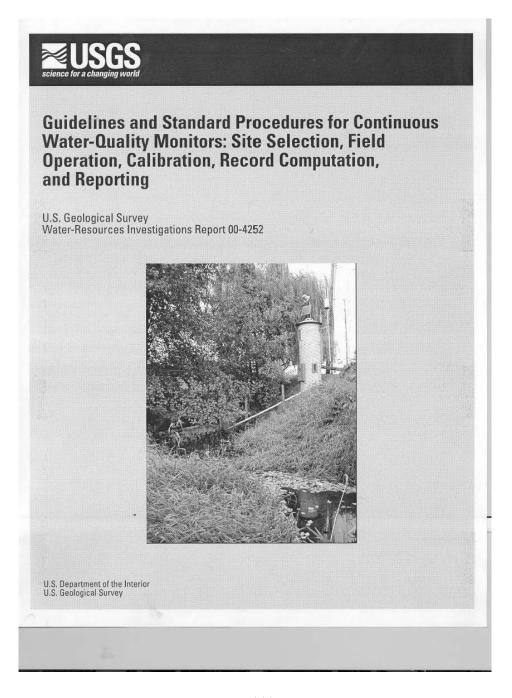
Table 5.0-2. A summary of the ranges of real time hourly data coverage for all stations as a percent of total available hours for each year of operation.

Year	Temperature	Turbidity	Conductivity	Dissolved Oxygen	pН
2002	24 – 55	0 - 27	24 - 50	24 - 55	24 - 55
2003	79 – 96	14 - 61	79 - 96	69 – 96	48 - 90
2004	93 – 96	55 - 87	93 – 96	93 – 96	93 – 96
2005	47 - 92	47 - 87	47 - 92	47 - 92	47 - 92

6.0 REFERENCES

Alabaster, J.S. and Lloyd. 1982. Water Quality Criteria for Freshwater Fish. 2nd Ed.. Butterworth Scientific, London.

Campbell Scientific Canada Corp.. 2005. Hydrolab Advanced Maintenance Workshop Manual.


CCME. 2002. Canadian Council of Ministers of the Environment Canadian Water Quality Guidelines.

Health Canada. 2003. Guideline for Drinking Water Quality.

Wagner. R.J., H.C. Mattraw, G.F. Ritz, and B.A. Smith. 2000. Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Site Selection, Field Operation, Calibration, Record Computation, and Reporting. USGS Report 00-4252.

APPENDIX I – DATA COLLECTION USGS METHODS (WAGNER ET AL. 2000)

Contact Darrell Taylor ((902) 424-2570) or Alan Tattrie ((902) 424-2591) at NSEL for information on how to obtain a complete version of this document.

Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Site Selection, Field Operation, Calibration, Record Computation, and Reporting

By Richard J. Wagner, Harold C. Mattraw, George F. Ritz, and Brett A. Smith

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 00-4252

S10

Reston, Virginia 2000

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Charles G. Groat, Director

The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

For additional information write to:

Copies of this report can be purchased from:

Chief, Office of Water Quality U.S. Geological Survey 412 National Center Reston, VA 20192 U.S. Geological Survey Branch of Information Services Box 25286, Federal Center Denver, CO 80225

CONTENTS

Abstrac	t	
	ction	
	urpose and scope	i
	cknowledgments	- 2
	uality monitoring site operation	-
	fonitor selection	3
	ypes of monitor configuration	-8
	Types of sensors	- 3
	Temperature	- 3
	Specific conductance	i
	Dissolved oxygen	-
	pH	-
	Turbidity	- 6
	Instrument acceptance criteria	
S	ite selection	-
	lacement of sensors in the cross section	(
	ield meter calibration	10
-	Temperature	10
	Specific conductance	10
	Dissolved oxygen	1
	pH	1
	Turbidity	1
A	fonitor operation	1
14		13
	Sensor inspection	13
	Monitor calibration criteria	13
		13
	Field celling of sensors	14
	Field calibration of sensors	
	Temperature sensors	14
	Specific conductance sensors	10
	Dissolved oxygen sensors	1:
	pH sensors	10
	Turbidity sensors	16
	Cross-section measurements	1
	Troubleshooting procedures	1
e constant	Field notes and instrument logs	1
	computations	18
L	Data-processing procedures	18
	Initial data evaluation	18
	Application of corrections and shifts	19
	Fouling	20
	Drift	2
	Evaluation and application of cross-section corrections	2
	Final data evaluation	22
	Maximum allowable limits for reporting continuous data	23
23	Publication criteria	23
P	reparation of the review package	2
	Record checking	
	Station description	24
	Station analysis	24

	Contents of the review package	25
	Documentation	25
	Level of review required	25
Publi	ication	25
	Data reports	
	Data qualification statements	
Arch	iving of records	
	mary	
	ted references	
	endixes	
	Example for calculation of average pH	
2.	그렇게 하면 하는데 하는데 하는데 하면 하면 하면 하는데 하다 아니를 모두 반들이 하면 하면 하는데	
	description for the Columbia River at Beaver Army Terminal near Quincy, Oregon	30
3.		
2.	for temperature on the Columbia River at Beaver Army Terminal near Quincy, Oregon	3.4
4.		27
5.		
6.		
7.		
8.		
9.		
10.		
11,		
12.		
13.		
14.		
15.	Example of a review graph for an individual water-quality property	53
Figu	res	
1	Flow-through water-quality monitoring station	3
2.		
3.		
	그 맛있다면 하면 하면 하는데 가는데 가게 하면 하는데 하면 하는데 하면 하는데 하면 하는데	
4,		
5.	Generalized graph of corrections to continuous temperature record	21
Table	es	
1.	Principal advantages and disadvantages of flow-through monitoring systems	4
2.		
3.	(B. 1992) - 특성 보이는 1991 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1993 - 199	
4.	그 프로스 트레이스	
	water-quality monitoring systems	8
5	Hydraulic conditions of the ideal gage site	
6.		
7.		
8.		
9.	Rating continuous water-quality records	
20	ranning commissions make spaning becomes a commission of the commi	*********

IV Contents

HYDROLAB ADVANCED MAINTENANCE WORKSHOP MANUAL (CAMPBELL SCIENTIFIC CANADA CORP. 2005)

Contact Darrell Taylor ((902) 424-2570) or Alan Tattrie ((902) 424-2591) at NSEL for information on how to obtain a complete version of this document.

REVISION: MAY 2005

Water Quality Instrumentation Training, Introduction

Introduction	2
Background	1
Hydrolab The Company	1
Available Parameters	1
Specification Table	7
Service & Calibration Table	8
Communication	1
ProComm Plus & Your PC	1
Dataloggers & Your Sonde	4
Updating Firmware & Sensor Software	7
Internal Data Logging	10
Downloading Log Files	14
Hydrolab's Hydras 3LT Instructions	17
Deployment & Sampling Methods	1
Deployment Methods	1
Shore Deployments	1
Bridge Deployment	3
Under Ice Deployment	4
Grab & Profile Sampling	6
Advanced Maintenance & Calibration	1
Regular Sonde & Circulator Maintenance	1
Probe Replacement	8
Temperature	9
PH	12
Redox.	18
Specific Conductance	21
Dissolved Oxygen	24

Turbidity	32
Mmonium	38
Nitrate	41
Chloride	44
Depth and Vented Level	48
Water Quality Instrumentation Training, Introduction	
Everything You Need to Know Table	50
Maintenance Flow Chart	52
Quality Control	
Field Methods	1
Laboratory Methods	2
Advanced Data Management	1
Internal Logging	2
Downloading Data Files	3
Importing Data Files into MS Excel	4
Importing Data into Templates	5
Reference	1

APPENDIX II – DATA QUALITY ASSURANCE/QUALITY CONTROL

II.1 DATA COLLECTION AND DATA HANDLING

The Network employs Hydrolab™ models DS4, DS4a, DS5, and DS5x datasondes equipped with temperature, pH, conductivity, dissolved oxygen, and turbidity sensors (Appendix V). Readings are taken at hourly intervals beginning at 0000 hours and ending at 2300 hours for the day of record then stored on a datalogger.

The three stream sites employ Sutron dataloggers that log hydrolab parameters through an SDI port. Every three hours, the data is transmitted via GOES satellite to Wallops Command and Data Acquisition (CDA) in Wallops Island, Virginia. From here the data becomes part of the National Environmental Satellite, Data, and Information Service (NESDIS) maintained by the National Oceanic and Atmospheric Administration (NOAA). NESDIS is queried by CMC in Dorval (Water Survey of Canada) and the data is pushed to the all regional New Leaf server as telemetry data. A batch file was set up in September 2004 that pushes the telemetry data for the three NS sites to a federal ftp site outside the firewall. This transfer occurs on a daily basis and can be queried by the province of Nova Scotia. This telemetry data is used to gauge sensor performance and to identify anomalous readings and to validate telemetry datalogger data (it is also used by the technologist to assess his next site visit).

Every 4 to 8 weeks depending on site access and other factors, the Sutron dataloggers are manually downloaded by the Water Survey of Canada onto field computers or PCMCIA ramcard in Sutron logger format (.LG1). Raw data logger files are transferred from field laptops or PCMCIA ramcard to a secure database in Fredericton, Nova Scotia or Newfoundland. This raw data contained in the .LG1 files are used for data correction and archiving as they form the most complete record.

The Pockwock Lake station employs a Campbell Scientific CR510 datalogger with a landline connection to a dedicated terminal in the NSEL Central Region office. Automated downloads occur on a daily basis.

II.2 NORMALIZATION OF DATA RECORDS

The first step in the normalization procedure is one which rates the accuracy of each segment of continuous field data based on one of four accuracy classifications (Table II-1) ranging from poor to excellent. A specific rating is assigned to each data segment according to the magnitude of the difference between Hydrolab sensor readings taken at the beginning and end of the data segment and the respective reading at the time of sensor field calibration. A calibrated (using commercially available liquid standards, see Appendix V) portable Quanta P hand held water quality meter is used for field calibration. If the magnitude of the difference exceeds a maximum allowable limit (Table II-2), the entire data segment for that parameter, or portion thereof, is rejected and deleted from the permanent data record. A degree of professional judgement is applied in

the entire process. The timeframe covered by each data segment varies depending on the timing of field visits. At the present time, a strict scheduling routine does not exist for the purpose of downloading stored data from the Sutron data logger and equipment maintenance. Since the start-up of the program, time between site visits ranged from 2 to 7 months. Winter conditions play a major role in determining the frequency of visits possible between late-November and early-May.

The next step in the normalization procedure is the examination of the individual data series for anomalous sensor readings due to occurrences such as sensor failure, data logger malfunction and sensor fouling by submerged debris. If any suspect readings are detected, the series of readings leading up to and immediately following those in question, as well as readings for other network parameters are considered when deciding if the suspect data points should be omitted from the data set. A record of all data omissions is kept.

Other gaps in a data series are the direct result of routine servicing in which the datasondes are inactive for up to a day.

Table II-1. Water Quality Data Rating System (adopted from USGS WRI Report 00-4252).

Parameter	Rating			
	Excellent	Good	Fair	Poor
Water	≤+/- 0.20 °C	> +/- 0.2 to 0.5 °C	> +/- 0.5 to 0.8	>+/- 0.8 °C
Temperature			°C	
Specific	The greater of ≤	The greater of >	The greater of >	The greater of >
Conductance	$+/-3\%$ or $\leq +/-5$	+/- 3 to 10 % or	+/- 10 to 15 %	+/- 15 % or 25
	uS/cm	> +/- 5 to 15	or $> +/- 15$ to	uS/cm
		uS/cm	25 uS/cm	
Dissolved Oxygen	\leq +/- 0.3 mg/L	> +/- 0.3 to 0.5	> +/- 0.5 to 0.8	> +/- 0.8 mg/L
		mg/L	mg/L	
pН	≤ +/- 0.2 units	> +/- 0.2 to 0.5 units	> +/- 0.5 to 0.8 units	> +/- 0.8 units
Turbidity	The greater of ≤ +/- 5% or ≤ +/- 2 NTUs	The greater of > +/- 5 to 10% or > +/- 2 to 5 NTUs	The greater of > +/- 10 to 15% or > +/- 5 to 8 NTUs	The greater of > +/- 15% or > +/- 8 NTUs

Explanation of symbols: \leq , less than or equal to; +/-, plus or minus value shown; ${}^{\circ}$ C, degree Celsius; >, greater than; %, percent; mg/L, milligrams per litre; pH unit, standard pH unit.

TableII-2. Data Rejection Criteria (adapted from USGS 2000). Maximum allowable limits for continuous water-quality monitoring sensors (+/-, plus or minus value shown; °C, degree Celsius; mg/L, milligrams per litre; pH unit, standard pH unit).

Measured physical property	Maximum allowable limits for water-quality
	Sensor values
Temperature	+/- 2.0 °C
Specific conductance	+/- 30 percent
Dissolved oxygen	The greater of +/- 2.0 mg/L or 20 percent
pH	+/- 2 pH units
Turbidity	The greater of 15 NTUs or 20 percent
Turbiaity	The greater of 15 NTUs or 30 percent

The final step in the normalization procedure is a linear adjustment of the data segment. Microsoft Excel software is used for this function. Annual Data Quality Analysis reports are generated by NSEL for each monitoring site that provide a detailed listing of these data verification procedures. These reports can be found in Section II.4 of this Appendix.

II.3 DATA OMISSION

As earlier pointed out in this section, data are rejected due to probe and/or logger malfunction, probe interference due to submerged debris, and exceedence of established maximum allowable limits. For this report, individual data sets provided by NSEL have undergone further scrutiny by CWRS staff prior to carrying out statistical analysis and based on professional judgement, some additional data were deleted.

Data listed in Table II-3 were deleted from their respective data sets because they could not be explained by either environmental influences (precipitation event occurring within a 48-hour period leading up to the measurement) or supported by complimentary changes for any other recorded parameter (within a 12-hour window of the measurement). For turbidity, readings before and after the measurement in question were typically <2 NTU and more often 0 NTU. For conductivity, recorded before and after measurements were steady at 50-80 uS/cm above those omitted.

TableII-3. List of data deleted from NSEL dataset based on professional judgement.

1401011	1-3. List of data			*	
	Date	<u>Time</u>	<u>Parameter</u>	Reading	Comment
	argaree River				
2002	Dec 30	1000	Turbidity	4.5	0 NTU 6 hr before/after
		1700	Turbidity	7.0	0 NTU 6 hr before/after
		1800	Conductivity	75.6	165 uS/cm 6 hr before
		1900	Conductivity	77.1	
		2000	Conductivity	88.0	172 uS/cm @ 2100
2005	Feb 19	0100	Conductivity	72	125 uS/cm @ 6 hr before 135 uS/cm @ 0200
Shelbu	ırne River				
2002	Aug 21	0300	Turbidity	18.7	Mean for Aug 21 = 1.0 NTU
2002	1145 21	0500	"	18.7	No precipitation
		2200	"	43.7	All other parameters steady
		2300	"	32.7	7 III office parameters steady
2004	May 10	1300	Turbidity	10.9	<1NTU 6 hr before/after
2005	July 26	0600	Turbidity	21.2	No precipitation
		0700	"	17.6	All other parameters steady
		0800	"	84.4	
	July 31	0600	Turbidity	65.9	No precipitation
		0700	"	13.8	All other parameters steady
	Aug 4	1100	Turbidity	32.9	<2NTU 6 hr before/after
	Aug 26	1300	Turbidity	9.9	No precipitation
		1400	"	23.6	All other parameters steady
	Aug 28	0900	Turbidity	16.2	<2.5NTU 6 hr before/after
		1100	"	46.1	
		1600	"	17.2	
	Sept 4	0100	Turbidity	60.3	<1.0NTU 6 hr before/after
		0700	"	148.0	All other parameters steady
		0800	"	14.1	
	Sept 9	1500	Turbidity	12.7	<1.5NTU 6 hr before/after
					All other parameters steady
	Sept 10	0100	Turbidity	11.6	<3NTU 6 hr before/after
		1000	"	29.8	No precipitation
		1200	"	16.9	All other parameters steady
		2200	"	32.7	•
	Sept 11	0200	Turbidity	9.4	<1.5NTU 6 hr
	_	1000	"	13.6	before/during/after
		1500	"	20.2	All other parameters steady
		2000	"	28.3	

TableII-3 continued,

	Date	Time	Parameter	Reading	Comment
	Sept 12	1200	Turbidity	62.7	<2.0NTU 6 hr before/after All other parameters steady
	Nov 14	1800 2100	Turbidity	50.3 11.9	<3.0NTU 6 hr before/after All other parameters steady
Kelley 2005	River Oct 24	0100	Turbidity	85.5	<5.0NTU 6 hr before/0NTU after All other parameters steady

For the NE Margaree River, stage measurements remained constant for the entire period January 9 and March 10, 2004. This occurrence is strange given that a fluctuation in stage would have been expected due to the fact that a total of 181.3mm of precipitation fell during this period. Historical EC records do not specify whether it fell as rain or snow. Air temperature throughout this period suggests it fell mainly as snow. It is highly unlikely that a balance existed between runoff and recharge such that water levels in the NE Margaree River remained unchanged. Further investigation is recommended and if necessary, records altered. The impact on the quality of water quality data and its interpretation is considered negligible.

II.4 ANNUAL REPORTING

Operational reports are prepared on an annual basis for each monitoring station that provide detailed summaries of station descriptions and data quality analyses. Station description reports include such information as geographical location, watershed area, period of hydrometric and water quality records and water quality parameters measured. Data quality analysis reporting contains information on equipment, watercourse characteristics, instrument calibration, and data management.

Station description and data quality analysis reports contained in this section cover the complete period of operation, specifically:

Pockwock Lake 2002-2005 North East Margaree River 2002-2005 Shelburne River 2002-2005 Kelley River 2005

MONITORING STATION DESCRIPTION

Pockwock Lake - 2002

Year: 2002

LOCATION: Latitude 44⁰ 46' 56" N Longitude 63⁰ 50' 43" W

GROSS DRAINAGE AREA: 54.0 km²

WATER QUALITY RECORD LENGTH: 1 year

WATER QUALITY PEROID OF RECORD: 2002

Water Quality measurement

Period of record	Water Quality Parameters	Operation schedule	Gauge type
2002	Temperature, Turbidity, pH, Dissolved Oxygen and Specific Conductance	Continuous	Recorder

WATER QUALITY REAL-TIME DATA AVAILABLE: NO

Water Quality monitoring equipment is located in a five inch perforated PVC pipe insitu to lake via shore deployment method. The location has not changed since installation in 2002. Water Quality data is recorded hourly and stored by Environment Canada Sutron Logger. The data is downloaded manually on maintenance visit.

NOTE: All data management decisions were based on Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Site Selection, Field Operation, Calibration, Record Computation, and Reporting. U.S Geological Survey. Water-Resources Investigations Report 00-4252.

Excluding:

-cross-section measurement and adjustments p. 17 and 22.

Also, modification to following two tables:

<u>Data Rejection Criteria.</u> Maximum allowable limits for continuous water-quality monitoring sensors. [+/-, plus or minus value shown; °C, degree Celsius; mg/L,

milligram per liter; pH unit, standard pH unit]

Measured physical	Maximum allowable limits for water-quality
property	Sensor values
Temperature	+/- 2.0 °C
Specific conductance	+/- 30 percent
Dissolved oxygen	The greater of +/- 2.0 mg/L or 20 percent
pH	+/- 2 pH units
Turbidity	The greater of 15 NTUs or 30 percent

<u>Data Quality Rating.</u> Rating continuous water-quality records

[\leq , less than or equal to; +/-, plus or minus value shown; $^{\circ}$ C, degree Celsius; >,

greater than; %, percent; mg/L, milligram per liter; pH unit, standard pH unit]

Measured physical	Excellent	Good	Fair	Poor
property				
Water temperature	\leq +/- 0.20 °C	> +/- 0.2 to 0.5 °C	> +/- 0.5 to 0.8 °C	>+/- 0.8 °C
Specific conductance	The greater of \leq +/- 3% or \leq +/- 5 uS/cm	The greater of > +/- 3 to 10 % or > +/- 5 to 15 uS/cm	The greater of > +/- 10 to 15 % or > +/- 15 to 25 uS/cm	The greater of > +/- 15 % or 25 uS/cm
Dissolved oxygen	\leq +/- 0.3 mg/L	> +/- 0.3 to 0.5 mg/L	> +/- 0.5 to 0.8 mg/L	> +/- 0.8 mg/L
рН	≤ +/- 0.2 units	> +/- 0.2 to 0.5 units	> +/- 0.5 to 0.8 units	> +/- 0.8 units
Turbidity	The greater of \leq +/- 5% or \leq +/- 2 NTUs	The greater of > +/- 5 to 10% or > +/- 2 to 5 NTUs	The greater of > +/- 10 to 15% or > +/- 5 to 8 NTUs	The greater of > +/- 15% or > +/- 8 NTUs

MONITORING STATION DESCRIPTION

Pockwock Lake - 2003

Year: 2003

LOCATION: Latitude 44⁰ 46' 56" N Longitude 63⁰ 50' 43" W

GROSS DRAINAGE AREA: 54.0 km²

WATER QUALITY RECORD LENGTH: 2 years

WATER QUALITY PEROID OF RECORD: 2002 - 2003

Water Quality measurement

Period of record	Water Quality Parameters	Operation schedule	Gauge type
2002 – 2003	Temperature, Turbidity, pH, Dissolved Oxygen and Specific Conductance	Continuous	Recorder

WATER QUALITY REAL-TIME DATA AVAILABLE: NO

Water Quality monitoring equipment is located in a five inch perforated PVC pipe insitu to lake via shore deployment method. The location has not changed since installation in 2002. Water Quality data is recorded hourly and stored by Environment Canada Sutron Logger. The data is downloaded manually on maintenance visit.

NOTE: All data management decisions were based on Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Site Selection, Field Operation, Calibration, Record Computation, and Reporting. U.S Geological Survey. Water-Resources Investigations Report 00-4252.

Excluding:

-cross-section measurement and adjustments p. 17 and 22.

Also, modification to following two tables:

<u>Data Rejection Criteria.</u> Maximum allowable limits for continuous water-quality monitoring sensors. [+/-, plus or minus value shown; °C, degree Celsius; mg/L,

milligram per liter; pH unit, standard pH unit]

Measured physical	Maximum allowable limits for water-quality
property	Sensor values
Temperature	+/- 2.0 °C
Specific conductance	+/- 30 percent
Dissolved oxygen	The greater of +/- 2.0 mg/L or 20 percent
pH	+/- 2 pH units
Turbidity	The greater of 15 NTUs or 30 percent

<u>Data Quality Rating.</u> Rating continuous water-quality records

[\leq , less than or equal to; +/-, plus or minus value shown; $^{\circ}$ C, degree Celsius; >,

greater than; %, percent; mg/L, milligram per liter; pH unit, standard pH unit]

Measured physical	Excellent	Good	Fair	Poor
property				
Water temperature	≤+/- 0.20 °C	> +/- 0.2 to 0.5 °C	> +/- 0.5 to 0.8 °C	>+/- 0.8 °C
Specific conductance	The greater of \leq +/- 3% or \leq +/- 5 uS/cm	The greater of > +/- 3 to 10 % or > +/- 5 to 15 uS/cm	The greater of > +/- 10 to 15 % or > +/- 15 to 25 uS/cm	The greater of > +/- 15 % or 25 uS/cm
Dissolved oxygen	\leq +/- 0.3 mg/L	> +/- 0.3 to 0.5 mg/L	> +/- 0.5 to 0.8 mg/L	> +/- 0.8 mg/L
рН	≤ +/- 0.2 units	> +/- 0.2 to 0.5 units	> +/- 0.5 to 0.8 units	> +/- 0.8 units
Turbidity	The greater of \leq +/- 5% or \leq +/- 2 NTUs	The greater of > +/- 5 to 10% or > +/- 2 to 5 NTUs	The greater of > +/- 10 to 15% or > +/- 5 to 8 NTUs	The greater of > +/- 15% or > +/- 8 NTUs

MONITORING STATION DESCRIPTION

Pockwock Lake - 2004

Year: 2004

LOCATION: Latitude 44⁰ 46' 56" N Longitude 63⁰ 50' 43" W

GROSS DRAINAGE AREA: 54.0 km²

WATER QUALITY RECORD LENGTH: 3 years

WATER QUALITY PEROID OF RECORD: 2002 - 2004

Water Quality measurement

Period of record	Water Quality Parameters	Operation schedule	Gauge type
2002 – 2004	Temperature, Turbidity, pH, Dissolved Oxygen and Specific Conductance	Continuous	Recorder

WATER QUALITY REAL-TIME DATA AVAILABLE: NO

Water Quality monitoring equipment is located in a five inch perforated PVC pipe insitu to lake via shore deployment method. The location has not changed since installation in 2002. Water Quality data is recorded hourly and stored by Environment Canada Sutron Logger. The data is downloaded manually on maintenance visit.

NOTE: All data management decisions were based on Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Site Selection, Field Operation, Calibration, Record Computation, and Reporting. U.S Geological Survey. Water-Resources Investigations Report 00-4252.

Excluding:

-cross-section measurement and adjustments p. 17 and 22.

Also, modification to following two tables:

<u>Data Rejection Criteria.</u> Maximum allowable limits for continuous water-quality monitoring sensors. [+/-, plus or minus value shown; °C, degree Celsius; mg/L,

milligram per liter; pH unit, standard pH unit]

Measured physical	Maximum allowable limits for water-quality
property	Sensor values
Temperature	+/- 2.0 °C
Specific conductance	+/- 30 percent
Dissolved oxygen	The greater of +/- 2.0 mg/L or 20 percent
pH	+/- 2 pH units
Turbidity	The greater of 15 NTUs or 30 percent

<u>Data Quality Rating.</u> Rating continuous water-quality records

[\leq , less than or equal to; +/-, plus or minus value shown; $^{\circ}$ C, degree Celsius; >,

greater than; %, percent; mg/L, milligram per liter; pH unit, standard pH unit]

Measured physical	Excellent	Good	Fair	Poor
property				
Water temperature	\leq +/- 0.20 °C	> +/- 0.2 to 0.5 °C	> +/- 0.5 to 0.8 °C	>+/- 0.8 °C
Specific conductance	The greater of \leq +/- 3% or \leq +/- 5 uS/cm	The greater of > +/- 3 to 10 % or > +/- 5 to 15 uS/cm	The greater of > +/- 10 to 15 % or > +/- 15 to 25 uS/cm	The greater of > +/- 15 % or 25 uS/cm
Dissolved oxygen	\leq +/- 0.3 mg/L	> +/- 0.3 to 0.5 mg/L	> +/- 0.5 to 0.8 mg/L	> +/- 0.8 mg/L
рН	≤ +/- 0.2 units	> +/- 0.2 to 0.5 units	> +/- 0.5 to 0.8 units	> +/- 0.8 units
Turbidity	The greater of \leq +/- 5% or \leq +/- 2 NTUs	The greater of > +/- 5 to 10% or > +/- 2 to 5 NTUs	The greater of > +/- 10 to 15% or > +/- 5 to 8 NTUs	The greater of > +/- 15% or > +/- 8 NTUs

MONITORING STATION DESCRIPTION

Pockwock Lake - 2005

Year: 2005

LOCATION: Latitude 44⁰ 46' 56" N Longitude 63⁰ 50' 43" W

GROSS DRAINAGE AREA: 54.0 km²

WATER QUALITY RECORD LENGTH: 4 years

WATER QUALITY PEROID OF RECORD: 2002 - 2005

Water Quality measurement

Period of record	Water Quality Parameters	Operation schedule	Gauge type
2002 – 2005	Temperature, Turbidity, pH, Dissolved Oxygen and Specific Conductance	Continuous	Recorder

WATER QUALITY REAL-TIME DATA AVAILABLE: YES

Water Quality monitoring equipment is located in a five inch perforated PVC pipe insitu to lake via shore deployment method. The location has not changed since installation in 2002 Water Quality data is recorded hourly and stored in Campbells Scientific CR510 datalogger. The data is downloaded daily via landline connect to logger.

NOTE: All data management decisions were based on Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Site Selection, Field Operation, Calibration, Record Computation, and Reporting. U.S Geological Survey. Water-Resources Investigations Report 00-4252.

Excluding:

-cross-section measurement and adjustments p. 17 and 22.

Also, modification to following two tables:

<u>Data Rejection Criteria.</u> Maximum allowable limits for continuous water-quality monitoring sensors. [+/-, plus or minus value shown; °C, degree Celsius; mg/L,

milligram per liter; pH unit, standard pH unit]

Measured physical	Maximum allowable limits for water-quality
property	Sensor values
Temperature	+/- 2.0 °C
Specific conductance	+/- 30 percent
Dissolved oxygen	The greater of +/- 2.0 mg/L or 20 percent
pH	+/- 2 pH units
Turbidity	The greater of 15 NTUs or 30 percent

<u>Data Quality Rating.</u> Rating continuous water-quality records

 $[\le$, less than or equal to; +/-, plus or minus value shown; ${}^{\circ}C$, degree Celsius; >,

greater than; %, percent; mg/L, milligram per liter; pH unit, standard pH unit]

Measured physical	Excellent	Good	Fair	Poor
property				
Water temperature	≤+/- 0.20 °C	> +/- 0.2 to 0.5 °C	> +/- 0.5 to 0.8 °C	>+/- 0.8 °C
Specific conductance	The greater of \leq +/- 3% or \leq +/- 5 uS/cm	The greater of > +/- 3 to 10 % or > +/- 5 to 15 uS/cm	The greater of > +/- 10 to 15 % or > +/- 15 to 25 uS/cm	The greater of > +/- 15 % or 25 uS/cm
Dissolved oxygen	\leq +/- 0.3 mg/L	> +/- 0.3 to 0.5 mg/L	> +/- 0.5 to 0.8 mg/L	> +/- 0.8 mg/L
рН	≤ +/- 0.2 units	> +/- 0.2 to 0.5 units	> +/- 0.5 to 0.8 units	> +/- 0.8 units
Turbidity	The greater of \leq +/- 5% or \leq +/- 2 NTUs	The greater of > +/- 5 to 10% or > +/- 2 to 5 NTUs	The greater of > +/- 10 to 15% or > +/- 5 to 8 NTUs	The greater of > +/- 15% or > +/- 8 NTUs

MONITORING STATION DESCRIPTION

North East Margaree - 2002

Year: 2002

LOCATION COORDINATES: Latitude 46^o 22' 10" N Longitude 60^o 58' 36" W

GROSS DRAINAGE AREA: 368 km²

HYDROMETRIC RECORD LENGTH: 86 years

HYDROMETRIC PEROID OF RECORD: 1916 - PRESENT

Hydrometric measurement

Period of record	Type	Operation schedule	Gauge type
1916 – 1920	Flow	Continuous	Manual
1921 – 1921	Flow	Seasonal	Manual
1922 – 1927	Flow	Continuous	Manual
1928 – 1928	Flow	Seasonal	Manual
1929 – 1941	Flow	Continuous	Manual
1942 - 2002	Flow	Continuous	Recorder

HYDROMETRIC REAL-TIME DATA AVAILABLE: YES

WATER QUALITY RECORD LENGTH: 1 YEAR

WATER QUALITY PERIOD OF RECORD: 2002

Water Quality measurement

Period of record	Water Quality Parameters	Operation schedule	Gauge type
2002	Temperature, Turbidity, pH, Dissolved Oxygen and Specific Conductance	Continuous	Recorder

WATER QUALITY REAL-TIME DATA AVAILABLE: NO

Water Quality monitoring equipment is located in a five inch perforated white PVC pipe insitu to river via shore deployment method. The location has not changed since

installation in 2002. Water Quality data is recorded hourly and stored by Environment Canada Sutron Logger. The data is downloaded manually on maintenance visit.

NOTE: All data management decisions were based on Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Site Selection, Field Operation, Calibration, Record Computation, and Reporting. U.S Geological Survey. Water-Resources Investigations Report 00-4252.

Excluding:

-cross-section measurement and adjustments p. 17 and 22.

Also, modification to following two tables:

<u>Data Rejection Criteria.</u> Maximum allowable limits for continuous water-quality monitoring sensors. [+/-, plus or minus value shown; °C, degree Celsius; mg/L, milligram per liter; pH unit, standard pH unit]

Measured physical property	Maximum allowable limits for water-quality
	Sensor values
Temperature	+/- 2.0 °C
Specific conductance	+/- 30 percent
Dissolved oxygen	The greater of +/- 2.0 mg/L or 20 percent
pН	+/- 2 pH units
Turbidity	The greater of 15 NTUs or 30 percent

<u>Data Quality Rating.</u> Rating continuous water-quality records

[≤, less than or equal to; +/-, plus or minus value shown; °C, degree Celsius; >, greater than; %, percent; mg/L, milligram per liter; pH unit, standard pH unit]

greater than, 70, percent, hig/L, hinnigram per hter, pri unit, standard pri unit					
Measured physical	Excellent	Good	Fair	Poor	
property					
Water temperature	\leq +/- 0.20 °C	> +/- 0.2 to 0.5 °C	> +/- 0.5 to 0.8 °C	>+/- 0.8 °C	
Specific conductance	The greater of \leq +/-3% or \leq +/-5 uS/cm	The greater of > +/- 3 to 10 % or > +/- 5 to 15 uS/cm	The greater of > +/- 10 to 15 % or > +/- 15 to 25 uS/cm	The greater of > +/- 15 % or 25 uS/cm	
Dissolved oxygen	\leq +/- 0.3 mg/L	> +/- 0.3 to 0.5 mg/L	> +/- 0.5 to 0.8 mg/L	> +/- 0.8 mg/L	
рН	≤ +/- 0.2 units	> +/- 0.2 to 0.5 units	> +/- 0.5 to 0.8 units	>+/- 0.8 units	
Turbidity	The greater of \leq +/-	The greater of $> +/-5$	The greater of $> +/-$	The greater of $> +/-$	
	5% or \leq +/- 2 NTUs	to 10% or $> +/- 2$ to 5	10 to 15% or $> +/-$	15% or > +/- 8	
	370 01 = 17-211103	NTUs	5 to 8 NTUs	NTUs	

MONITORING STATION DESCRIPTION

North East Margaree - 2003

Year: 2003

LOCATION: Latitude 46^o 22' 10" N Longitude 60^o 58' 36" W

GROSS DRAINAGE AREA: 368 km²

HYDROMETRIC RECORD LENGTH: 87 years

HYDROMETRIC PEROID OF RECORD: 1916 – PRESENT

Hydrometric Measurement

Period of record	Type	Operation schedule	Gauge type
1916 – 1920	Flow	Continuous	Manual
1921 – 1921	Flow	Seasonal	Manual
1922 – 1927	Flow	Continuous	Manual
1928 – 1928	Flow	Seasonal	Manual
1929 – 1941	Flow	Continuous	Manual
1942 - 2003	Flow	Continuous	Recorder

HYDROMETRIC REAL-TIME DATA AVAILABLE: YES

WATER QUALITY RECORD LENGTH: 2 YEARS

WATER QUALITY PEROID OF RECORD: 2002 – present

Water Quality Measurement

Period of record	Water Quality Parameters	Operation schedule	Gauge type
2002 – 2003	Temperature, Turbidity, pH, Dissolved Oxygen	Continuous	Recorder
	and Specific Conductance		

WATER QUALITY REAL-TIME DATA AVAILABLE: NO

Water Quality monitoring equipment is located in a five inch perforated white PVC pipe insitu to river via shore deployment method. The location has not changed since

installation in 2002. Water Quality data is recorded hourly and stored by Environment Canada Sutron Logger. The data is downloaded manually on maintenance visit.

NOTE: All data management decisions were based on Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Site Selection, Field Operation, Calibration, Record Computation, and Reporting. U.S Geological Survey. Water-Resources Investigations Report 00-4252.

Excluding:

-cross-section measurement and adjustments p. 17 and 22.

Also, modification to following two tables:

<u>Data Rejection Criteria.</u> Maximum allowable limits for continuous water-quality monitoring sensors. [+/-, plus or minus value shown; °C, degree Celsius; mg/L, milligram per liter; pH unit, standard pH unit]

Measured physical property	Maximum allowable limits for water-quality Sensor values
Temperature	+/- 2.0 °C
Specific conductance	+/- 30 percent
Dissolved oxygen	The greater of +/- 2.0 mg/L or 20 percent
pН	+/- 2 pH units
Turbidity	The greater of 15 NTUs or 30 percent

<u>Data Quality Rating.</u> Rating continuous water-quality records

[≤, less than or equal to; +/-, plus or minus value shown; °C, degree Celsius; >, greater than: %, percent: mg/L, milligram per liter: pH unit, standard pH unit]

	percent, mg/L, mm		1	
Measured physical	Excellent	Good	Fair	Poor
property				
Water temperature	≤+/- 0.20 °C	> +/- 0.2 to 0.5 °C	> +/- 0.5 to 0.8 °C	$> +/- 0.8 {}^{\circ}\mathrm{C}$
Specific conductance	The greater of \leq +/- 3% or \leq +/- 5 uS/cm	The greater of > +/- 3 to 10 % or > +/- 5 to 15 uS/cm	The greater of > +/- 10 to 15 % or > +/- 15 to 25 uS/cm	The greater of > +/- 15 % or 25 uS/cm
Dissolved oxygen	\leq +/- 0.3 mg/L	> +/- 0.3 to 0.5 mg/L	> +/- 0.5 to 0.8 mg/L	> +/- 0.8 mg/L
рН	≤ +/- 0.2 units	> +/- 0.2 to 0.5 units	> +/- 0.5 to 0.8 units	> +/- 0.8 units
Turbidity	The greater of \leq +/- 5% or \leq +/- 2 NTUs	The greater of > +/- 5 to 10% or > +/- 2 to 5 NTUs	The greater of > +/- 10 to 15% or > +/- 5 to 8 NTUs	The greater of > +/- 15% or > +/- 8 NTUs

MONITORING STATION DESCRIPTION

North East Margaree - 2004

Year: 2004

LOCATION: Latitude 46^o 22' 10" N Longitude 60^o 58' 36" W

GROSS DRAINAGE AREA: 368 km²

HYDROMETRIC RECORD LENGTH: 88 years

HYDROMETRIC PEROID OF RECORD: 1916 – PRESENT

Hydrometric Measurement

Period of record	Type	Operation schedule	Gauge type
1916 – 1920	Flow	Continuous	Manual
1921 – 1921	Flow	Seasonal	Manual
1922 – 1927	Flow	Continuous	Manual
1928 – 1928	Flow	Seasonal	Manual
1929 – 1941	Flow	Continuous	Manual
1942 - 2004	Flow	Continuous	Recorder

HYDROMETRIC REAL-TIME DATA AVAILABLE: YES

WATER QUALITY RECORD LENGTH: 3 YEARS

WATER QUALITY PEROID OF RECORD: 2002 – 2004

Water Quality Measurement

The Administration of				
Period of record	Water Quality Parameters	Operation schedule	Gauge type	
	Temperature, Turbidity, pH,			
2001 – 2004	Dissolved Oxygen and Specific	Continuous	Recorder	
	Conductance			

WATER QUALITY REAL-TIME DATA AVAILABLE: NO

Water Quality monitoring equipment is located in a five inch perforated white PVC pipe insitu to river via shore deployment method. The location has not changed since

installation in 2002. Water Quality data is recorded hourly and stored by Environment Canada Sutron Logger. The data is downloaded manually on maintenance visit.

NOTE: All data management decisions were based on Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Site Selection, Field Operation, Calibration, Record Computation, and Reporting. U.S Geological Survey. Water-Resources Investigations Report 00-4252.

Excluding:

-cross-section measurement and adjustments p. 17 and 22.

Also, modification to following two tables:

<u>Data Rejection Criteria.</u> Maximum allowable limits for continuous water-quality monitoring sensors. [+/-, plus or minus value shown; °C, degree Celsius; mg/L, milligram per liter; pH unit, standard pH unit]

Measured physical property	Maximum allowable limits for water-quality Sensor values
Temperature	+/- 2.0 °C
Specific conductance	+/- 30 percent
Dissolved oxygen	The greater of +/- 2.0 mg/L or 20 percent
pН	+/- 2 pH units
Turbidity	The greater of 15 NTUs or 30 percent

<u>Data Quality Rating.</u> Rating continuous water-quality records

[≤, less than or equal to; +/-, plus or minus value shown; °C, degree Celsius; >, greater than: %, percent: mg/L, milligram per liter: pH unit, standard pH unit]

Measured physical	Excellent	Good	Fair	Poor
property				
Water temperature	≤+/- 0.20 °C	> +/- 0.2 to 0.5 °C	> +/- 0.5 to 0.8 °C	>+/- 0.8 °C
Specific conductance	The greater of \leq +/- 3% or \leq +/- 5 uS/cm	The greater of > +/- 3 to 10 % or > +/- 5 to 15 uS/cm	The greater of > +/- 10 to 15 % or > +/- 15 to 25 uS/cm	The greater of > +/- 15 % or 25 uS/cm
Dissolved oxygen	\leq +/- 0.3 mg/L	> +/- 0.3 to 0.5 mg/L	> +/- 0.5 to 0.8 mg/L	> +/- 0.8 mg/L
рН	≤ +/- 0.2 units	> +/- 0.2 to 0.5 units	> +/- 0.5 to 0.8 units	> +/- 0.8 units
Turbidity	The greater of \leq +/- 5% or \leq +/- 2 NTUs	The greater of > +/- 5 to 10% or > +/- 2 to 5 NTUs	The greater of > +/- 10 to 15% or > +/- 5 to 8 NTUs	The greater of > +/- 15% or > +/- 8 NTUs

MONITORING STATION DESCRIPTION

North East Margaree - 2005

Year: 2005

LOCATION: Latitude 46^o 22' 10" N Longitude 60^o 58' 36" W

GROSS DRAINAGE AREA: 368 km²

HYDROMETRIC RECORD LENGTH: 89 years

HYDROMETRIC PEROID OF RECORD: 1916 - PRESENT

Hydrometric Measurement

Period of record	Type	Operation schedule	Gauge type
1916 – 1920	Flow	Continuous	Manual
1921 – 1921	Flow	Seasonal	Manual
1922 – 1927	Flow	Continuous	Manual
1928 – 1928	Flow	Seasonal	Manual
1929 – 1941	Flow	Continuous	Manual
1942 - 2005	Flow	Continuous	Recorder

HYDROMETRIC REAL-TIME DATA AVAILABLE: YES

WATER QUALITY RECORD LENGTH: 4 YEARS

WATER QUALITY PEROID OF RECORD: 2002 – 2005

Water Quality Measurement

Period of record	Water Quality Parameters	Operation schedule	Gauge type
2002 – 2005	Temperature, Turbidity, pH, Dissolved Oxygen and Specific Conductance	Continuous	Recorder

WATER QUALITY REAL-TIME DATA AVAILABLE: NO

Water Quality monitoring equipment is located in a five inch perforated white PVC pipe insitu to river via shore deployment method. The location has not changed since

installation in 2002. Water Quality data is recorded hourly and stored by Environment Canada Sutron Logger. The data is downloaded manually on maintenance visit.

NOTE: All data management decisions were based on Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Site Selection, Field Operation, Calibration, Record Computation, and Reporting. U.S Geological Survey. Water-Resources Investigations Report 00-4252.

Excluding:

-cross-section measurement and adjustments p. 17 and 22.

Also, modification to following two tables:

<u>Data Rejection Criteria.</u> Maximum allowable limits for continuous water-quality monitoring sensors. [+/-, plus or minus value shown; °C, degree Celsius; mg/L,

milligram per liter; pH unit, standard pH unit]

Measured physical property	Maximum allowable limits for water-quality Sensor values
Temperature	+/- 2.0 °C
Specific conductance	+/- 30 percent
Dissolved oxygen	The greater of +/- 2.0 mg/L or 20 percent
pH	+/- 2 pH units
Turbidity	The greater of 15 NTUs or 30 percent

Data Quality Rating. Rating continuous water-quality records

[≤, less than or equal to; +/-, plus or minus value shown; °C, degree Celsius; >,

greater than; %, percent; mg/L, milligram per liter; pH unit, standard pH unit]

Measured physical property	Excellent	Good	Fair	Poor
Water temperature	≤+/- 0.20 °C	> +/- 0.2 to 0.5 °C	> +/- 0.5 to 0.8 °C	> +/- 0.8 °C
Specific conductance	The greater of \leq +/- 3% or \leq +/- 5 uS/cm	The greater of > +/- 3 to 10 % or > +/- 5 to 15 uS/cm	The greater of > +/- 10 to 15 % or > +/- 15 to 25 uS/cm	The greater of > +/- 15 % or 25 uS/cm
Dissolved oxygen	\leq +/- 0.3 mg/L	> +/- 0.3 to 0.5 mg/L	> +/- 0.5 to 0.8 mg/L	>+/- 0.8 mg/L
рН	≤ +/- 0.2 units	> +/- 0.2 to 0.5 units	> +/- 0.5 to 0.8 units	> +/- 0.8 units
Turbidity	The greater of \leq +/- 5% or \leq +/- 2 NTUs	The greater of > +/- 5 to 10% or > +/- 2 to 5 NTUs	The greater of > +/- 10 to 15% or > +/- 5 to 8 NTUs	The greater of > +/- 15% or > +/- 8 NTUs

MONITORING STATION DESCRIPTION

Shelburne River - 2002

Year: 2002

LOCATION COORDINATES: Latitude 44⁰ 12' 59" N Longitude 65⁰ 14' 32" W

GROSS DRAINAGE AREA: 268 km²

HYDROMETRIC RECORD LENGTH: 3 years

HYDROMETRIC PEROID OF RECORD: 1999 – 2002

Hydrometric measurement

Period of record	Type	Operation schedule	Gauge type
1999 - present	Flow	Continuous	Recorder

HYDROMETRIC REAL-TIME DATA AVAILABLE: YES

WATER QUALITY RECORD LENGTH: 1 YEAR

WATER QUALITY PEROID OF RECORD: 2002

Water Quality measurement

Period of record	Water Quality Parameters	Operation schedule	Gauge type
2002	Temperature, Turbidity, pH, Dissolved Oxygen and Specific Conductance	Continuous	Recorder

WATER QUALITY REAL-TIME DATA AVAILABLE: NO

Water Quality monitoring equipment is located in a five inch perforated white PVC pipe insitu to river via shore deployment method. The location has not changed since installation in 2002. Water Quality data is recorded hourly and stored by Environment Canada Sutron Logger. The data is downloaded manually on maintenance visit.

NOTE: All data management decisions were based on Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Site Selection, Field Operation, Calibration, Record Computation, and Reporting. U.S Geological Survey. Water-Resources Investigations Report 00-4252.

Excluding:

-cross-section measurement and adjustments p. 17 and 22.

Also, modification to following two tables:

<u>Data Rejection Criteria.</u> Maximum allowable limits for continuous water-quality monitoring sensors. [+/-, plus or minus value shown; °C, degree Celsius; mg/L, milligram per liter; pH unit, standard pH unit]

Measured physical	Maximum allowable limits for water-quality
property Sensor values	
Temperature	+/- 2.0 °C
Specific conductance	+/- 30 percent
Dissolved oxygen	The greater of +/- 2.0 mg/L or 20 percent
pН	+/- 2 pH units
Turbidity	The greater of 15 NTUs or 30 percent

<u>Data Quality Rating.</u> Rating continuous water-quality records

[≤, less than or equal to; +/-, plus or minus value shown; °C, degree Celsius; >, greater than; %, percent; mg/L, milligram per liter; pH unit, standard pH unit]

Measured physical	Excellent	Good	Fair	Poor
property				
Water temperature	≤+/- 0.20 °C	$> +/- 0.2 \text{ to } 0.5 ^{\circ}\text{C}$	> +/- 0.5 to 0.8 °C	>+/- 0.8 °C
Specific conductance	The greater of \leq +/- 3% or \leq +/- 5 uS/cm	The greater of > +/- 3 to 10 % or > +/- 5 to 15 uS/cm	The greater of > +/- 10 to 15 % or > +/- 15 to 25 uS/cm	The greater of > +/- 15 % or 25 uS/cm
Dissolved oxygen	≤ +/- 0.3 mg/L	> +/- 0.3 to 0.5 mg/L	> +/- 0.5 to 0.8 mg/L	> +/- 0.8 mg/L
рН	≤ +/- 0.2 units	> +/- 0.2 to 0.5 units	> +/- 0.5 to 0.8 units	> +/- 0.8 units
Turbidity	The greater of \leq +/- 5% or \leq +/- 2 NTUs	The greater of > +/- 5 to 10% or > +/- 2 to 5 NTUs	The greater of > +/- 10 to 15% or > +/- 5 to 8 NTUs	The greater of > +/- 15% or > +/- 8 NTUs

MONITORING STATION DESCRIPTION

Shelburne River - 2003

Year: 2003

LOCATION COORDINATES: Latitude 44⁰ 12' 59" N Longitude 65⁰ 14' 32" W

GROSS DRAINAGE AREA: 268 km²

HYDROMETRIC RECORD LENGTH: 4 years

HYDROMETRIC PEROID OF RECORD: 1999 – 2003

Hydrometric measurement

Period of record	Type	Operation schedule	Gauge type
1999 - present	Flow	Continuous	Recorder

HYDROMETRIC REAL-TIME DATA AVAILABLE: YES

WATER QUALITY RECORD LENGTH: 2 YEARS

WATER QUALITY PEROID OF RECORD: 2002 to present

Water Quality measurement

Period of record	Water Quality Parameters	Operation schedule	Gauge type
2002 to present	Temperature, Turbidity, pH, Dissolved Oxygen and Specific Conductance	Continuous	Recorder

WATER QUALITY REAL-TIME DATA AVAILABLE: NO

Water Quality monitoring equipment is located in a five inch perforated white PVC pipe insitu to river via shore deployment method. The location has not changed since installation in 2002. Water Quality data is recorded hourly and stored by Environment Canada Sutron Logger. The data is downloaded manually on maintenance visit.

NOTE: All data management decisions were based on Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Site Selection, Field Operation, Calibration, Record Computation, and Reporting. U.S Geological Survey. Water-Resources Investigations Report 00-4252.

Excluding:

-cross-section measurement and adjustments p. 17 and 22.

Also, modification to following two tables:

<u>Data Rejection Criteria.</u> Maximum allowable limits for continuous water-quality monitoring sensors. [+/-, plus or minus value shown; ^oC, degree Celsius; mg/L, milligram per liter; pH unit, standard pH unit]

Measured physical property	Maximum allowable limits for water-quality Sensor values	
Francis		
Temperature	+/- 2.0 °C	
Specific conductance	+/- 30 percent	
Dissolved oxygen	The greater of +/- 2.0 mg/L or 20 percent	
pH	+/- 2 pH units	
Turbidity	The greater of 15 NTUs or 30 percent	

<u>Data Quality Rating.</u> Rating continuous water-quality records

[≤, less than or equal to; +/-, plus or minus value shown; °C, degree Celsius; >, greater than: %, percent: mg/L, milligram per liter: pH unit, standard pH unit]

greater than, 70, percent, mg/L, minigram per neer, pir unit, standard pir unit]				
Measured physical	Excellent	Good	Fair	Poor
property				
Water temperature	≤+/- 0.20 °C	> +/- 0.2 to 0.5 °C	> +/- 0.5 to 0.8 °C	>+/- 0.8 °C
Specific conductance	The greater of \leq +/- 3% or \leq +/- 5 uS/cm	The greater of > +/- 3 to 10 % or > +/- 5 to 15 uS/cm	The greater of > +/- 10 to 15 % or > +/- 15 to 25 uS/cm	The greater of > +/- 15 % or 25 uS/cm
Dissolved oxygen	\leq +/- 0.3 mg/L	> +/- 0.3 to 0.5 mg/L	> +/- 0.5 to 0.8 mg/L	> +/- 0.8 mg/L
рН	≤ +/- 0.2 units	> +/- 0.2 to 0.5 units	> +/- 0.5 to 0.8 units	> +/- 0.8 units
Turbidity	The greater of \leq +/- 5% or \leq +/- 2 NTUs	The greater of > +/- 5 to 10% or > +/- 2 to 5 NTUs	The greater of > +/- 10 to 15% or > +/- 5 to 8 NTUs	The greater of > +/- 15% or > +/- 8 NTUs

MONITORING STATION DESCRIPTION

Shelburne River - 2004

Year: 2004

LOCATION COORDINATES: Latitude 44⁰ 12' 59" N Longitude 65⁰ 14' 32" W

GROSS DRAINAGE AREA: 268 km²

HYDROMETRIC RECORD LENGTH: 5 years

HYDROMETRIC PEROID OF RECORD: 1999 – 2004

Hydrometric measurement

Period of record	Type	Operation schedule	Gauge type
1999 - present	Flow	Continuous	Recorder

HYDROMETRIC REAL-TIME DATA AVAILABLE: YES

WATER QUALITY RECORD LENGTH: 3 YEARS

WATER QUALITY PEROID OF RECORD: 2002 to present

Water Quality measurement

Period of record	Water Quality Parameters	Operation schedule	Gauge type
2002 to present	Temperature, Turbidity, pH, Dissolved Oxygen and Specific Conductance	Continuous	Recorder

WATER QUALITY REAL-TIME DATA AVAILABLE: NO

Water Quality monitoring equipment is located in a five inch perforated white PVC pipe insitu to river via shore deployment method. The location has not changed since installation in 2002. Water Quality data is recorded hourly and stored by Environment Canada Sutron Logger. The data is downloaded manually on maintenance visit.

NOTE: All data management decisions were based on Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Site Selection, Field Operation, Calibration, Record Computation, and Reporting. U.S Geological Survey. Water-Resources Investigations Report 00-4252.

Excluding:

-cross-section measurement and adjustments p. 17 and 22.

Also, modification to following two tables:

<u>Data Rejection Criteria.</u> Maximum allowable limits for continuous water-quality monitoring sensors. [+/-, plus or minus value shown; ^oC, degree Celsius; mg/L, milligram per liter; pH unit, standard pH unit]

Measured physical	Maximum allowable limits for water-quality	
property	Sensor values	
Temperature	+/- 2.0 °C	
Specific conductance	+/- 30 percent	
Dissolved oxygen	The greater of +/- 2.0 mg/L or 20 percent	
pH	+/- 2 pH units	
Turbidity	The greater of 15 NTUs or 30 percent	

<u>Data Quality Rating.</u> Rating continuous water-quality records

[≤, less than or equal to; +/-, plus or minus value shown; °C, degree Celsius; >, greater than; %, percent; mg/L, milligram per liter; pH unit, standard pH unit]

Measured physical	Excellent	Good	Fair	Poor
property				
Water temperature	≤+/- 0.20 °C	> +/- 0.2 to 0.5 °C	> +/- 0.5 to 0.8 °C	>+/- 0.8 °C
Specific conductance	The greater of \leq +/- 3% or \leq +/- 5 uS/cm	The greater of > +/- 3 to 10 % or > +/- 5 to 15 uS/cm	The greater of > +/- 10 to 15 % or > +/- 15 to 25 uS/cm	The greater of > +/- 15 % or 25 uS/cm
Dissolved oxygen	≤ +/- 0.3 mg/L	> +/- 0.3 to 0.5 mg/L	> +/- 0.5 to 0.8 mg/L	> +/- 0.8 mg/L
pН	≤ +/- 0.2 units	> +/- 0.2 to 0.5 units	> +/- 0.5 to 0.8 units	> +/- 0.8 units
Turbidity	The greater of \leq +/- 5% or \leq +/- 2 NTUs	The greater of > +/- 5 to 10% or > +/- 2 to 5 NTUs	The greater of > +/- 10 to 15% or > +/- 5 to 8 NTUs	The greater of > +/- 15% or > +/- 8 NTUs

MONITORING STATION DESCRIPTION

Shelburne River - 2005

Year: 2005

LOCATION COORDINATES: Latitude 44⁰ 12' 59" N Longitude 65⁰ 14' 32" W

GROSS DRAINAGE AREA: 268 km²

HYDROMETRIC RECORD LENGTH: 6 years

HYDROMETRIC PEROID OF RECORD: 1999 – 2005

Hydrometric measurement

Period of record	Type	Operation schedule	Gauge type
1999 - present	Flow	Continuous	Recorder

HYDROMETRIC REAL-TIME DATA AVAILABLE: YES

WATER QUALITY RECORD LENGTH: 4 YEARS

WATER QUALITY PEROID OF RECORD: 2002 to present

Water Quality measurement

Period of record	Water Quality Parameters	Operation schedule	Gauge type
2002 to present	Temperature, Turbidity, pH, Dissolved Oxygen and Specific Conductance	Continuous	Recorder

WATER QUALITY REAL-TIME DATA AVAILABLE: NO

Water Quality monitoring equipment is located in a five inch perforated white PVC pipe insitu to river via shore deployment method. The location has not changed since installation in 2002. Water Quality data is recorded hourly and stored by Environment Canada Sutron Logger. The data is downloaded manually on maintenance visit.

NOTE: All data management decisions were based on Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Site Selection, Field Operation, Calibration, Record Computation, and Reporting. U.S Geological Survey. Water-Resources Investigations Report 00-4252.

Excluding:

-cross-section measurement and adjustments p. 17 and 22.

Also, modification to following two tables:

<u>Data Rejection Criteria.</u> Maximum allowable limits for continuous water-quality monitoring sensors. [+/-, plus or minus value shown; ^oC, degree Celsius; mg/L, milligram per liter; pH unit, standard pH unit]

Measured physical	Maximum allowable limits for water-quality
property	Sensor values
Temperature	+/- 2.0 °C
Specific conductance	+/- 30 percent
Dissolved oxygen	The greater of +/- 2.0 mg/L or 20 percent
pH	+/- 2 pH units
Turbidity	The greater of 15 NTUs or 30 percent

<u>Data Quality Rating.</u> Rating continuous water-quality records

[≤, less than or equal to; +/-, plus or minus value shown; °C, degree Celsius; >, greater than; %, percent; mg/L, milligram per liter; pH unit, standard pH unit]

Measured physical	Excellent	Good	Fair	Poor
property				
Water temperature	≤+/- 0.20 °C	$> +/- 0.2 \text{ to } 0.5 ^{\circ}\text{C}$	> +/- 0.5 to 0.8 °C	>+/- 0.8 °C
Specific conductance	The greater of \leq +/- 3% or \leq +/- 5 uS/cm	The greater of > +/- 3 to 10 % or > +/- 5 to 15 uS/cm	The greater of > +/- 10 to 15 % or > +/- 15 to 25 uS/cm	The greater of > +/- 15 % or 25 uS/cm
Dissolved oxygen	≤ +/- 0.3 mg/L	> +/- 0.3 to 0.5 mg/L	> +/- 0.5 to 0.8 mg/L	> +/- 0.8 mg/L
рН	≤ +/- 0.2 units	> +/- 0.2 to 0.5 units	> +/- 0.5 to 0.8 units	> +/- 0.8 units
Turbidity	The greater of \leq +/- 5% or \leq +/- 2 NTUs	The greater of > +/- 5 to 10% or > +/- 2 to 5 NTUs	The greater of > +/- 10 to 15% or > +/- 5 to 8 NTUs	The greater of > +/- 15% or > +/- 8 NTUs

MONITORING STATION DESCRIPTION

Kelley River 2005

LOCATION: Latitude 45^o 35' 10" N Longitude 64^o 27' 05" W

GROSS DRAINAGE AREA: 63.2 km²

HYDROMETRIC RECORD LENGTH: 37 years

HYDROMETRIC PEROID OF RECORD: 1969 – PRESENT

Hydrometric measurement

Period of record	Туре	Operation schedule	Gauge type
1969 -	present Flow	Continuous	Recorder

HYDROMETRIC REAL-TIME DATA AVAILABLE: YES

WATER QUALITY RECORD LENGTH: 1 YEAR

WATER QUALITY PEROID OF RECORD: 2005

Water Quality measurement

Period of record	Water Quality Parameters	Operation schedule	Gauge type
2005	Temperature, Turbidity, pH, Dissolved Oxygen and Specific Conductance		Recorder

WATER QUALITY REAL-TIME DATA AVAILABLE: NO

Water Quality monitoring equipment is located in a five inch perforated white PVC pipe insitu to river via shore deployment method. The location has not changed since

installation in 2004. Water Quality data is recorded hourly and stored by Environment Canada Sutron Logger. The data is downloaded manually on maintenance visit.

NOTE: All data management decisions were based on Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Site Selection, Field Operation, Calibration, Record Computation, and Reporting. U.S Geological Survey. Water-Resources Investigations Report 00-4252.

Excluding:

-cross-section measurement and adjustments p. 17 and 22.

Also, modification to following two tables:

Data Rejection Criteria. Maximum allowable limits for continuous water-quality monitoring sensors. [+/-, plus or minus value shown; °C, degree Celsius; mg/L, milligram per liter; pH unit, standard pH unit]

Measured physical property	Maximum allowable limits for water-quality Sensor values		
Temperature	+/- 2.0 °C		
Specific conductance	+/- 30 percent		
Dissolved oxygen	The greater of +/- 2.0 mg/L or 20 percent		
pН	+/- 2 pH units		
Turbidity	The greater of 15 NTUs or 30 percent		

Data Quality Rating. Rating continuous water-quality records

[≤, less than or equal to; +/-, plus or minus value shown; °C, degree Celsius; >, greater than: %, percent: mg/L, milligram per liter: pH unit, standard pH unit]

Measured physical	Excellent	Good	Fair	Poor	
property					
Water temperature	≤+/- 0.20 °C	> +/- 0.2 to 0.5 °C	> +/- 0.5 to 0.8 °C	>+/- 0.8 °C	
Specific conductance	The greater of \leq +/- 3% or \leq +/- 5 uS/cm	The greater of > +/- 3 to 10 % or > +/- 5 to 15 uS/cm	The greater of > +/- 10 to 15 % or > +/- 15 to 25 uS/cm	The greater of > +/- 15 % or 25 uS/cm	
Dissolved oxygen	\leq +/- 0.3 mg/L	> +/- 0.3 to 0.5 mg/L	> +/- 0.5 to 0.8 mg/L	> +/- 0.8 mg/L	
рН	≤ +/- 0.2 units	> +/- 0.2 to 0.5 units	> +/- 0.5 to 0.8 units	> +/- 0.8 units	
Turbidity	The greater of \leq +/- 5% or \leq +/- 2 NTUs	The greater of > +/- 5 to 10% or > +/- 2 to 5 NTUs	The greater of > +/- 10 to 15% or > +/- 5 to 8 NTUs	The greater of > +/- 15% or > +/- 8 NTUs	

DATA QUALITY ANALYSIS

WATER QUALITY PARAMETERS

Temperature, pH, Conductivity, Dissolved Oxygen and Turbidity

Pockwock Lake - 2002

POCKWOCK LAKE, HALIFAX COUNTY, NOVA SCOTIA

<u>Equipment:</u> Sutron Data logger and Hydrolab Water Quality Sonde located in a five inch diameter perforated PVC pipe insitu to the lake via shore line deployment method.

<u>Published records:</u> Hourly water quality measurements.

Primary Records: Covering the period August 1, 2002 to October 29, 2002.

Lake Characteristics:

Station located at the outlet of lake in front of pumping station for water treatment plant. Water quality monitoring equipment located 5 meters below the water surface. Average water depth at station is 10 meters.

Calibration:

During the ice-free season data from the seasoned Hydrolab unit is verified by grab sampling and a hand held YSI Dissolved Oxygen meter prior to unit being removed. Hydrolab unit is then taken off site for sensor maintenance and calibrating. Once the Hydrolab sensors have stabilized it is returned to the site. The dates of removal of seasoned Hydrolab and installation of freshly calibrated Hydrolab are:

August 1, 2002 October 29, 2002

Field Verifications:

Data from the Hydrolab were verified in the field during the 2002 season by grab sampling and a hand held YSI Dissolved Oxygen meter. The grab samples were

analysed for pH, Conductivity and Turbidity. Data verification was performed on the seasoned Hydrolab on removal and the freshly calibrated Hydrolab that was installed.

Data Rating:

Period from	Period to	Temperature	рН	Conductivity	DO	Turbidity
08/01/2002	10/29/2002	Fair	Good	Good	Poor	N/A

Data Correction:

Data correction was made to collected data by comparing the YSI Dissolved Oxygen water quality meter measurements for Temperature and DO. The grab sample lab results for pH, Conductivity and Turbidity were used for any data correction. The field verification and Hydrolab recorded values were compared using the Criteria for Water Quality Data Shifts table. Shifts were made to the recorded data as required.

Missing Data:

Periods of missing data due to logger malfunctions:

All data lost from November 8, 2002 to December 31, 2002.

No Turbidity data for 2002 due to broken Turbidity sensor.

DATA QUALITY ANALYSIS

WATER QUALITY PARAMETERS

Temperature, pH, Conductivity, Dissolved Oxygen and Turbidity

Pockwock Lake - 2003

POCKWOCK LAKE, HALIFAX COUNTY, NOVA SCOTIA

<u>Equipment:</u> Sutron Data logger and Hydrolab Water Quality Sonde located in a five inch diameter perforated PVC pipe insitu to the lake via shore line deployment method.

<u>Published records:</u> Hourly water quality measurements.

Primary Records: Covering the period February 4, 2003, to November 6, 2003

Lake Characteristics:

Station located at the outlet of lake in front of pumping station for water treatment plant. Water quality monitoring equipment located 5 meters below the water surface. Average water depth at station is 10 meters.

Calibration:

During the ice-free season data from the seasoned Hydrolab unit is verified by grab sampling and a hand held YSI Dissolved Oxygen meter prior to unit being removed. The calibration of the replacement Hydrolab unit was preformed at NSEL office prior to field trip using calibration standards. The dates of removal of seasoned Hydrolab and installation of freshly calibrated Hydrolab were:

May 21, 2003 July 17, 2003 November 6,2003

Field Verifications:

Data from the Hydrolab were verified in the field during the 2003 season by grab sampling and a hand held YSI Dissolved Oxygen meter. The grab samples were

analysed for pH, Conductivity and Turbidity. Data verification was performed on the seasoned Hydrolab on removal and the freshly calibrated Hydrolab that was installed.

Data Rating:

Period	Period to	Temperature	pН	Conductivity	DO	Turbidity
from						
02/04/2003	05/21/2003	Good	Fair	Good	Fair	N/A
05/21/2003	07/17/2003	Good	Excellent	Excellent	Good	Good
07/17/2003	11/06/2003	Good	Excellent	Excellent	Poor	Fair

Data Correction:

Data correction was made to collected data by comparing the YSI Dissolved Oxygen water quality meter measurements for Temperature and DO. The grab sample lab results for pH, Conductivity and Turbidity were used for any data correction. The field verification and Hydrolab recorded values were compared using the Criteria for Water Quality Data Shifts table. Shifts were made to the recorded data as required.

Missing Data:

Periods of missing data due to logger malfunctions:

All data lost from January 1, 2003 to February 4, 2003.

No Turbidity data from February 4, 2003 to May 21, 2003 due to broken sensor.

DATA QUALITY ANALYSIS

WATER QUALITY PARAMETERS

Temperature, pH, Conductivity, Dissolved Oxygen and Turbidity

Pockwock Lake - 2004

POCKWOCK LAKE, HALIFAX COUNTY, NOVA SCOTIA

<u>Equipment:</u> Sutron Data logger and Hydrolab Water Quality Sonde located in a five inch diameter perforated PVC pipe insitu to the lake via shore line deployment method.

<u>Published records:</u> Hourly water quality measurements.

Primary Records: Covering the period November 6, 2003, to December 6, 2004.

Lake Characteristics:

Station located at the outlet of lake in front of pumping station for water treatment plant. Water quality monitoring equipment located 5 meters below the water surface. Average water depth at station is 10 meters.

Calibration:

During the ice-free season data from the seasoned Hydrolab unit is verified by a freshly calibrated portable Quanta P hand held water quality meter prior to unit being removed. Also a grab sample is taken for backup QAQC purposes. The calibration of the replacement Hydrolab unit was preformed at NSEL office prior to field trip using calibration standards. The dates of removal of seasoned Hydrolab and installation of freshly calibrated Hydrolab were:

November 6, 2003 April 27, 2004 June 28, 2004 July 21, 2004 (Verification only) October 20, 2004 December 6, 2004

Data from the Hydrolab were verified in the field during the 2004 season using a freshly calibrated portable Quanta P hand held water quality meter. The backup QAQC grab samples were analysed for pH, Conductivity and Turbidity. Data verification was performed on the seasoned Hydrolab on removal and the freshly calibrated Hydrolab that was installed.

Data Rating:

Period	Period to	Temperature	pH Conductivity		DO	Turbidity
from						
11/06/2003	04/27/2004	Excellent	Excellent	Excellent	Poor	Poor
04/27/2004	06/28/2004	Excellent	Poor	Good	Poor	Excellent
06/28/2004	07/21/2004	Excellent	Poor	Excellent	Good	Excellent
07/21/2004	10/20/2004	Excellent	Poor	Good	Poor	Rejected
10/20/2004	12/06/2004	Excellent	Good	Good	Excellent	Good

Data Correction:

Data correction was made to collected data by comparing the freshly calibrated portable Quanta P water quality meter measurements for Temperature, Conductivity, pH and DO. The backup QAQC grab sample lab results for Turbidity were used periodically for data correction due to Quanta P Turbidity sensor issues. The field verification and Hydrolab recorded values were compared using the Criteria for Water Quality Data Shifts table. Shifts were made to the recorded data as required.

Missing Data:

Periods of missing data due to logger malfunctions: scattered through out the year.

Removed Turbidity data form 07/21/2004 to 10/20/04. It was outside the Maximum allowable limits.

Removed Turbidity data form 03/10/2004 to 04/27/04, due to sensor fouling.

DATA QUALITY ANALYSIS

WATER QUALITY PARAMETERS

Temperature, pH, Conductivity, Dissolved Oxygen and Turbidity

Pockwock Lake - 2005

POCKWOCK LAKE, HALIFAX COUNTY, NOVA SCOTIA

<u>Equipment:</u> Campbells Scientific CR510 Data logger and Hydrolab Water Quality Sonde located in a five inch diameter perforated PVC pipe insitu to the lake via shore line deployment method.

<u>Published records:</u> Hourly water quality measurements.

Primary Records: Covering the period June 13, 2005, to December 6, 2005.

Lake Characteristics:

Station located at the outlet of lake in front of pumping station for water treatment plant. Water quality monitoring equipment located 5 meters below the water surface. Average water depth at station is 10 meters.

Calibration:

During the ice-free season data from the seasoned Hydrolab unit is verified by a freshly calibrated portable Quanta P hand held water quality meter prior to unit being removed. Also a grab sample is taken for backup QAQC purposes. The calibration of the replacement Hydrolab unit was preformed at NSEL office prior to field trip using calibration standards. The dates of removal of seasoned Hydrolab and installation of freshly calibrated Hydrolab were:

June 13, 2005 September 17, 2005 November 4, 2005 December 6, 2005

Data from the Hydrolab were verified in the field during the 2005 season using a freshly calibrated portable Quanta P hand held water quality meter. The backup QAQC grab samples were analysed for pH, Conductivity and Turbidity. Data verification was performed on the seasoned Hydrolab on removal and the freshly calibrated Hydrolab that was installed.

Data Rating:

Period	Period to	Temperature	pН	Conductivity	DO	Turbidity
from						
06/13/2005	09/07/2005	Excellent	Good	Excellent	Poor	Excellent
09/12/2005	11/04/2005	Excellent	t Excellent Excellent Excellent		Good	
11/04/2005	12/06/2005	Excellent	Fair	Good	Excellent	Excellent

Data Correction:

Data correction was made to collected data by comparing the freshly calibrated portable Quanta P water quality meter measurements for Temperature, Conductivity, pH and DO. The backup QAQC grab sample lab results for Turbidity were used periodically for data correction due to Quanta P Turbidity sensor issues. The field verification and Hydrolab recorded values were compared using the Criteria for Water Quality Data Shifts table. Shifts were made to the recorded data as required.

Missing Data:

Periods of missing data due to logger malfunctions: January 1, 2005 to June 13, 2005. September 7, 2005 to September 12, 2005.

DATA QUALITY ANALYSIS

WATER QUALITY PARAMETERS

Temperature, pH, Conductivity, Dissolved Oxygen and Turbidity

North East Margaree River – 2002

NORTH EAST MARGAREE, INVERNESS COUNTY, NOVA SCOTIA

<u>Equipment:</u> Sutron Data logger and Hydrolab Water Quality Sonde located in a five inch diameter perforated PVC pipe insitu to the river via shore line deployment method.

<u>Published records:</u> Hourly water quality measurements.

Primary Records: Covering the period June 12, 2002 to January 9, 2003.

Channel Characteristics:

Channel above station is not straight. It comes in from two widely separated streams at sharp angles. Channel below station is straight for about 60m. Flow to the station and away from it is very swift and deep. Right bank is high, rocky, and wooded and not liable to flooding. Left bank is low, wooded and liable to flooding in many places. Stream bed is gravel and ledge rock.

Calibration:

During the ice-free season data from the seasoned Hydrolab unit is verified by grab sampling and a hand held YSI Dissolved Oxygen meter prior to unit being removed. Hydrolab unit is then taken off site for sensor maintenance and calibrating. Once the Hydrolab sensors have stabilized it is returned to the site. The dates of removal of seasoned Hydrolab and installation of freshly calibrated Hydrolab are:

June 12, 2002 September 25, 2002 September 26, 2002 December 4, 2002 January 9, 2003

Data from the Hydrolab were verified in the field during the 2002 season by grab sampling and a hand held YSI Dissolved Oxygen meter. The grab samples were analysed for pH, Conductivity and Turbidity. Data verification was performed on the seasoned Hydrolab on removal and the freshly calibrated Hydrolab that was installed.

Data Rating:

Period	Period to	Temperature	рН	Conductivity	DO	Turbidity
from						
06/12/02	09/25/02	Excellent	Good	Good	Fair	Rejected
09/26/02	12/04/02	Excellent	Good	Good	Good	Rejected
12/04/02	01/09/03	Excellent	Good	Good	Fair	Excellent

Data Correction:

Data correction was made to collected data by comparing the YSI Dissolved Oxygen water quality meter measurements for Temperature and DO. The grab sample lab results for pH, Conductivity and Turbidity were used for any data correction. The field verification and Hydrolab recorded values were compared using the Criteria for Water Quality Data Shifts table. Shifts were made to the recorded data as required.

Data Rejected:

Rejected 06/12/02 to 12/04/02 period of Turbidity data because of a cracked turbidity sensor.

Specific Conductance blank values are due to inaccurate data logger reaching at full scale (i.e. 327.67 us/cm). This problem was corrected in 2003.

Missing Data:

Periods of missing data due to sensor maintenance:

09/25/02 to 09/26/02

DATA QUALITY ANALYSIS

WATER QUALITY PARAMETERS

Temperature, pH, Conductivity, Dissolved Oxygen and Turbidity

North East Margaree River – 2003

NORTH EAST MARGAREE, INVERNESS COUNTY, NOVA SCOTIA

<u>Equipment:</u> Sutron Data logger and Hydrolab Water Quality Sonde located in a five inch diameter perforated PVC pipe insitu to the river via shore line deployment method.

<u>Published records:</u> Hourly water quality measurements.

Primary Records: Covering the period January 9, 2003 to November 20, 2003.

Channel Characteristics:

Channel above station is not straight. It comes in from two widely separated streams at sharp angles. Channel below station is straight for about 60m. Flow to the station and away from it is very swift and deep. Right bank is high, rocky, and wooded and not liable to flooding. Left bank is low, wooded and liable to flooding in many places. Stream bed is gravel and ledge rock.

Calibration:

During the ice-free season data from the seasoned Hydrolab unit is verified by grab sampling and a hand held YSI Dissolved Oxygen meter prior to unit being removed. The calibration of the replacement Hydrolab unit was preformed at NSEL office prior to field trip using calibration standards. The dates of removal of seasoned Hydrolab and installation of freshly calibrated Hydrolab were:

January 9, 2003 May 6, 2003 July 8, 2003 November 20, 2003

Field Verifications:

Data from the Hydrolab were verified in the field during the 2003 season by grab sampling and a hand held YSI Dissolved Oxygen meter. The grab samples were

analysed for pH, Conductivity and Turbidity. Data verification was performed on the seasoned Hydrolab on removal and the freshly calibrated Hydrolab that was installed.

Data Rating:

Period	Period to	Temperature	pН	Conductivity	DO	Turbidity
from						
01/09/2003	05/06/2003	Good	Good	Good	Poor	Fair
05/06/2003	07/08/2003	Excellent	Excellent	Good	Poor	Good
07/08/2003	11/20/2003	Excellent	Fair	Fair	Poor	Good

Data Correction:

Data correction was made to collected data by comparing the YSI Dissolved Oxygen water quality meter measurements for Temperature and DO. The grab sample lab results for pH, Conductivity and Turbidity were used for any data correction. The field verification and Hydrolab recorded values were compared using the Criteria for Water Quality Data Shifts table. Shifts were made to the recorded data as required.

Special Data Correction:

Turbidity data had a one-point data shift for period: 01/10/2003 to 01/16/2003.

Data Rejected:

Periods of turbidity data rejected because the data were outside the Maximum allowable limits for Turbidity (The greater of 15 NTUs or 30 percent):

02/22/2003 to 05/06/2003 05/27/2003 to 07/08/2003

Missing Data:

Periods of missing data due to logger malfunctions: 01/16/2003 to 02/21/2003 logger malfunction 12/17/2003 to 12/26/2003 logger malfunction

Dates of missing data due to sensor maintenance: 01/09/2003 05/06/2003

DATA QUALITY ANALYSIS

WATER QUALITY PARAMETERS

Temperature, pH, Conductivity, Dissolved Oxygen and Turbidity

North East Margaree River - 2004

NORTH EAST MARGAREE, INVERNESS COUNTY, NOVA SCOTIA

<u>Equipment:</u> Sutron Data logger and Hydrolab Water Quality Sonde located in a five inch diameter perforated PVC pipe insitu to the river via shore line deployment method.

<u>Published records:</u> Hourly water quality measurements.

Primary Records: Covering the period November 20, 2003 to December 15, 2004.

Channel Characteristics:

Channel above station is not straight. It comes in from two widely separated streams at sharp angles. Channel below station is straight for about 60m. Flow to the station and away from it is very swift and deep. Right bank is high, rocky, and wooded and not liable to flooding. Left bank is low, wooded and liable to flooding in many places. Stream bed is gravel and ledge rock.

Calibration:

During the ice-free season data from the seasoned Hydrolab unit is verified by a freshly calibrated portable Quanta P hand held water quality meter prior to unit being removed. Also a grab sample is taken for backup QAQC purposes. The calibration of the replacement Hydrolab unit was preformed at NSEL office prior to field trip using calibration standards. The dates of removal of seasoned Hydrolab and installation of freshly calibrated Hydrolab were:

November 20, 2003 May 5, 2004 July 8, 2004 October 26, 2004 December 15, 2004

Data from the Hydrolab were verified in the field during the 2004 season using a freshly calibrated portable Quanta P hand held water quality meter. The backup QAQC grab samples were analysed for pH, Conductivity and Turbidity. Data verification was performed on the seasoned Hydrolab on removal and the freshly calibrated Hydrolab that was installed.

Data Rating:

Period	Period to	Temperature	pН	Conductivity	DO	Turbidity
from						
11/20/2003	05/25/2004	Good	Good	Good	Poor	Good
05/25/2004	07/08/2004	Excellent	Excellent	Excellent	Poor	Excellent
07/08/2004	10/26/2004	Excellent	Excellent	Fair	Good	Fair
10/26/2004	12/15/2004	Excellent	Excellent	Good	Fair	Good

Data Correction:

Data correction was made to collected data by comparing the freshly calibrated portable Quanta P water quality meter measurements for Temperature, Conductivity, pH and DO. The backup QAQC grab sample lab results for Turbidity were used periodically for data correction due to Quanta P Turbidity sensor issues. The field verification and Hydrolab recorded values were compared using the Criteria for Water Quality Data Shifts table. Shifts were made to the recorded data as required.

Missing Data:

Periods of missing data due to logger malfunctions:

04/22/2004 to 04/26/2004 logger malfunction 08/24/2004 to 09/01/2004 logger disconnected for this period to upgrade shelter. 10/26/2004 to 11/03/2004 some hourly readings missing due to logger malfunction.

DATA QUALITY ANALYSIS

WATER QUALITY PARAMETERS

Temperature, pH, Conductivity, Dissolved Oxygen and Turbidity

North East Margaree River - 2005

NORTH EAST MARGAREE, INVERNESS COUNTY, NOVA SCOTIA

<u>Equipment:</u> Sutron Data logger and Hydrolab Water Quality Sonde located in a five inch diameter perforated PVC pipe insitu to the river via shore line deployment method.

<u>Published records:</u> Hourly water quality measurements.

<u>Primary Records:</u> Covering the period December 15, 2004, to December 1, 2005.

Channel Characteristics:

Channel above station is not straight. It comes in from two widely separated streams at sharp angles. Channel below station is straight for about 60m. Flow to the station and away from it is very swift and deep. Right bank is high, rocky, and wooded and not liable to flooding. Left bank is low, wooded and liable to flooding in many places. Stream bed is gravel and ledge rock.

Calibration:

During the ice-free season data from the seasoned Hydrolab unit is verified by a freshly calibrated portable Quanta P hand held water quality meter prior to unit being removed. Also a grab sample is taken for backup QAQC purposes. The calibration of the replacement Hydrolab unit was preformed at NSEL office prior to field trip using calibration standards. The dates of removal of seasoned Hydrolab and installation of freshly calibrated Hydrolab were:

December 15, 2004 May 11, 2005 June 29, 2005 September 14, 2005 December 1, 2005

Data from the Hydrolab were verified in the field during the 2005 season using a freshly calibrated portable Quanta P hand held water quality meter. The backup QAQC grab samples were analysed for pH, Conductivity and Turbidity. Data verification was performed on the seasoned Hydrolab on removal and the freshly calibrated Hydrolab that was installed.

Data Rating:

Period	Period to	Temperature	pН	Conductivity	DO	Turbidity
from						
12/15/2004	05/11/2005	Excellent	Good	Excellent	Fair	Rejected
05/11/2005	06/29/2005	Excellent	Excellent	Excellent	Fair	Excellent
06/29/2005	09/14/2005	Excellent	Poor	Fair	Good	Poor
09/14/2005	12/01/2005	Excellent	Good	Good	Excellent	Poor

Data Correction:

Data correction was made to collected data by comparing the freshly calibrated portable Quanta P water quality meter measurements for Temperature, Conductivity, pH and DO. The backup QAQC grab sample lab results for Turbidity were used periodically for data correction due to Quanta P Turbidity sensor issues. The field verification and Hydrolab recorded values were compared using the Criteria for Water Quality Data Shifts table. Shifts were made to the recorded data as required.

Missing Data:

Rejected Turbidity data from December 15, 2004 to May 11, 2005, because it exceeded the Maximum allowable limits for Turbidity (The greater of 15 NTUs or 30 percent).

DATA QUALITY ANALYSIS

WATER QUALITY PARAMETERS

Temperature, pH, Conductivity, Dissolved Oxygen and Turbidity

Shelburne River - 2002

SHELBURNE RIVER, QUEENS COUNTY, NOVA SCOTIA

<u>Equipment:</u> Sutron Data logger and Hydrolab Water Quality Sonde located in a five inch diameter perforated PVC pipe insitu to the river via shore line deployment method.

<u>Published records:</u> Hourly water quality measurements.

Primary Records: Covering the period August 16, 2002 to November 27, 2002.

Channel Characteristics:

Channel above station is straight for 60 metres and channel below station is straight for 300 metres. Both banks are rocky, wooded and liable to flooding. Streambed is rock, gravel and ledge rock.

Calibration:

During the ice-free season data from the seasoned Hydrolab unit is verified by grab sampling and a hand held YSI Dissolved Oxygen meter prior to unit being removed. Hydrolab unit is then taken off site for sensor maintenance and calibrating. Once the Hydrolab sensors have stabilized it is returned to the site. The dates of removal of seasoned Hydrolab and installation of freshly calibrated Hydrolab are:

August 16, 2002 November 27, 2002

Field Verifications:

Data from the Hydrolab were verified in the field during the 2002 season by grab sampling and a hand held YSI Dissolved Oxygen meter. The grab samples were

analysed for pH, Conductivity and Turbidity. Data verification was performed on the seasoned Hydrolab on removal and the freshly calibrated Hydrolab that was installed.

Data Rating:

Period from	Period to	Temperature	рН	Specific Conductance	DO	Turbidity
08/16/2002	11/27/2002	Excellent	Excellent	Excellent	Good	Fair

Data Correction:

Data correction was made to collected data by comparing the YSI Dissolved Oxygen water quality meter measurements for Temperature and DO. The grab sample lab results for pH, Conductivity and Turbidity were used for any data correction. The field verification and Hydrolab recorded values were compared using the Criteria for Water Quality Data Shifts table. Shifts were made to the recorded data as required.

Missing Data:

DATA QUALITY ANALYSIS

WATER QUALITY PARAMETERS

Temperature, pH, Conductivity, Dissolved Oxygen and Turbidity

Shelburne River - 2003

SHELBURNE RIVER, QUEENS COUNTY, NOVA SCOTIA

<u>Equipment:</u> Sutron Data logger and Hydrolab Water Quality Sonde located in a five inch diameter perforated PVC pipe insitu to the river via shore line deployment method.

<u>Published records:</u> Hourly water quality measurements.

Primary Records: Covering the period November 28, 2002 to November 28, 2003.

Channel Characteristics:

Channel above station is straight for 60 metres and channel below station is straight for 300 metres. Both banks are rocky, wooded and liable to flooding. Streambed is rock, gravel and ledge rock.

Calibration:

During the ice-free season data from the seasoned Hydrolab unit is verified by grab sampling and a hand held YSI Dissolved Oxygen meter prior to unit being removed. The calibration of the replacement Hydrolab unit was preformed at NSEL office prior to field trip using calibration standards. The dates of removal of seasoned Hydrolab and installation of freshly calibrated Hydrolab were:

November 28, 2002 July 10, 2003 July 29, 2003 November 28, 2003

Data from the Hydrolab were verified in the field during the 2003 season by grab sampling and a hand held YSI Dissolved Oxygen meter. The grab samples were analysed for pH, Conductivity and Turbidity. Data verification was performed on the seasoned Hydrolab on removal and the freshly calibrated Hydrolab that was installed.

Data Rating:

Period	Period to	Temperature	pН	Specific	DO	Turbidity
from				Conductance		
11/28/2002	06/27/2003	Good	Rejected	Excellent	Poor	Rejected
07/10/2003	07/29/2003	Excellent	Good	Excellent	Poor	Fair
07/29/2003	11/28/2003	Good	Excellent	Excellent	Fair	Rejected

Data Correction:

Data correction was made to collected data by comparing the YSI Dissolved Oxygen water quality meter measurements for Temperature and DO. The grab sample lab results for pH, Conductivity and Turbidity were used for any data correction. The field verification and Hydrolab recorded values were compared using the Criteria for Water Quality Data Shifts table. Shifts were made to the recorded data as required.

Special Data Correction:

Performed one point data correction for all sensor data from November 28, 2002 to June 27, 2003 based on verification results on November 28, 2002.

Missing Data:

Periods of missing data:

All sensor data from June 27, 2003, 00:00 to July 10, 2003, 13:00, due to Hydrolab pulled out of the flow.

Turbidity data from November 28, 2002 to June 26, 2003 due to data logger and sensor problems.

Turbidity data from July 29, 2003 to November 28, 2003 due to broken Turbidity sensor.

pH data from November 28, 2002 to June 27, 2003 due to faulty pH sensor

DATA QUALITY ANALYSIS

WATER QUALITY PARAMETERS

Temperature, pH, Conductivity, Dissolved Oxygen and Turbidity

Shelburne River - 2004

SHELBURNE RIVER, QUEENS COUNTY, NOVA SCOTIA

<u>Equipment:</u> Sutron Data logger and Hydrolab Water Quality Sonde located in a five inch diameter perforated PVC pipe insitu to the river via shore line deployment method.

<u>Published records:</u> Hourly water quality measurements.

Primary Records: Covering the period November 28, 2003 to December 9, 2004.

Channel Characteristics:

Channel above station is straight for 60 metres and channel below station is straight for 300 metres. Both banks are rocky, wooded and liable to flooding. Streambed is rock, gravel and ledge rock.

Calibration:

During the ice-free season data from the seasoned Hydrolab unit is verified by a freshly calibrated portable Quanta P hand held water quality meter prior to unit being removed. Also a grab sample is taken for backup QAQC purposes. The calibration of the replacement Hydrolab unit was preformed at NSEL office prior to field trip using calibration standards. The dates of removal of seasoned Hydrolab and installation of freshly calibrated Hydrolab were:

November 28, 2003 June 22, 2004 July 6, 2004 September 29, 2004 December 9, 2004

Data from the Hydrolab were verified in the field during the 2004 season using a freshly calibrated portable Quanta P hand held water quality meter. The backup QA/QC grab samples were analysed for pH, Conductivity and Turbidity. Data verification was performed on the seasoned Hydrolab on removal and the freshly calibrated Hydrolab that was installed.

Data Rating:

Period	Period to	Temperature	pН	Specific	DO	Turbidity
from				Conductance		
11/28/2003	06/22/2004	Excellent	Excellent	Excellent	Poor	Fair
07/06/2004	09/29/2004	Excellent	Fair	Good	Poor	Excellent
09/29/2004	12/09/2004	Excellent	Good	Good	Fair	Fair

Data Correction:

Data correction was made to collected data by comparing the freshly calibrated portable Quanta P water quality meter measurements for Temperature, Conductivity, pH and DO. The backup QAQC grab sample lab results for Turbidity were used periodically for data correction due to Quanta P Turbidity sensor issues. The field verification and Hydrolab recorded values were compared using the Criteria for Water Quality Data Shifts table. Shifts were made to the recorded data as required.

Missing Data:

Periods of missing data:

06/22/2004 to 07/06/2004 for all parameters

Turbidity data removed for period from 10/10/2004 to 12/09/2004 due to debris around Turbidity sensor.

DATA QUALITY ANALYSIS

WATER QUALITY PARAMETERS

Temperature, pH, Conductivity, Dissolved Oxygen and Turbidity

Shelburne River - 2005

SHELBURNE RIVER, QUEENS COUNTY, NOVA SCOTIA

<u>Equipment:</u> Sutron Data logger and Hydrolab Water Quality Sonde located in a five inch diameter perforated PVC pipe insitu to the river via shore line deployment method.

Published records: Hourly water quality measurements.

Primary Records: Covering the period December 9, 2004 to November 29, 2005.

Channel Characteristics:

Channel above station is straight for 60 metres and channel below station is straight for 300 metres. Both banks are rocky, wooded and liable to flooding. Streambed is rock, gravel and ledge rock.

Calibration:

During the ice-free season data from the seasoned Hydrolab unit is verified by a freshly calibrated portable Quanta P hand held water quality meter prior to unit being removed. Also a grab sample is taken for backup QAQC purposes. The calibration of the replacement Hydrolab unit was preformed at NSEL office prior to field trip using calibration standards. The dates of removal of seasoned Hydrolab and installation of freshly calibrated Hydrolab were:

December 9, 2004 April 27, 2005 July 5, 2005 November 3, 2005 November 29, 2005

Data from the Hydrolab were verified in the field during the 2005 season using a freshly calibrated portable Quanta P hand held water quality meter. The backup QAQC grab samples were analysed for pH, Conductivity and Turbidity. Data verification was performed on the seasoned Hydrolab on removal and the freshly calibrated Hydrolab that was installed.

Data Rating:

Period	Period to	Temperature	pН	Specific	DO	Turbidity
from				Conductance		
12/09/2004	04/27/2005	Good	Fair	Good	Good	Poor
04/27/2005	07/05/2005	Good	Excellent	Good	Good	Good
07/05/2005	11/03/2005	Excellent	Excellent	nt Excellent Excellent		Excellent
11/03/2005	11/29/2005	Excellent	Good	Excellent	Good	Excellent

Data Correction:

Data correction was made to collected data by comparing the freshly calibrated portable Quanta P water quality meter measurements for Temperature, Conductivity, pH and DO. The backup QAQC grab sample lab results for Turbidity were used periodically for data correction due to Quanta P Turbidity sensor issues. The field verification and Hydrolab recorded values were compared using the Criteria for Water Quality Data Shifts table. Shifts were made to the recorded data as required.

Missing Data:

03/06/2005 09:00 to 03/07/2005 03:00 due to logger malfunction.

DATA QUALITY ANALYSIS

WATER QUALITY PARAMETERS

Temperature, pH, Conductivity, Dissolved Oxygen and Turbidity

Kelley River – 2005

KELLEY RIVER, CUMBERLAND COUNTY, NOVA SCOTIA

<u>Equipment:</u> Sutron Data logger and Hydrolab Water Quality Sonde located in a five inch diameter perforated PVC pipe insitu to the river via shore line deployment method.

<u>Published records:</u> Hourly water quality measurements

Primary Records: Covering the period December 17, 2004, to December 8, 2005.

Channel Characteristics:

Both banks are low, rocky with vegetation and grasses right to water's edge. The stream bottom is composed of gravels and boulders and some ledge rock. The approach and departure of flows is general straight and fast except for gauge pool. Flow is natural.

Calibration:

During the ice-free season data from the seasoned Hydrolab unit is verified by a freshly calibrated portable Quanta P hand held water quality meter prior to unit being removed. Also a grab sample is taken for backup QAQC purposes. The calibration of the replacement Hydrolab unit was preformed at NSEL office prior to field trip using calibration standards. The dates of removal of seasoned Hydrolab and installation of freshly calibrated Hydrolab were:

December 17, 2004 May 4, 2005 June 21, 2005 October 3, 2005 December 8, 2005

Data from the Hydrolab were verified in the field during the 2005 season using a freshly calibrated portable Quanta P hand held water quality meter. The backup QAQC grab samples were analysed for pH, Conductivity and Turbidity. Data verification was performed on the seasoned Hydrolab on removal and the freshly calibrated Hydrolab that was installed.

Data Rating:

Period	Period to	Temperature	pН	Conductivity	DO	Turbidity
from						
12/17/2004	03/17/2005	Excellent	Excellent	Good	Poor	Excellent
05/04/2005	06/21/2005	Excellent	Fair	Good	Poor	Rejected
06/21/2005	10/13/2005	Excellent	Excellent	Excellent	Good	Good
10/13/2005	12/08/2005	Excellent	Good	Good	Good	Excellent

Data Correction:

Data correction was made to collected data by comparing the freshly calibrated portable Quanta P water quality meter measurements for Temperature, Conductivity, pH and DO. The backup QAQC grab sample lab results for Turbidity were used periodically for data correction due to Quanta P Turbidity sensor issues. The field verification and Hydrolab recorded values were compared using the Criteria for Water Quality Data Shifts table. Shifts were made to the recorded data as required.

Note: Data from December 17, 2004 to March 17, 2005 was adjusted and rated based on one point verification on December 17, 2004.

Missing Data:

All data from March 18, 2005 to May 4, 2005 due to Hydrolab internal battery failure. Hydrolab was not connected to Environment Canada's Sutron datalogger until May 4, 2005 and unit was operating on internal power and memory.

Rejected Turbidity data from May 4, 2005 to June 21, 2005 because it exceeded the Maximum allowable limits for Turbidity (The greater of 15 NTUs or 30 percent).

Some Turbidity values removed from July 25, 2005 to August 28, 2005 because of debris in front of sensor. Reached this conclusion comparing Turbidity values to Conductivity and stage height values.

Missing some hourly readings throughout the year due to Hydrolab and Sutron datalogger issues.

APPENDIX III – WATER QUALITY DATASET (FINAL VALIDATED) REAL TIME WATER QUALITY DATASET

These data are available upon request by contacting the Water and Wastewater Branch, NSEL. Phone: (902) 424-2553 or electronically via the NSEL Water Line E-mail address: delwater@gov.ns.ca.

GRAB SAMPLE WATER QUALITY DATA

As part of its routine monitoring program, NSEL collects grab samples for chemical analyses. These data represent that work.

Table III-1. Grab sample water quality data.

Sample Station	Date Sampled	Aluminium	Boron	Barium	Beryllium	Tin	Calcium	Cadmium	Cobalt	Chromium	Copper	Iron
		ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L
NE Margaree	1-Dec-05	49	<5	20	<2	<2	10.5	<2	<2	<2	<2	23
NE Margaree	14-Sep-05	139	6	23	<2	<2	10.1	<2	<2	<2	<2	126
NE Margaree	29-Jun-05	17	<5	30	<2	<2	21.1	<2	<2	<2	<2	< 20
NE Margaree	11-May-05	75	<5	21	<2	<2	8.5	<2	<2	<2	<2	25
NE Margaree	15-Dec-04	48	5	20	<2	<2	9.6	<2	<2	<2	<2	< 20
NE Margaree	26-Oct-04	30	<5	25	<2	<2	12	< 0.3	<1	<2	<2	< 50
NE Margaree	8-Jul-04	25	<5	26	<2	<2	16.4	<2	<2	<2	<2	< 20
NE Margaree	20-Nov-03	48	7	23	<2	<2	10.2	<2	<2	<2	<2	47
NE Margaree	8-Jul-03	20	6	26	<2	<2	19	<2	<2	<2	<2	< 20
NE Margaree	6-May-03	117	<5	16	<2	<2	6.2	<2	<2	<2	<2	36
NE Margaree	9-Jan-03	20	5	24	<5		14	< 0.3	<1	<2	<2	< 20
NE Margaree	22-Jun-06	55	6	30	<2	<2	16.3	<2	<2	<2	,2	40
Shelburne River	29-Nov-05	314	<5	3	<2	<2	< 0.5	<2	<2	<2	<2	193
Shelburne River	3-Nov-05	387	4	4	<2	<2	< 0.5	<2	<2	<2	<2	249
Shelburne River	5-Jul-05	277	<5	3	<2	<2	< 0.5	<2	<2	<2	<2	239
Shelburne River	27-Apr-05	245	<5	3	<2	<2	< 0.5	<2	<2	<2	<2	139
Shelburne River	9-Dec-04	289	<5	3	<2	<2	< 0.5	<2	<2	<2	<2	143
Shelburne River	9-Dec-04	293	<5	3	<2	<2	< 0.5	<2	<2	<2	<2	151
Shelburne River	29-Sep-04	253	4	3	<2	<2	< 0.5	<2	<2	<2	<2	268
Shelburne River	22-Jun-04	256	<5	3	<2	<2	< 0.5	<2	<2	<2	<2	202
Shelburne River	28-Nov-03	438	<5	4	<2	<2	< 0.5	<2	<2	<2	<2	328
Shelburne River	29-Jul-03	254	<5	3	<2	<2	< 0.5	<2	<2	<2	<2	173

Table III-1,	continued
I dolo III I,	commude

Sample Station	Date Sampled	Aluminium	Boron	Barium	Beryllium	Tin	Calcium	Cadmium	Cobalt	Chromium	Copper	Iron
		ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L
Shelburne River	10-Jul-03	251	<5	3	<2	<2	< 0.5	<2	<2	<2	<2	198
Shelburne River	5-Jul-06	372	<5	3	<2	<2	< 0.5	<2	<2	<2	<2	301
Kelley River	13-Oct-05	345	6	23	<2	<2	1.1	<2	<2	<2	<2	728
Kelley River	21-Jun-05	171	<5	7	<2	<2	0.6	3	<2	<2	<2	404
Kelley River	17-Dec-04	135	3	11	<2	<2	0.7	<2	<2	<2	<2	257
Kelley River	26-Aug-04	147	8	6	<2	<2	1.3	<2	<2	<2	<2	457
Kelley River	27-Jul-06	254	<5	13	<2	<2	0.8	<2	<2	<2	<2	787
Kelley River	18-May-06	162	<5	7	<2	<2	0.7	<2	<2	<2	<2	333

Sample Station	Date Sampled	Vanadium	Magnesium	Hardness as CaCo3 mg/L	Manganese	Nickel	Potassium	Lead	Antimony	Selenium	Sodium	Zinc
		ug/L	mg/L		ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	mg/L	ug/L
NE Margaree	1-Dec-05	<2	1.2	31.1	2	<2	< 0.5	<2	<2	<2	11	<2
NE Margaree	14-Sep-05	<2	1.2	30.1	4	<2	< 0.5	<2	<2	<2	10.9	<5
NE Margaree	29-Jun-05	<2	1.8	60.1	<2	<2	0.6	<2	<2	<2	28.2	6
NE Margaree	11-May-05	<2	1.1	25.7	<2	<2	< 0.5	<2	<2	<2	9.9	<2
NE Margaree	15-Dec-04	<2	1.2	28.9	3	<2	< 0.5	<2	<2	<2	10.4	<2
NE Margaree	26-Oct-04	<2	1.4	35.7	2	<2	0.4	< 0.5	<2	<2	14.2	10
NE Margaree	8-Jul-04	<2	1.6	47.5	2	<2	0.5	<2	<2	<2	21.1	<2
NE Margaree	20-Nov-03	<2	1.4	31.2	3	<2	< 0.5	<2	<2	<2	10.4	3
NE Margaree	8-Jul-03	<2	1.7	54.4	3	<2	0.5	<2	<2	<2	24.7	<2
NE Margaree	6-May-03	<2	0.8	18.8	3	<2	< 0.5	<2	<2	<2	6.4	<5
NE Margaree	9-Jan-03	<2	1.5	41.1	2	<2	0.4	< 0.5	<2	<2	15.4	<2
NE Margaree	22-Jun-06	<2	1.6	47.2	3	<2	0.6	<2	<2	<2	21.7	<2
Shelburne River	29-Nov-05	<2	< 0.5		11	<2	< 0.5	<2	<2	<2	2.2	<2
Shelburne River	3-Nov-05	<2	< 0.5		13	<2	< 0.5	<2	<2	<2	2.4	3
Shelburne River	5-Jul-05	<2	< 0.5		11	<2	< 0.5	<2	<2	<2	2.2	<5
Shelburne River	27-Apr-05	<2	< 0.5		13	<2	< 0.5	<2	<2	<2	2.5	<2
Shelburne River	9-Dec-04	<2	< 0.5		13	<2	< 0.5	<2	<2	<2	2.7	<2

8-Jul-04

NE Margaree

206

9:00

7.5

Sample Station	Ontinued Date Sampled	Vanadiu	n Magnesium	Hardness as CaCo3 mg/L	Manganese	Nickel I	Potassium L	ead Antimon	y Selenium	Sodium	ı Zinc
		ug/L	mg/L		ug/L	ug/L	mg/L u	g/L ug/L	ug/L	mg/L	ug/L
Shelburne River	9-Dec-04	<2	< 0.5		14	<2		<2 <2	<2	2.7	<2
Shelburne River	29-Sep-04	<2	< 0.5		12	<2	< 0.5	<2 <2	<2	2.9	<2
Shelburne River	22-Jun-04	<2	< 0.5		14	3	< 0.5	<2 <2	<2	2.7	<2
Shelburne River	28-Nov-03	<2	< 0.5		14	<2	< 0.5	<2 <2	<2	2.8	18
Shelburne River	29-Jul-03	<2	< 0.5		16	<2	< 0.5	<2 <2	<2	2.5	<2
Shelburne River	10-Jul-03	<2	< 0.5		12	<2	< 0.5	<2 <2	<2	2.2	<5
Shelburne River	5-Jul-06	<2	< 0.5		10	<2	<0.5	<2 <2	<2	2.4	2
Kelley River	13-Oct-05	<2	0.6	5.2	263	<2	<0.5	<2 <2	<2	2.5	<5
Kelley River	21-Jun-05	<2	< 0.5		28	<2	< 0.5	<2 <2	<2	2.4	7
Kelley River	17-Dec-04	<2	< 0.5		103	<2	< 0.5	<2 <2	<2	2.3	3
Kelley River	26-Aug-04	<2	0.7	6.1	17	<2	< 0.5	<2 <2	<2	3.9	<2
Kelley River	27-Jul-06	<2	< 0.5		170	<2	< 0.5	<2 <2	<2	2.3	3
Kelley River	18-May-06	<2	<0.5		46	<2	<0.5	<2 <2	<2	2.4	78
Sample Station	Date Sampled	Time	Conductivity	pH Chlorop	ohyll a Turbidity	Alkalinity as CaCO3 mg/L	Bicarbonate as CaCo3 mg/L	Carbonate as CaCO3 mg/L	Chloride	Colour	Total Organic Carbon
			uS/cm	mg/i	m3 NTU				mg/L	TCU	mg/L
NE Margaree	1-Dec-05	13:00	129	7.3 1.	1 0.42	10	9.97	0.02	17	9.8	1.7
NE Margaree	1-Dec-05	14:00	128	7.1	0.32						
NE Margaree	14-Sep-05	15:00	131	7	0.17						
NE Margaree	14-Sep-05	14:00	130	7 0.4	4 0.36	13	12.98	0.01	18	54.3	7.3
NE Margaree	29-Jun-05	14:00	281	7.2	0.18						
NE Margaree	29-Jun-05	13:00	279	7.3 0.4		18	17.96	0.03	44	5.7	1.7
NIC Manager	11-May-05	11:00	105	7.1 0		9.9	9.88	0.01	15	16.3	1.9
NE Margaree				7 1	0.25						
NE Margaree NE Margaree	11-May-05	12:00	104	7.1							
NE Margaree NE Margaree	15-Dec-04	12:00 14:00	120	7.8	0.17						
NE Margaree	15-Dec-04 15-Dec-04			7.8 7.8 0.	0.17 1 0.31	9.6	9.51	0.06	17	18	2.1
NE Margaree NE Margaree	15-Dec-04	14:00	120	7.8	0.17 1 0.31 0.11	9.6 14	9.51 13.97	0.06	17 22	18 17	2.1

0.13

rable III-1, co												
Sample Station	Date Sampled	Time	Conductivity	pН	Chlorophyll a	Turbidity	Alkalinity as CaCO3 mg/L	Bicarbonate as CaCo3 mg/L	Carbonate as CaCO3 mg/L	Chloride	Colour	Total Organic Carbon
			uS/cm		mg/m3	NTU				mg/L	TCU	mg/L
NE Margaree	8-Jul-04	8:00	206	7.7	0.6	0.27	18	17.89	0.08	30	12.3	2.9
NE Margaree	20-Nov-03	13:00	116	7.3		0.18						
NE Margaree	20-Nov-03	12:00	123	7.1	0.4	0.43	11	10.98	0.01	18	9	3.8
NE Margaree	8-Jul-03	13:00	267	7.3		0.13						
NE Margaree	8-Jul-03	12:00	265	7.4	0.3	0.13	18	17.94	0.04	42	6.5	1.6
NE Margaree	6-May-03	13:00	78	6.8		0.37						
NE Margaree	6-May-03	12:00	77.4	7.4	0.4	0.51	5.3	5.27	0.01	11	19	3.2
NE Margaree	9-Jan-03	12:00	180	7.4	0.3	0.12	12	12	0.03	26	5.3	1.4
NE Margaree	26-Sep-02	10:00	127	7.2		0.19						
NE Margaree	25-Sep-02	14:00	96.2	7		0.26						
NE Margaree	12-Jun-02	9:00	110	7.2		0.21						
NE Margaree	22-Jun-06		190	7.4		0.26						
NE Margaree	22-Jun-06		189	7.1	1.7	0.33	14	13.98	0.02	28	20.5	3.1
Shelburne River	29-Nov-05	11:00	32.1	4.3	0.7	0.82	<1			3.8	182	19.3
Shelburne River	29-Nov-05	12:00	34.8	4.3		1.13						
Shelburne River	3-Nov-05	12:00	37.8	4.3		0.53						
Shelburne River	3-Nov-05	11:00	35.9	4.3	0.5	0.55	<1			3.8	214	22.1
Shelburne River	5-Jul-05	11:00	25.4	4.5	2.5	0.67	<1			3.4	168	15
Shelburne River	5-Jul-05	12:00	24.3	4.6		0.62						
Shelburne River	27-Apr-05	11:00	28.4	4.5	0.9	0.84	<1			3.9	110	11.2
Shelburne River	27-Apr-05	12:00	30	4.5		0.64						
Shelburne River	9-Dec-04	11:00	38	4.4	0.6	0.78	<1			4.6	206	18
Shelburne River	9-Dec-04	10:00	36.1	4.4	0.5	0.84	<1			4.5	184	18.2
Shelburne River	29-Sep-04	7:00	28.2	4.6	0.8	0.83	<1			5	108	11.8
Shelburne River	29-Sep-04	8:00	29.6	4.6		0.57						
Shelburne River	6-Jul-04	12:00	29.2	4.6		0.68						
Shelburne River	22-Jun-04	10:00	30.7	4.5	1.7	0.55	<1			4.2	118	11.1
Shelburne River	28-Nov-03	10:00	38	4.3	0.8	0.85	<1			5	173	19
Shelburne River	28-Nov-03	11:00	38.5	4.3		0.44						
Shelburne River	29-Jul-03	11:00	27.2	4.7	1.5	1.1	<1			4	104	10.1
Shelburne River	29-Jul-03	12:00	27.5	4.6		0.97						

Table III-1, co	ontinued											
Sample Station	Date Sampled	Time	Conductivity	pН	Chlorophyll a	Turbidity	Alkalinity as CaCO3 mg/L	Bicarbonate as CaCo3 mg/L	Carbonate as CaCO3 mg/L	Chloride	Colour	Total Organic Carbon
			uS/cm		mg/m3	NTU				mg/L	TCU	mg/L
Shelburne River	10-Jul-03	13:00	30.1	4.5		0.72						
Shelburne River	10-Jul-03	12:00	29.5	4.6	1.9	0.93	<1			4.2	127	12.6
Shelburne River	28-Nov-02	11:18	39.3	4.3		0.73						
Shelburne River	27-Nov-02	12:15	38.4	4.3		0.62						
Shelburne River	12-Aug-02	10:36	29.4	4.7		0.69						
Shelburne River	5-Jul-06		27.1	4.5	3.9	0.55	<1			3.9	226	20
Kelley River	13-Oct-05	10:00	25.9	4.7		0.96						
Kelley River	13-Oct-05	9:00	26.2	4.7	0.2	0.98	<1			3.4	133.5	17.9
Kelley River	21-Jun-05	13:00	21.1	6.2		0.64						
Kelley River	21-Jun-05	12:00	21	5.9	0.6	0.62	3.6	3.6	0	3.1	92.1	12.5
Kelley River	17-Dec-04	13:00	22.9	5.2	0.5	0.62	1.2	1.2	0	3.2	82	8.5
Kelley River	26-Aug-04	11:00	34	6.5	0.4	0.63	5.9	5.9	0	4.8	86.3	13.7
Kelley River	27-Jul-06		22.1	5.1	1.1	0.55	1.7	1.7	0	3	173	20.6
Kelley River	27-Jul-06		22.2	5.3		0.68						
Kelley River	18-May-06		22.5	6.1	1.8	0.7	2.3	2.3	0	2.9	84.9	10.1
Pockwock Lake	6-Dec-04	11:00	39.1	5.2		0.32						
Pockwock Lake	6-Dec-04	10:00	39.3	5.3		0.3						
Pockwock Lake	20-Oct-04	10:00	39.6	5.4		0.25						
Pockwock Lake	20-Oct-04	11:00	39.8	5.4		0.24						
Pockwock Lake	28-Jun-04	13:00	40	5.3		0.27						
Pockwock Lake	28-Jun-04	12:00	40	5.3		0.29						
Pockwock Lake	27-Apr-04	11:00	39.1	5.1		0.41						
Pockwock Lake	27-Apr-04	10:00	39.1	5.1		0.33						
Pockwock Lake	6-Nov-03	10:00	39.3	5.3		0.32						
Pockwock Lake	6-Nov-03	9:00	39.2	5.5		0.36						
Pockwock Lake	17-Jul-03	10:00	37.7	5.3		0.34						
Pockwock Lake	17-Jul-03	9:00	38	5.3		0.34						
Pockwock Lake	21-May-03	11:21	38.2	5.3		0.35						
Pockwock Lake	21-May-03	12:00	37.7	5.1		0.3						
Pockwock Lake	8-Nov-02	9:30	38.3	5.4								

Table III-1, co	ontinued Date Sampled	Time	Conductivity	рН	Chlorophyll	a Turbidity	y Alkalinity as CaCO3 mg/L	Bicarbonate as CaCo3 mg/L	Carbonate as CaCO3 mg/L		Colour	Total Organic Carbon
			uS/cm		mg/m3	NTU				mg/L	TCU	mg/L
Pockwock Lake	29-Oct-02	9:00	39.4	5.4		0.34						
Pockwock Lake	1-Aug-02	9:30	40.2	5.4								
Pockwock Lake	30-Jul-02	10:10	40.1	5.4		0.28						
Sample Station	Date Sampled	Silic	a Sulfate		Total Nitrogen	Total Phosphorus	Nitrate+Nitrite	Ammonia	Ortho Phosphorus	Suspended Solids		
		mg/I	L mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		
NE Margaree	1-Dec-05	7.3	21		0.17	0.008	0.08	< 0.01	< 0.005	<0.6		
NE Margaree	14-Sep-05	6.3	20		0.17	0.011	0.03	< 0.01	< 0.005	1		
NE Margaree	29-Jun-05	6.3	39		0.18	0.028	0.05	0.04	< 0.005	1.2		
NE Margaree	11-May-05	6	15		0.08	0.007	0.03	0.01	< 0.005	< 0.6		
NE Margaree	15-Dec-04	6.8	19		0.25	0.043	0.11	< 0.01	0.002	< 0.6		
NE Margaree	26-Oct-04	7	22		0.14	0.033	< 0.01	< 0.01	< 0.001	<1.5		
NE Margaree	8-Jul-04	6.6	33		0.09	0.05	0.03	0.02	< 0.001	<3.0		
NE Margaree	20-Nov-03	7.6	16		0.11	0.037	0.06	< 0.01	< 0.001	1.5		
NE Margaree	8-Jul-03	7.3	39		0.11	0.012	0.04	< 0.01	< 0.001	1.7		
NE Margaree	6-May-03	4.7	13		0.08	0.009	0.03	< 0.01	< 0.001	1.4		
NE Margaree	9-Jan-03	5	25		0.28	0.013	0.11	< 0.01	< 0.001	<1.5		
NE Margaree	22-Jun-06	6.6	25		0.14	< 0.005	0.05	0.02	< 0.005	1.2		
Shelburne River	29-Nov-05	4.1	<5		0.31	0.01	0.01	0.02	< 0.005	1		
Shelburne River	3-Nov-05	4.2	<2		0.39	0.01	< 0.01	0.02	< 0.005	1		
Shelburne River	5-Jul-05	2	<2		0.29	0.036	< 0.01	0.03	< 0.005	1.4		
Shelburne River	27-Apr-05	3	<2		0.2	0.019	0.01	0.02	< 0.005	< 0.6		
Shelburne River	9-Dec-04	3.7	<1		0.26	0.011	< 0.01	0.02	0.019	<1.2		
Shelburne River	9-Dec-04	3.7	<1		0.27	0.017	< 0.01	0.02	0.019	1.6		
Shelburne River	29-Sep-04	1.7	<1		0.32	0.023	< 0.01	0.02	< 0.001	1.2		
Shelburne River	22-Jun-04	1.7	<1		0.26	0.025	< 0.01	0.01	< 0.001	2.4		
Shelburne River	28-Nov-03	5.1	<2		0.37	0.03	0.01	0.02	< 0.001	<1.5		

Table III-1, continued

Sample Station	Date Sampled	Silica	Sulfate	Total Nitrogen	Total Phosphorus	Nitrate+Nitrite	Ammonia	Ortho Phosphorus	Suspended Solids
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Shelburne River	29-Jul-03	0.8	<2	0.25	0.024	< 0.01	< 0.01	< 0.001	1.6
Shelburne River	10-Jul-03	1.6	<2	0.25	0.011	0.01	< 0.01	< 0.001	<1
Shelburne River	5-Jul-06	3.1	<5	0.34	0.007	< 0.01	0.03	< 0.005	2
Kelley River	13-Oct-05	2.7	<2	0.3	0.012	< 0.01	0.02	< 0.005	< 0.6
Kelley River	21-Jun-05	2.7	<2	0.23	0.02	< 0.01	0.02	< 0.005	< 0.6
Kelley River	17-Dec-04	3.3	<1	0.17	0.032	0.04	0.01	0.007	0.8
Kelley River	26-Aug-04	3.1	<1	0.39	0.036	< 0.01	0.03	< 0.001	<1.5
Kelley River	27-Jul-06	3.4	<5	0.28	0.01	< 0.01	0.02	< 0.005	1.2
Kelley River	18-May-06	2.2	<5	0.24	0.006	< 0.01	< 0.01	< 0.005	0.8

APPENDIX IV – LAND USE DETAILED BREAKDOWN OF LAND USE CATEGORIES

Table IV-1. Pockwock Lake Watershed land classification conditions.

POCKWO	OCK WATERSHED LAN	ID CLASSIFICA	TION CONDITION	NS	
For/Non Description	Grouping	Area (km)	% of Group	% of Watershed	Group % of Watershed
Agriculture	Agriculture	0.00	100.00	0.01	0.0
Rock barren-<49% exposed rock>25% live tree cvr	Barren	0.16	49.70	0.29	0.6
Barren-<25% live tree cvr >50% rock/woody plants	Barren	0.04	11.84	0.07	
Gravel pit-activer/non used extract gravel	Barren	0.12	38.47	0.22	
Clear Cut-<25%residuals in crn closure	Clearcut	6.89	98.83	12.77	12.9
Partial depletion not verified	Clearcut	0.08	1.17	0.15	
Natural Forest Stand (not treated silviculturally)	Forest	32.53	99.44	60.28	60.6
Treated Forest Stand (treatment not classified)	Forest	0.09	0.27	0.16	
Dead-stand w<25%crn close live material	Forest	0.09	0.27	0.17	
Treated stand-silvicult treat identif	Forest	0.00	0.01	0.01	
Urban	Urban	0.68	46.00	1.25	2.7
Misc-nonforested misc (eg. old mill, rifle range)	Urban	0.04	2.62	0.07	
Powerline corridor	Urban	0.22	14.98	0.41	
Road Corridor	Urban	0.54	36.41	0.99	
Wetlands general-wet not lake/river/stream/bog	Wetland/Water	0.73	5.85	1.35	23.1
Open bogs-mostly ericaceous plnts<25% live tree	Wetland/Water	0.48	3.82	0.88	
Treed bogs-mostly ericaceous>25% stunt tree	Wetland/Water	0.54	4.34	1.00	
Lake wetland-wetland in freshwater	Wetland/Water	0.09	0.70	0.16	
Inland water-lks, rivers, reservoirs, canal, pond	Wetland/Water	10.65	85.29	19.74	
Totals	s:	53.97		100.00	100.0

Table IV-2. North East Margaree River Watershed land classification conditions.

NORTH EAST MAR	RGAREE RIVER WAT			ION CONDITIONS	
For/Non Description	Grouping	Area (km)	% of Group	% of Watershed	Group % of Watershed
Agriculture	Agriculture	2.8	100.0	0.8	0.8
Rock barren-<49% exposed rock>25% live tree cvr	Barren	0.0	0.4	0.0	2.6
Barren-<25% live tree cvr >50% rock/woody plants	Barren	9.4	98.0	2.6	
Gravel pit-activer/non used extract gravel	Barren	0.2	1.6	0.0	
Clear Cut-<25% residuals in crn closure	Clearcut	0.8	99.8	0.2	0.2
Partial depletion not verified	Clearcut	0.0	0.2	0.0	
Natural Forest Stand (not treated silviculturally)	Forested	239.3	74.1	65.3	88.1
Treated Forest Stand (treatment not classified)	Forested	29.5	9.1	8.0	
Old field-<25% crn close and <1m height tree	Forested	0.5	0.2	0.1	
Dead-stand w<25%crn close live material	Forested	1.2	0.4	0.3	
Dead-1-stand w 25-50% crn close live material	Forested	1.7	0.5	0.5	
Dead-2-stand w51-100% crn close live mat.	Forested	0.5	0.1	0.1	
Treated stand-silvicult treat identif	Forested	25.3	7.8	6.9	
Dead-3-26-50%crn close/equiv dead mat	Forested	0.9	0.3	0.2	
Dead-4-51-75% crn close/equiv dead mat	Forested	0.2	0.1	0.1	
Plantation	Forested	18.9	5.9	5.2	
Brush-<25% merch.tree cov>24% woody plants	Forested	2.4	0.7	0.7	
Alders <75% cover	Forested	1.5	0.5	0.4	
Alders >75% cover	Forested	1.0	0.3	0.3	
Urban	Urban	0.9	81.3	0.3	0.3
Misc-nonforested misc (eg. old mill, rifle range)	Urban	0.0	3.1	0.0	
Road Corridor	Urban	0.2	15.5	0.0	
Wetlands general-wet not lake/river/stream/bog	Wetland/Water	5.3	18.1	1.4	8.0
Beaver flowage	Wetland/Water	1.1	3.9	0.3	
Open bogs-mostly ericaceous plants<25% live tree	Wetland/Water	10.3	35.0	2.8	
Treed bogs-mostly ericaceous>25% stunt tree	Wetland/Water	11.2	38.0	3.0	
Lake wetland-wetland in freshwater	Wetland/Water	0.0	0.2	0.0	
Inland water-lks, rivers, reservoirs, canal, pond	Wetland/Water	1.4	4.8	0.4	
Totals:		366.7	100.0	100.0	100.0

Table IV-3. Shelburne River Watershed land classification conditions.

SHELBURNE RIVER WATERSHED LAND CLASSIFICATION CONDITIONS								
For/Non Description	Grouping	Area (km)	% of Group	% of Watershed	Group % of Watershed			
Rock barren-<49%exposed rock>25%live tree cvr	Barren	1.13	7.09	0.42	5.92			
Barren-<25% live tree cvr >50% rock/woody plants	Barren	14.70	92.58	5.48	5.92			
Gravel pit-activer/non used extract gravel	Barren	0.05	0.33	0.02	5.92			
Clear Cut-<25%residuals in crn closure	Clearcut	0.80	76.48	0.30	0.39			
Partial depletion verified-cut hrdwd resid>24%crn	Clearcut	0.25	23.52	0.09	0.39			
Natural Forest Stand (not treated silviculturally)	Forest	200.78	99.25	74.83	75.40			
Treated Forest Stand (treatment not classified)	Forest	0.28	0.14	0.11	75.40			
Dead-1-stand w 25-50% crn close live material	Forest	0.05	0.03	0.02	75.40			
Brush-<25% merch.tree cov>24% woody plants	Forest	1.19	0.59	0.44	75.40			
Brush-<25% merch.tree cov>24% woody plants	Forest	0.00	0.00	0.00	75.40			
Misc-nonforested misc (eg. old mill, rifle range)	Urban	0.66	100.00	0.25	0.25			
Wetlands general-wet not lake/river/stream/bog	Wetland/Water	13.59	28.08	5.07	18.04			
Beaver flowage	Wetland/Water	0.39	0.81	0.15	18.04			
Open bogs-mostly ericaceous plnts<25% live tree	Wetland/Water	3.90	8.06	1.45	18.04			
Treed bogs-mostly ericaceous>25% stunt tree	Wetland/Water	3.94	8.14	1.47	18.04			
Lake wetland-wetland in freshwater	Wetland/Water	0.11	0.24	0.04	18.04			
Inland water-lks, rivers, reservoirs, canal, pond	Wetland/Water	26.47	54.67	9.87	18.04			
Totals:		268.30		100.00	100.00			

Table IV-4. Kelley River Watershed land classification conditions.

KELLEY RIVE	R WATERSHED LA	AND CLASSIFICA	TION CONDIT	IONS	
For/Non Description	Grouping	Area (km)	% of Group	% of Watershed	Group % of Watershed
Blueberries	Agriculture	0.04	100	0.1	0.1
Barren-<25% live tree cvr >50% rock/woody plants	Barren	0.11	86.3	0.2	0.2
Gravel pit-activer/non used extract gravel	Barren	0.02	13.7	0.0	
Clear Cut-<25%residuals in crn closure	Clearcut	4.32	100.0	6.7	6.7
Natural Forest Stand (not treated silviculturally)	Forest	32.49	62.7	50.3	80.3
Treated Forest Stand (treatment not classified)	Forest	1.13	2.2	1.8	
Dead-stand w<25%crn close live material	Forest	5.05	9.7	7.8	
Dead-1-stand w 25-50% crn close live material	Forest	6.34	12.2	9.8	
Dead-2-stand w51-100% crn close live mat.	Forest	3.56	6.9	5.5	
Plantation	Forest	2.79	5.4	4.3	
Brush-<25% merch.tree cov>24% woody plants	Forest	0.33	0.6	0.5	
Alders<75% cover	Forest	0.13	0.3	0.2	
Misc-nonforested misc (eg. old mill, rifle range)	Urban	0.03	3.9	0.0	1.3
Road Corridor	Urban	0.78	96.1	1.2	
Wetlands general-wet not lake/river/stream/bog	Wetland/Water	2.93	39.5	4.5	11.5
Beaver flowage	Wetland/Water	0.10	1.4	0.2	
Open bogs-mostly ericaceous plnts<25% live tree	Wetland/Water	3.03	40.9	4.7	
Treed bogs-mostly ericaceous>25% stunt tree	Wetland/Water	1.22	16.5	1.9	
Inland water-lks, rivers, reservoirs, canal, pond	Wetland/Water	0.13	1.7	0.2	_
	Totals:	64.54		100.0	100.0

APPENDIX V – EQUIPMENT, DEPLOYMENT, MAINTENANCE, AND CHEMICAL STANDARD SOLUTIONS

EQUIPMENT

Data sondes used in the water quality monitoring network were manufactured by Hydrolab® and purchased through Campbell Scientific Ltd. from which instrument specifications are available. The following contact information is provided:

Campbell Scientific Canada Corp. 11564 - 149 Street NW Edmonton, AB Canada T5M 1W7

Phone 780-454-2505 Fax 780-454-2655

E-Mail David.Allan@campbellsci.ca General E-Mail dataloggers@campbellsci.ca Web Site http://www.campbellsci.ca

DEPLOYMENT, AND MAINTENANCE

Deployment and maintenance documentation was provided by Mr. Dave Allan, Water Quality Specialist, Campbell Scientific Ltd. (see contact information above).

REMOTE AND REAL-TIME DEPLOYMENT

Shore Deployments

Figures 1 and 2 illustrate the structure and configuration presently used to deploy either real time or remote water quality instruments from shore. Many sites in southern Alberta and British Columbia use this type of deployment due to limited access and variable water level. The Datasonde or Minisonde is placed in the downstream end of a 3 to 6 meter length of 10 cm PVC pipe that has 1.5-meter of one end slotted. This pipe is oriented downstream such that water is able to pass through the slotted end and past the

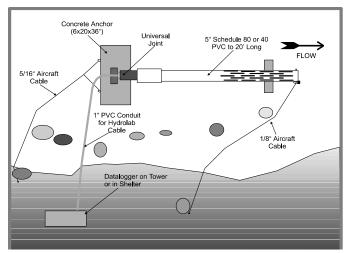


Figure 1

sensors. The pipe is connected by a heavy duty coupling to a universal joint that allows the pipe to swivel in any direction. This allows the field crew to easily raise and turn the pipe towards shore for inspection and to change instruments.

The pipe and universal joint are bolted directly to a large concrete anchor weighing approximately 70 kg. If high flows are expected any number of additional anchors can be attached along with a heavy aircraft cable to shore. This cable will also facilitate the removal of the structure at the end of the season. A length of light

Figure 2

aircraft cable is attached at the downstream end of the pipe

and runs to shore to aid the field crew in the pipe retrieval. This cable is locked to a large pin that passes through the end of the pipe and prevents the unauthorised removal of the instrument. A concrete curb or rock is placed on the bottom under the slotted end of the pipe to hold the pipe above the river bottom substrate and prevent it from becoming clogged with silt. The greatest advantage with this structure is its entirely submerged and any floating material passes over it without incident.

A second method used on small streams, shown in Figures 3 and 4, is to attach the slotted pipe to a 2x12 pressure treated board, which is

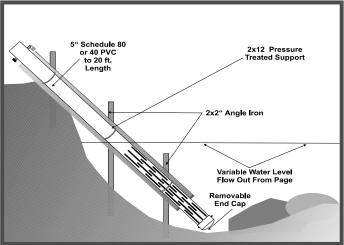


Figure 3

REMOTE AND REAL-TIME DEPLOYMENT

Figure 4

then bolted to stakes driven into the bank. The pipe and 2x12 are angled down into the water at about 45° and the Datasonde or Minisonde is loaded in from the top and slides down the pipe into place at the slotted end. The cables run up the pipe and into conduit at the top and then to the shelter housing the datalogger. The end cap is removable so that sand, silt and any build up of debris can be cleaned out.

Bridge Deployment

The following figures (5 & 6) illustrate the deployment of a Hydrolab Datasonde or

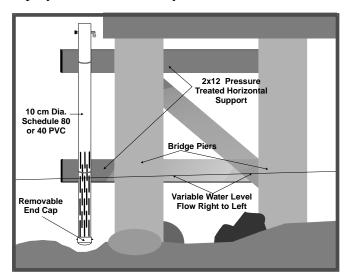


Figure 5

Minisonde from a bridge. The instrument is placed inside a PVC pipe 3 to 6 meters in length that has been slotted at one end. The slots allow water to freely pass through the pipe and past the sensors. The pipe is attached to the bridge pier with two heavy timbers (2x12 or larger) usually near the center of the river. The slotted end with removable cap is placed slightly above the river bottom but can be raised or lowered depending on the water level at the time. The pipe should be suspended behind the pier for protection as in Figure 6 or it may become snagged on floating debris. The advantage is mainly the ease of access. The following is a photo from the Salmon River in BC where this type of deployment is presently being used.

Figure 6

Methods of deployment can be complex but the theme is the same for all. The instrument must be protected, the information must represent the true conditions in the river and the field crews must be able to recover the instrument at any time with a minimum of effort. It is vital that field crews are skilled, trained and safety oriented. This is potentially dangerous work, with many hazards.

GENERAL MAINTENANCE

Background

Although individual Datasonde 4a's (DS4a) or Minisondes4a (MS4a) can be configured in a multitude of ways, the sonde itself will need to be cleaned and serviced on occasion. Great care needs to taken here, in that any damage to the sonde, housing or O-ring seals will have a catastrophic effect on the entire unit. It is preferable, and in some cases you will be required, to maintain a log of all the repairs, maintenance and calibration that is done on each unit. This log can take any form that is convenient to you but should include the unit serial number, date, who serviced the equipment and what was done.

Equipment

- / DS or MS4a calibration cup.
- / Distilled water, methanol, cotton swabs and silicone grease.
- / Table clamp or lab chain clamp to hold the sonde inverted and vertical.
- / Hydrolab's Basic Maintenance Kit for DS or MS4a including small Allen wrenches and Philips screwdriver.
- / Duct tape (the wider the better).
- / Scrub pads and cleanser (lab grade Sparkleen works great).

/ Soft bristle scrub brush or old toothbrush.

Maintenance

The sonde, circulator and individual probes should be maintained on a regular basis (at least monthly during daily use) or prior to and after any long-term deployment.

- 1. If the sonde is covered with sediment, algae and other biological growth when it is recovered, try to clean as much off right away so it doesn't bake on while it is in the back of your truck.
- 2. After returning to your lab remove the duct tape (if you have used it to help keep the sonde clean) and with the scrub pads and Sparkleen get all the caked on sediment algae and other material off as best you can. You may need to let the whole thing soak in a sink of warm water and Sparkleen overnight to soften the gunk up and try scrubbing again the next day.
- 3. Use the toothbrush or other small nylon brush to gently remove sediment, algae, bugs, and any other debris around the sensors. It is important <u>not</u> to use soaps or solvents if any of the ion sensors are installed (NH₄, Chloride & Nitrate).
- 4. On DS & MS4a's, remove the circulator's impeller and clean and remove any debris that may be wrapped around it. In some areas pyrite or other iron based materials can accumulate around the magnet of the circulator and in time can interfere with it's function and even cause premature wearing of the surfaces.
- 5. On H20's & DS3's, remove the circulator's impeller and clean and remove any debris that

GENERAL MAINTENANCE

may be wrapped around it. Put a very small amount of silicone grease on the impeller post.

- 6. Every other year or so the O-rings and internal memory battery in the sonde need to be checked. Great care is needed to open the sonde and if you are unsure check with Campbell Scientific (Canada) Corp. for assistance.
- 7. Check the pair of O-rings for any wear spots, tears or deterioration and replace as required. Thoroughly clean both the bulkhead and the inside of the tube and lightly grease the O rings with silicone.
- 8. Check the internal lithium battery in the DS or MS4a to ensure it is still at or above 3 volts DC. If not replace the battery. With DS3's the lithium battery is soldered to the CPU board and may need to be returned to CSCC for replacement. H20's and DS3's could have a pair of 3-volt lithium batteries installed to power the Dissolved Oxygen probe. Check to ensure they are still above 2.75 volts and replace if required. Replace the desiccant packets and carefully put the sonde back together.
- 9. With the sonde back together and the set screws in place tape the outside of the sonde at the O rings with the wide duct tape to help to keep sediment and debris out of there. If the sonde is to be out for long periods (especially in warm productive water) you can duct tape the whole thing to make cleaning easier next time (don't tape the storage cup).

Cautions & Problems

Maintenance of the sonde and probes should become second nature. In other words

too much maintenance is better than not enough. The amount or frequency of maintenance is directly related to the overall quality of data you will collect. On long term deployments if you are only able to get to the site to service the unit every 6 weeks, you may have to be satisfied with broader data acceptance criteria, especially towards the end of the deployment period. If you visit the site every other week you can expect to have the best data possible.

If the sample site has been chosen well, maintenance problems could be minimised but will not likely be eliminated. When choosing a site, especially for long term deployment look for sufficient flow without turbulence, depth without direct sunlight

Under certain conditions it may be advisable to make a mesh screen to protect the sensors from debris, slush, macrophytes, algae, bubbles and even sunlight. Screens as in the figure below can be easily made from Nitex mesh, window screening, shade cloth or any available mesh material that will let water pass through but help to keep the other junk out.

CHEMICAL STANDARD SOLUTIONS

As mentioned in an earlier section, Hydrolab and Quanta P sensors are routinely calibrated to guarantee the best possible the accuracy of data being gathered. pH, conductivity and turbidity sensors are calibrated using commercially manufactured liquid calibration standards as specified below.

pH – HACH buffer solutions pH 7.00 (Cat.# 22835-56) and 4.01 (Cat.# 22834-56) available from Atlantic Purification Systems Ltd., Dartmouth, Nova Scotia.

Conductivity – Ricca Chemical Company Conductivity/TDS standards - 100 umhos/cm (Cat.# 2237-1) and 500 umhos/cm (Cat.# 2241-1).

Turbidity – AMCO Clear Turbidity standards 50NTU (HACH Cat.# 013710HY) and 100 NTU (HACH Cat.# 013720HY) available from Campbell Scientific Limited.

Dissolved Oxygen – calibrated using air saturation method.